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Abstract

It is shown through numerical simulation that open convection cells can only exist when the greatest static
(in the absence of convection) thermal instability is located near the lower boundary of the layer, for in-
stance in conditions when cold air is advected over a relatively warm ocean. On the other hand, closed cells
can only exist when the flow is driven mainly from the top. for instance by cloud-top radiative cooling,
which, due to the high degree of cloud-cover, is precisely most effective in these conditions.

It is also shown that, in the absence of mean vertical wind-shear, shallow convection has a very low *“‘toroidal
degree™ (i.e. the vertical component of the vorticity is hardly excited), implying that the flow is almost
poloidal. This is interesting because the equations of motion for poloidal flow are very similar to those for
two-dimensional flow in which only one component of the vorticity is non-zero. It is speculated that the
nonlinear dynamics of poloidal flow (and therefore also of convection) is very similar to the nonlinear
dynamics of two-dimensional flow.

Zusammenfassung

Uber das S rtomungsbild flacher atmosphiirischer Konvektion

Es wird durch numerische Simulation gezeigt, daf offene Konvektionszellen nur existieren konnen, wenn
die starkste thermische Instabilitit (ohne Konvektion) nahe der unteren Berandung auftritt, wie beispiels-
weise, wenn iiber der relativ warmen See Kaltluft advehiert wird. Andererseits konnen geschlossene Zellen
nur dann auftreten, wenn die Stromung von oben her angetrieben wird, beispielsweise durch Strahlungs-
abkithlung des Wolkenoberrandes, welche aufgrund eines hohen Bedeckungsgrades dabei den wichtigsten
Effekt verursacht.

Es wird zudem gezeigt, daff, wenn keine mittlere Vertikalwindscherung auftritt, flache Konvektion sich
nur sehr schwach torisch verhiilt, d. h. die Vertikalkomponente der Vorticity kaum ausgebildet und die
Stromung deshalb wesentlich poloidal ist. Dies ist interessant, weil die Bewegungsgleichungen fiir eine
poloidale Strémung schr dhnlich denen fiir eine rein zweidimensionale Stromung mit nur einer nicht ver-
schwindenden Vorticitykomponente sind. Man kommt so auf den Gedanken, dafs die nichtlineare Dynamik
einer poloidalen Stromung (und damit auch von Konvektion) sich sehr dhnlich zur nichtlinearen Dynamik

einer zweidimensionalen Stromung verhilt.

1 Preface

This paper is concerned with the flow-pattern asso-
ciated with mesoscale (horizontal scale: 3 to 100 km)
cumulus cloud patterns observed so frequently from
satellites.

Because of the obvious similarity between the so-called
Rayleigh-Bénard thermal convection patterns, observed
in the laboratory in a layer heated from below, and the
cloud patterns in the atmosphere, the theory of Ray-
leigh-Bénard convection is taken as the basis of the
theoretical explanation of these cloud-patterns.

Both in the laboratory and in the atmosphere one can
distinguish three types of convection-planforms: rolls
(clouds organized into parallel strips or bands), cells

with downward flow in the centre (called “open cells”
in the atmosphere, because they typically have a low
cloud-cover) and cells with upward flow in the centre
(called ““closed cells™ in the atmosphere, because they
typically have a high degree of cloud-cover).

The planform is not the only interesting aspect of the
flow-pattern. Some attention will also be payed to
what will be called the roroidal degree of the flow.
This is a measure for the relative importance of the
vertical component of the vorticity. The numerical
simulations described in this paper will show that the
toroidal degree may be very low (much less than 1%).
This implies that convection is nearly poloidal. It will
be shown in another paper that poloidal flow has cer-
tain features in common with two-dimensional flow.
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2 The Planform of Convection: Introduction

Open and closed cells have in common the fact that the
centre cloudy or clear area is greater than the perifery.
If it is assumed that clouds are correlated perfectly
with upward motion and clear areas are correlated
perfectly with downward motion, then open and closed
cells are dynamically equivalent, except that the
definition of what is up and down is reversed. This sug-
gests that a parameter (if there is one) which deter-
mines the cell-circulation direction just changes sign
when there is a transition from open to closed cells or
vice-versa.

This has indeed been suggested by several authors.
Krishnamurti (1975a) demonstrated that the sign of
the large-scale vertical motion may determine whether
open or closed cells occur. She found that open cells
occur when there is subsidence, while closed cells
occur when there is large scale upward motion. Sub-
sequent observational studies (e.g. Busack et al., 1985)
have not found much support for Krishnamurti’s
theory. A reason for the discrepancy will be given in
section 11.

The earlier pioneering studies by Palm (1960), Busse
(1967) and Krishnamurti (1968) on Rayleigh-Bénard
convection have shown that processes inducing a cur-
ved static (= in the absence of convection) horizontal
mean temperature profile, such as height-dependent
diffusion coefficients and time-dependent boundary
conditions, determine the planform. Mean large scale
vertical motion also alters the static temperature
profile. The common denominator emerging from
these studies is the sign of curvature of the static tem-
perature profile. In all these studies “open cells”
(down-hexagons) occur when the greatest static ther-
mal instability is located below, while “closed cells”
(up-hexagons) occur when the greatest static thermal
instability is located at the upper boundary. The quo-
tation marks are used here to indicate that the studies
on Rayleigh-Bénard convection have never really
payed any attention to the differences in the areas
covered by, respectively, the up- and the downdraught.
Because of the clouds, this property is immediately
evident in the case of atmospheric cellular convection.
Indeed, it is precisely this property that has received
the most attention in the meteorological literature.
Helfand and Kalnay (1983), for instance, define an
open cell as a cell in which the updraught is more
intense and thinner than the downdraught. It is then
possible to arrive at conclusions about the preference
for open or closed cells on the basis of a model of
two-dimensional convection.

An assumption which is generally made, and which
is also made in this paper, is that the layer is tesselated

into a regular array of identical cells. This limits the
possible planforms to parallel strips (rolls), triangles,
squares, rectangles and hexagons. Rectangles are not
very likely to occur, except when there is some hori-
zontally asymmetric effect. Since this is not the case
here, squares will be preferred over rectangles. But
even squares do not seem to be very probable. One
reason for this is the difficulty of defining the cell-
boundary in the case of squares. Stuart (1964) defined
the cell-boundaries as surfaces through which there is
no in- or outflow and on which the vertical velocity
has the same sign everywhere. If the up- and down-
draughts are equal in intensity and area, the boundaries
of one square cell will always possess four points at
which the vertical velocity is zero. That is, there is an
ambiguity in defining the cellular boundaries. The ver-
tical velocity along the boundary will vary strongly.
If up- and downdraught-areas are unequal (asymmetry)
this problem will not occur, since there are now
separate closed curves, w=0 (sec Stuart, 1964).
However, this does not yield a very efficient “packing”
of (up)(down)draughts. The most efficient packing of
circular up(down)draughts will lead to a hexagonal
cellular pattern.

It was stated above that the critical parameter coming
out of the theoretical studies on the effect of different
physical processes on the planform of convection is the
sign of curvature of the static vertical temperature
profile. This is also suggested by observations of con-
vection in the atmosphere.

Many cases of open cellular convection occur during
polar air outbreaks in which the convection layer
moves over a sea-surface which increases in tempera-
ture with distance from the ice-pack or frozen con-
tinent. The increasing surface temperature has the ef-
fect of maintaining a curved horizontal mean static
temperature profile with the greatest thermal instabili-
ty below. Although it is not actually possible to ob-
serve this static temperature profile, because the con-
vection-currents continually act to modify it, it should
be possible in most cases to determine the sign of the
curvature of the static part of the profile.

From a study of satellite photographs over a period
of several years, Agee et al. (1973) deduced that open
cells preferably occur to the east of continents over
warm ocean currents, while closed cells tend to occur
to the west of continents over cooler ocean currents.

All this suggests that open cells will occur when the
static temperature profile is such that the greatest
thermal instability is located below, while closed cells
will occur when the greatest static instability is located
above. This hypothesis will be tested by performing
simulations with a numerical model of convection.
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In the next four sections the model and method of
solution will be described. Technical details will be
delegated to appendices. The results of integrations
will be described in sections 7 and 8, and discussed
in section 9. These integrations provide support to
the hypothesis stated above. Unfortunately, a numeri-
cal model can never “prove™ a hypothesis but only
support it. At the moment analytical treatment of this
highly nonlinear problem seems far from feasible.

The present paper does not find its justification solely
from the verification of the hypothesis stated above,
which, incidentally, was also tested and verified by
Veltishchev and Zhelnin (1974, 1975) (see also Mat-
veev (1984)). These results have largely escaped the
attention of the western meteorological community.
The numerical experiments described below, however,
point to a property of thermal convection which has,
to the author’s knowledge, never before received any
attention, namely its extremely low toroidal degree
under certain circumstances. This subject will be taken
up in section 10. The present paper will be concluded
with a discussion of the applicability of the model
(results) to atmospheric convection (section 11).

3 The Model Problem

The model problem is convection between stress-
free, perfectly conducting horizontal boundaries
held at different temperatures. This idealization of
atmospheric convection is chosen so as to permit
the use of Fourier modes to represent the fields of
temperature and motion, making the mathematical
treatment easier. It must be noted, however, that
the upper boundary in the atmosphere is free, not
rigid. It is usually formed by an inversion. Convection
can penetrate into this inversion and excite waves
which propagate upwards and along the inversion
(Clark et al., 1986). These important effects are
ignored here. Likewise, the effect of a horizontal
mean flow with shear, known to induce the forma-
tion of rolls (Asai, 1970a, b), will not be taken into
account.

The basic equations governing the dynamic and ther-
mal behaviour of a shallow layer (depth, h, in the
order of lkm or less) of fluid are those expressing
conservation of momentum, energy and mass, in-
cluding the Boussinesq approximation (see Spiegel
and Veronis, 1960):

'

v —

SR S ! ' 2=t
a - Pm Vp tgaTk+vV*V (3.1)
V-¥'=0 (3.2)
- vV -k+kVH(T'-T) (3.3)

where V is the fluid velocity, t is time, p the pressure,
T the temperature, p the density, a the volumetric
coefficient of thermal expansion, g the acceleration
due to gravity, » and k the eddy-diffusivities of mo-
mentum and heat, respectively, k is the unit vector
in the vertical direction, ¢, is the specific heat capaci-
ty at constant pressure. I' is the deviation of the verti-
cal temperature gradient of the initial hydrostatic
reference state from the dry-adiabatic lapse rate,
~7Yq (=~ gl/cy). T is positive when the temperature
of the static state decreases more rapidly with height
than the dry-adiabat. T' is the steady “static” tem-
perature perturbation, maintained against diffusion
by a steady heat source, or by another physical me-
chanism which operates independent of the con-
vection. In this study T' is only dependent on z and
will be treated as a free parameter. The behaviour of
the model will be investigated as a function of the
shape of the profile, T'(2).

The reference state is assumed to be motionless:
Vi = 0. Therefore, in the following all primes attached
to vV and its components will be dropped.

The eddy-diffusion in equations (3.1) and (3.3) are
parameterizations for the effect on the calculated
motion, of motions resulting from processes, such as
stress at the lower boundary, which are not included
in the model problem. Mean wind-shear and stress at
the lower boundary generate turbulent eddies which
exert a stress on the “large-scale” eddies which are
generated by convection. According to the mixing-
length theory (see e.g. Tennekes and Lumley, 1972)
this stress acts as a diffusion of momentum and heat
on the large-scale eddies. It is assumed that the tur-
bulence, resulting from shear-stress, is isotropic and
homogeneous. This strong idealization of the effect
of turbulent dissipation is introduced partially to keep
up the analogy with the Rayleigh Bénard problem
and partially because there is so little known about this
effect that it is difficult to prescribe a more sophisti-
cated parameterization. We will return to this problem
in section 11.

From egs. (3.1) and (3.2) it is possible to derive an
equation for the vertical component of the vorticity,

_0v_du
§_Z)x dy’ (34)

where u and v are, respectively, the x- and y- (horizon-
tal) velocity components, and an equation for the
time evolution of V?w, where w is the vertical com-
ponent of the velocity, thereby eliminating p’. Thus
the flow-field is divided into a so-called poloidal part,
associated with w, and a so-called toroidal part, as-
sociated with §.
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In terms of the following units the length {L}, time
{t} and temperature {T},

h? Ky
{L}=h; {t}= ’7; (T} = = (3.5)
the vorticity equation is
& _ 0w dwdv dwdu o oo
Gt S o dy oz +Prv?¢, (3.6)

where Pr is the Prandtl number (= »/k). The equation
for V2w is obtained as follows: differentiate the x-
component of (3.1) with respect to x, the y-com-
ponent of (3.1) with respect to y and the z-component
of (3.1) with respect to z. By adding the three resulting
equations and using (3.2) a Poisson equation for p’ is
obtained. After differentiating this equation with
respect to z, taking the Laplacian (V?) of the z-com-
ponent of (3.1) and subtracting the two resulting equa-
tions, one obtains, in terms of the units defined in
(3.5),

Su_ (e, e g\, (2
dt 2322 ~ 0x0z il 3x+ ~oz?

2
L —vzv)g‘ﬁ—vzwa—w+

dy 0z ay 0z
*u  3’w \ov ( 9%y
AR OV o iV
" 2( azdy axay) ax T % \azay
Bzw) dv ( 9%u azw) du
—_— ) — + 2 S g | A
ay* / dy 0z0x 9x*/ 9x
aZV - aZW ) a_u 2 4
+2 (ay,ax axdy ) 9y * Pr VRO +P V.

3.7

Here Vj; is the horizontal Laplacian, 0 is the non-
dimensional temperature deviation from the reference
state. Except for { and w, egs. (3.6) and (3.7) still
contain the unknowns u and v. These can be eliminated,
using eqs. (3.2) and (3.4) after the system has been
Fourier transformed.

The nondimensional form of the temperature equation
(3.3) is,

do _ 209 -5
3t Raw +V*(0 —0),
where Ra is the Rayleigh number (= gaT'h*/vk). The
top and bottom boundaries (see Fig. 3) are assumed to
be rigid, stress-free and perfectly conducting, i.e.

L DV 0¥ w0t s Dl
WRO; a0 A0

(3.8)

0, (3.9)

atz=0and z = 1 (we are now expressing every variable

in terms of non-dimensional units (3.5)). The second
, condition in combination with (3.2) implies that
9’w
— =0 at z=0 and z=1.
0z*
These boundary conditions permit Fourier normal
mode solutions in the vertical.

(3.10)

4 Fourier Representation

We will take the hexagonal convection cell as the
prototype of an atmospheric convection cell. Accord-
ing to Christopherson (1940), a hexagonal pattern is
given by,

cos 2y. (4.1)

B | =—

cosy/3x cosy

Figure 1 shows a contour plot of a hexagonal cellular
pattern according to this formula. The sign in front of
the second term determines the direction of the verti-
cal motion in the middle of the cell. The planform
of the vertical motion in the middle of the cell is
circular and is smaller in size than the vertical motion
in the perifery. This may, however, change if higher
harmonics are excited due to the interaction of the
two “fundamental” waves which comprise (4.1).

ZAS

Ly=\f3Lx

NVZ

Figure 1 The vertical motion in a hexagonal cell according to
formula (4.1). Along the contours labeled zero, the vertical
velocity is zero. A “‘up-hexagon™ is defined as a hexagonal
cell in which the motion is upwards in the centre. In the case
of a down-hexagon, the opposite is the case.
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Let us write the variables in the form of Fourier series —dxngl aymg
as follows: Uam— o Wy rii=2i7,, (5.2a)
> i Yo T (y
[ 1 —ayn,m al
ul U o i (5.2)
v Vo Ya Ty
w Wa where q2 =a21%+alm is the total horizontal wave-
= Y
¢ a | Zg Sa(,¥,2), 42 number. The total wavenumber is defined as,
0 Oy k2 =n%(q2 +nl). (5.3)
U" il | ©a | With the help of eqs. (5.2a,b) U and V can be ex-

where Uy, Vo, Wa, Zo, Oy, O, are complex coeffi-
cients, and

Sa(x,y,2) = exp{im(a,lx + aymgy +ngz}. (4.3)
The notation is exactly as in Kuo and Platzman (1961).
2 means a sum over all integral lattice points in the
(%

volume of a = (lo, mg, ng). The parameters a, and ay
are a measure of the horizontal domain of computa-
tion:

0<x<Lygh; 0<y<Ly/h, (4.4)
so that
ay = 2h/Ly; ay = 2h/Ly. (4.5)

Because periodic boundary conditions have been as-
sumed, this domain may be repeated in all horizontal
directions ad infinitum, so as to obtain a regular array
of cells with a prescribed wavelength.

If we choose

a)(:\/-jay:?\/ga, (46)

then the wave vectors, (£1,+1,n) and (0,+2,n)
(where n is an integer) correspond to the two modes
in(4.1).

5 The Spectral Form of the Equations

The orthonormality of the S, may be expressed in the
form,

[84S5do = 8,5, (5.1)

where the asterisk designates a complex conjugate,
while & is the Kronecker delta. The integration extends
over the region, 0 <x<2/ay, 0<y<2/a,,0<z<2
and do is a volume element divided by the total volume,
o =8/(ayay).

The linear diagnostic relations (3.2) and (3.4) (which,
incidentally, do not change when written in non-
dimensional form) are thus easily transformed to
spectral space. Substitution of (4.2) into (3.2) and
(3.4) yields (after some rearrangements):

pressed in terms of Z and W. Therefore the motion-
field is completely determined by the toroidal part
(Z) and the poloidal part (W).

Transforming the prognostic equations (3.6-8) is a
matter of substituting the expansions (4.2) into these
equations and using the property of orthonormality
of the S, (5.1) to project the result on an arbitrary
wave vector, ¥ (=(ly, my, n,)). We then obtain a
system of equations for the amplitudes W,, Z, and
©, corresponding to an arbitrary wave vector, 7.
This process requires some tedious but straightforward
algebra, which is described in more detail in van
Delden (1987). The spectral form of the equations is

dz
—L = % Fy(Wa, Za, Wp, Zg, @, B, 7)—
dt o (5.4a)
~PrkjZ,;
dw
_dt;y =X Fw(wa, Za. wp, Zﬁ» a, By 7) +
bt (5.4b)
mq
+T(2_ @7—Prk%W7;
3 4
de,
d—’ =2 Feo(Ou. Wg, Zg, @, 8,7) + :
t op (5.4¢)

+RaW, -k (0,-6,),

where X, g is a double sum over all wave-vectors, a
and B. Fz, Fy and Fg are complicated nonlinear ex-
pressions which are given in appendix A. (5., =0 unless
ly=my =0.

Equations (5.4a,b,c) have to be truncated in spectral
space before numerical integration is feasible. To save
computer resources, a highly truncated system (a so-
called low-order model) is integrated from the rest-
state to a steady state. This steady state is inserted
into a more complete model (with more Fourier coef-
ficients) and the integration is continued until a new,
probably more realistic (steady) state is reached.

In the low order model the following wave vectors are
taken inside the truncation of the expansion of w and
0: (£1,£1,+n) and (0,+2, £n), n =1, 2. In addition
to this, (0,0, £n) where n=1, 2, 3,4 is taken to rep-
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resent the mean vertical temperature profile. Only the
imaginary parts of W and © (W' and ©') are taken into
account. The low-order model equations are given ex-
plicitly in appendix C.

In the higher-order model, the following wave vectors
are included inside the truncation of Z,, W, and ©,
(imaginary and real): —6<m,<6, —-3<I,<3,
=3 <n,<3 (except n=0), in addition to (0,0, *n)
(4 <n=<06) for the temperature profile. In “physical
space™ this would correspond to a grid of 7 x 11
points in the horizontal and 7 in the vertical to de-
scribe the waves, and 11 in the vertical to describe the
vertical mean temperature profile. However, with the
present spectral method we need not worry about
numerical diffusion or nonlinear numerical instability.
This truncation seems adequate enough to simulate
convection cells with an aspect ratio equal to 24/2
(the linearly preferred value (Rayleigh (1916)) at
Ra <5000 (eight times the critical value for onset).
This is based among other on a comparison of the heat
transport produced by the present model with heat
transports found in other computations reported in
the literature (see van Delden, 1987).

6 The Imposed Static Temperature Profile

The principle purpose of this study is to see how the
planform of convection is sensitive to changes in the
imposed static temperature profile. We will limit the
investigation to a particular shape of the static temper-
ature profile. To this end the Fourier expansion of ®
is truncated after the first term. The boundary con-
dition (3.9) and the fact that © is real, imply that the

HEIGHT
=

1 1 1 J
~4000 0 4000
TEMPERATURE

+8000

Figure 2 The static temperature profiles, relative to the dry-
adiabat and the temperature of the lower boundary, for
several values of ®ggy. The units of height and temperature
are dimensionless (Ra = 5000).

static temperature profile is determined by one Fourier
coefficient, namely éé'o.l (see appendix B). The super-
script, I, as well as the commas in the subscript will
henceforth be dropped. Figure 2 gives an impression of
the static temperature profile as a function of Oy .
When @go, =0 (i.e. the static temperature profile is
rectilinear) the static state becomes unstable at mini-
mum Ra=657. Kondo et al. (1972) investigated the
stability of the static state in the presence of the
temperature profiles shown in Figure 2. They found
that the critical Rayleigh number for onset of con-
vection decreases slightly from 657 to 654 if o1 =
+500(T, =0.2 in their paper), to 636 if @go; = * 1500,
and 536 if ©gg, =+3500. The corresponding critical
(preferred) wavenumber increases by a maximum of
7% at ©go; =+ 3500.

7 Planform-Selection According to the
Low-Order Model

Figure 3 shows the time-evolution of the temperature
Fourier coefficients ©},, and @éz, in an integration
with the low-order model starting from rest (per-
turbed randomly), with Pr=0.025, Ra= 5000, a= 1/
2V2 and Oy, =0. If O}, =0, the planform is
hexagonal, as in Figure 1. If ©},;, = 0 and ©%,, # 0, the
planform is two-dimensional (rolls). Evidently the
planform is hexagonal for a rather long time-period
of 13 units, after which there is a sudden transition to
rolls. Such behaviour was also observed in laboratory-

400
oﬂu
300-|
wr
S 200-
=
a
> L
L
100-
0l\l
0 . - : . )
0 L] 20 k] 40 50

TIME

Figure 3 The absolute value of the coefficients, ®@gz; and
@111, as a function of time in a run with the low order model
of three-dimensional poloidal convection. Until t = 13 units,
the coefficients are exactly equal, corresponding to a hexa-
gonal planform. After that ©;y; goes to zero, marking the
transition to rolls. The parameter values are, Pr =0.025,a =1/
(2+/2) and Ra = 5000.
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experiments performed by Gollub et al. (1982). In
these experiments certain convection patterns per-
sisted for a long time, but eventually gave way to
another, probably more stable, convection pattern.

More integrations with the low-order model were
done with ©g; =0. The initial conditions were given
by perturbing the temperature wave field (O},
Ol12, Oy, Ob) with a preset value (s) with a sign
determined by the random generator. All other coef-
ficients were equal to zero initially. The integrations
were continued until a steady state was reached. At
low Pr care had to be taken in assuring that the solu-
tion was steady, because, as illustrated in Figure 3,
almost invariably the system seemed to select and stick
to a hexagonal solution for a long time and yet then,
quite abruptly, select the roll solution. Table 1 shows
the solutions obtained for different values of s and Pr
at Ra=5000 and a=1/2+/2. Apparently, there is a pre-
ference for hexagonsat high Prand for rolls at low Pr.

The most remarkable result of these integrations is
that an asymmetric (hexagonal) planform is selected
in perfectly symmetric conditions, even though there is
the possibility of selecting a symmetric (roll) planform.
Because of their asymmetry, hexagons have always
been thought to result only when an asymmetry is
imposed on the system, such as a curved static tem-
perature profile. The low-order model-behaviour sug-
gests that this physical reasoning is incorrect. It is true
that the stability analyses by Busse (1967) and Krish-
namurti (1968) indicate that imposed asymmetries
promote the stability of hexagonal convection. How-

Table 1 Solution of the low-order model after 50 time units
as a function of initial conditions (s) and Prandtl number (Pr)
at Ra=5000 and a=1/(2+/2). For low Pr (0.025 and 0.2)
the quasi-steady or time dependent solutions after 10 and 3
time-units, respectively, are shown. S = square or, more pre-
cesely, a rectangle; R=roll: D =down-hexagon; U =up-
hexagon; T = time-dependent solution (wavy roll). The asterisk
denotes that the solution is not exactly a hexagon. The solu-
tions chosen as initial condition for the higher-order numerical
model are printed in italic (see section 8).

Pr - 0025 0.2 15 50
time -~ 10 50 350 50 50 50
s
0.25 T R T S D, D D
0.5 U R U R R U U
1 U R U R R U ]
2 U R U <R R U U
4 T R R R R D D
8 U R R U
16 U R R ]
32 T R R u
64 U R R U
128 | T R D. D
256 D R R D

900(

5
600} T, 10

TIME

Figure 4 The kinetic energy, K, and the toroidal degree, 7,
as a function of time (all dimensionless) for, (a) runs 1 (Pr =
0.2) and 2 (Pr=1). The subscripts of K and 7 refer to the
run-number in Table 3.

Pr=02 Pr=1

Y
—823—

X —
Figure 5 Planforms in terms of the vertical velocity at z = 4/7
at the end of runs 1 and 2 (see Table 3). White corresponds
to positive vertical motion whereas black corresponds to nega-

tive vertical motion. The only parameter that is varied is the
Prandtl number, Pr (see Table 3). Units are dimensionless.

ever, it also seems from the photographs taken by
Krishnamurti (1970, Fig. 5) that hexagons are possible
in symmetric conditions (rectilinear static temperature
profile), although Krishnamurti only alludes to the
mere three-dimensionality of the flow in these cases.
Besides, so-called ““spoke-pattern’ convection, which is
observed in symmetric conditions (Busse, 1978), pos-
sesses the same kind of asymmetry as hexagonal con-
vection.

It must be remarked that perfectly symmetric condi-
tions are probably impossible to produce perfectly in
the laboratory. Deviations from the Boussinesq ap-
proximation, for example, will induce asymmetries.
In this context it should be noted that at Pr <1, the
hexagon is unstable and gives way to a roll (see Fig. 3),
whereas at Pr>>1 the hexagon is stable within the
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framework of the low-order model. Both up- and
down-hexagons are equally probable. At Pr=1 the
hexagon is never selected. Only in two cases (s =0.25
and s =128) did the model select a three-dimensional
steady solution, which resembles a compromise be-
tween a rectangle and a hexagon. These results lead
one to wonder whether the unequal magnitudes of
the heat diffusion- and momentum diffusion-coeffi-
cients when Pr # 1 also act as an internal asymmetry
which can influence the planform selection.

Let us now see what happens when a curved static
temperature profile is imposed on the system. For
each set of parameter-values a set of six integrations
of 20 time units, with different s, was performed.
Table 2 shows the selected solutions as a function of
Ra and Og;. Several solutions are possible at the
same parameter-values. Most remarkable is that up-
hexagons and rolls are preferred when Bgo1 > 0 (great-
est static instability below), while down-hexagons
and rolls are preferred when ©gg <0 (greatest static
instability above). With respect to the relative areas
occupied by the up- and downdraught, this result is in
agreement with the findings of Helfand and Kalnay
(1983), since the motion in the middle of the low-
order model hexagon @/ways covers a smaller horizon-
tal area than the vertical motion in the perifery (see
Fig. 1).

8 Planform Selection According to the Higher
Order Model

To relax this constraint on the internal structure of the
of the cell, higher harmonics must be included in the
model. Therefore, a poloidal down-hexagon (or up-

hexagon) with an aspect ratio of 2+/2 (more specifical-
ly, the low-order model solution (D or U) at Ra= 5000,
a=1/24/2, Pr=0.2 or 5, printed in italic in Table 1
(for the runs at Pr=1, the solutions at Pr=35 in Table 1
were used)) was inserted into the higher-order model as
initial condition and the integrations were continued
for several values of O, . Table 3 gives a survey of the
integrations discussed in this paper.

In runs 1 and 2, differing only with respect to the
Prandtl number, the initial condition was an up-hex-
agon (U). The static temperature profile was rec-
tilinear. Figure 4 shows the time-evolution of the total
kinetic energy K and the toroidal degree r=Kg/K,
where Kt is the total kinetic energy associated with
the toroidal part of the flow (Z) (see appendix D for
exact definitions) for runs 1 and 2. According to the
stability theory of Schliiter et al. (1965) for small
amplitudes the hexagon should be unstable to in-
finitesimal perturbations. After 0.9 time units of inte-
gration, which corresponds to about 9 hours if k =
30m?/s and h=1000m, the system has indeed not
reached a steady state. However, considering the plan-
form is still hexagonal (see Fig. 5) after this time, it
must be concluded that, within the framework of this
model, the degree of instability of the hexagon is not
very great.

Note that less than 1% of the total kinetic energy
becomes toroidal when Pr=1. Even when Pr=0.2,
7 is never greater than 0.037. This implies that the
flow is nearly poloidal. We will return to this re-
markable fact later.

Meanwhile we will discuss the influence of the (sign
of the) curvature of the static temperature profile.
In this context the integrations at ©go; = 1500 (run 3)
and at @go; =— 1500 (run 4) are especially instructive

Table 2 Solutions (D/R/U) of low-order model integrations with random initial conditions (see text) as a
function of Ra and ©ggy, which represents the degree and sign of curvature of the static temperature
profile (Pr= 3 and a = 1/(2/2)). For example, out of the six runs made at Ra = 2500 and ®gg; = 8000,
the model selected a down-hexagon (D) three times and a roll (R) the other three times, while an up-hexa-
gon (U) was never selected. At Ra = 10000 and ®¢g; = 0, the model-behaviour is time-dependent (T) five

times.
S0t = 90,0,1

[ Ra - 8000 5000 - 2000 0 2000 5000 8000
2500 3/3/0 6/0/0 3/3/0 1/1/4 0/1/5 0/1/5 0/1/5
5000 3/3/0 2/4/0 2/4/0 2/0/4 0/1/5 0/1/s 0/1/s
10000 3/3/0 4/2/0 0/0/1 0/2/4 0/1/5

SXT

Form of the T o t z=1
static temperature z Z
profile 0= 2 =0 0 —= S
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Table 3 Summary of the 15 runs made with the higher-order model (a= 1/(2 \«’5). Ra = 5000). C (cloud
cover; see text for definition) and 7 (the toroidal degree) are measured at the end of the run after A time
units. “*Stationary™ implies that 7 and K must be approximately constant for at least 0.1 time units, U =
up-hexagon; D = down-hexagon; R = roll; I = irregular pattern.

Run initial final ;
no ©001 Pr ) planform planform stationary? ¢ of
1 0 0.2 0.9 U U NO 0.59 3.7-1073
2 0 1 0.9 U U NO 0.53 8.1-107%
3 1500 1 0.6 D D YES 0.43 2-10-3
4 - 1500 1 0.9 D R NO 0.59 1.8-1073
) 1500 1 0.6 U R NO 0.41 1.9-10-3
6 3500 1 0.6 D R NO 0.41 1.9-10-2
7 - 3500 1 0.6 D U NO 0.58 1.0-10"2
8 S00 1 0.3 D D NO 0.44 1.9-10-3
9 500 1 0.6 D R NO 0.49 1.5-1072
10 3500 | s 0.6 D I NO 041 5.5:107%
11 - 3500 5 0.3 D I NO 0.58 12.8-10% |
12 0 5 0.3 D D YES 0.46 9.6-107¢
13 5000 5 0.3 D I NO 0.62 2.2-1073
14 2500 S 0.3 D D YES 0.42 1.6-1074
15 3500 1 0.9 R I NO <0.5 1.7-1072

F=03 £=0.6 t=09
RUN 4 ‘ ‘ I
8y =-1500 . 82
A\
RUN 3 —823—
ﬁ“m - ..

t=03 t=0,6

Figure 6 Vertical velocity (white: positive; black: negative) at
z = 4/7 at different time in run 3 and run 4 (sce Table 3). The
initial condition is a down-hexagon, which evidently is only
able to subsist when ®gg; = 1500, Units are dimensionless.

to compare. In both cases, the initial condition was a
down-hexagon (D). Figure 6 shows the planforms, in
terms of the vertical velocity at z=4/7 at different
times for both integrations. For a better overall pic-
ture, the domain of computation is extended half a
wavelength in each direction. This will be done every
time in this section. Apparently, the down-hexagon
subsists when g, = +1500 (greatest instability
below), while it does not subsist when Ogo1 =~ 1500.
In the latter case there is a gradual transition to a roll
pattern. Evidently, the “cloud-cover”, C, which is
defined as the vertically averaged ratio of the hori-

zontal updraught-area to the total horizontal cell-
area, has adjusted to the sign of curvature of the tem-
perature profile. When the layer is most unstable
below, the cloud-cover is low, which is in agreement
with the low-order model-results and the two-dimen-
sional model results of Helfand and Kalnay (1983).
However, the cell-circulation-direction is the reverse
of that predicted by the low-order version of the
model. The resulting stationary state convection cell
closely resembles an atmospheric open convection
cell, i.e. a down-hexagon with a large “clear” area
(downward motion) in the middle.

To test the reliability of these results, another run
(5) was done at ©go; = 1500 with an up-hexagon
(“U” at s=0.5 and Pr=5 in Table 1) as initial con-
dition. As expected from the symmetry of the prob-
lem, the up-hexagon cannot subsist. There is a transi-
tion to rolls.

Figure 7 shows the mean vertical temperature stratifica-
tion (static + dynamic) at the end of runs 3 and 4. In
run 3 the static temperature stratification is stable near
the upper boundary. Convection destroys this stable
layer and converts into an unstable layer. This ensures
that no heat accumulates inside the layer, i.e. that the
net heat flux out of (into) the domain is equal to the
prescribed heating (cooling) rate maintaining the
curved static temperature profile.

The temperature profiles in Figure 7 also illustrate the
unrealistic character of the upper boundary condition
on the temperature in relation to the atmosphere,
where convection never creates an unstable stratifica-
tion at the top because it is allowed to penetrate
further into the stable layer above.
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1r Figure 7
I'he mean vertical tempera-
ture profiles relative to the
dry adiabat at the end of
i runs 3 and 4 (see Table 3).
B Units are dimensionless.
o run b
Ef, 0,5}
= | ROLL
0 1 (] |
© o -4000 <2000 O 2000
TEMPERATURE
80.”:'500 00“: +500
t=0,3 t=0,6 t=0,3
PV N
h & 4
A A4
t=03 _ =06 t=0,3 t=0,6
80,0,1:-3500 00'0_‘= +3500

Figure 8 As Figure 6, except for runs 6 (@gy = 3500), 7
(Bpo1 = — 3500), 8 Bgo; = 500) and 9 (g = — 500). The
initial condition is a down-hexagon in all cases (see Table 3 for
further information.

Four more integrations were performed for different
values of Ogq, , with exactly the same initial condition
asin runs 3 and 4. Figure 8 shows the planformsin terms
of the vertical velocity at z =4/7. Most remarkable is
that at ©g9; =—3500 the cell circulation direction has
been reversed. The “cloud-cover™ is 0.58. This con-
vection pattern thus resembles a closed cell in the
atmosphere.

t=0.3
ﬁopf -3500 bm‘: +3500
i
8, 0= -5000
t=03 k=03

Figure 9 As Figure 6, except for runs l()__((:)(,(” =3500), 11
(@gg1 = —3500), 12 (Bpgy =0) and 13 (©gg; = —5000). Sece
Table 3 for further information.

6007

4504

3004 ;

150

TIME

Figure 10 The kinetic energy, K, and the toroidal degree, 7,
as a function of time in runs 12 and 13. Units are nondimen-
sional. See Table 3 for further information.

Another set of five integrations was performed at
Pr=35 (runs 10—14). This should give an impression
of the influence of the Prandtl number on the plan-
form. Figure 9 shows the planforms at the end of runs
10-13. In symmetric conditions (Ggor =0, run 12)
the hexagon persists for 0.3 time units at Pr=5 (see
Figure 10), which seems inconsistent with the small-
amplitude stability theory of Schiiter et al. (1965),
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which predicts that hexagons are unstable. There is,
however, a possibility of a sudden transition to another
solution after a long time, as illustrated in Figure 3 for
the low-order model. But, to simulate 13 time units
would require about 120 hours Central Processor Unit
time on the CYBER 180/855. Since the model-be-
haviour at time scales of about 0.3—0.9 time units
(several hours in the atmosphere) is consistent with the
analytical stability analyses of Busse (1967), Krish-
namurti (1968) and the numerical results of Velti-
shchev and Zhelnin (1975), this special point in para-
meter space which, due to the inevitable presence of
asymmetries in reality, will actually never occur, will
not be investigated further. It is perhaps worth men-
tioning in this context that a recent study by de Swart
and Grasman (1987) has shown that a nonlinear
system may remain in the neighbourhood of a linearly
unstable equilibrium for some time due to the fact
that it may be attracted to this equilibrium in all
directions of phase space, except one.

On the whole it seems that the increase of Pr stabilizes
the flow in symmetric conditions, but destabilizes
the flow in asymmetric conditions (e.g. compare the
planforms in runs 7 and 11).

Figure 11 shows a detailed view of the vertical velocity
at 2=4/7 in the steady state “open” cell at the end
of run 29, in which convection was driven from below.
The maximum upward velocity in the perifery is 47
nondimensional units, whereas the maximum down-
ward velocity in the centre is 30 nondimensional units.
There are six peaks in the upward motion in the
perifery, while the downward motion has only one
peak. This brings us to another remarkable property of
open cells in the atmosphere, namely that, apart from
a large clear area in the centre, they consist of a ring of
many clouds, each with their own up- and down-
draughts. Due to this, Scorer (1986) called these cells
“beaded cells”. The cell in Figure 11 reproduces this
property to a certain extent. Each of the six updraught-
peaks could be associated with a cloud (or bead).

It is somewhat enigmatic why the perifery is the “ac-
tive™ part of the cell, since this does not seem to be
the most efficient organization in terms of protection
against diffusive dissipation (see e.g. Oerlemans, 1986).
Clearly, the convective planform-selection process
defies an explanation in terms of optimum principles
or symmetry arguments.

Finally, Figure 12 (run 15) is an illustration of the
effect of the curvature of the static temperature profile
on rolls. Initially a purely two-dimensional (roll)
circulation is imposed. Apparently, there is a transition
to a pattern in which updraughts are organized into
“streets” with double the aspect ratio of the original

t=0 \ t=s 0.3\/ e
282 A
b )/ \

=74\ /

Figure 11 The vertical velocity at z=4/7 in nondimensional
units at the beginning and at the end (t=0.3) of run 14
(Ra=5000, a=1/(2+/2), Pr=5, 8¢ = 2500, Ly =4/(2/3)
and Ly = 4 \/f). See Table 3 for further information.

t=0 £=03 +=0,6
X —

Figure 12 Vertical velocity (white: positive; black: negative)
at z=4/7 at different times in a run (15) (sce Table 3) with
rolls aligned in the x-direction as initial conditions. Some rolls
(continuous cloud-lines; white in the figure) break up into
discontinuous cloud lines or “cloud-streets™.

roll, much in the same way as is observed in the at-
mosphere (e.g. Weston, 1980).

9 Discussion and Conclusions on Planform-
Selection in the Model

A survey of all the higher order model integrations,
and their implication and validity, is now possible.
The main result is that varying static thermal stability
determines the cell circulation direction and cloud-
cover. Roughly stated, open cells occur when static
instability is greatest adjacent to the lower boundary,
while closed cells occur when the static instability is
greatest adjacent to the upper boundary.
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It is expected that this conclusion is valid for all Ray-
leigh numbers below 5000 and above 657, which is
the minimum value needed for onset of convection,
as well as for values of the wave number, a, in the
vicinity of the chosen value, which is the preferred
wave number according to linear theory without ro-
tation. For lower wave numbers, which are frequently
observed, more higher harmonics are needed inside
the truncation. There is, however no physical reason
to believe that the cell circulation direction will re-
verse, or that the cloud-cover will differ significantly
when a is smaller and/or when Ra is larger than the
chosen value, but this remains to be tested with higher
resolution integrations on a super-computer.

The earth’s rotation was ignored in this paper. Never-
theless, runs with rotation (oriented paralle] to the
local vertical), described in van Delden (1987), show
a very similar model behaviour for rotation-rates appli-
cable to the atmosphere. However, there is more to
this problem than is evident at first sight, since the
rotation vector at latitudes other than 90° is tilted to
the vertical. In that case the Fourier modes Z) o,
which were left outside the truncation, should certain-
ly be included.

As to the sinosoidal form of the static temperature
profile, it was chosen in part due to its mathematical
simplicity, and also due to the fact that it resembles
the basic characteristics of the static temperature
profile encountered in the atmosphere. Previously,
Krishnamurti (1968) and Veltishchev and Zhelnin
(1975) investigated a (similar) parabolic profile and
obtained identical qualitative results. This indicates
that the results are not greatly sensitive to the specific
form of the static temperature profile, but much
more to the sign of the variation of the static stability
and where, relative to the upper and lower boundaries,
the maximum static instability is located.

Finally, Figure 13 presents a strongly tentative regime
diagram in Ra-@m. space at a= 1/24/2 and Pr~1
to 5, distilled from the model integrations described
in section 8 and also results due to Busse (1967) and
Krishnamurti (1968, 1975a). The line separating the
static state from convection is taken from the paper
by Kondo et al. (1972). A more exact determination
of this regime diagram, also at other wavelengths, is
a matter of the availability of computer-time.

10 The Toroidal Component of the Flow

The last column in Table 3 shows the toroidal degree
at the end of each model-run. It is very remarkable
that this quantity is very small in all cases. More than
99% of the energy is poloidal. This would permit us

Ra
/ \\
/, \\
time-dependent 7 \_ fime-dependent
conveclion, 7 \ Convection,
plumes 7 N plumes
\
/s \

Vi \
N\
47 CLOsED OPEN CELLS,
’ .
S S STREETS '\

NO CONVECTION

By <0 0 Gypp> 0
greatest instability  greatest instability
above below

Figure 13 Tentative regime-diagram in Ra-©g¢, space, distilled
from the numerical results, Krishnamurti’s (1968, 1975)
theory, and the stability analysis of the static state by Kondo
et al. (1972). For the definition of “cloud streets”, sce Figure
12.

to neglect the toroidal component (Z) of the flow in
the spectral equations of motion, which leaves us with
a comparatively very simple equation with only one
nonlinear term:

awy _ ; :

o 2 7Nyq51 W W + linear terms.

af

(see section 5 and appendix A). This equation is identi-
cal to the equation of motion for two-dimensional flow,
except that the vector-summation covers the whole
volume, while it is restricted to a plane (1=00orm =0
or n =0) in the case of two-dimensional flow. The non-
linear dynamics of three-dimensional convection should
therefore exhibit considerable similarity with two-
dimensional flow.
The reason for the low toroidal degree of shallow con-
vection in the absence of rotation and shear is principal-
ly due to the fact that, because the buoyancy force is
directed in the vertical, thermal instability is manifest
only in the poloidal modes of the Fourier spectrum of
the flow field. The toroidal modes are all damped and
can be excited only through the nonlinear coupling
with the poloidal modes. Tt has been established by
Haken (1978) that nonlinear systems in general are
dominated by the amplified modes. The damped
modes follow the amplified modes as slaves, which
means that they are always in balance with the ampli-
fied modes. Haken (1978) called this “the slaving
principle”. At low Pr viscous dissipation will of course
be less than at high Pr. Therefore at low Pr the motion
will be more strongly toroidal.
There is another reason for the low toroidal degree. It
is shown in appendix E that the interaction of two
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poloidal Fourier modes with identical vertical wave
number, n, and equal total horizontal wave numbers,
q, does not produce any toroidal energy. All regular
(symmetric) cells, such as hexagons and squares, con-
sist mainly of two or more fundamental modes with
the same total horizontal wave number, q. Therefore,
these cellular patterns should possess an even lower
toroidal degree than more irregular flow-patterns.

The curvature of the static temperature profile has no
direct influence on the toroidal component of the flow
(and vice-versa), as is shown in appendix E. Therefore,
the toroidal component of the flow should not in-
fluence the planform selection process. This was veri-
fied by repeating runs 3 and 4 with Z, =0 for all y.
With this constraint, the model behaviour is nearly
identical.

A separate paper will be devoted to the dynamical
properties of (three-dimensional) poloidal flow.

11 Parameter Values and the Applicability of
the Model to the Atmosphere

The problem of the applicability of the model to the
atmosphere becomes clearly evident when one tries
to determine the values of the nondimensional para-
meters, Ra and Pr in the atmosphere. It appears that
this is especially the case with the Rayleigh number.
Actually one has to determine two Rayleigh numbers:
a moist Rayleigh number, Ra_ , where the atmosphere
is saturated with water-vapour, and a dry Rayleigh
number, Rag, where the atmosphere is not saturated.
Although everyone is aware of this problem, it is usual-
ly ignored. In many studies, where the effects of latent
heat release are otherwise neglected, one or a mean
value of the two Rayleigh numbers is taken when com-
paring the theory with reality. But even then there is
the problem of determining the top of the convective
layer. The upper boundary in the model is fixed,
whereas in the atmosphere it is free. The question is
whether the upper boundary coincides with the in-
version base or, possibly, with the point at which the
potential temperature is equal to the potential temper-
ature at the ground. In the latter case the temperature-
difference between the upper and the lower boundary,
AT, is equal to zero, and therefore Ra = 0, that is, con-
vection penetrates into the inversion until the layer is
neutrally stable. The problem is illustrated in Figure 14.
Walter (1980) and Weston (1980) use the inversion
base as the top of the layer, while Miura (1986) esti-
mates the cloud-top height from satellite and rawin-
sonde data, finding it to be greater than the inversion-
base height. Obviously, the mean potential temperature
lapse ratein the layer, I', is then significantly lower. In

his observational study of rolls and cells to the east of
the Asian continent, Miura (1986) finds that 4-10° <
Ra,, <2-10° and —4-10% > Ray >—2-10°, where
he assumes that »=100m?/s and k =25m?%/s (i.e.
Pr = 4). Therefore, the mean value of Rag and Ray,,
Ra, lies in the range 0 < Ra < 10°, If the three-dimen-
sional numerical computations are to be compared
with reality, it is best to take Ra as the relevant para-
meter. It is then seen that the numerical computations
have been performed at relatively low Rayleigh num-
bers (5-10%).

The problem of determining the value of Pr in the at-
mosphere has been discussed shortly in section 3. In
the literature on mesoscale cumulus convection there
is very little discussion on this problem, probably
because it is so elusive. More than with the problem
of determining the Rayleigh number, it lies on the
fundamental side of the model formulation. It is not
very clear what is actually modelled. It is assumed
that the eddies generated by mean wind shear near the
lower boundary act dissipatively on the resolved flow,
and that this goes analogous to a diffusion process of
momentum and heat. All this is based on not very
solid intuitive physical arguments. Even if this process
can be modelled by diffusion terms, there remain
many uncertainties about the diffusion coefficients
of heat and momentum, their dependence on space,
flow and direction and, finally, their ratio (i.e. Pr).
Since the question of the value of Pr comes after so
many other unanswered questions, everyone has
evaded the problem and cited previous authors when
fixing the Prandtl number in model calculations. Clear-
ly, an investigation is needed into the exact nature of
dissipation affecting convection currents in the at-
mosphere.

height (z)

potential
temperature

Figure 14 Two possible upper boundaries, z = h* and z = h*,
to convection in the atmosphere. The solid line is a represen-
tative potential temperature profile. When the top-boundary
is at z = h*, Ra = 0. When the top-boundary is at the inversion
base,z=h", Ra > 0.
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The exact value of ©g; (the curvature of the static
temperature profile) is, of course, impossible to de-
termine in the atmosphere. But this is actually not a
great problem, since it is only the sign of ©g, which
we need. In this context a note on the effect of large-
scale downward or upward motion on the static tem-
perature profile is in place. Subsidence, for example,
produces steady adiabatic warming if the stratification
is conditionally unstable, and steady adiabatic cooling
if the stratification is absolutely unstable. Since the
bulk of the atmosphere is usually conditionally un-
stable, subsidence usually makes the parameter ©go;
negative. Therefore closed cells should usually (in con-
ditionally unstable conditions) be preferred when there
is subsidence and not open cells, as Krishnamurti
(1975b) predicted. The reason for the discrepancy is
not that there is something wrong with Krishnamurti’s
(1975a) theory on the effect of large scale motion on
planform selection, but that she tested this theory
for an absolutely unstable atmosphere with two cases
in which the atmosphere was conditionally unstable.
Only to the extent that it influences the vertical
variation of the stratification, does mean vertical
motion determine whether open or closed cells occur.

Because the model is such a strong idealization of
atmospheric shallow convection, the present investiga-
tion should be viewed more as a search for mechanisms,
which can serve as an explanation of planform selec-
tion. This implies that, in relation to the atmosphere,
the results should be viewed more qualitatively than
quantitatively. The most important qualitative result is
that open cells occur when convection is driven mainly
from below, while closed cells occur when convection
is driven mainly from above. This agrees with the
climatology of Agee et al. (1973), in which open cells
are mainly found over relatively warm oceans, while
closed cells are found over oceans with a surface tem-
perature similar to that of the air directly above. In
the latter case the destabilizing effect of cloud-top
radiative cooling is presumably the dominant mechan-
ism driving the flow.
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Appendix A. The Nonlinear Interaction Terms
F,, F,, and Fy in eqs (5.4a, b, ¢) are defined as follows:
F, =1 (Lyga~ Lyap) iZpWa + MyapZa Zg~
= 1r2 nngWﬁWaWﬁ;
Fw = ﬂN7ag iW, Wﬁ + Ttlmg iZe, ZB + 72 I’r‘-‘tBZBWDl;
Fog =m L’Yuﬁ iW‘;Ga + Mya{izﬁ@a-

Here L,og. Myap, Jyap and Ly, are coupling coeffi-
cients defined as,

_ [ ng(lalgag + memgal) 5 _
= ng No [ Oy, a+83
dy ay
Myop = qlz3 (lamg—1gmg) 8,y o4p5
2

k3
Nyos =17 2.7 g £2n, (a3 1,15 + 2y mumg)® +
2

+(qfna —qi ng)(aylels+ a§' mg mg) ~
~Nyq5q5}yasp

—an
Jyap = 12 MyagMygas
v

1
lyag = E (q{?i + qi + n§, i nizi) Myop— 2 I;am

where
ayay
e =73 55 (at ng +ngng) {(3)2‘]/3 ¥

ky9aqz

—aym}) lymg — (2212 —afmd)1gmg} 8, o 1

Appendix B. Symmetry Conditions

To satisfy the boundary conditions (3.9) and (3.10)
the vertical velocity and temperature must have a
sine-dependence in the vertical direction while the
vertical vorticity must have a cosine-dependence in
the vertical. For the vertical velocity this would, for
example, imply that

wR _WR

L,m,-n "~ I,m,n?

Wl

ILm,n?

1 =
Wl.m; 1"
where the superscripts, I and R denote the imaginary
part and the real part of w, respectively. The fields
have to be real, of course, i.e.

W, =W,
or
Wi mn =

Lm,n

WR=WR

Lm,n

. —wl
L-m,~n? w—l,—m.—n’

and analogous relations for eR (-)1,, Zf,{ and Z!,

It can easily be deduced that these symmetry relations
imply that only the equations for the evolution of the
coefficients in two octants of the wave vector volume
have to be integrated. The following two octants have
been chosen:

1=0, n>0.

All coefficients ! and w with n =0 are zero. This fol-
lows from the symmetry relations above. As to the
coefficients of § with n =0, these may possibly be dif-
ferent from zero, implying that a vertical mean flow
can be generated. The possibility of this effect will,
however be ignored. Furthermore, the possibility of
horizontal mean flow generation, known to occur in
fluid layers subject to tilted rotation (Hathaway and
Sommerville, 1983), will also be ignored.

The equations are integrated in time using Young’s
(1968) method ‘A’ with a time step, At =0.0005.
On the CYBER-180-855 the program costs 5.8 to 6.1
seconds central processor unit time per timestep. This
is very expensive compared to when finite difference
methods are used (see e.g. Orszag, 1971). It is the price
that is paid for the high accuracy of this so-called
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“interaction coefficient spectral method”. The accura- dO,
¢y of the model of course depends on At. This has Tar
been tested by checking how well the total kinetic
energy is conserved by the advection terms. At At=
0.0005 the kinetic energy was reasonably well con-
served over one time unit, which is a relatively long

= l2'3‘ W11 Qg2 — %waozl O11z + 100y Wiy —

= 27@002 Win1 = 3mB003Wi12 + RaWyyy —
"T{2 (482 + |)@1“;

time period in the atmospheric context (see section 8) 9O = 21er, O +§ TWi11 Q021 +7Oo0; Wipy —
(van Delden, 1987). a2 2
= 310003 W11 —4mOppa Wiz + RaW,yp —
= 772 (432 + 4) (‘_')“z 5
Appendix C. The Low-Order Model of Poloidal 40
C()nvection dotZl S 31TW"| (;)“2 + TI'(")ml w°22 —21!(:'-)me1—
In the low-order model of poloidal convection the — 37003 Woz2 + RaWepy — 7% (42% + 1) Ogyy 5
horizontal dependence of both # and w is represented [ (O79%
by cosine series. For the vertical velocity this implies 4= 37W111 O3y + 10001 Wozs — 37003 Wory —
that ~ 47000 Wonz + RaWopo —7° (42° +4) Opna ;
R _—wR — wR
Wimn = Wimn = Woim o €y d?;:m ==47W; 110412 = 47W112 011y — 27 Wo21 Opza —
Together with the symmetry relations described in ap- — 27 Wo22 @21 — 72 (Og01 — Oo1 );
pendix B, this in turn implies that W,'fm‘,,=0. The 40
same reasoning applies to the temperature. Due to 2% 8TW 111011, +47Wo2; Op2y
these extra symmetry relations only equations for the dt — 472 Oz — Bom );
imaginary parts of the coefficients corresponding to 46, ' ’
003

one octant of wave-vector space are needed. The octant
1>0,m=>0and n >0 is chosen. dt
All possible low-order model interactions are listed in

Table 4. It is then straightforward to derive the model

equations using the definition of the coupling coeffi- dOgo4

c?ents given in appendix A. If it is assumed that a2 = SV 167W112O112 + 87Woz2 Oo22 —
3 a,z, = 3a?, these equations become ~ 167" (©0a — Oona);

= lz"w“]@ng + l21rW“2®m +
+6T[W02|®m2 + 67TWO22 902| ==
= 97* (Go03 — Oo03 );

Table 4 Non-zero interactions taken inside the truncation in the low-order model. The interaction of the wave-vectors & and g,
contributes to the wave-vector, 7. The interactions are subdivided into classes which are defined in appendix E.

Class 1 interactions Class 2 interactions Class 3 interactions
Y a B 24 o 8 Y a 8

0,0, 1) (1,1,-1) (=1,-1,2) (1;1;1) (1,1,2) 0,0,-1) 0,2, 1) (1,1,-1) 11,2
0,0, 1) -1,-1,-1 (1,1,2) (1,1,1) a1,1,-1) (0,0,2) 0,2, 1) -1,1,-1) 1,1,2)
0,0,1) =1,1,-1) 1,-1,2) 1, 1;1) (1,1,-2) (0,0,3) (1,1, 1) a1,~1,-1) 0,2,2)
©,0,1) (1,=—1,=1) -1,1,2) 0,2,1) 0,2,2) 0,0,-1) (15:1:2) (1,-1,1) 0,2,1)
0,0,2) (1, 1,1) -1,-1,1) 0,2, 1) ©0,2,-1) 0,0,2) 0,2,2) - 1,110 a,1nLn
(0,0,2) G15:151) (I,-1,1) 0,2,1) 0,2,-2) 0,0,3) (1,1, 1) (1,-1,2) 0,2,~-1)
0,0,3) (1, 1,1 -1,-1,2) 1,1;2) (1,1,1) (0,0,1)

0,0,3) ~1,-1,1) (1,1,2) 1,1,2) 1,1,-1) (0,0,3)

0,0,3) -1,1,1) 1,-1,2) (1,1,2) a,1,-2) (0,0.4)

(0,0,3) (1,-1,1) 112 ©0,2,2) 0,2,1) (0,0,1)

0,0,4) a,1,2) =1,-1,2) 0,2,2) 0,2,-1) 0,0,3)

0,0,4) -1,1,2) (1,-1,2) 0,2,2) 0,2,-2) (0,0,4)

0,0,1) 0,2,-1) 0,-2,2)

0,0,1) 0,-2,-1) 0,2,2)

0,0,2) 0,2, 1) 0,-2,1)

0,0,3) 0,2,1) 0,-2,2)

0,0,3) 0,-2,1) 0,2,2)

0,0,4) (0,2,2) 0,-2,2)




Vol. 61, 1988

185

AWy, -3 3
T—Tﬂwcmwm 27Tw0rzlwm i
4a frlem 7 Pr(4a’+ 1)Wyy;
dw”2 432 +1 azpl'
& gt g Vet a i S
_Trzpl'(432 +4)W“2;
dWcm ZPI'
ST =37W12 Wiy +4 + IOtm i
ry 7!2])[(432 i I)WM] s
dW(m= 4a% +1 42 Pr O —
dt T4a? +4 i 422 +4 2

- 7°Pr(4a® +4) Woas

where the commas in the subscripts and the super-
scripts have been omitted to save space. It can be
verified (van Delden, 1987) that potential energy
and kinetic energy are conserved by the nonlinear
terms. The hexagonal solution of Christopherson
(1940) (4.1) is equivalent to having,

O111 = Opa1
Wit = Woars

O112 = Opa;

(€2)
Wiz = Woaa .

When substituting these equations into the low-order
model equations above, it is found that,

0, " Aoy . dO,, i dOg2s 3
dt ~ dt °  dt  dt °

AWy dWop, ) AWy dWeos
dt a > dt  dt

which implies that (C2) is a solution of the model.
Unfortunately, it is impossible to obtain an analytical
expression for the coefficients as a function of the
parameters, a, Ra and Pr, corresponding to the hexa-
gonal solution.

In this model the flow has the freedom to choose be-
tween a hexagon with upward flow (a “up-hexagon™)
or downward flow (a “down-hexagon™) in the centre,
or a roll, both with a nondimensional wavelength
(aspect ratio) equal to a '. Other less well defined
solutions are also possible.

The solution of the low-order model is used as initial
condition for the higher order model in which the
constraint (C1) is dropped and the flow is allowed to
become toroidal. The higher-order model consists of
1096 coupled nonlinear differential equations.

Appendix D. Definition of Kinetic Energy

The total kinetic energy, K, is defined as,
=1iv.3d0
3 5

Transforming this equation is a matter of substituting
the expansion (4.2) and using (5.1), (5.2a,b) and the
symmetry relations defined in appendix B to obtain,

K=KT+KP.

where Ky and Kp are, respectively, the toroidal and
poloidal parts of the kinetic energy, defined as,

l l
Ky =5

2 Q‘y

1 kzr *
Kp=-2 W, W,.
P 27"2(]: S Rk ¢

Appendix E. Some Properties of Nonlinear
Interactions

The wave vectors a and 8 interact to contribute to
wave vector ¥ only if the selection rule,

la+lg=1ly; mg+mg=m,y; ng+ng=n,,

is satisfied. The interaction may be divided into three
classes:

class 1: wave-wave interactions contributing to the
mean state;

class 2: wave-mean interactions contributing to the
waves:

class 3: wave-wave interactions contributing to the
waves.

The mean state is given by all modes with L, =m, =0
(i.e. the horizontal mean). For the waves we have
l,#0 and/or my # 0. Class 1 and 2 interactions are
usually called the “mean ficld interactions”.

For class 1 interactions one has 1, = —1z and mg =—mg.
This has some simplifying consequences for the coupling
coefficients defined in appendix A, i.e.:

Lyap =
Myos =0,

Ny 8y aips

Naag = Jyap = Lyap = Lag = 0.

The second relation implies that the toroidal part of
the motion field has no influence on the horizontal
mean stratification.

For class two interactions (the “feedback™ of class 1),
one of the interacting wave vectors is the mean state.
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Therefore, either 1,=m,=0 or lg=mg=0. This
implies that,

Lyog = Mg by a4p,
Myas =0,
i, - =7 =

Nyag = Jyap = Iyag = Iyop = 0
for class 2 interactions.
For class 3 interactions less sweeping general state-
ment can be made. Nevertheless, closer examination
of the interaction coefficients reveals that for inter-
acting wave vectors, o and f, with g, = qg and nq = ng,

all class 3 interactions in the vorticity (Z) equation
vanish because

Myog =~ Myge  and  Lygp = Lyga.

This result (derived in a different way) can also be
found in the analysis of Schliiter et al. (1965). In other
words, if the flow pattern consists of Fourier modes
of equal total horizontal and vertical wave numbers,
such as a hexagon or square, no kinetic energy will
flow to the toroidal part of the flow field. However,
the nonlinear terms in the equation for W, (5.4b)
do not vanish in this case. Higher harmonics, which
do not satisfy the above equalities, may be excited.
Nevertheless, since these higher harmonics will have
much smaller amplitudes, especially those with n> 1,
which at Ra < 10% are all damped, the toroidal modes
will necessarily also have small amplitudes. These state-
ments suggest that, if convection is dominated by
modes with equal total horizontal wave numbers (q)
and equal vertical wave numbers (n), and if there is
no rotation, little energy will flow to the toroidal
part of the flow-field through nonlinear interactions.



