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9 
Baroclinic Waves, Cyclogenesis 
and Frontogenesis 
 
Abstract	of	a	landmark	article	on	the	theory	of	cyclogenesis		
	
By	obtaining	complete	solutions,	satisfying	all	relevant	simultaneous	differential	equations	and	boundary	conditions,	
representing	small	disturbances	of	simple	states	of	steady	baroclinic	large-scale	atmospheric	motion	it	is	shown	that	
these	 simple	 states	 of	 motion	 are	 almost	 invariably	 unstable.	 An	 arbitrary	 disturbance	 (corresponding	 to	 some	
inhomogeneity	of	an	actual	system)	may	be	regarded	as	analysed	into	“components”	of	a	certain	simple	type,	some	of	
which	 grow	 exponentially	 with	 time.	 In	 all	 the	 cases	 examined	 there	 exists	 one	 particular	 component	 that	 grows	
faster	 than	 any	 other.	 It	 is	 shown	 how,	 by	 a	 process	 analogous	 to	 “natural	 selection”,	 this	 component	 becomes	
dominant	 in	 that	 almost	 any	 disturbance	 tends	 eventually	 to	 a	 definite	 size,	 structure	 and	 growthrate	 (and	 to	 a	
characteristic	 life-history	 after	 the	 disturbance	 has	 ceased	 to	 be	 “small”),	 which	 depends	 only	 on	 the	 broad	
characteristics	of	 the	 initial	 (unperturbed)	system.	The	characteristic	disturbances	(forms	of	breakdown)	of	certain	
types	of	initial	system	(approximating	to	those	in	practice)	are	identified	as	the	ideal	forms	of	the	observed	cyclone	
waves	and	long	waves	of	middle	and	high	latitudes.	
E.T.	Eady	(1949),	“Long	waves	and	cyclone	waves”	(Tellus,	1,	33-52)	
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9.1 Introduction 
 
The formation or genesis of cyclones (cyclogenesis) tends to occur in zones that exhibit a strong low-
level horizontal temperature gradient. These so-called baroclinic zones are encountered principally in 
winter in middle latitudes. This chapter begins by describing a typical example of cyclogenesis in a 
baroclinic zone in middle latitudes and then continues by presenting a theory that explains the 
mechanism of cyclogenesis in a baroclinic zone. This theory emerged in the years after the Second 
World War, together with the so-called ”quasi-geostrophic approximation”. This approximation, 
which provides a closed set of only two equations, governing the behaviour of large-scale quasi-
balanced circulation systems (section 1.30), is introduced in section 9.3. Based on the quasi-geostrophic 
approximation, a diagnostic equation for vertical velocity (the so-called “omega equation”) is derived 
(section 9.5), which again (see the “Sawyer-Eliassen equation” in chapter 8) highlights the intimate 
relation between frontogenesis and vertical motion. In a statically stable atmosphere vertical motion 
occurs as a response to the destruction of thermal wind balance by frontogenesis or frontolysis. This 
response is required in order to maintain thermal wind balance. Under certain circumstances this 
response may be “unstable”, i.e. baroclinically unstable. In section 9.6 a two-level model of the 
atmosphere is introduced, and used to study this baroclinically unstable response applied to Rossby 
waves in a baroclinic zone. We find that the amplitude of Rossby waves grows exponentially if the 
horizontal temperature gradient exceeds a threshold value, which depends on the wavelength of the 
waves.  
 Potential vorticity, which should also be a useful concept in this context, returns into the discussion at 
the end of this chapter. This reflects the two different viewpoints on middle latitude atmospheric 
dynamics that presently exist side by side. The first viewpoint employs pressure as a vertical coordinate, 
while the second viewpoint employs potential temperature as a vertical coordinate and is thus known as 
the “PV-θ  viewpoint” (PV=potential vorticity). Both viewpoints assume that the atmosphere is in a 
state of “quasi-balance”. 
 
 
9.2 An example of cyclogenesis 
 
An example of cyclogenesis just south of Ireland on March 2 1995 is discussed in this section. This 
example was also used in sections 1.30 and 1.36.  Figure 9.1 shows the GFS74-analysis of the 500 hPa 
geopotential (indicated in colours), sea-level pressure and the 1000-500 hPa “thickness” on March 2, 
1995, at 00 UTC, 06 UTC, 12 UTC and 18 UTC. The “thickness” (indicated by the solid black contours 
in figure 9.1), which is defined as the distance between two constant pressure surfaces, is a measure of 
the average temperature of the layer in between these constant pressure surfaces (Box 9.1). A narrow 
zone, characterised by a strong isobaric temperature gradient (i.e. closely packed thickness contours), is 
present over the Atlantic Ocean. This zone is referred to as the polar front. Embedded in the polar front 
is a weak trough in the surface pressure, which is indicated by the red arrow. This disturbance, which is 
identified as a “baroclinic Rossby wave” (section 9.7), propagates in eastward direction along the polar 
front without change of amplitude until it reaches Western Europe at 12 UTC on March 2, 1995.  At that 
point in time the disturbance starts to amplify suddenly, i.e. the surface pressure in the disturbance 
decreases rapidly and a cyclone, with closed isobars, develops over Southern England and the North Sea 
(figure 9.2). This process is called “cyclogenesis”. 
 

                                                
74	GFS	stands	 for	 “Global	Forecasting	System”,	which	 is	 the	numerical	 forcasting	system	of	 the	National	Center	 for	
Environmental	Prediction	in	the	United	States	(http://www.nco.ncep.noaa.gov/pmb/products/).	
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FIGURE	9.1.		continued	on	next	page.	
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FIGURE	9.1.	GFS	reanalysis	(source:	http://www.wetter3.de/Archiv/)	of	the	500	hPa	geopotential	(see	colour	coding	
on	the	right	with	units	in	dm),	the	distance	between	1000	hPa-	and	500	hPa-levels	(black	contours;	labels	in	dm)	and	
sea-level	pressure	(white	contours;	labels	in	hPa)	on	2-3	March	1995.		Red	arrow	points	to	the	trough	of	a	travelling	
baroclinic	Rossby-wave.	
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FIGURE	9.2.	GFS	reanalysis	(source:	http://www.wetter3.de/Archiv/)	of	the	sea-level	pressure	and	the	wind	at	10	m	
above	the	surface	on	2	March	1995.	The	contour	interval	is	2	hPa.	The	intensifying	trough	(indicated	by	a	red	arrow)	
propagates	in	easterly	direction.	
 
 The sudden decrease of the surface pressure in the disturbance appears to be connected to the 
presence of a jet exit at upper levels. Cyclogenesis begins on March 2 at 12 UTC, when the disturbance 
is collocated with the left exit region of a jet (figure 9.3) (section 1.32). Frontogenesis and reduction of 
the static stability in the left exit of the jetstreak helps to promote baroclinic instability, a process, which 
was studied in sections 1.20 and 1.21, and put forward as the process leading to the formation of 
cyclones in middle latitudes. This chapter elaborates further upon this topic. 
 Detailed surface analyses of this event are shown in figure 9.4. Corresponding satellite images are 
shown in figure 1.97. The cloud band is observed over the Atlantic Ocean at 1344 UTC on March 2, 
1995. To the north of this cloud band, convection cells are observed indicating the presence of a 
relatively cold air mass. The cloud band ends over the southern part of the British Isles in what could be 
referred to as a "cloud head", following the terminology of Browning and Roberts (1994) (figure 9.6). 
This is the left exit region of the jet. Forced upward motion in this area is inducing convergence and 
therefore cyclogenesis at the earth's surface. The subsequent evolution of the cyclone is illustrated nicely 
by the satellite images displayed in figures 1.97b and 1.97c. The life cycle of the depression 
corresponds quite closely to the conceptual model proposed by Shapiro and Keyser (1990), which is 
shown in figure 1.100 and figure 9.5. In the early stages of the life cycle of the cyclone, the classical 
pattern of the cold front moving towards the southeast overtaking the warm front is observed. The cold 
front, which is oriented almost at right angles to the warm front, seems to propagate away from the 
cyclone centre, leaving behind a bent back warm front that eventually “wraps around” the cyclone 
centre. This process is referred to as frontal fracture. 
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FIGURE	9.3.	 Sea-level	pressure	 (black	contours,	 labeled	 in	hPa),	height	of	 the	300	hPa	 isobaric	 level	 (blue	contours,	
labeled	in	metres)	and	wind	speed	at	300	hPa	(light	red:	50-60	m/s,	medium	red:	60-70	m/s;	dark	red:	70-80	m/s),	
on	2	March	1995,	12	UTC.		Based	on	the	ERA-Interim	reanalysis.	
	
 The cold and warm currents (arrows), sketched in the lower panel of figure 9.5, correspond to 
portions of the cold conveyor belt (CCB) and warm conveyor belt (WCB) where these are close to the 
Earth's surface. The WCB, beyond the tip of the dashed arrow in the lower panel of figure 9.5, goes on 
to ascend above the warm front, as shown in figure 9.6a and c. Also shown in figure 9.6b and c is the 
so-called dry intrusion and associated dry slot. The cloud-free dry slot can also be recognised in the 
satellite image in figure 1.97b. The dry intrusion is a mass of dry air that is associated with the 
decending branch of the left entrance region of the jet streak (see figure 1.88). Frequently, this air is of 
stratospheric origin. The satellite image in figure 1.97c shows the typical spiral cloud pattern associated 
with the mature depression with warm and dry air caught in the centre. Clouds associated with the bent 
back warm front on 3 March 1995 activated over the relatively warm North Sea and caused significant 
snowfall in The Netherlands during the night of 3-4 March 1995. 
 
 
9.3 Quasi-geostrophic approximation 
 
In the 1940's a theory was put forward by Jule Charney and, independently, by Eric Eady (see the quote 
at the beginning of this chapter) to explain the genesis of midlatitude cyclones. Both these theoreticians 
proposed that the genesis of typical mid-latitude cyclones is due to an instability of the jet stream. The 
two-dimensional version of this instability, called baroclinic instability, was discussed in sections 1.20 
and 1.21. To set the stage for the presentation of the theory of three-dimensional baroclinic instability, 
we must make the “quasi-geostrophic” approximation. 
 
 
PROBLEM 9.1. Analyis of the surface fronts.  
Using the conceptual model in figure 9.5 or figure 1.100, draw the position the fronts (warm and cold) 
in figure 9.4.  
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FIGURE	9.4.	Continued	on	next	page.	
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FIGURE	9.4.	Continued	on	next	page.	
 
 
PROBLEM 9.2. Upper air analysis of the structure of a baroclinic depression. 
Analyse the temperature and the geopotential in the plotted 500 hPa- and 850 hPa chart displayed in 
figure 9.7. In the case of the 500 hPa chart draw isotherms every 2.5°C starting at -22.5°C and draw 
isopleths of equal geopotential height every 5 decametres starting at 515 decametre. In the case of the 
850 hPa chart draw isotherms every 2.5°C starting at -7.5°C and draw isopleths of equal geopotential 
height 125 decametre. c. Perform the analysis of the geopotential and the temperature for the 850 hPa 
level. Draw isotherms every 2.5°C starting at -7.5°C and draw isopleths of equal geopotential height 
every 5 decametres starting at 125 decametre. Interpret the analysis. 
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FIGURE	9.4.	Continued	on	next	page.	
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FIGURE	9.4.	 Surface	weather	maps	of	2-3	March	1995,	 (a)	18	UTC	 (2	March),	 (b)	00	UTC	 (3	March),	 (c)	06	UTC	 (3	
March),	(d)	12	UTC	(3	March)	and	(e)	18	UTC	(3	March).	Isobars	are	shown	by	grey	solid	lines	(interval:	2	hPa).	The	
letters	L	denotes	sea-level	pressure	minimum.	A	square	marks	the	position	of	the	weather	station	as	well	as	the	end	
point	of	a	wind-vector.	The	barbs	attached	to	the	wind-vector	indicate	the	10	minute	mean	wind	speed,	ff,	measured	
at	a	height	of	10	m:	no	barb	corresponds	to	ff<	2.5	knots	(1	knot=	0.5	m/s);	each	whole	barb	corresponds	to	an	extra	
10	knots;	each	half	a	barb	corresponds	to	an	extra	5	knots.	If	the	windspeed	is	equal	or	greater	than	25	m/s,	this	is	
indicated	by	a	triangle	attached	to	the	wind	vector.	Also	indicated	are	the	temperature	(°C)	(upper	left),	the	dew	point	
(°C)	(lower	left),	the	sea	level	pressure	(hPa)	(upper	right),	the	change	in	the	sea	level	pressure	over	the	past	3	hours	
and	the	cloudiness	(octa's)	(within	the	square).	75	
                                                
75	The	analysis	of	 the	surface	pressure	has	been	performed	by	computer	using	 "optimal"	 linear	 interpolation	 .	The	
interpolation	is	done	on	a	grid	with	a	grid	distance	of	0.5°	in	both	horizontal	directions.	For	each	gridpoint	the	nearest	
nine	stations,	giving	"reasonable"	measurements,	are	 found.	All	possible	permutations	of	 three	stations	are	 formed.	
This	yields	84	overlapping	station-triangles.	 If	a	triangle	contains	an	angle	smaller	than	25°	 it	 is	discarded,	yielding	
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FIGURE	9.4.	Caption	on	previous	page.	

                                                
N≤84	station	triangles.	This	yields	N	possible	values	of	the	pressure	at	the	gridpoint.	From	a	histogram	of	these	values	
one	 "optimal"	 value	 is	 selected	 (see	 elsewhere	 for	 the	 details).	 The	 resulting	 analysis	 is	 smoothed	 with	 9	 point	
smoother	 (see	 Haltiner,	 G.J.,	 and	 R.T. Williams,	 1980:	Numerical	 Prediction	 and	 Dynamic	Meteorology.	 Second	
edition.	John	Wiley	&	Sons.	477	pp.,	p.	397)		
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FIGURE	9.5.	The	life	cycle	of	an	extra-tropical	cyclone	according	to	M.A.	Shapiro	and	D.	Keyser	(1990)76:	(I)	incipient	
frontal	 cyclone;	 (II)	 frontal	 fracture;	 (III)	 bent-back	 warm	 front	 and	 frontal	 T-bone;	 (IV)	warm-core	 frontal	
seclusion.	Upper:	sea	 level	 isobars	(solid	 lines);	 fronts	(bold	 lines)	and	cloud	signature	(shaded).	Lower:	 isotherms	
(solid	lines);	cold	and	warm	currents	(solid	arrows:	cold	conveyor	belt	and	dashed	arrows:	warm	conveyor	belt).	
See	also	figure	1.100.	
	
	
 The dynamical equations in isobaric coordinates, derived in section 1.23, are summarised in Box 
9.1. For reference they are repeated below. The horizontal momentum equation, the hydrostatic 
equation, the continuity equation, and the thermodynamic energy equation are, dropping the subscript p, 
 

  

€ 

d! v 
dt

= − f ˆ k × ! v −
! 
∇ Φ ,            (9.1) 
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∂Φ
∂p

= −
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where  
 

€ 
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RT
cpp

−
∂T
∂p

= −
T
θ
∂θ
∂p

,          (9.5) 

 
The horizontal derivatives are performed at constant pressure.  

                                                
76	A.T.	Semple,	2003:	A	review	and	unification	of	conceptual	models	of	cyclogenesis.	Meteorol.Appl.,	10,	39-59.	
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FIGURE	9.6.	Air	flow	in	a	developing	extratropical	cyclone.	(a)	Sea-level	pressure	and	frontal	analysis.	Part	of	the	bent	
back	 front	 is	 shown	as	a	 cold	 front.	The	unshaded	cold	 frontal	 symbols	 indicate	where	 the	 front	 is	detectable	only	
aloft.	 (b)	 Cloud	 analysis.	 Precipitation	 features	 are	 depicted	 as	 follows:	 solid	 hatching	 -	 cloud	 head	 precipitation,	
cross-hatched	where	 convective	 (moderate	 to	heavy);	 broken	hatching	 -	warm	conveyor	belt	precipitation	 (mainly	
light	 intensity);	 broken	 cross-hatching	 -	 midlevel	 convective	 precipitation	 associated	 with	 the	 upper	 cold	 front	
(patchy	moderate	 rain);	 solid	 shading	 -	narrow	cold	 frontal	 rainbands	 (heavy	 rain	 associated	with	 intense	 shallow	
line	convection).	(c)	Conveyor	belt	analysis.	System-relative	motion	for	the	key	moist	flows:	(i)	main	warm	conveyor	
belt	(WCB)	labelled	W1;	(ii)	Lower	part	of	WCB	which	peels	off	and	ascends	as	flow	W2	in	the	top	part	of	the	cloud	
head;	(iii)	Cold	conveyor	belt	(CCB)	whose	ascending	diffluent	flow	is	responsible	for	a	large	proportion	of	the	clou	
head	and	associated	precipitation.	The	westward	component	of	the	flow	within	W1	and	the	CCB	is	associated	with	the	
ageostrophic	transverse	circulation	at	the	exit	of	an	upper	level	jet	streak.	(d)	Dry	intrusion	analysis.	System	relative	
motion	for	the	dry	air	that	descends	from	near	the	tropopause	upwind	and	reascends	while	approaching	the	cyclone	
centre	where	it	overruns	a	shallow	moist	zone	associated	with	W2	(see	smz	in	(c))	(based	on	Browning,	K.A.,	and	N.M.	
Roberts,	1994:	Structure	of	a	frontal	cyclone.	Quart.J.Roy.Meteor.Soc.,	120,	1535-1557).	
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FIGURE	9.7.	Plotted	weather	maps	of	3	March	1995,	12	UTC	for	two	isobaric	levels:	500	hPa	(panel	on	this	page)	and	
850	hPa	(panel	on	next	page).	The	position	of	a	radiosonde	station	is	indicated	by	a	square.	Also	indicated	are	the	
temperature	(°C)	(upper	left),	the	dew	point	depression	(°C)	(lower	left)	and	geopotential	height	(dm)	(upper	right).	
Barbs,	 attached	 to	 the	wind	 vector,	which	 points	 towards	 the	 station	 position,	 indicate	 the	windspeed,	 ff.	 No	 barb	
corresponds	to	 ff<2.5	knots	(1	knot	 is	0.5	m/s);	each	whole	(half)	barb	corresponds	to	an	extra	10	(5)	knots.	 If	 the	
windspeed	is	equal	or	greater	than	25	m/s,	this	is	indicated	by	a	triangle	attached	to	the	wind	vector,	while	the	value	
of	the	wind	speed	(in	m/s)	is	indicated	to	the	right	of	the	plot	in	bold	numbers.	
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FIGURE	9.7.	Caption	on	previous	page.	
 
 
Box 9.1 Primitive equations in pressure coordinates 
 
With the ideal gas law (eq. 1.10b), p=RρT, the hydrostatic equation (∂p/∂z=-ρg) can be expressed as 
follows.   
 

€ 

∂Φ
∂p

= −
RT
p

 ,            (1) 

 
where the "geopotential" is 
 

€ 

Φ ≡ gz  .            (2) 
 
Integration of (1) in the vertical yields the hypsometric equation: 
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zT ≡ z2 − z1 =
R
g

Td ln p( )
p2

p1
∫  ,          (3) 

 
The quantity, zT, is the thickness of an atmospheric layer between the pressure surfaces p2 and p1. 
Defining the layer mean temperature as  
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 ,         (4) 

 
we obtain 
 

€ 

zT =
R
g
T ln p1

p2
 .           (5a) 

 
Thus, the thickness of an atmospheric layer, bounded by isobaric surfaces, is proportional to the mean 
temperature of this layer. We can also eq. 5a as 
 

€ 

zT ≡ H ln p1
p2

 .           (5b) 

 
Here, H is the layer scale height, defined as 
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H ≡
R T
g

 .            (6) 

 
 The thermodynamic energy in pressure coordinates is (eq. 1.195):  
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where the differentiation with respect to x and y is carried out at constant pressure, and where cp is the 
specific heat at constant pressure (cp-cv=R). Eq. 7 is rewritten as 
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with  
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 ,          (9) 

 
which is the static stability parameter for the isobaric system. 
 With pressure as a vertical coordinate, the horizontal components of the momentum are (eqs. 1.191) 
are 
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The terms, Fx  and Fy represent friction.     
 The material derivative with respect to time is expanded as (eq. 1.176) 
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If applied to large scale motion systems in mid-latitudes, eqs. 10a,b are frequently simplified to (Box 
1.2)  
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The continuity equation in the pressure coordinate system is (eq. 5, Box 1.9) 
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which, when applied to middle latitudes, is usually simplified to 
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 The continuity equation (14), the hydrostatic relation (1), the thermodynamic equation (8) and the 
momentum equation (12a,b) form a closed set of equations, called the "primitive equations". 
 
 
 
 Equations 9.1-4 can be further simplified by assuming that the horizontal flow is nearly geostrophic 
and that the magnitude of the vertical velocity is much smaller than the magnitude of the horizontal 
velocity. We may write (as in eq. 1.234) 
 
  

€ 

! v = ! v g +
! v a  . 

 
Here, the geostrophic wind is determined by 
 

  

€ 

! v g ≡ f0
−1 ˆ k ×

! 
∇ Φ ,            (9.6) 

 
with f0=f(y0), where y0 is a chosen reference value of y, corresponding to chosen reference latitude, φ0 
(say: 45°). 
  The Coriolis parameter is written as 
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f ≡ f0 +
df
dy

y − y0( ) = f0 + β y − y0( ) ,         (9.7) 
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Approximation (9.7) is usually referred to as the middle latitude beta-plane approximation, which was 
first introduced by Rossby in 1939) (see also section 1.34). The beta-parameter, 
 

€ 

β =
2Ωcosφ0

a
 .           (9.8) 

 
Eqs. 9.6 and 9.7 represent the first two parts of the quasi-geostrophic approximation.  
 In the third part of the quasi-geostrophic approximation we define the fluid parcel acceleration as 
being subject to the "geostrophic constraint", i.e. 
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where 
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With assumptions 9.7 and 9.9 we write eq. 9.1 as 
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! v g

dt
= − f ˆ k × ! v −

! 
∇ Φ = − f0 + β y − y0( )( ) ˆ k × ! v g +

! v a( ) + f0
ˆ k × ! v g = − f0 + β y − y0( )( ) ˆ k × ! v a − β y − y0( ) ˆ k × ! v g .

 
or 
         

  

€ 

dg
! v g

dt
≈ − f0

ˆ k × ! v a − β y − y0( ) ˆ k × ! v g   .          (9.11) 

 
Here, we have assumed that 

€ 

f0 >> β y − y0( ) , which represents the fourth part of the quasi-geostrophic 
approximation, which implies that the flow is retricted to a relatively narrow mid-latitude channel 
with a meridional width of about 1000 km, since 

€ 

f0 ≈10−4  s-1 and β ≈10−11 s-1m-1. This retriction is, in 
fact also imposed by the approximation leading to eq. 9.6. 
 The assumption that the ageostrophic wind can always be neglected compared to the geostrophic 
wind is in fact very dubious, especially in the case of a quickly intensifying and/or fast travelling 
cyclone, which is usually associated with strong isallobaric effects (section 1.31). Nevertheless, this 
assumption is made here in order to make progress in constructing a tractable analytical theory of the 
initial growth-phase of midlatitude cyclones. The test of this theory is not whether it is able to describe 
these systems quantitatively very accurately, but whether it is able to reproduce and explain the 
qualitative features of the mechanism of cyclogenesis.  
 Because the horizontal divergence of the geostrophic wind in the quasi-geostrophic approximation, as 
defined in eq. 9.6, is equal to zero, the continuity equation (9.3) can be written as  
 

€ 

∂ua
∂x

+
∂va
∂y

+
∂ω
∂p

= 0 ,           (9.12) 

 
which shows that vertical motion is determined by the ageostrophic part of the wind. 
 In the thermodynamic equation (9.4) horizontal advection is approximated by its geostrophic value, as 
in eq. 9.9). Vertical temperature advection is retained, however, because adiabatic heating or 
cooling, owing to vertical motion, is usually of the same order of magnitude as horizontal temperature 
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advection, despite the smallness of the vertical velocity. The term can be somewhat simplified, though, 
by writing the temperature as a sum of a basic state, which is only dependent on pressure, and a 
perturbation, as in the Boussinesq approximation (chapter 3), i.e. 
 

€ 

T x,y,z,t( ) = T0 p( ) +T ' x,y,z,t( ),  with T '<< T0  .       (9.13) 
 
Therefore eq. 9.4 becomes 
 

€ 

∂T
∂t

+ ug
∂T
∂x

+ vg
∂T
∂y

−
σp
R
ω =

J
c p

 ,         (9.14) 

 
where , in this chapter, using Holton’s (2004) notation, the static stability parameter is 
 

€ 

σ ≡ −
RT0
p

d lnθ0
dp

 .           (9.15) 

 
In this equation θ0  is the potential temperature corresponding to the basic state temperature T0. The 
quasi-geostrophic approximation assumes that static stability, σ , is constant in time. Note that the 
symbol, σ, is used to denote isentropic density in chapters 1 and 7 (section 1.23). Eqs. 9.2 (hydrostatic 
balance), 9.7 (beta-plane approximation), 9.11, 9.12 and 9.14 constitute the quasi-geostrophic 
equations. 
 
 
9.4 Quasi-geostrophic vorticity- and thermodynamic equations 
 
The quasi-geostrophic equations are further simplified by deriving a quasi-geostrophic vorticity equation 
as follows. First, we define the geostrophic wind as follows: 
 

€ 

ug ≈ −
1
f0
∂Φ
∂y

; vg ≈
1
f0
∂Φ
∂x

 .          (9.16) 

 
With this the vertical component of the relative vorticity, ζ=∂v/∂x-∂u/∂y, is approximated “quasi-
geostrophically” as 
 

€ 

ζg ≡
∂vg
∂x

−
∂ug
∂y

=
1
f0

∂2Φ

∂x2
+
∂2Φ

∂y2
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ≡

1
f0
∇2Φ  .       (9.17) 

 
The quasi-geostrophic vorticity equation can be obtained from the quasi-geostrophic momentum 
equation. The two components of the quasi-geostrophic momentum equation (9.11) are 
 

€ 

dgug
dt

= f0va + βyvg  ,           (9.18) 

€ 

dgvg
dt

= − f0ua − βyug  ,          (9.19) 

 
From this it follows that 
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€ 

dgζg
dt

= − f0
∂ua
∂x

+
∂va
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − βvg  ,         (9.20) 

 
This equation can also be written as, using (9.12) and (9.17) 
 

€ 

dg∇
2Φ

dt
= f0

2 ∂ω
∂p

− β
∂Φ
∂x

 .           (9.21) 

 
 The quasi-geostrophic thermodynamic equation (9.14) can be written, using the hydrostatic 
relation (9.2), as 
  

€ 

dg
∂Φ
∂p
dt

= −σω −
RJ
c pp

 .          (9.22) 

 
If the atmosphere is adiabatic (i.e. J=0), eqs. 9.21 and 9.22 form a closed set of equations in only two 
dependent variables, Φ  and ω . The fact that we need to know the distribution of only two variables at 
a certain point in time in order to predict the future thermodynamic evolution of the atmosphere is the 
strength of the quasi-geostrophic approximation. However, one of these two variables, i.e, the vertical 
velocity, ω, is practically impossible to measure directly. Several methods have been devised to estimate 
the vertical velocity from other variables that can be measured more easily. The following section 
discusses one of these methods, which is due to Hoskins, Draghici and Davies (1978) and Hoskins and 
Pedder (1980) 77. 
 
 
PROBLEM 9.3. Divergence, vertical motion and phase speed of a planetary wave  
Given the following expression for the geopotential field: 
 

€ 

Φ =Φ0 p( ) +Uf0 −y cos πp
pref

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ +1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

+
1
l
sin l x − ct( )( )

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
 

 
where Φ0 is a function of p alone, c is a phase speed, U has the dimensions of velocity, l is a zonal wave 
number, pref=1000 hPa and the Coriolis parameter f=f0+βy, where f0 and β are constants. 
(a) Obtain the horizontal divergence field, which is consistent with this Φ-field. Use the quasi-
geostrophic vorticity equation in pressure coordinates: 
 

€ 

dgζg
dt

= − f0
∂ua
∂x

+
∂va
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − βvg , 

 
where ua and va are the ageostrophic horizontal wind components and, furthermore,  
 

€ 

dg
dt

≡
∂
∂t

+ ug
∂
∂x

+ vg
∂
∂y

, 

€ 

ζg =
∂vg
∂x

−
∂ug
∂y

, 

€ 

ug = −
1
f0
∂Φ
∂y

 and 

€ 

vg =
1
f0
∂Φ
∂x

. 

                                                
77	Hoskins,	B.J.,	 I.	Draghici	and	H.C.	Davies,	1978:	A	new	look	at	the	omega-equation.	Quart.J.Roy.Meteor.Soc.,	104,	
31-38.	
Hoskins	 and	M.A.	 Pedder,	 1980:	 The	 diagnosis	 of	middle	 latitude	 synoptic	 development.	Quart.J.Roy.Meteor.Soc.,	
106,	707-719. 
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(b) Derive an expression for ω(x,y,p,t) by integrating the continuity equation,  
 

€ 

∂u
∂x

+
∂v
∂y

+
∂ω
∂p

= 0 , 

 
upwards from the earth’s surface. Assume that the vertical velocity at the earth’s surface (i.e. at p=pref), 
ω(x,y,pref)=0.  
 
(c) Under which condition is the expression for ω(x,y,p,t), derived in 1(b), consistent with the boundary 
condition ω=0 at p=0? Give an interpretation of this expression. 
 
 
9.5 Quasi-geostrophic adjustment to thermal wind balance: the “omega-equation” 
 
This section demonstrates that, in the absence of orography and under adiabatic conditions (J=0), large 
scale vertical motion in a statically stable atmosphere (i.e. σ>0; see eq. 9.15) occurs only as a response 
to frontogenesis (or frontolysis). 
 In order to derive a diagnostic equation for ω, we shall first consider the tendency of geostrophic 
motion to destroy thermal wind balance. Thermal wind balance on the f-plane (f is assumed constant) 
can be written as (see eq. 1.267) 
 

€ 

∂vg
∂p

= −
R
pf0

∂T
∂x

 ; 
∂ug
∂p

=
R
pf0

∂T
∂y

 .         (9.23) 

 
We use the x-component of the equation of motion (9.18) and the temperature equation (9.14). For 
didactical purposes we begin by neglecting ageostrophic motion (va, ω). If, for simplicity, β   and J 
are set equal to zero, it can easily be shown, using (9.23), that 
 

€ 

dg
dt

∂ug
∂p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −

∂ug
∂p

∂ug
∂x

−
∂vg
∂p

∂ug
∂y

=
R
pf0

−
∂ug
∂x

∂T
∂y

+
∂ug
∂y

∂T
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟       (9.24a) 

 

€ 

dg
dt

∂T
∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −

∂ug
∂y

∂T
∂x

−
∂vg
∂y

∂T
∂y

 .         (9.24b) 

 
Subtracting eqs 9.24b from 9.24a yields 
 

€ 

dg
dt

f0p
R

∂ug
∂p

−
∂T
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 2

∂ug
∂y

∂T
∂x

+
∂vg
∂y

∂T
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≡ −2Qg2 ≡ −2

dg
dt

∂T
∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  ,    (9.25) 

 
where we use the fact that 
 

€ 

∂ug
∂x

+
∂vg
∂y

= 0 ,           (9.26) 

 
Eq. 9.25 demonstrates that thermal wind balance is destroyed by frontogenetic or frontolytic processes. 
These frontogenetic or frontolytic processes are associated with horizontal shear and/or confluence of 
the geostrophic wind. 
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 Geostrophic motion tends to destroy thermal wind balance. We will now see that the role of 
ageostrophic motion is to restore or “conserve” thermal wind balance.  
 Allowing for ageostrophic motion, i.e. if va and ω are not neglected in (9.14) and (9.18), we find 
(instead of eq. 9.25): 
 

€ 

dg
dt

f0p
R

∂ug
∂p

−
∂T
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −2Qg2 +

f0
2p
R

∂va
∂p

−
pσ
R
∂ω
∂y

 ,       (9.27) 

 
 We now assume that thermal wind balance, which is destroyed by frontogenetic processes embodied 
in the first term on the r.h.s. of (9.27), is maintained by ageostrophic motion, i.e. 
 

€ 

f0
2p
R

∂va
∂p

−
pσ
R
∂ω
∂y

= 2Qg2  .          (9.28) 

 
A similar equation can be deduced from the y-component of the momentum equation (9.19), yielding 
 

€ 

f0
2p
R

∂ua
∂p

−
pσ
R
∂ω
∂x

= 2Qg1 = 2
dg
dt

∂T
∂x
⎛ 
⎝ 

⎞ 
⎠         (9.29) 

 
with 
 

€ 

Qg1 = −
∂ug
∂x

∂T
∂x

+
∂vg
∂x

∂T
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   .          (9.30) 

 
If we now take ∂/∂y(9.28) + ∂/∂x(9.29) and use (9.12), we find the omega equation: 
 

  

€ 

σ∇2ω + f0
2 ∂
2ω

∂p2
= −

2R
p
! 
∇ ⋅
! 
Q g          (9.31) 

 
where  
 

  

€ 

! 
Q g ≡ Qg1,Qg2( ) = −

∂
! v g
∂x

⋅
! 
∇ T,

∂
! v g
∂y

⋅
! 
∇ T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟          (9.32) 

 
is referred to as the geostrophic Q-vector (section 1.37). Expanding the r.h.s. of eq. 9.32, we find 
 

€ 

Qg1 = −
∂ug
∂x

∂T
∂x

+
∂vg
∂x

∂T
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  ; Qg2 = −

∂ug
∂y

∂T
∂x

+
∂vg
∂y

∂T
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .     (9.33)78 

                                                
78 For those readers, which have studied chapter 8: section 8.3 discusses a situation in which ∂T/∂x=0, ∂ug/∂x=A and 
∂vg/∂y=-A and ∂vg/∂x=0 (see eq. 8.23). The Q-vector in that case is 
 

  

€ 

! 
Q g ≡ Qg1,Qg2( ) = 0,A ∂T

∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

 
Thus, we see that the forcing term on the r.h.s. of equation (8.32), describing the vertical circulation perpendicular to a front 
aligned in the x-direction, is in fact the y-component of the geostrophic Q-vector. This is not surprising because (8.32) 
describes the vertical circulation, which is needed to preserve thermal wind balance in the presence of a geostrophic wind 
field, which acts frontogenetically and, therefore, continuously acts to destroy thermal wind balance. 
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 The omega equation (9.31) is a diagnostic equation for the field of vertical motion in terms of the 
instantaneous fields of geopotential and temperature. The omega equation, unlike the continuity eq. 
9.12, provides a method of estimating the vertical motion that does not depend on measurements 
of wind, which are much less accurate than measurements of temperature and geopotential. A 
drawback of the omega equation is that it contains products of second order derivatives. Accurate 
estimation of such terms from noisy observational data can be problematic.  
 The omega equation (9.31) is one of several versions of this equation, which have appeared in the 
literature in the twentieth century. Holton's book (see "further literature") also discusses an older still 
popular version. The omega equation, as it appears in (9.31) is, in the view of this author, the most 
useful, because it links vertical motion in a quasi-balanced atmosphere to the intensification or 
weakening of the isobaric temperature gradient and/or the rotation of the isobaric temperature gradient, 
hence clearly demonstrating that large scale vertical motion is a manifestation of adjustment to thermal 
wind balance.  
 The omega equation (9.31) is an elliptic partial differential equation, similar to the PV-inversion 
equation 9 in Box 1.12 and the Eliassen-Sawyer equation eq. 8.32. The solution of the omega equation  
indicates that frontogenesis at a front will induce a field of vertical motion over an appreciable area in 
the vicinity of the front, in the same manner as a potential vorticity anomaly induces a wind field at an 
appreciable distance from the PV-anomaly. In other words, the idea of “action at a distance” is 
applicable to the solution of the omega equation too. The explicit solution of the omega equation 9.31 is 
discussed in section 9.9. 
 Let us perform a first rough analysis of what we may expect, by assuming that ω has a sinusoidal 
dependence in the horizontal as well as in the vertical as  
 

€ 

ω =W0 sin
πp
pref

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ sin kx( )sin ly( )  ,         (9.34) 

 
(so that ω =0 at p=0 and p=pref) where k and l are the wavenumbers and W0 is a constant, we can write 
 

€ 

∇2 +
f0
2

σ
∂2

∂p2
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ω = − k2 + l2 +

1
σ

f0π
p0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
ω  .       (9.35) 

 
This equation shows that the l.h.s. of (9.31) is proportional to -ω, for the solution (9.34). By recalling 
that ω=-ρgw (ω<0 implies upward motion), we see that the l.h.s. of the omega equation (9.31) is 
proportional to the vertical velocity. Therefore, forcing of vertical motion is represented simply by the 
pattern of the Qg-vector. More specifically, regions where the Qg-vector is convergent (divergent) 
correspond to ascent (descent).  
 Let us, for example, consider an ideal jetstreak aligned along the x-axis, with isotherms also aligned 
along the x-axis (see figure 9.8). In the entrance region we have confluent motion (i.e. ∂vg/∂y<0). If the 
temperature decreases with increasing y, the Qg-vector points toward the south. This implies 
convergence of the Qg-vector in the right entrance region, looking in the flow direction. Therefore, we 
expect upward motion in the right entrance region of the jetstreak. In the exit region the motion is 
diffluent (i.e. ∂vg/∂y>0). Therefore, the Qg-vector points towards the north, implying that there is upward 
motion in the left exit region. 
 In general it is less easy to accurately estimate direction, magnitude and divergence of the Qg-vector, 
even though it is a straightforward matter to compute the Qg-vector from gridded data of geopotential 
and temperature by approximating the derivatives by finite differences. The use of Q-vectors will be 
illustrated further in section 9.8 and chapter 10.  
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FIGURE	9.8.	Orientation	of	Q-vectors	(bold	arrows)	for	confluent	(jet	entrance)	flow.	Dashed	lines	are	isotherms		(After	
Sanders,	F.,	B.J.	Hoskins,	1990:	An	easy	method	for	the	estimation	of	Q-vectors	from	weather	maps.	Wea.Forecasting,	
5,	346-353).		
 
 
9.6 The two level model 
 
This section discusses the role of the instability of thermal wind balance in accounting for the genesis 
and initial intensification of mid-latitude cyclones. Following Phillips (1954)79, we adopt the most 
simplified model of the atmosphere that can incorporate three-dimensional baroclinic processes. The 
atmosphere in this model is represented by two layers, bounded by surfaces, numbered 0, 2 and 4, as 
shown in figure 9.9.  
 It is convenient to define a geostrophic streamfunction, ψ=φ/f0. The geostrophic wind (9.6) and the 
geostrophic vorticity (9.17) can be expressed respectively as 
 

  

€ 

! v ψ = ˆ k ×
! 
∇ ψ,  ζg =∇2ψ  .          (9.36) 

 
Remember that 

€ 

∇2 ≡ ∇h
2 .  

 In terms of ψ, the quasi-geostrophic vorticity equation becomes 
 

  

€ 

∂∇2ψ
∂t

+
! v ψ ⋅
! 
∇ ∇2ψ( ) + β

∂ψ
∂x

= f0
∂ω
∂p

         (9.37) 

 
 Using the hydrostatic relation (9.2) and neglecting diabatic heating (J=0), the quasi-geostrophic 
thermodynamic equation (9.14) can be written as  
 

  

€ 

∂
∂t

∂ψ
∂p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +
! v ψ ⋅
! 
∇ 
∂ψ
∂p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −

σ
f0
ω          (9.38) 

 
We now “apply” (9.37) at levels 1 and 3. To do this, we must estimate the divergence term at these 
levels using the following finite difference approximations to the vertical derivatives. 
 

                                                
79	Phillips,	N.A.,	1954:	Energy	transformations	and	meridional	circulations	associated	with	simple	baroclinic	waves	in	
a	two-level,	quasi-geostrophic	model.	Tellus,	6,	272-286.	
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FIGURE	9.9.	Arrangement	of	variables	in	the	vertical	direction	for	the	two-level	model	(from	Holton,	2004).	
 
 

€ 

∂ω
∂p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1
≈
ω2 −ω0

δp
 ,  ∂ω

∂p
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3
≈
ω4 −ω2

δp
 .        (9.39) 

 
Here δp is the pressure interval between the levels 0 and 2, and 2 and 4. Subscripts indicate the vertical 
level for each dependent variable. 
 The resulting vorticity equations are 
 

  

€ 

∂∇2ψ1
∂t

+
! v 1⋅
! 
∇ ∇2ψ1( ) + β

∂ψ1
∂x

=
f0
δp
ω2  ,        (9.40) 

 

  

€ 

∂∇2ψ3
∂t

+
! v 3⋅
! 
∇ ∇2ψ3( ) + β

∂ψ3
∂x

= −
f0
δp
ω2  .        (9.41) 

 
Here, we have used the fact that ω0=0 and assumed that ω4=0. 
 We next write the thermodynamic energy equation (9.38) at level 2. We must evaluate ∂ψ/∂p, using 
the approximate formula 
 

€ 

∂ψ
∂p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2
≈
ψ3 −ψ1
δp

 .           (9.42) 

 
This yields 
 

  

€ 

∂
∂t

ψ1 −ψ3( ) = −
! v 2 ⋅
! 
∇ ψ1 −ψ3( ) +

σδp
f0

ω2 .        (9.43) 

 
The first term on the r.h.s. in (9.43) represents advection of the 250-750 hPa thickness by the wind at 500 
hPa. Unfortunately, the 500 hPa streamfunction, ψ2, is not a predicted field in this model. Therefore, ψ2 
must be obtained by linearly interpolating between 250 hPa and 750 hPa as follows. 
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€ 

ψ2 ≈
ψ1 −ψ3( )
2

 .           (9.44) 

 
If this formula is used, (9.40), (9.41) and (9.43) become a closed set of prediction equations in the 
variables ψ1, ψ3 and ω2. 
 
 
9.7 Linear analysis: Rossby waves and baroclinic instability 
 
In order to simplify the analysis as much as possible we assume that the streamfunctions, ψ1 and ψ3, can 
be expressed as follows 
 

€ 

ψ1 = −U1y +ψ1' x,y,t( ), 

€ 

ψ3 = −U3y +ψ3' x,y,t( ),          (9.45) 

€ 

ω2 ≈ω2' x,y,t( ) . 
 
The “background” geostrophic zonal velocities at levels 1 and 3 are constants with the values U1 and U3, 
respectively.  
 Substituting (9.45) into (9.40-41) and (9.43) and linearising yields the perturbation equations, 
 

€ 

∂

∂t
+U1

∂

∂x
⎛ 
⎝ 

⎞ 
⎠ 
∇ h

2
ψ '1+β

∂ψ '1
∂x

=
f0
δp
ω '2 ,          (9.46) 

€ 

∂

∂t
+U 3

∂

∂x
⎛ 
⎝ 

⎞ 
⎠ 
∇h

2
ψ '3+β

∂ψ '3
∂x

=
− f0
δp

ω '2 ,         (9.47) 

€ 

∂
∂t

+Um
∂
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ψ '1−ψ '3( ) −UT

∂
∂x

ψ'1+ψ'3( ) =
σδp
f0

ω'2 ,      (9.48) 

 
with 
 

€ 

∇ h
2
≡
∂2

∂x2
+
∂2

∂y2
. 

 
To express v2 in terms of ψ1 and ψ3, we linearly interpolate as follows. 
 

€ 

v2 = v'2 =
1
2
v'1+v'3( ) =

1
2
∂
∂x

ψ '1+ψ '3( ), 

 
We define 
 

€ 

UM ≡
U1 +U3( )

2
 and UT ≡

U1 −U3( )
2

 .        (9.49) 

 
Thus, UM and UT are respectively, the vertically averaged zonal wind and the mean thermal wind for the 
interval between levels 1 and 3. 
 The dynamical properties of the system (9.46-48) are more clearly expressed if ω2' is eliminated. First 
we write (9.46) and (9.47) as 
 

€ 

∂
∂t

+ UM +UT( ) ∂
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∇h
2ψ1'+β

∂ψ1'
∂x

=
f0
δp
ω2'  ,       (9.50) 
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€ 

∂
∂t

+ UM −UT( ) ∂
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∇h
2ψ3'+β

∂ψ3'
∂x

= −
f0
δp
ω2'   ,      (9.51) 

 
We now define the barotropic and baroclinic perturbations as  
 

€ 

ψM ≡
ψ1 +ψ3( )

2
 and ψT ≡

ψ1 −ψ3( )
2

 .        (9.52) 

 
Adding (9.50) and (9.51) and using the definitions in (9.52) yields 
 

€ 

∂
∂t

+UM
∂
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∇h
2ψM + β

∂ψM
∂x

+UT
∂
∂x
∇h
2ψT = 0 .       (9.53) 

 
Subtracting (9.51) from (9.50) and combining with (9.48) to eliminate ω2' yields 
 

€ 

∂
∂t

+UM
∂
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∇h

2ψT − 2λ2ψT( ) + β
∂ψT
∂x

+UT
∂
∂x

∇h
2ψM + 2λ2ψM( ) = 0 ,     (9.54) 

 
where  
 

€ 

λ2 ≡
f0
2

σ δp( )2
 .              (9.55) 

 
The parameter, λ, is the inverse of the Rossby radius of deformation, within the context of this 
model. Equations (9.53) and (9.54) govern, respectively, the time-evolution of the barotropic (vertically 
averaged) vorticity and the baroclinic (thermal) vorticity of the perturbation. 
 As in section 3.3, we assume that wavelike solutions exist of the form 
 

€ 

ψM = Aexp i lx +my −ωt( )[ ] ; ψT = Bexp i lx +my −ωt( )[ ] .       (9.56)  
 
 Substituting these solutions into (9.53) and (9.54), yields a pair of simultaneous linear algebraic 
equations for the coefficients A and B: 
 

€ 

cx −UM( )k2 + β[ ]A −UT k2B = 0  ,         (9.57) 

€ 

UT k2 − 2λ2( )A − cx −UM( ) k2 + 2λ2( ) + β
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ B = 0  ,       (9.58) 

where 
 

€ 

k2 ≡ l2 + m2 and cx ≡ ω / l. 
 
Non-trivial solutions will exist only if the determinant of the coefficients of A and B is zero. Thus the 
phase speed c must satisfy the condition 
 

€ 

k2 k2 + 2λ2( ) cx −UM( )2 + 2β k2 + λ2( ) cx −UM( ) + β2 −UT
2k2 k2 − 2λ2( )⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ = 0 ,    (9.59) 

 
The dispersion relation (9.59) yields for the phase speed 
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€ 

cx =UM −
β k2 + λ2( )
k2 k2 + 2λ2( )

± δ  ,         (9.60) 

 
where 
 

€ 

δ ≡
β2λ4

k4 k2 + 2λ2( )2
−
UT
2 2λ2 − k2( )
k2 + 2λ2( )

 ,         (9.61) 

 
Although (9.60) appears to be rather complicated, it is immediately apparent thatthe phase speed will 
have an imaginary part if δ<0, in which case perturbations will amplify exponentially. 
 Let us consider the special case, β=0. In this case 
 

€ 

cx =UM ±UT
k2 − 2λ2

k2 + 2λ2
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/2

.         (9.62) 

 
For waves with zonal wave numbers satisfying k2<2λ2, (9.62) has an imaginary part. Therefore, all 
waves with wavelengths greater than the critical wavelength Lc = 2π/λ  will amplify.  The growth rate 
of this amplification is equal to (iω). Based on the definition of λ  (9.55), we can write 
 

€ 

Lc =
π 2σ( )1/2δp

f0
 .           (9.63) 

 
For typical tropospheric conditions, 2σ 1/2≈2×10-3 N-1m3s-1.  Therefore, with δp=50000 Pa and f0=10-4 
s-1 we find that Lc=3000 km, which is of the same order of magnitude as the typical wavelength in the 
longitudinal direction of observed synoptic disturbances. Eq. 9.63 also reveals that the critical 
wavelength for baroclinic instability increases with the static stability, σ. 
 Let us now consider the special case, UT=0. In this so-called barotropic case (9.60) reduces to either 
 

€ 

cx =UM −
β

k2
              (9.64a) 

 
or 
 

€ 

cx =UM −
β

k2 + 2λ2( )
           (9.64b) 

 
In the absence of baroclinicity, the two-level model has two free (normal mode) small amplitude 
solutions, which represent oscillations or waves, which exist due to the β−effect. These waves are 
termed Rossby waves (section 1.34). According to (9.62) the phase of Rossby waves propagates in 
westerly direction relative to the basic barotropic current, UM. Rossby waves can be identified with the 
troughs and ridges that are characteristic of upper air charts of the geopotential height at, for instance 
500 hPa (figure 1.93). 
 If we set β=0 and UT=0 in eq. 9.61, we find that the quasigeostrophic equations do not support waves. 
This implies that acoustic waves, gravity waves and inertial waves are filtered out as a solution by 
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the quasi-geostrophic approximation, which includes the hydrostatic approximation. The principal 
reason for developing the quasi-geostrophic theory in the 1940's was to find a system of equations, 
which could be integrated numerically without too much computational expense, while still retaining as 
much of the meteorologically interesting phenomena as possible, i.e. the Rossby waves. Sound waves, 
which, because of their high phase velocity and high frequency, represent a significant computational 
burden, if they are included in a numerical solution, are less interesting, because they do not play a key 
role in the formation of precipitation systems. Buoyancy waves also form a significant computational 
burden, because they require a high spatial resolution, while only having a significant influence on large-
scale flow through the wave drag effect (section 3.5). 
 In the general case, where all terms in (9.60) are retained, the stability criterion is most easily 
understood by computing the neutral curve, which connects all values of UT and k for which δ=0, so 
that the flow is neurtally or marginally stable. The condition δ=0 implies that  
 

€ 

β2λ4

k4 k2 + 2λ2( )
=UT

2 2λ2 − k2( ),         (9.65) 

 
 
PROBLEM 9.4. Standing Rossby waves 
Demonstrate that standing barotropic Rossby waves as a response to flow over orography are not 
possible in easterly flow.  
 
PROBLEM 9.5. The properties of baroclinic Rossby waves in the real atmosphere 
Investigate the properties of Rossby waves during a specific period of time, using reanalysis data from 
NCEP (see http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html) or ECMWF 
(http://apps.ecmwf.int/datasets/). You may choose any period of one or several months that you think is 
interesting, such as the period containing the case discussed in section 9.2 (2-3 March 1995) or the 
period in November 2002, which was marked by very well defined wave packets (chapter 11) (see 
http://www.wetter3.de/Archiv/). 
 
(a) Retrieve the four time daily 500 hPa meridional wind, v, and the four time daily 500 hPa geopotential  
height for the latitude band 45-55°N (or 40-60°N), for a particular set of consecutive days and construct 
a Hovmöller diagram as in figure 1.93. The reanalysis is available on a “lat-lon” grid, with grid-distances 
of 1° in both latitudinal and longitudinal direction. The latitude band 45°-55°N corresponds to a grid of 
360 points in the longitudinal direction by 11 points in the latitudinal direction. In order to construct a 
Hovmöller diagram you must average the data in latitudinal direction for each time, so that you obtain an 
array with dimensions correponding to the number of analysis times (e.g. 28 if you take 7 days) and the 
number of points in the longitudinal direction (360, if you take a full circle around the globe). Compute 
the zonal mean for each time, and then compute the anomaly with respect to the zonal mean. 
(b) Estimate the average wavelength and eastward phase velocity of the waves in the geopotential from 
this Hovmöller diagram over the Atlantic/European sector. Can you identify a group of ridges and 
troughs? If so, estimate the group velocity. 
(c) Estimate the zonal average zonal velocity in this sector. Compare this with an estimate of the zonal 
average zonal geostrophic velocity for the same region. Check the validity of the dispersion relations, 
(9.64a) and (9.64b). To test the validity of (9.64b) you need an estimate of λ (or σ). 
(d) Identify episodes of baroclinic instability, by identifying wave-amplitude growth. Are these episodes 
connected to enhanced baroclinicity? 
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FIGURE	9.10.	Neutral	stability	curve	for	the	two-level	baroclinic	model.	Source	of	this	figure:	Holton	(2004)	(see	the	list	
of	references	at	the	end	of	this	chapter).	
 
 
This complicated relationship between UT and k can best be displayed in a graph by solving for k4/2λ4, 
yielding 
 

€ 

k4

2λ4
=1± 1− β2

4λ4UT
2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/2

.          (9.66) 

         
 Equation (9.66) is displayed graphically in figure 9.10. The nondimensional quantity k2/2λ2 is plotted 
along the horizontal axis. The non-dimensional parameter 2λ2UT/β  is plotted along the vertical axis. The 
latter parameter is proportional to the thermal wind or meridional basic state temperature gradient. 
Baroclinic waves are always stable if the quantity, k2/(2λ2)=2π2σ(δp)2/(Lx

2f0
2)>1, or if 

 

€ 

AR ≡
Lx
2δp

<
π σ
2 f0

.   (9.67) 

 
Here, AR represents the “aspect ratio” (horizontal scale [m] relative to vertical scale [Pa]) of the wave. 
On the right hand side of this inequality we recognise a quantity that was identified as the Rossby ratio 
in section 7.7. Propagating baroclinic Rossby waves are associated with a secondary vertical circulation 
(section 9.9). If this circulation has an aspect ratio, which is smaller than the Rossby ratio, the amplitude 
of the wave will not grow due to baroclinic instability.  
 The neutral curve in figure 9.10 separates the unstable region in the UT - k plane from the stable 
region. The inclusion of the β-effect serves to stabilise the flow, because unstable roots exist only for 
|UT|>β/(2λ2). The β−effect stabilises the long-wave end of the wave spectrum. The minimum value of 
UT , required for unstable growth, depends strongly on k. The flow is always stable for waves shorter 
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than the critical wavelength, 

€ 

Lc = π 2 /λ  (eq. 9.63). By differentiating (9.65) with respect to k and 
setting dUT/dk=0, we find that the minimum value of UT, for which unstable waves may exist, occurs 
when k2= 2λ2. This wave number corresponds to the wave, which becomes unstable for the lowest value 
of the thermal wind. Observed growing waves should have a wave number that lies close to this wave 
number of "maximum instability", because, if UT is gradually raised from zero, the flow becomes 
unstable first for perturbations of wave number k=21/4λ. These perturbations amplify and in this process 
remove energy from the mean thermal wind, thereby decreasing UT and stabilizing the flow. Under 
normal conditions of static stability, the theoretical wavelength of maximum instability is approximately 
4000 km, which is of similar order of magnitude as the wavelength of amplifying midlatitude baroclinic 
waves in reality.  
 The thermal wind, required for marginal stability at the wavelength of maximum instability, is about 
UT≈4 m/s. This implies a shear of 8 m/s between 250 and 750 hPa. Comparing this with the example, 
which is discussed in section 9.2, we find80 that the mean zonal wind speed on March 3, 1995 at 00 UTC 
within the trough or core of the jetstreak is 16 m/s at 750 hPa, and 24 m/s at 250 hPa, implying a shear of 
8 m/s between these levels, which perhaps by fortune is exactly the value for marginal instability quoted 
above. This seems to verify the hypothesis that the growth of the baroclinic Rossby wave, shown in 
figures 9.1 and 9.2, originates from “small perturbations” of a baroclinically unstable basic current.  
 It is, however, doubtful whether this is really the case. Numerical weather prediction models 
generally predict cyclogenesis with a surprising degree of accuracy many days in advance. If the time 
and location of cyclogenesis were really dependent on the presence of a random infinitesimal 
perturbation, the performance of numerical weather prediction models would be very much worse than it 
actually is. It is, therefore, very likely that cyclogenesis requires finite amplitude (relatively intense) 
perturbations. These perturbations are in fact frequently observed as potential vorticity anomaliesnear the 
tropopause.  
 We must not, therefore, interpret the theory of baroclinic instability too literally, but more as giving 
valuable information about the criteria (in terms of barocinicity, wavelength of an initial disturbance and 
static stability) that need to be fullfilled to initiate cyclogenesis as well as about the connections between 
the preferred length-scales of planetary Rossby waves and the constraints imposed on the atmosphere by 
stratification and rotation.  
 
 
PROBLEM 9.6. Maximum growthrate of a baroclinic disturbance (taken from Holton, 2004). 
Show, using eq. 9.62, that the maximum growth rate for baroclinic instability when β=0 occurs for 
 
k 2  =  2λ2 2 -1  .  
 
How long does it take the most rapid growing wave to amplify by a factor of e if λ=2×10-6 m-1 and 
UT=20 m s-1. 
 
PROBLEM 9.7. Phase tilt of a baroclinic disturbance (taken from Holton, 2004). 
For the case β=0 determine the phase difference between the 250 hPa and the 750 hPa geopotential fields 
for the most unstable baroclinic wave (see problem 9.6).  
 
 

                                                
80	See	the	sounding	made	at	Brest	and	Camborne	(http://weather.uwyo.edu/upperair/sounding.html).	
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9.8 Vertical motion in small-amplitude baroclinic waves 
 
The basic physics of linear baroclinic instability can be distilled from the analysis presented in the 
previous section by using the omega equation (9.31) and Q-vectors (eq. 9.33). 
 The Q-vector, linearised around a basic state baroclinic homogeneous zonal current, as defined in 
(9.45), becomes (using ∂ug/∂x+∂vg/∂y=0), 
 

€ 

Qg1,Qg2( ) = −
∂vg
∂x

∂T
∂y
,+
∂ug
∂x

∂T
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .         (9.68) 

 
In the trough of a Rossby wave we have ∂vg/∂x>0. In the northern hemisphere ∂T/∂y<0. Therefore, the 
Q-vector points in eastward direction in a trough. In the ridge we have ∂vg/∂x<0, which implies that 
the Q-vector points in westward direction in a ridge. Neglecting for simplicity the accelerations and 
decelerations of the zonal current, we see that the Q-vector converges to the east of the trough and 
diverges to the west of the trough, which implies upward motion to the east of the trough and downward 
motion to the west of the trough. 
 The perturbation analysis of a baroclinic zonal current in the two-level model yields the same 
conclusion if we assume, for simplicity, that the meridional wave number, m=0. This assumption implies 
(eqs. 9.43 and 9.54) that the geostrophic zonal velocities at levels 1 and 3 are constants with the values 
U1 and U3, respectively. This, in turn implies that (eq. 9.30), 
 

€ 

Qg1 = −
∂ug
∂x

∂T
∂x

+
∂vg
∂x

∂T
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≈ -

∂vg
∂x

∂T
∂y

 .        (9.69) 

 
The most important frontogenetic effect, which is left in the linear analysis of the previous section, is the 
frontogenetic effect of the rotation of isotherms, due to the shear term, ∂vg/∂x∂T/∂y. This frontogenetic 
effect turns the isotherms from the longitudinal direction into the meridional direction. Because the 
atmosphere is constrained (in the theory) to remain in thermal wind balance, this requires a simultaneous 
turning of the thermal wind into the meridional direction (see section 1.35). According to eq. 9.31, this is 
taken care of by an ageostrophic “circulation” in the x-p plane. In other words, the ageostrophic 
circulation must conform to eq. 9.29, which is repeated below: 
 

€ 

f0
2p
R

∂ua
∂p

−
pσ
R
∂ω
∂x

= 2Qg1 ≈ −2
∂vg
∂x

∂T
∂y

 .        (9.70) 

 
 In the trough, ∂vg/∂x>0 and ∂T/∂y<0, thus Qg1>0. In the ridge, ∂vg/∂x<0 and ∂T/∂y<0, thus Qg1<0. 
Since m=0, Qg2=0. Therefore, there is convergence of the geostrophic Q-vector east of the trough and 
west of the ridge. According to the omega equation (9.31) this implies upward motion east of the trough 
and west of the ridge. Within the framework of the two-level quasi-geostrophic model this is attended 
with an increase of the geostrophic relative vorticity (=∂vg/∂x because m=0) at low levels (below 500 
hPa), due to mass convergence. Due to this, the trough at low levels will tend to shift towards the east.  
 Let us apply the omega equation to level 2 (figure 9.9). The Qg-vector for the two-level model can be 
derived simply from (9.31). We first estimate the second term on the left hand side by finite differencing 
in p. Using (9.39), we obtain 
 

€ 

∂2ω

∂p2
≈

∂ω
∂p
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
3
−
∂ω
∂p
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
1

δp
≈ −

2ω2
δp( )2

 ,         (9.71) 
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FIGURE	9.11.	 Structure	of	 a	 baroclinic	wave	 at	midlevels	 (level	 2	 in	 the	 two-layer	model,	 i.e.	 500	hPa).	 The	 relative	
vorticity	and	the	meridional	velocity	are	shown	as	a	function	of	longitude.	The	meridional	velocity	is	90°	out	of	phase	
with	the	vorticity.	See	the	text	for	further	explanation.	
 
With eq. 1 in Box (9.1) we have 
 

€ 

T = −
p
R
∂Φ
∂p

= −
f0p
R

∂ψ
∂p

  (9.72) 

 
Applying this to level 2 of the two-level model we obtain 
 

€ 

T2 =
f0
R

ψ1 −ψ3( ) .    (9.73) 

 
The omega equation (9.31), applied to model level 2, becomes 
 

  

€ 

σ ∇2 − 2λ2( )ω2 = −
2R
p
! 
∇ 
! 
Q g  ,          (9.74) 

 
Substituting (9.73) in (9.68), using (9.45) and (9.49), we obtain 
 

€ 

∂2

∂x2
+
∂2

∂y2
− 2λ2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ω2'= −

4 f0
σδp

UT
∂2v2'
∂x2

.  (9.75) 

 
Observing that 
 

€ 

∂2

∂x2
+
∂2

∂y2
− 2λ2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ω2'∝ −ω2'           (9.76) 
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FIGURE	9.12.	Illustration	of	mechanism	of	baroclinic	instability	(see	text		in	this	section	and	in	section	1.21).	
 
(see the arguments leading to eq. 9.35), we may interpret (9.75) physically by noting that 
 

€ 

−ω2'∝ w2'∝ − f0UT
∂2v2'
∂x2

 .  (9.77) 

 
It is sometimes said that vertical motion is associated with “advection of disturbance (relative) vorticity 
by the basic state thermal wind”. If the thermal wind is eastward (i.e. UT>0), the motion is upward on the 
east side of the trough (where ∂ζ/∂x<0 and downward on the west side of the trough (where ∂ζ/∂x>0).  
 Figure 9.11 shows the schematic structure of a baroclinic wave at 500 hPa (level 2 in the two layer 
model) in terms of relative vorticity, ζ, and the meridional velocity component, v. Vertical motion is 
forced by frontogenesis, due to the horizontal rotation of the temperature gradient (a vector). This 
rotation is counterclockwise (cyclonic) in the trough and clockwise (anticyclonic) in the ridge. The 
associated Q-vectors point eastward in the trough and westward in the ridge, leading to Q-vector 
divergence to the west of the trough and Q-vector convergence to the east of the trough. Convergence of 
the Qg-vector is associated with upward motion. This explains the observed persistent ascent of poleward 
moving warm air to the east of the trough. If this warm air travels upward and poleward, as shown by the 
solid arrow in figure 9.12, it replaces colder air. This is required for further growth of the wave, i.e. for 
conversion of potential energy into kinetic energy (see also section 1.21). However, if warm air travels 
poleward and upward, as shown by the dashed arrow in figure 9.12, it replaces warmer air. This 
implies a cooling of the warm sector of the wave, which will weaken both the warm front and the cold 
front and arrest further growth of the amplitude of the baroclinic wave. 
 If we assume that eq. 9.77 has wave-like solutions in vertical velocity and meridional velocity, i.e. 

€ 

v2'≈ Aexp i lx +my −ωt( ){ } , (as in eq. 9.56), we find that 
 

€ 

w2'∝ f0UT l
2v2'  . 

 
This equation reveals that (1) poleward motion is upward and equatorward motion is downward. And (2) 
that trajectories in the meridional plane will steepen with increasing zonal wavenumber, or decreasing 
zonal wavelength.  In other words, short waves are stabilised. This explains the high wave number cut-
off in figure 9.10.  
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9.9 Solution of the omega equation for idealized situations 
 
Let us investigate two possible, but hypothetical, distributions of the geopotential. The first case is 
 

€ 

Φ(x,y, p,t) =Φ0(p) − f0U0 y − y0( )cos πp
2p0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

f0V0
k
sin kx − ct( )     (9.78a) 

 
Here, k=2π/Lx, c is the zonal component of the phase velocity, V0 and U0 are constant velocities, 
p0=1000 hPa, y0 is a value of y corresponding the reference latitude where f=f0 and Φ0 is a function of 
pressure (compare this with the expression for Φ in problem 9.3). 
 The second case is 
 

€ 

Φ(x,y, p,t) =Φ0(p) +
1
2
f0U0 y − y0( ) tanh

p − p front
pscale

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

f0V0
k
sin kx − ct( ) .    (9.78b) 

 
Here, the parameters pfront and pscale have the units of pressure (Pa). The physical meaning of these 
parameters will become apparent below. 
 The geostrophic velocity components, which are associated with these distributions of geopotential, 
are 
 

€ 

ug = −
1
f0
∂Φ
∂y

=U0 cos
πp
2p0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  and 

€ 

vg =
1
f0
∂Φ
∂x

=V0 cos kx − ct( )     (9.79a) 

 
for the first case and 
 
 

 
 
FIGURE	9.13:	Zonal	geostrophic	wind,	ug,	in	the	two	cases	which	are	investigated	in	this	section.	Case	1	corresponds	to	
the	geopotential	given	in	eq.	9.76.	Case	2	corresponds	to	the	geopotential	given	in	eq.	9.77.	In	both	cases	the	vertical	
shear	 of	 the	 geostropic	 wind	 approaches	 zero	 at	 the	 top	 of	 the	 atmosphere.	 In	 case	 1	 the	 vertical	 shear	 of	 the	
geostropic	wind	has	its	highest	value	at	the	surface.	In	case	2	the	vertical	shear	of	the	geostropic	wind	is	concentrated	
around	a	prescribed	pressure	level,	p=pfront.	In	this	figure	pfront=500	hPa	and	pscale=100	hPa.	
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€ 

ug = −
1
2
U0 tanh

p − p front
pscale

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  and 

€ 

vg =V0 cos kx − ct( )      (9.79b) 

 
for the second case. Note that the amplitude of the meridional velocity is independent of k (by 
construction) 
 In the first hypothetical situation, the eastward geostrophic wind increases with height from zero at 
the surface (at p=p0) to U0 at the “top of the atmosphere”, at p=0 (figure 9.13). In the second idealized 
hypothetical situation there is a shallow shear zone in the geostrophic wind, centred at the pressure level, 
p=pfront.  
 In both cases there is a barotropic wavelike perturbation in the meridional component of the wind 
with a zonal wavelength equal to Lx, which is superposed on the zonal geostrophic flow.  This 
perturbation is associated with a perturbation in the geostrophic relative vorticity, which is identical in 
both cases, i.e., 
 

€ 

ζg = −
1
f0

∂2φ

∂x2
+
∂2φ

∂y2
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = −V0k sin kx − ct( ).        (9.80) 

 
The thermal wind equation (9.23), 
 

€ 

∂ug
∂p

=
R
pf0

∂T
∂y

 and 

€ 

∂vg
∂p

= −
R
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,         (9.81) 

 
yields the following equation for the meridional temperature gradient: 
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in the first case, and 
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 and 
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in the second case. The above relations imply that 
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in both cases. Furthermore, in the first case, 
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and in the second case, 
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This demonstrates that the perturbation in the geostrophic relative vorticity induces a frontogenetic 
effect, which acts as a disturbance to thermal wind balance. This frontogenetic effect is associated 
with the rotation of the isotherms from the zonal direction into the meridional direction.  
 Now, let us solve the omega equation for these two hypothetical situations. For simplicity and 
because the y-component of the Q-vector is zero, we neglect the meridional (y-) derivative, so that the 
omega equation in the first situation becomes 
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σ
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Dividing this equation by f0

2, we get 
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Following the two-level model linear stability analysis of section 9.7, let us impose the following simple 
boundary conditions 
 

€ 

ω = 0 at p = p0 and ω = 0 at p = 0 .         (9.89) 
 
We should keep in mind that the lower boundary condition is not necessarily correct. Furthermore, we 
assume an infinite (or periodic) domain in the x-direction. If σ is constant, we may, in view of the factor 
cos(kx) in the “source term” on the r.h.s. of eq. 9.88, substitute the following solution:  
 

€ 

ω =W p( )cos kx − ct( ) .          (9.90) 
 
The vertical motion is 90° out of phase with the relative vorticity. We now obtain an equation for the 
pressure dependence of the amplitude, W, of ω: 
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It is easy to see that the equation for W in the second case becomes  
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.      (9.92) 

 
Since the factor, σk2/f0

2, is positive, eqs. 9.91 and 9.92 are elliptic partial differential equations. For 
analytical purposes the second case is the most interesting. If we assume that pscale is very small, the 
frontogenetic forcing will be restricted to a shallow layer around the pressure level, p=pfront. Outside this 
layer we have,  
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d2W
dp2

−
σ

f0
2 k

2W = 0 ,           (9.93) 

 
instead of (9.92). Eq. 9.93 is a Helmholtz equation, like equation 3.23. The solution of this equation is 
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.     (9.94) 

 
Here C1 and C2 are constants determined by the boundary conditions. In view of the boundary condition 
(9.89), W should go to zero at p=0 and at p=p0. Therefore  
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and 
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 for p > p front  .       (9.96) 

 
In both cases (9.95 and 9.96) we note an exponential decrease of W with p away from the front. The 
characteristic pressure scale, i.e. the e-folding distance, associated with this exponential decay is,  
 

€ 

Δp =
f0
k σ

=
f0Lx
2π σ

.           (9.97) 

 
This vertical scale, which is also introduced in chapter 7, is referred to as the “Rossby height”. This 
vertical scale represents the characteristic depth over which adjustment to thermal wind balance takes 
place. Apparently, this depends on the horizontal scale of the wave, which is inducing frontogenesis by 
rotating the isentropes. A dynamically more fundamental scale is, therefore, the aspect ratio, 
 

€ 

Lx
Δp

=
2π σ
f0

,            (9.98) 

 
which is referred to in chapter 7 as “Rossby’s ratio” (comment: also compare eq. 9.63 with eq. 9.98). 
With a typical value of σ in the troposphere of 2×10-6 m2Pa-2s-2 and f0=10-4s-1 we obtain a value of 100 m 
Pa-1 for “Rossby’s ratio” If Lx=1000 km, the characteristic pressure scale of the vertical influence of 
frontogenesis at the specified level p=pfront is about 100 hPa. This means that the dynamical influence of 
frontogenesis is “felt” at levels 100 hPa above and below p=pfront. In other words, frontogenesis “acts at 
a distance” is the same way as a potential vorticity anomaly. 
 With Δp=-ρgΔz (hydrostatic balance) and the definition of the static stability parameter, σ (9.15), we 
find that the aspect ratio of large scale circulation systems is 
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Lx
Δz

=
2πN
f0

,            (9.99) 

 
where the Brunt-Väisälä frequency is  
 

€ 

N =
g
θ0

∂θ0
∂z

 .           (9.100) 

 
Eq. 9.99 is the quasi-geostrophic version of eq. 7.76. The typical aspect ratio, i.e. the horizontal scale 
divided by the vertical scale, of large-scale circulation systems, therefore, is in the order of N/f0≈100. 
The ratio f/N is sometimes called “Prandtl’s ratio of scales”. 
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FIGURE	9.14:	Amplitude,	W(p),	of	the	vertical	velocity,	ω,	in	case	(2)	(figure	9.13)	for	Lx=1000	km	and	for	Lx=5000	km.	

Other	parameter	values	are	given	in	the	text.	The	solution	is	found	numerically	by	the	relaxation	method,	described	in	
the	text	below,	where	the	p-axis	is	divided	into	41	points,	so	that	Dp=25	hPa.	
 
 For p≈pfront the equation governing the amplitude of the vertical velocity becomes 
 

€ 

d2W
dp2

−
σ

f0
2 k

2W =
ck2U0 f0
pscale

.          (9.101) 

 
Because the r.h.s. of the above equation is positive (if f0>0), the solutions in the two domains can only 
be matched if W<0. This impies that ω is out of phase with vg. In other words, the vertical velocity, w, is 
in phase with vg, which means that poleward motion is upward, while equatorward motion is downward.  
 The full amplitude equation (9.92) can be solved numerically for arbitrary value of pscale. By defining 
equidistant gridpoints on the p-axis with index, j, running from j=1 at p=0 to j=jmax at p=p0 and 
approximating the second order derivative for each gridpoint in this equation as 
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we obtain the following numerical approximation of (9.92): 
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which can be rewritten as 
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= 0 .  (9.104) 

 
By imposing the boundary conditions, W(0)=W(p0)=0, eq. 9.104 can be solved interatively. The iteration 
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is started by assuming trial values W[j]=0. Evaluation of the l.h.s. of the numerically approximated 
equation (9.104) will yield a residual, ΔR. This residual is used to make a new estimate of W[j], i.e. 
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f0
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2 +
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,        (9.105) 

 
such that the new residual is equal to zero at the gridpoint under consideration. By repeatedly applying 
this procedure to each gridpoint we will converge to the correct solution (see problem 5.1 and boxes 7.1 
and 7.3). The solution for Lx=1000 km and for Lx=5000 km is shown in figure 9.14. The other parameter 
values are U0=80 m s-1, V0=5 m s-1, f0=10-4 s-1, σ=2×10-6 m2Pa-2s-2, pscale=50 hPa, pfront=500 hPa and 
p0=1000 hPa. It appears that the vertical velocity is relatively weak for the longer wave (large Lx). This 
scale–dependence of the amplitude of vertical motion in a baroclinic wave explains the “short-wave cut-
off” of baroclinic instability, which is revealed by eq. 9.62 and in figure 9.10. The meridional slope of 
parcel trajectories in relatively short waves is larger than meridional slope of the background isentropes 
(figure 9.12), so that kinetic energy is converted into potential energy (stability) instead of the reverse 
(instability) (section 1.21).  
 Another point to note is that the frontogenetic forcing is determined (among other) by the meridional 
velocity (V0) (r.h.s. of eqs. 9.91 and 9.92). This is because the meridional component of the motion turns 
the zonally oriented isotherms into the meridional direction. 
 

 
 
FIGURE	9.15:	Q-vector	(upper	panel)	and	vertical	velocity, ω (lower	panel),	in	case	2,	i.e.	when	the	front	is	located	in	a	

shallow	layer	centred	at	500	hPa	(red	is	positive;	blue	is	negative).	The	frontogenetic	forcing	of	the	vertical	motion	is	
also	concentrated	 in	 this	 shallow	 layer.	The	arrows	 in	 the	upper	panel	 indicate	 the	direction	of	 the	Q-vector,	while	
they	 indicate	the	direction	of	the	vertical	motion	in	the	 lower	panel.	The	contours	 in	the	upper	panel	represent	the	
value	of	Qg1.	The	contour	interval	 is	2×10-9	K	m-1	s-1.	The	contour	interval	 in	the	lower	panel	 is	2	hPa	per	hour.	The	
parameter	values	are	U0=80	m	s-1,	Lx=5000	km,	V0=5	m	s-1,	f0=10-4	s-1, σ=2×10-6	m2Pa-2s-2,	pscale=50	hPa,	pfront=500	hPa	

and	p0=1000	hPa.	
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FIGURE	 9.16:	Q-vector	 (upper	 panel)	 and	 vertical	 velocity, ω  (lower	 panel),	 in	 case	 1,	 i.e.	 when	 the	 front	 is	 most	

intense	 at	 the	 surface	 of	 the	 Earth	 (red	 is	 positive;	 blue	 is	 negative).	 The	 arrows	 in	 the	 upper	 panel	 indicate	 the	
direction	of	the	Q-vector,	while	they	indicate	the	direction	of	the	vertical	motion	in	the	lower	panel.	The	contours	in	
the	upper	panel	represent	the	value	of	Qg1.	The	contour	interval	is	0.5×10-9	K	m-1	s-1.	The	contour	interval	in	the	lower	
panel	is	1	hPa	per	hour.	The	parameter	values	are	U0=80	m	s-1,	Lx=5000	km,	V0=5	m	s-1,	f0=10-4	s-1,	σ=2×10-6	m2Pa-2s-2,	

and	p0=1000	hPa.	
 
 The full solution (9.90) of the omega equation for Lx=5000 km (for case 2) is shown in the lower 
panel of figure 9.15. The upper panel of this figure shows the value of Qg1. We find upward motion in 
regions where the Q-vector converges and downward motion in regions where the Q-vector 
diverges. This response to frontogenetic forcing is, however, not restricted to the thin sheet of air 
between 400 hPa and 600 hPa where the “frontogenetic forcing” is acting, but is spread out over the full 
depth of the atmosphere. This “action at distance” can also be observed in case (1) (figure 9.16). Here, 
the frontogenetic forcing is largest at the Earth’s surface and decays to zero in the upper half of the 
atmosphere. Nevertheless, relatively strong vertical motions are also observed in the upper half of the 
atmosphere. 
 
 
9.10 “PV-θ  viewpoint” of forcing of vertical motion 
 
Our qualitative knowledge of the characteristics of the solution of the PV-inversion equation for a 
steady PV-anomaly can provide illuminating insight into the relation between large-scale vertical 
motion and a propagating PV-anomaly. This is sometimes referred to as the “PV-θ viewpoint”. 
Consider a positive potential vorticity anomaly embedded in a westerly mean flow with linear shear in 
height. The associated cyclonic circulation and the attraction of the isentropes towards the centre of the 
anomaly are sketched in figure 9.17. Let us assume that the PV-anomaly is located at a particular 
discrete height, it is represented mathematically by positive δ-function. If the coordinate system is such 
that the mean flow is zero at this level, then the circulation is a stationary solution of the equations of 
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motion. Assuming adiabatic conditions, this implies that the isentropes do not move and that the air 
must flow among them. The air above the anomaly must flow down the isentrope to the west and up the 
isentrope to the east, as shown in figure 9.17a. Similarly, the air below the anomaly must flow up the 
isentropic surface to the east and down the isentropic surface to the west. Also, associated with the shear 
and thermal wind balance, isentropic surfaces must slope upwards towards the pole. Hence, as indicate 
in figure 9.17a, the poleward moving air to the east of the anomaly must ascend and the equatorward 
moving air to the west of the anomaly must descend. Therefore, the total “isentropic upglide” vertical 
motion is positive (ascent) to the east and negative (descent) to the west. 
 

	
FIGURE	9.17.	Schematic	west-east	vertical	sections	 illustrating	the	effect	of	a	positive	potential	vorticity δ-function	

superimposed	on	a	westerly	flow	with	a	linear	shear	in	height,	z.	Dashed	lines	represent	isentropes.	Horizontal	and	
curved	arrows	sketch	the	horizontal	circulation.	Vertical	pointing	arrows	indicate	the	vertical	motion	associated	with	
isentropic	upglide	(continuous)	and	isentropic	displacement	(dashed).	As	viewed	in	a	frame	of	reference	in	which	(a)	
the	anomaly	appears	stationary	and	(b)	the	zonal	flow	on	the	lower	isentrope	is	zero,	so	that	the	anomaly	appears	to	
be	moving	from	the	left	to	the	right	(Hoskins,	B.J.,	M.	Pedder	and	D.W.	Jones,	2003:	The	omega	equation	and	potential	
vorticity.	Q.J.R.Meteorol.Soc.,	129,	3277-3303).	
 
 Suppose that the coordinate system is chosen such that the shear flow is zero in the neighbourhood of 
the lower isentrope (figure 9.17b). The components of the vertical motion associated with isentropic 
upglide in the meridional direction are unchanged. However, the westerly component now gives upglide 
vertical velocity at the lower isentrope, and larger values of isentropic upglide at the upper isentrope. Of 
course, the vertical motion is not dependent on the coordinate system. Therefore, there must be an 
additional part of the full vertical motion associated with the translation of the potential vorticity 
anomaly in this coordinate system. We refer to this as the “isentropic displacement” vertical motion. 
As the PV-anomaly moves to the east the isentropes on the eastern side above the anomaly must move 
down and those below must move up (figure 9.17b). Similarly, on the western side the isentropes must 
return to their undisturbed level through ascent above and descent below. In this coordinate system it is 
the sum of the isentropic upglide and the isentropic displacement vertical motions that gives the same 
vertical motion as the isentropic upglide vertical motion in a frame of reference within which the 
translation of the anomaly appears stationary. 
 We have thus split the vertical motion into two components: the isentropic upglide associated with 
translation of air relative to PV-anomaly and the isentropic displacement associated with translation of a 
potential vorticity anomaly in a chosen reference frame and with its development (changing intensity). If 
the frame of reference is chosen such that the potential vorticity anomaly is stationary, the isentropic 
displacement vertical velocity is zero unless the potential vorticity anomaly is “developing” (changing 
intensity).  
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FIGURE	9.18.	Topography	of	isentropic	surfaces	associated	with	eastward	moving	upper	PV-anomalies.	The	dark	lines	
mark	 the	 intersection	of	 the	 tropopause	with	 the	10	km	 level,	 separating	air	of	PV>	2	PVU	to	 the	north	 from	air	of	
PV<2	 PVU	 to	 the	 south.	 Shown	 also	 are	 system	 relative	 isentropic	 up-and	 downgliding	 (arrows	 directed	 along θ-

surfaces)	and	vertical	motion	due	 to	 induced	bulging	of	 the	 isentropic	surface	 (vertical	arrows)	when	viewed	 from	
Earth-relative	 perspective.	 The	 dashed	 line	 represents	 a	 fixed	 latitude.	 Figure	 due	 to	 E.B.	 Carroll	 (published	 in	
Meteorol.Apl.,	10	(2003),		p.	285.)	
 
 
 Figure 9.18 gives a three-dimensional view of what is meant by these concepts, where the potential 
vorticity anomaly pattern consists of a series of positive (associated with troughs in the northern 
hemisphere) and negative (associated with ridges in the northern hemisphere) anomalies embedded in a 
meridional potential vorticity gradient. The induced wind field is wavelike. There is upgliding 
meridional motion on the east side of the trough and downgliding meridional motion on the west side of 
the trough. The isentropic-displacement-component of the vertical motion is associated with the west-
east (zonal) propagation of the series of troughs and ridges and depends on the phase speed of this 
wavelike pattern relative to the actual zonal velocity component of the air parcels.  
 Consider a frame of reference moving at some constant horizontal velocity (cx, cy). The potential 
temperature equation in this frame of reference is as follows. 
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dθ
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∂t
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∂θ
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       (9.106) 

 
If this equation is divided by ∂θ/∂z and taking into account that the slope of the isentrope in, for 
instance, the x-direction is 
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∂zθ
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= −
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            (9.107) 

 
 (zθ is the height of the isentropic surface), the following equation for w is obtained. 
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The first term on the right hand side of eq. 9.108 is the isentropic displacement vertical motion. This 
term is sometimes described as “the vaccuum cleaner effect”: in adiabatic conditions, air rises in 
advance of an approaching upper level positive PV-anomaly, while air sinks in the lee of a retreating 
positive PV-anomaly. Isentropic upglide/downglide vertical motion (the second and third term in eq. 
9.108) may, however, counter the vaccuum cleaner effect. The fourth term in eq. 9.108 represents the 
contribution of heating or cooling to vertical motion. 
 
 

ABSTRACT OF CHAPTER 9 
 

Chapter 9 is concerned with the theory of mid-latitude baroclinic flow. The observed life cycle of a 
midlatitude baroclinic cyclone is discussed. The quasi-geostrophic approximation is introduced. The 
quasi-geostrophic vorticity- and thermodynamic equations are derived (eqs. 9.21 and 9.22). These two 
equations represent a closed set with the geopotential height and the vertical velocity as unknown 
variables.  
 Since the vertical velocity is not, in general, measured on the synoptic scale, a diagnostic equation is 
derived (the omega-equation) (eq. 9.31), which relates the vertical velocity to the measurable 
quantities, geopotential height and temperature. The solution of this elliptic differential equation gives 
insight into the physical relation between forced vertical motion in a statically stable atmosphere 
and frontogenesis (the geostrophic Q-vector). The general rule is that Q-vector-convergence is 
associated with upward motion. In a trough, which is usually embedded in a baroclinic zone with cold 
air poleward of warm air, the Q-vector points eastward. In ridge the Q-vector points westward. Thus, 
according to the solution of the omega equation the upward motion should be observed to the east of the 
trough and to the west of a ridge, which is indeed very frequently the case in reality. The solution of the 
omega-equation also shows that frontogenetic forcing of vertical motion is spread out over a vertical 
distance, which is proportional to the wavelength of the wave and the ratio of the Coriolis parameter to 
the Brunt-Väisälä frequency, f/N, which is called Prandtl’s ratio of scales. The typical aspect ratio of 
large-scale balanced circulation systems, therefore, is in the order of N/f ≈100. This aspect ratio is 
referred to as “Rossby’s ratio”. 
 The quasi-geostrophic approximation is used to formulate a two-layer model of the atmosphere in 
middle latitudes. The linear stability of a middle latitude zonal flow, in thermal wind balance with a 
meridional temperature gradient, is analysed using the method of normal modes. The effect of the 
meridional variation of the Coriolis parameter (the beta-effect) is included. This analysis reveals the 
existence, in the two-level model, of so-called “barotropic and baroclinic Rossby waves”. The 
amplitude of baroclinic Rossby waves grows exponentially in time if (1) the vertical shear of the zonal 
wind exceeds a threshold value, (2) the zonal wavelength is larger than a critical value and, (3) the 
wave tilts westward with increasing height (problem 9.7). The instability of baroclinic Rossby waves 
is invoked as a theory of middle latitude cyclogenesis.  
 The pattern of vertical motion in a baroclinic Rossby wave, with upward motion east of the trough 
and downward motion west of the trough, is understood from two perspectives: (1) the “quasi-
geostrophic viewpoint” (omega equation and Q-vectors) and (2) the so-called “PV-θ  viewpoint”. We 
will use both viewpoints in chapters 10, 11 and 12 to understand the life-cycle of a baroclinic Rossby 
wave (chapter 10), the interaction between zonal mean flow and waves (chapter 11) and the interaction 
between adiabatic transport of heat and momentum (or mass and potential vorticity substance) and 
diabatic processes in the general circulation of the atmosphere (chapter 12). 
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261-274. (This article gives an interesting account of the history of cyclogenesis theories) 
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Semple, A.T., 2003: A review and unification of conceptual models of cyclogenesis. Meteorol.Appl., 
10, 39-59. 
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 “Le soleil couchant” by Claude Monet, North Carolina Museum of Art. High layered clouds hint at an approaching warm 
front at sunset in Etretat (Normandy, France). 
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