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ABSTRACT

Principal component analysis (PCA) was applied to 182 half-hour runs containing time series of turbulent
wind velocity and temperature measured in the convective atmospheric surface layer. A field experiment with
four sonic anemometers on the vertices and one in the centroid of a square ( with sides of 80 m) was performed
to obtain the necessary dataset. Physical explanations of the most important eigenvectors are presented. Two
of the major principal components (PCs) identify the variance in wind speed along and across the background
wind direction. Always, one major PC accounts for the presence of large-scale thermal activity: periods with
higher (lower) temperatures coincide with lower (higher) wind speeds, convergence (divergence) in the wind
fields, and upward (downward) movements. As an application, variance in the velocity fields was expressed in
termus of horizontal divergence and vertical vorticity. These can be derived directly from the eigenvectors when
PCA is combined with a planimetric method. Using the PC that identifies thermal activity, it is found that the
magnitude of divergence increases and the magnitude of vorticity decreases when atmospheric conditions become
more unstable. It is found that the (absolute) ratio between vorticity and divergence scales with a function of
the friction velocity divided by the convective vertical scaling velocity. Both kinematic parameters are larger
for updrafts than for downdrafts. It is concluded that PCA can be a useful tool to distinguish variance of thermal
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and nonthermal origin and in the estimation of the kinematics of dominant flow fields.

1. Introduction

In the convective atmospheric boundary layer, tur-
bulence is dominated by discrete thermally driven up-
drafts and downdrafts (Young 1988). The updrafts
transport relatively warm air and originate in the sur-
face layer (SL), while the downdrafts contain cooler
air from above the mixed layer. The “footprints” of
these thermal structures, usually called “plumes,” have
diameters and depths on the order of the depth of the
SL (~100 m). When probing the SL, they can be rec-
ognized as recurring ramplike signals in the tempera-
ture time series. Figure 1 displays such a temperature
ramp, which was observed at a height of 31 m, with a
mean background wind speed of 4.5 m s~!. Charac-
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teristic is the gradual increase in temperature with time
followed by a sharp drop at the upwind edge (“micro-
front”). The plumes are surrounded by periods with
relatively quiescent cooler air. Many studies have been
made on several of their properties (e.g., Kaimal and
Businger 1970; Antonia et al. 1982; Schols et al. 1985).
Here we will focus on the horizontal circulation fields
induced by these thermal events. Little is known re-
garding these flow fields. Due 10 continuity, one expects
the upward movements to be accompanied by a hor-
izontally convergent airflow, while the downward
movements will cause the underlying wind field to be
divergent. Although it is possible to derive such infor-
mation from measurements made at several points
along one mast (Wilczak 1984) or with aircraft (Wil-
liams and Hacker 1992), this is not an easy task.

In the study of convective boundary layer features,
conditional sampling is a popular approach (e.g.,
Khalsa 1980; Sikora and Young 1993). With this tech-
nique, data are sorted into thermal and nonthermal
categories according to some chosen indicator function,
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FiG. 1. Time series of temperature indicating the passage
of a thermal structure in the SL.

Indicators of thermal events can be temperature, ver-
tical velocity, or turbulence, sometimes combined with
a requirement that the indicator variable maintain a
certain value over a specified time duration (e.g., Wei-
jersetal. 1994). Once the criteria have been established,
conditional averages can be calculated for any set of
variables. However, the weakness of this method is that
different criteria may lead to different results (e.g., Go-
dowitch 1986).

The incentive for this study was then twofold: 1) to
estimate the kinematic properties of the horizontal
wind fields that are related to thermal activity in the
SL and 2) to find out whether the objective technique
of principal component analysis (PCA) can be used in
studies of atmospheric turbulence. Meteorologists often
use PCA as a tool to investigate patterns of velocity,
pressure, temperature, or precipitation over a large
spatial area (e.g., Green et al. 1993). Here, we discuss
how the method performs on a “micrometeorological
scale” with typical time and space lengths of 1 min
and 100 m, respectively. As far as we know, such an
application has not been described in literature before.

The central idea of PCA is to reduce the dimen-
sionality of the dataset in which there are interrelated
variables while retaining as much as possible of the
variation present in the dataset. This is achieved by
transforming to a new set of variables, the “principal
components” (PCs), that are uncorrelated and ordered
so that the first few retain most of the variation. The
PCs are defined by the eigenvectors of the correlation
(or variance-covariance ) matrix formed from the en-
semble of meteorological observations. The eigenvalues
give the variances of the PCs and are therefore a mea-
sure of their importance in explaining variation. Im-
portant properties of the technique are 1) the eigen-
vectors and corresponding PCs are derived by an ob-
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jective mathematical procedure; 2) some of the
eigenvectors can be identified with physically important
patterns in the original data; and 3) the eigenvectors
provide an orthonormal set of basis vectors in terms
of which the original observations can be represented,
or, by selection of some of the eigenvectors, approxi-
mated. Here, the use of PCA is motivated by the con-
cept that the flow field can be regarded as a superpo-
sition of different flow patterns. After the application
of PCA, the resulting eigenvectors are expected to reveal
the dominant patterns, and the corresponding eigen-
values give their importance.

In this paper, results of a PCA on a dataset containing
the turbulent perturbations of wind velocity and tem-
perature are discussed. To obtain the data, a field ex-
periment was carried out using an array of five sensors,
spanning an 80 m X 80 m area in the SL. The required
mathematical procedures are given. The major eigen-
vectors are interpreted. It is derived how the charac-
teristics of a flow field can be expressed in terms of
horizontal divergence and vertical vorticity by use of
PCs. The dependence of these kinematic parameters
on atmospheric stability is discussed.

2. Methods of analysis

We start with the description of principal component
analysis. This is followed by an explanation of the
mathematical procedure of estimating horizontal di-
vergence and vertical vorticity of vector fields and how
these kinematic variables can be derived directly from
the PCs. Finally, the criteria used to select the PCs
relevant for this study are formulated.

a. Principal component analysis

The variant of PCA employed here tends to isolate
groups of observations with recurring similar spatial
velocity patterns. The method itself is described exten-
sively by Jolliffe (1986) and Preisendorfer (1988).

Consider the dataset as an ensembile of a large num-
ber of realizations of the stochastic vector F = (f], « « -,
f2). In this study, the components of F represent the
turbulent parts of g meteorological variables at some
time. In our PCA computations we use standardized
variables. These are defined as the components of a
new stochastic vector U: U; = fi/o;,i=1, - -+, q,
with o, the standard deviation of the ith variable. The
elements of the correlation matrix S are then given by
Sy ={(UU;»,i,j=1, - - -, q. The brackets stand for
ensemble (or time) averaging and it is supposed that
the mean of any variable is zero (which is, by definition,
the case for turbulent components).

In some applications 8 is a covariance-variance
matrix. The reason that a matrix of correlation coef-
ficients is preferred here is that, in case of large differ-
ences between the variances of the elements of F, the
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variables whose variances are largest will tend to dom-
inate the first few PCs. Especially when the variables
measured have different units, the relative sizes of the
variances and covariances depend on the units used.
Standardization overcomes this arbitrariness, giving
every variable equal weight.

The next step is to find the eigenvalues and eigen-
vectors of S. The scalar A\, and vector o are the ei-
genvalue and the corresponding eigenvector of S if they
satisfy the equation

Sa® = Aka(k), k=1,---,q. 2.1)

Solving this equation for A; reduces to finding the g
roots of a polynomial equation. If all of the roots are
distinct, which is usually the case in practical problems,
g different, orthogonal (since $ is symmetric) eigen-
vectors exist, corresponding to the g eigenvalues. To
uniquely define the eigenvectors (apart from their
sign ), the orthonormality condition

(k)

a .a(m)zakm, k,m=1: trd (2'2)

is the most convenient, with &, the Kronecker delta
function.

The full set of eigenvectors a ¥ constitutes a com-
plete orthonormal basis. As such, they can be used to
expand the original data (at some time):

q
U= za®,
k=1

(2.3)

This leads to the definition of the principal components
2y, as the projection of U on the kth eigenvector:

Zze=U-a®, (2.4)

Hence, z; is a linear function of the original variables
U,i=1, ---,q. Inevery PC, there is a coefficient
for each variable, namely aEk) , the ith element of the
corresponding eigenvector. To avoid confusion,
“loadings” or “weights” is the terminology used for
aﬁ- ) in this paper. The acronym PC does not apply to
a'® but to z. It should be noted that the sign of any
PC is completely arbitrary. If every loading in z; has
its sign reversed, the variance A of z; is unchanged,
and so is the orthonormality of a ‘© with all other ei-
genvectors.

The variances and covariances of the PCs are given
by

<zkzm> = <[U~a(k)][U-a("')]> =8a®.qim

= Ma O a ™ = Nbiom, (2.5)

where the orthonormality condition (2.2) has been
used. It follows that z, is uncorrelated with z,, (for k
# m), and that the magnitude of the variance ac-
counted for by z; is Ax. Also, the af»k)’s have been cho-
sen in such a way that the variance of z, is maximized.
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In the following, we will always assume that the ei-
genvalues have been ordered according to A, > A,
> + <+ > A,. For the total variance in the dataset we
can write

(U= 2 Lzazmyla® at™] = Eq:)\k- (2.6)
k=1

km=1

Thus, when choosing p < ¢ principal components, we
have 2%_, A\ of the total variance “explained.”

With a selection of PCs we may approximate the
time series of f; , one of the original variables, by [using
Eq. (2.3)]

D
)=l =0 T a®e®, i=1,-.-q.
k=1

(2.7)
An attractive property is that A/2a'®’ gives the cor-

relation coefficient p(,-k) between thekith variable and
the kth PC. To see this, note that pf~ Vs equal to

o = (zUi)

P =0 (2.8)

where we have used the fact that the variance of Zi 18
A« and the variance of the (standardized) U; is one.
Substitution of Eq. (2.4) yields
* _ ﬁ[U'a(k)]UO _ [Sa™],
Pi - )\ }( /2 - )\ ]1( /2

_ )\kai _ )\L/za(k)
i .

(2.9)

This property will be useful in the selection of PCs
describing (parts of) the variance introduced by ther-
mal activity. Note that Mfa'* 12 is the fraction of the
variance of U; that is explained by z.

b. Estimations of divergence and vorticity

The definitions of (horizontal) divergence D and
(vertical ) vorticity { are

pd,

dx dy

v Jdu
=——— 2.10
o oy (2.10)

with u, v the horizontal wind speed components. A
simple method for estimating the local first-order de-
rivatives from wind speed observations is to fit a “plane
surface” to the data in u, x, y and in v, x, y space,
respectively—the so-called planimetric method (Ped-
der 1981). Mathematically, these planes are repre-
sented by
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u(x,y)=ay+ ax+ ayy

U(x, y)=b0+b,x+b2y (2.11)

where ag, a,, a; and by, b,, b, are constants to be es-
timated from the data, giving us the derivative quan-
tities as required. To solve for the constants we need
at least three observations from three different points.
The solution of interest is that which minimizes the
sum of the squared differences between the observa-
tions u (or v) and the values given by the equation.
Using x and y values relative to the geometric center
of the set of stations, the estimated coefficients of the
least-squares plane may be obtained by evaluating the
following expressions (# is the number of stations):

m 1 m m
ay= 2 — U, a1 = 2 Bukli, @2 = 2, Baitt, (2.12)
=1 M i=1 i=1
and

moq
bo=2;v.», by

i=1

m m
= 20 Buvi, by = 2 Bav;. (2.13)

i=1 i=1
Here, the weights 3,;, 8,; depend only on position of
the sensors: By = X,/ Z; X}, Bu = yi/ Z; yi (Zi iy
= () with the geometry of Fig. 2). The suffixes / and j
identify a station.

For the horizontal divergence and vertical vorticity,
We can now write

(2.14)

or
D =g®.F
{=B8®-F (2.15)

The components of the vectors 8P, 89 are readily
constructed from 8y;, B2 (i =1, + - - , m). The term
F is the stochastic vector introduced in the preceding
subsection. In the case that F contains parameters dif-
ferent from wind speed, the corresponding components
in 8P and 89 are zero. The inner products of Egs.
(2.15) are “linear functionals” of F.

¢. Estimating kinematic variables from principal
components

Equations (2.15) show that divergence and vorticity
can be expressed as linear functionals of F. To align
with the formalism of principal components, we write
these variables as functionals of U. To this purpose,
we define a vector B with elements B, = Bi0x, k= 1,
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+ + +, g, such that Egs. (2.15) become (using Uy = fi/
o)

BPU, =B®.U
1

D:

T e

q
¢=32 BOU=BY.U (2.16)
k=1

After performing PCA on 8, we can proceed by ap-
proximating U using a selection of p( <gq) PCs, followed
by the evaluation of Egs. (2.16). However, it is easier
and more straightforward to calculate D and { directly
from the PCs, as we will show next.

We start by formulating the divergence of the eigen-

vectors a‘®):

q
DW= > BP o,

i=1

(2.17)

Combining Egs. (2.3) and (2.16) and using the linearity
of functionals yields

(D) - (k)
D=2 B2 za; ']

i=1 k=1

q
z ZkD(k).
k=1

q
D k
- 3 BPalz -
Lk=1

(2.18)

With Eq. (2.17), the variance of the divergence is then
given by

(D*) = % (zizjyD" DV = é NIDPPE (2.19)
i=1

Lj=1

In the same manner the corresponding expression for
the vorticity can be derived.

The idea of using PCs in this manner is not only
attractive for being computationally faster. The esti-
mations of horizontal divergence and vertical vorticity
as deduced from an eigenvector will be characteristic
for the process in the turbulent flow that is identified
by the eigenvectors.

d. Selection of principal components

The question still to be answered is which PCs are
to be retained in the study. We want to distinguish
signal (the important PCs) from noise (the unimpor-
tant PCs). The criterion used here, in its simplest form,
is called Kaiser’s rule (Kaiser 1960). It is constructed
specially for use with correlation matrices and retains
only those PCs whose variances are larger than one.
The idea behind the rule is that if all elements of F are
independent, then the PCs are the same as the original
variables and all have unit variance in the case of a
correlation matrix. Thus, any PC with variance less
than one contains less information than one of the
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original variables and so is not worth retaining (note
thatg™' 2L, N = 1).

Second, being interested in thermal activity we need
to find the PC that identifies a significant part of the
variance in the temperature signal. Therefore, the cor-
relation coeflicient with temperature was calculated by
use of Eq. (2.8). This was done for every PC selected
by Kaiser’s rule. In the following, the PC having the
highest correlation with the temperature signal has been
denoted with PCr. Note that if every one of the g PCs
explains an equal part of the temperature variation,
then the correlation coefficient is ¢ ~'/2.

3. Experimental conditions and parameters
a. Site and instrumentation

The data used in this analysis were collected during
the summer of 1992 at Cabauw (51°58'N,4°55’E) in
the Netherlands. The experimental site was near the
213-m meteorological tower operated .by the Royal
Netherlands Meteorological Institute and has been de-
scribed by Monna and van der Vliet (1987). The tower
facilitates continuous measurements resulting in data
files that contain half-hour averages of several param-
eters, including surface temperature and wind velocity
and temperature at several heights.

Our measurements took place on a flat piece of
grassland with the center about 225 m north of the
Cabauw tower. Wind velocity measurements were
made with four 3-component ultrasonic anemometers.
These were mounted on top of 13-m masts positioned
on the vertices of a square area with sides 80 m long
(ABDE in Fig. 2). Another ultrasonic anemometer-
thermometer was mounted on top of a 31-m mast po-
sitioned at the center C. The different measuring height
may introduce changes in variances of the velocity
variable. However, using standardized variables in the
PCA computations is believed to compensate for this
effect. The role of the center anemometer will be dis-
cussed further in the forthcoming section.

The accuracy of the wind speed measurements is
between 0.01 and 0.1 m s™', depending on the full-
scale width of the measuring range. For wind direction,
an accuracy of +4° is assumed, while for temperature
it is less than or equal to 0.1 K (according to the
technical specifications ). Half-hour estimations (up to
inversion height) of horizontal and vertical wind speed
as well as temperature were made by means of a sodar
and a radar.

b. Data collection and corrections

Anemometer outputs were sampled at 20 Hz. For
this study we use a set of 182 half-hour runs. Mea-
surements were performed during convective condi-
tions. Each run was synchronized with the measure-
ments of the Cabauw tower. Results were block aver-
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FIG. 2. Diagram of the square experimental site
near the Cabauw tower.

aged over 1 s. The mean value and linear trends were
removed to obtain the turbulent part of each signal.

Evaluation of divergence and vorticity obviously
puts high demands on precision and accuracy with
which wind velocity is measured. Therefore, several
possible sources of measurement error were investi-
gated. A possible imperfect leveling of the sonic ane-
mometer was estimated following the method described
by King and Anderson (1988). The modification of
the flow by the sonic anemometer and the presence of
misalignment errors were investigated according to
procedures described by Wyngaard and Zhang (1985)
and Weijers et al. (1994). If necessary, (small) correc-
tions were performed on the instantaneous measure-
ments.

¢. Stability and scaling parameters

To determine the atmospheric_stability, the bulk
Richardson number R, = g(8, — 8,)z/68 U2 has been
calculated from the Cabauw tower data. Here, g is the
gravitational acceleration, U, and 4, are the half-hour
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averages of wind speed and potential temperature at
height z, and 6, the half-hour-averaged surface tem-
perature. The term 8 is the average of 6, and 6, while
for z we chose 20 m.

The ratio of two velocity-scaling parameters will be
used in this study: the friction velocity u, = [(uw)?
+ (ow)?]"* deduced from the Cabauw tower
data, and the convection scaling velocity w,
= (g~ 'Hoh)'/?. Since we only discuss the turbulent
parts of variables, the prime symbol (') is generally
omitted. The term Hj is the kinematic sensible heat
flux and /4 is the height of the first inversion. To de-
termine £, the Cabauw tower data have been used (po-
tential temperature profiles up to 200 m), as well as
data gathered by thermal probing using sodar (up to
500 m) and radar (up to 1000 m). The behavior of u,/
w, as function of —Rj! is shown in Fig. 3. Note that
Uy /Wy = (—kL/h)'73 (see, e.g. Stull 1988) with L the
Monin-Obukhov length and k the von Kirman con-
stant (=0.4). The scatter in this ratio has mainly been
caused by differences in the upwind surface-layer
roughness lengths (van Ulden et al. 1976). In this ex-
periment, the higher ratios are due to larger u#, values
for wind directions between 60° and 180° (zg ~ 30
cm, labeled with crosses). The lower ratios prevail when
wind directions were within the (south-) western sector
(zo ~ 7 cm, circles).

4. Results and discussion
a. Case study

We start with an illustrative example: a PCA applied
to the data of a typical half-hour run. The variables
involved are turbulent horizontal wind speed u and v
{measured at masts A, B, C, D, and E) and temperature
T (measured at location C, see Fig. 2). The positive
u axis 1s in the direction (116°) of the half-hour-av-
eraged wind speed (4.0 m s™!). The use of the corre-
lation matrix [S in Eq. (2.1)] compensates for the dif-
ferent variances of horizontal wind speed and temper-
ature and for a change in variances due to the different
height of measurement at location C. Each of the 11
eigenvectors has been normalized according to Eq.
(2.2). To interpret the results (i.e., which flow patterns
are dominant), it appears to be helpful to display the
eigenvectors graphically. This has been achieved by
drawing the vectorial sum of the PC weights for the
horizontal wind speed components at the appropriate
locations on a map. In Fig. 4 the 11 pictures can be
seen. Also, eigenvalue (expressed as a percentage ) and
correlation with T¢ [Eq. (2.9)] are given for each ei-
genvector as well as magnitudes of horizontal diver-
gence and vertical vorticity [in 10 s™!, estimated us-
ing Eq. (2.17)].

From Fig. 4 we deduce that the loadings for the u
variables in the dominant principal component PCl
are negative at every location. Those associated with
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FIG. 3. Dependence of ug/w, on —Rj'. The crosses denote half-
hour-averaged wind directions between 60° and 180°. The lower
ratios prevail when directions are within the (south-) western sector.

the v variables are near zero at the masts positioned
alongwind (4, C, and D in Fig. 2), and are of opposite
sign at the crosswind stations (B and E). The loading
belonging to T is positive. It is concluded that the
dominant source of variation in this half-hour time
series is between, on the one hand, periods with lower
wind speeds, convergent flow fields, and higher tem-
peratures, and, on the other hand, periods with higher
wind speeds, divergent flow fields, and lower temper-
atures. On the whole, the variation identified is in the
alongwind direction. In view of the properties of ther-
mally generated turbulence in the SL discussed in the
introduction, these periods can be associated with the
passage of thermal structures. The picture reveals con-
sistent behavior at all masts, so the events detected
have scales of at least the order of the experimental
square.

The next major source of variation (denoted by
PC2) originates from changes in wind speed that are
roughly perpendicular to the direction of the aver-
aged background wind. In fact, its picture is largely
equal to that of the first eigenvector rotated 90°
clockwise, nicely demonstrating the orthogonality of
eigenvectors [Eq. (2.2)]. There is considerable vor-
ticity that will be discussed later in this section. The
weight for T is small.

In the case of PC1 (=PCy), PC35, PC7, and PC11,
the correlation with T is larger than 0.30 (g~'/2, with
g = 11). The spatial representations of the loadings of
the low-variance PC5 and PC7 are, to some extent,
comparable. The increased correlation with T suggests
that the identified variance is due to thermal activity
on a smaller scale or covering parts of the square area.
The weights of PC11, the principal component with
the lowest eigenvalue, are (very) small except those
related to the wind speed and temperature measured
at mast C, It is concluded that this PC accounts for the
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Fi1G. 4. Graphical representation of the 11 eigenvectors. The PC loadings belonging to the u
and v components are represented by their vectorial sum drawn at the corresponding location of
the five measuring stations. North is upward. The half-hour-averaged wind direction is 116°.
Below each picture, variance explained by the PC and the correlation with T are given. At the
right of each picture, estimations (10~* s™!) of horizontal divergence (above) and vertical vorticity

are given.

variance introduced by small-scale thermal activity
occurring at the center of the square. PCs with very
small, but nonzero, variances will define near-con-
stant relationships between a subset of variables. If
one of the variables involved in such a relationship
is deleted, little information is lost since its value can
be determined, to some degree, from the values of
the other variables. Indeed, after excluding the ve-

locity time series registered by the anemometer at
mast C and repeating PCA, the dominant flow pat-
terns hardly change. It is concluded that in the eval-
uation of wind fields that are of the order of the ex-
perimental square, the wind velocity at the center
can be discarded. It is further noted that the different
height of measurement at location C does not affect
the PCA results noticeably.
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The remaining PCs possess low correlations with T¢.
Apparently, these identify variance in the dataset that
is of nonthermal origin, that is, variance induced by
mechanical turbulence.

Additional information has been obtained by doing
a PCA on a dataset extended with the five time series
of turbulent vertical velocity. The appearance of the
two major eigenvectors remains the same. In the case
of PC1, the loading for the vertical velocity at mast C
has the same (positive) sign as the one for T¢. The
loadings associated with vertical velocities measured
at the alongwind locations are positive and large (0.32,
0.54, 0.30) compared to the coeflicients at the cross-
wind stations (0.01, 0.07). It is concluded that the
streamwise extent of the updrafts and downdrafts is
much larger than their lateral extent. Indeed, Phong-
Anant et al. (1981) found that the longitudinal extent
of thermal structures is approximately 17 times the
lateral extent. In the case of PC2, it appears that the
arrows point to the crosswind station (E) for which a
positive loading (0.26 ) has been calculated. The loading
found at the oppositely located crosswind station is
negative (—0.40). The three alongwind loadings show
intermediate values (—0.19, —0.22, —0.13). It is con-
cluded that the turbulent wind flow during these pe-
riods is always directed to the area where positive fluc-
tuations of the vertical velocity are measured. This
suggests the presence of thermal events passing nearby
and explains the low correlation with 7. Also, the
positive (negative ) vorticity measured when structures
pass the square at the left (right) side (looking in the
direction of propagation) is in agreement with earlier
experimental findings (Wilczak 1984; Weijers et al.
1994).

Also informative is the reconstruction of original
time series by substituting a selection of PCs in Eq.
(2.7). In Fig. 5, T is approximated by choosing PCl1,
PC5, and PC7. The time trace derived from PCl re-
sembles the originally measured temperature behavior
most (explained variance is more than 50% ). Thermal
structures clearly appear, but the characteristic micro-
fronts are largely absent. Such features become appar-
ent when PCS and PC7 are included. This effect sup-
ports the suggestion that these PCs identify the smaller-
scale thermal events. For comparison, we also give the
result when only the remaining PCs are used (labeled
by “environment” in Fig. 5; PC11 is not included).
Each of these identify less than 4% of the variance in
Tc. Therefore, in the approximation of T they only
contribute “environmental noise.”

b. General characteristics

Before presenting PCA results for the entire dataset
(182 half-hour runs), we have to consider 1) the effects
of a varying background wind direction on the ap-
pearance of eigenvectors, and 2) which of the PCs are
retained.
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FIG. 5. Time series of temperature (K): (a) measured; (b) approx-
imated using PCl; (c) approximated using PCl, PC5, and PC7;
(d) approximated using the remaining PCs (environment). Period is
1800 s.

1) In practice, the direction of the half-hour-aver-
aged background wind differs from one run to another.
Measuring with a fixed reference system, these changes
in direction affect the magnitude of the PC loadings
[a,k ] belonging to the u, v variables. To show this,
the axes of the horizontal wind speed components have
been rotated over 360° with steps of 10°, using the
data of the previous subsection. A PCA has been done
after each step. The behavior of six PC1 loadings is
shown in Fig. 6. Here, a,, denotes the weight belonging
to the u variable measured at mast A. Originally, +u
pointed northward. After rotating counterclockwise
over about 70°, all five wind speed loadings are rela-
tively large (the minus sign is unimportant). At this
angle, the u axis is practically parallel to the background
wind direction (116°). Naturally, weights associated
with v behave identical at angles that are 90° larger.
Also note that the crosswind loadings «,,, and Oty attain
their extremes earlier and later, respectively, in agree-
ment with Fig. 4. Due to the rotation, the total variance
accounted for becomes split up differently across the
major PCs. However, the change in variance identified
by the first PC is 4% at most, while summated for the
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FiG. 6. The behavior of five loadings of PC1 when the reference system rotates counterclockwise
with steps of 10°. The term ¢, is the loading belonging to the u variable measured at mast A. At
zero rotation angle, the +u axis points north. When the rotation angle is 70°, the +u axis points
in the direction of the half-hour-averaged background wind.

three dominant PCs it is less than 1%. Concluding, in
order to compare PCA findings for the various half-
hour runs properly, coordinate transformations have
been performed on the (perturbation) wind compo-
nents yielding one component in the direction of the
mean wind and another aligned with positive values
to the left of the mean wind.

A second effect of the different run-averaged wind
directions is that they change the orientation of the
experimental square relative to the wind field. This can
be understood as follows: when the wind direction is
along diagonal ACD (see Fig. 2), stations B and E are
positioned crosswind; when directions are 90° larger
or smaller, B and E lie alongwind. Definitely, a different
position in the wind field will affect the magnitudes of
the PC weights. To avoid such experimental noise, runs
can be selected for which, to a certain extent, the ori-
entation of the experimental square with respect to the
prevailing wind field is the same.

2) For more than 98% of the runs involved, only
the eigenvalues of the first three eigenvectors are larger
than one; the total variance accounted for is between
51% and 82%. (An eigenvalue of one means that
roughly 10% of the variance in the dataset is explained.)
Hence, we limit the discussion to the three major PCs
in accordance with Kaiser’s rule.

Discussing the PCA results for all the runs, we start
with the variances identified by the three major PCs.
These (expressed in % ) are given in Fig. 7 as a function
of —Rj}!. Always, PC; is one of the three major prin-
cipal components. To discern, it has been numbered
(n) according to the ordering of eigenvalues: when PCr
identifies the major source of variation, it is labeled n
= 1 (Fig. 7a); n = 2 (Fig. 7b) or n = 3 (Fig. 7c) indicates
that PCy is the second or third dominant principal
component. The crosses in Fig. 7 denote the sum of
eigenvalues of the remaining two PCs. Regression lines
give the linear behavior. On average, 29% of the total
variance is explained by PCywhen #n = 1, and 11% in
case of n = 3. Simultaneously, an increase in the sum
of variances identified by the two remaining PCs is
measured: from 30% (n = 1) t0 57% (n = 3).

Interpreting Fig. 7 in more physical terms, one ob-
serves that n = 3 occurs only when buoyancy is the
dominant turbulence mechanism (— Rj' < 7.0). Also,
the variance explained by PCrincreases (slightly ) when
the atmosphere becomes more unstable. This suggests
that for n = 3, the PCys identify variation in the dataset
introduced by thermal instabilities. When n = 1 or 2,
runs have been mostly collected under less unstable
conditions. On average, magnitudes of wind speed and
wind shear are largest for runs with n = 1.
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We further concentrate on the “thermal™ variance,
that is, the subset of runs with # = 3. To find the ei-
genvector representations characteristic for this set, the
rotated and standardized variables of each run involved
have been concatenated. The standardization is nec-
essary to give each run equal weight. Only runs for
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which the half-hour-averaged background wind direc-
tion made an angle of 20° or less with one of the di-
agonals of the experimental square, as was motivated
earlier in this section, have been used. Finally, a PCA
has been performed on one data file consisting of 64
half-hour runs. The three most important eigenvectors
are shown in Fig. 8 (details are as in Fig. 4). The back-
ground wind direction is from the right. It can be seen
that the first and second PC identify variations in wind
speed perpendicular to and parallel with the back-
ground wind, respectively. Both have low correlations
with T¢. It is concluded that these PCs describe me-
chanically induced turbulence. The third eigenvector
reveals a wind field pattern possessing ( mainly lateral)
convergence (divergence) when temperatures are
higher (lower), typical for thermal activity (note the
high correlation coefficient with T¢: 0.93).

A remarkable difference can be noted with Fig. 4.
Here, the PCy (for the subset of runs with #» = 1) in-
dicated the presence of a common variance in the
alongwind direction of wind speed and T. Apparently,
this PC identifies thermal turbulence influenced by the
prevailing wind force. For example, the ramplike
structure of plumes in the time series of 7¢ is a con-
sequence of shear. In Fig. 8, however, we see that the
thermal variance in the set of runs with » = 3 is de-
coupled from the (alongwind ) variance in wind speed.
This is likely to happen under the influence of a stron-
ger buoyancy forcing and lower wind speeds. In this
respect, also note that the picture of the first eigenvector
in Fig. 4 looks like a combination of the representations
of the second and third eigenvectors in Fig. 8.

5. Applications

The PCys have been used to estimate the kinematics
associated to thermal activity in the SL. The relation-
ship with atmospheric stability is discussed. The cor-
relation coefficient with T has been assessed by use
of Eq. (2.9). Its value is 0.74, on average, and the range
is 0.50-0.95.

a. Kinematic properties

Horizontal divergence D and vertical vorticity { are
estimated by first performing PCA on the 182 half-
hour runs and identifying the PCrs (accounting for a
significant part of the thermal variance), and subse-
quently using Egs. (2.17). Then, the absolute values
of D and ¢, and their ratio have been sorted on the
bulk Richardson number and block averaged over 13
successive values. This number has been chosen to ob-
tain a standard deviation of less than half the values
of divergence. Finally, results could be displayed in
Fig. 9 as a function of —R;'. The vertical bars denote
the standard deviations.

In Fig. 9a we see that the horizontal divergence in-
creases when instability grows (—Rj;' < 7.0). In the
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details are as in Fig. 4.

same range, lower values for the vertical vorticity are
measured (Fig. 9b), such that with growing instability
divergence becomes the dominant kinematic variable
(Fig. 9¢). Remarkable is the nonzero limit attained
under highly unstable atmospheric conditions.

In reference to Fig. 9c, it has been investigated
whether |{|/| D| can be parameterized. Indeed, the
ratio appears to scale with a function of u, /w, (A. P.
van Ulden 1993, personal communication ), as will be
shown now. The horizontal divergence can be obtained
by integrating the continuity equation over z. With the
incompressibility approximation, this equation reads

ow(z)

e = —~D(2).

(4.1)
Lenschow and Stephens (1980) found that near the
earth’s surface the convergence within thermal struc-
tures is constant with height. Using this, Eq. (4.1) re-
duces to

D=~W(Z),
z

(4.2)

with z the height of measurement. The absolute value
of divergence can then be estimated as

(4.3)

where £ is the height of the (first) inversion and ais a
constant. ‘

The average vorticity is of the order u/ Ax (Tennekes
and Lumley 1972), where u is a characteristic velocity
and Axis a length scale (e.g., the horizontal dimension
of thermal eddies). Dealing with fluctuations, we can
then write for the average of the absolute value of the
vertical vorticity

Ohor
~C——, 4.4
N (44)
with ay,, the standard deviation of the horizontal tur-
bulent velocity components and ¢ another constant.
Panofsky et al. (1977) proposed the following expres-
sion for the ratio of the standard deviation oy, to the

friction velocity u, in the surface layer under convective
conditions:

Ohor h 2137172
hor — 14406~
U [ ( L) ’

with L the Monin-Obukhov length. Using h/L
= —kw3/u (e.g., Stull 1988) with k the von Karman
constant (=0.4), Eq. (4.5) can be rewritten as

Onor = (4uz + 0.33w3)'/2. (4.6)

After substitution of this expression in Eq. (4.4), the
absolute value of the average of the vertical vorticity
becomes

(4.5)

el ~ c% ~ -A—C)—C(4ui +0.33w2)172. (4.7)

Assuming /1 =~ Ax, the dependence on Ax disappears
by dividing Eq. (4.7) with Eq. (4.3):

4 2 1/2
l'—g—l ~ 4(7:12!+ 0.33) :

*

(4.8)

The ratio is now expressed in scaling variables only; d
is another “constant.” If Eq. (4.8) is correct, d must
remain constant when the atmospheric stability
changes. Plotting d as the quotient of |{|/| D| and
(4us/w% + 0.33)!/? against — R}’ (Fig. 10) indeed
confirms this independence. The mean value of d is
0.92 (+0.52). As described earlier, | {| and | D| have
been estimated using PCys. For the matter of compar-
ison, the behavior of d is also shown with |{| and | D|
determined by using PCs that identify environmental
variance. Now, d increases when — R} decreases. In
this case, |¢|/| D} hardly changes with atmospheric
stability.

Equation (4.8) also confirms the existence of the
nonzero limit under highly convective conditions:
Ky

lim —— =~ (0.33)"2d ~ 0.52.

4.9
usiwe—0 | D| 49

b. Kinematic ratios in updrafts and downdrafts

Vertical velocities in thermally driven updrafts are
larger (taken absolutely) than in the accompanying
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" 80

downdrafts (Lenschow and Stephens 1980). Therefore,
due to continuity, it can be expected that the magni-
tudes of divergence will be larger for updrafts than for
downdrafts. This is verified as follows. The time series
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of the temperature at the central mast have been ap-
proximated from Eq. (2.7) by use of the PCy. This
signal T'% has been used to partition the time series of
divergence (also derived from PC7) into two sets, ac-
cording to T¢ > O (assumed to identify the updrafts,
further denoted by “4”) and T¢ < 0 (downdrafts, de-
noted by “}”). The averaged values of the ratio | D{ |/
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FIG. 11. (a) The ratio of horizontal divergence (absolute value)
between updrafts and downdrafts; (b) as in (a) but for vertical vorticity.
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| D4| have been calculated and displayed in Fig. 11a
as a function of — R} . Indeed, the values of divergence
are larger for updrafts than for downdrafts, especially
when unstable atmospheric conditions prevail.

In an analog manner, vorticity can be discussed.
However, the theoretical considerations are more
speculative. We start with the expression for the vertical
component of vorticity (Dutton 1986):

& ow_(awaw_ aw o
dx 9z

@ ¢ 52 (4.10)
The second and third term on the right-hand side are
the tilting terms. We neglect the turning of the wind
with height (dv/dz ~ 0), and we assume du/dz > 0,
which is usually the case. After tilting, positive vertical
vorticity is generated along the + y flank (dw/dy > 0),
while negative vorticity is produced on the —y flank
(dw/3y < 0). So, the net effect is zero. The same holds
for downdrafts. The first term on the right-hand side
is the stretching term. Using the continuity equation,
this term reduces to — {D. Hence, the magnitude of {
increases in time if D < 0. Therefore, in the case of
updrafts, | {4 | is expected to increase. Correspondingly,
positive divergence (related to downdrafts) leads to
vorticity reduction. The computational procedure was
equal with that for divergence. In Fig. 11b, the ratios
&4 1/]1¢4 | are shown. Again, the result supports the
theoretical expectation.

6. Conclusions

Principal component analysis has been used to dis-
cover recurring intervariable associations of velocity
and temperature fluctuations measured in the convec-
tive surface layer on a horizontal scale of approximately
80 m. The technique proves to be useful in distinguish-
ing variance of thermal and nonthermal origin. For all
the 182 half-hour runs investigated, there is always one
principal component that identifies a significant part
of the variance in the temperature time series, origi-
nating from larger-scale thermal instabilities. Coincid-
ing with periods of higher (lower) temperatures, cor-
responding variance in the wind speed variables is
characterized by lower (higher) wind speeds, upward
(downward) movements, and convergence (diver-
gence) in the wind fields.

Under highly unstable atmospheric conditions (0
< ~R3! < 7.0), the three most important principal
components can be interpreted physically. The first two
identify variances in wind speed in the crosswind and
alongwind direction. The third principal component
identifies the thermal variance. There is considerable
lateral convergence (divergence ) and negligible vortic-
ity. Together, the three principal components account
for about 68% of the total variance in the dataset on
average.
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When atmospheric conditions are less unstable
(—Rj"' > 7.0), the first principal component identifies
a coupling between the thermal variance and the lon-
gitudinal wind speed variance. Apparently, the variance
introduced by thermal instabilities has been modified
by the higher wind speed and wind shear. The second
principal component identifies variance in the cross-
wind direction. Smaller-scale thermal turbulence (e.g.,
“microfronts”) are identified by PCs with lower eigen-
values.

Horizontal divergence and vertical vorticity of the
velocity (variance) fields can be estimated directly from
the eigenvectors when PCA is combined with a pla-
nimetric method. As expected, the magnitude of di-
vergence, deduced from the principal component that
identifies the thermal variance, is highest during the
most unstable conditions. The (absolute) ratios be-
tween vertical vorticity and horizontal divergence are
found to scale with a function of u, /w,. Both diver-
gence and vorticity are larger for updrafts than for
downdrafts, which can be explained theoretically.
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