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This lecture treats the advection equation, which expresses conservation of 
momentum of an incompressible fluid parcel. Turbulence in fluids is due to the non-
linearity of the advection equation.  To study non-linear effects in fluid flow we 
should really start by considering the full 3-dimensional Navier-Stokes equations with 
some relevant boundary conditions. Except for some rather special cases, this would 
very quickly lead us to a mathematical problem with such a complexity that it would 
be difficult to handle. Therefore, we instead start here with the most simple equation, 
which contains the advective nonlinearity in its most rudimentary form: the one-
dimensional advection equation. We will discuss some particular properties of this 
equation, which are characteristic for advection of fluids. It is difficult, if not 
impossible, to relate the one-dimensional advection equation to any specific fluid 
flow situation, but the presence of the advection term gives the equation properties, 
which are related to the properties of real fluids. 
 
 
1. General properties of the one-dimensional advection 
equation 
 
The advection equation in one dimension states that the velocity, u(x,t), of a fluid 
particle is conserved following the particle motion (x is distance and t is time). 
Without external forces, this equation is 
 

€ 

du
dt

= 0, 

 
or 
 

€ 

∂u
∂t

+ u ∂u
∂x

= 0	.	        (1) 

	 	 	 	 	 	 	 	  
The second term in this equation, the so-called “advection term”, is non-linear.  
 We impose the following boundary conditions. 
 

€ 

u 0,t( ) = u L,t( ) = 0. 
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FIGURE 1a. Initial distribution of u (t=0, full line) and distribution of u just at the onset of 
“breaking” (t=1, dashed line) (L=2π and u0=1). Figure modified from Platzman (1964). 
 
 
An initial condition, which obeys these boundary conditions is 
 

€ 

u x,0( ) = u0 sin
2πx
L

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  . 

 
This initial state, which is shown in figure 1a, may be thought of as a wave 
disturbance in a fluid flow.  
 We now investigate how the advective process changes the shape of this wave. 
One way of doing this is to use the method of characteristics, i.e. to determine 
curves in the x-t plane, which fluid particles follow. For eq. 1 these curves are straight 
lines, where the slope, dx/dt=u, is given by the initial value of u. 
 Some typical characteristics of eq. 1 (i.e. lines of constant u in the x-t plane) are 
shown in figure 1b. After some time the characteristics from different initial points 
will intersect and thus we have a multi-valued velocity at certain points. Also shown 
in figure 1b is the envelope of the “cusp-region”, inside which the solution is triple-
valued (three characteristics through each point). This behaviour is unphysical, but we 
interpret it in terms of a “wave-breaking” in the following way. Since each value of u 
is propagated along x with speed u, it follows that the wave crest (u>0) is propagated 
forward (toward larger values of x) and the trough (u<0) is propagated backwards. So, 
the slope, S=∂u/∂x, of the wave profile becomes steeper where S is negative initially 
and flatter where S is positive initially.  
 This breaking process may be examined quantitatively by computation of the 
change of slope along a characteristic: 
 

€ 

dS
dt

=
∂
∂t

∂u
∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + u

∂
∂x

∂u
∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  . 

 
After changing the order of differentiation in the first term on the right hand side and 
using (1) we obtain 
 

€ 

dS
dt

= −S2  . 
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FIGURE 1b. Characteristics of eq. (1) in the t-x plane, assuming that L=2π and u0=1. Inside 
the hatched, cusp-shaped region the solution is multi-valued. Figure modified from Platzman 
(1964). 
 
 
Integration of this equation, i.e. 
 

€ 

−S−2
S0

S
∫ dS = dt

0

t
∫  , 

 
where S0 is the value of S at t=0, yields 
 

€ 

S =
1

t + S0
−1  . 

 
If S0<0, i.e. if the slope is negative at t=0, it will become increasingly negative until at 
a critical time, tc, breaking occurs. After this time the solution is no longer 
meaningful.  
 Physically this is not a satisfying model, because of the discontinuity forming at 
the breaking point. However, if we incorporate a simple dissipation term (a linear 
damping) into eq. 1 as follows, 
 

€ 

∂u
∂t

+ u ∂u
∂x

= −εu  ,        (2) 

 
where ε is a constant positive damping coefficient, the slope equation becomes 
 

€ 

dS
dt

= −S2 −εS  .        (3) 

 
If we substitute y=1/S, we get 
 

€ 

dy
dt

= εy +1 , 
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which has the solution, 
 

€ 

y = C *exp εt( ) − 1
ε

 , 

 
where C* is an integration constant. Thus, 
 

€ 

S =
ε

Cexp εt( ) −1  

 
where C is a constant related to the initial slope, S0 as follows: 
 

€ 

C =
ε
S0

+1 . 

 
Breaking occurs if S goes to infinity, or if 
 

€ 

S0 =
ε

exp −εt( ) −1 . 

 
Since -1<(exp(-εt)-1)<0, breaking only occurs if -

€ 

∞<S0<-ε. Therefore, not all initial 
slopes will lead to breaking. This is illustrated in figure 2. Three solutions for three 
different initial conditions are drawn. The value of the parameter, ε, determines for 
which initial slope breaking will occur. 
 

 
 
FIGURE 2. Time evolution of the slope for some different initial values in the presence of 
dissipation. 
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 This behaviour is typical of the solution of many nonlinear equations or models. 
From eq. 2 we see that there are two terms, which govern the time evolution of u. The 
dissipation term on the right-hand side of (2) will try to damp the initial value towards 
zero, while the advective term will force an increase of the velocity gradient, which 
will ultimately lead to “breaking”. Which of these two competing effects wins 
depends on the initial slope relative to the value of ε. The slope equation can be 
written as 
 

€ 

dS
dt

= −S S +ε( ) .        (4) 

 
We see that, if S<-ε, dS/dt will be negative and an initially negative slope will become 
increasingly negative, i.e. the wave will break. 
 If S<-ε, dS/dt>0 for S<0 and dS/dt<0 for S>0. This will give a solution, which 
asymptotically approaches S=0 as t goes to infinity. We also see from (4) that both 
S=0 and S=-ε are steady solutions of the slope equation. A slight perturbation around 
S=0 will eventually lead to S returning to zero. Therefore, the steady state S=0 is 
stable to small perturbations. The steady state S=-ε, on the other hand, is unstable to 
small perturbations, as any small deviation from it will either lead to the steady state, 
S=0  or S→ -

€ 

∞ . 
 The method of determining the steady states and then analysing the stability of 
each steady state to small perturbations will be used extensively in this course. In this 
case we see that we have two steady states, but only one of them is stable to small 
perturbations. Solutions starting closing to the unstable steady state will either reach 
to stable steady state asymptotically, or they will be negatively infinite. Solutions 
starting sufficiently close to the stable steady state will always approach this steady 
state asymptotically. This steady state, therefore, is most interesting. 
 Finally, it should be mentioned that the dissipation term in (2) can be replaced by a 
“diffusion” term. This results in the so-called “Burgers equation”: 
 

€ 

∂u
∂t

+ u ∂u
∂x

= −ν
∂2u
∂x2

 ,        (5) 

 
where ν represents a constant diffusion coefficient. Equation (5) can be solved 
analytically (see Platzman, 1964). The solution of (5) does not have any 
discontinuities, in contrast to the solution of (2). Therefore, different descriptions of 
dissipation may lead to solutions with very different qualitative behaviour. In 
Burger’s equation diffusion most strongly damps the solutions with large gradients, so  
that breaking will not occur. 
  
 
2. The spectral method 
 
When examining the nonlinear properties of the advection equation in the previous 
section, we assumed an initial condition in the form of a sine wave. Any initial 
condition satisfying the boundary conditions, 
 

€ 

u 0,t( ) = u L,t( ) = 0        (6) 
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may of course be constructed by the addition of sine waves with different 
wavelengths in the form of Fourier series. This also applies to the solution for later 
times (t>0), as long as this solution is single-valued. When breaking occurs, the 
solution has an infinite spatial derivative at one point. Under these circumstances a 
Fourier series expansion of the solution is not possible, nor valid. It may, 
nevertheless, be instructive to express the solution of the relatively simple one-
dimensional advection equation in terms of a Fourier series, and investigate the 
solution before breaking occurs, in particular because this method will be applied to 
more complicated physical problems later in this course. 
 Let us introduces Fourier basis functions as 
	

€ 

Sα x( ) ≡ exp 2πilα x /L( ) 	.       (7) 
	
The wave number, 

€ 

lα ,	may have any integer value (positive and negative). The 
velocity, u, can be expressed as a sum over all possible wave numbers, 

€ 

lα , as follows 
 

€ 

u x, t( ) ≡ Uα t( )Sα x( )
α
∑        (8) 

 
Here, 

€ 

α ≡ lα . The symbol, α, is used to indicate the wave number vector, 
corresponding to the wave number, 

€ 

lα .		In a one-dimensional problem (one spatial 
dimension), like the present one, there is no need to distinguish between α and 

€ 

lα . 
However, in a problem with more than one spatial dimension this distinction is 
necessary. If, for example, we have a problem with two spatial coordinates, x and z, 
the wave vector, 

€ 

α ≡ lα ,nα( ) , where the wave number in the x-direction is 

€ 

lα , the 
wave number in the z-direction is 

€ 

nα . We will encounter such a problem when we 
derive the Lorenz (1963) model of thermal convection, later in this course. 
 Orthonormality of the basis functions, S, is expressed as 
 

€ 

1
L

Sα
0

L
∫ Sβ

*dx = δα,β ,        (9) 

 
where δ is the Kronecker delta function and the asterisk indicates a complex 
conjugate (see the appendix to this lecture). 
 The advection equation (1), which is repeated for convenience here, 
 

€ 

∂u
∂t

= −u ∂u
∂x
	,	

	
is transformed by first substituting the Fourier expansion (8), yielding 
 

€ 

dUα
dtα

∑ Sα ≡ − Uα
α
∑ Sα
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

2πilβ /L( )Uβ
β
∑ Sβ
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
	

	
or 
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€ 

dUα
dtα

∑ Sα ≡ − 2πilβ /L( )UαUβ
α,β
∑ SαSβ 	 	 	 	 	 (10) 	

 
where 

€ 

α,β
∑  is a	double sum over all wave vectors, α and β, or, in other words, over all 

integer  combinations (positive and negative) of 

€ 

lα 	and 

€ 

lβ . 
We may now separate this equation into a set of nonlinearly coupled ordinary 

differential equations by making use of the orthogonal properties of the basis 
functions, as follows.  

Multiply the equation by 

€ 

Sγ
*	and integrate the resulting equation (each term in the 

equation) over the distance, 0≤x≤L.  This yields 
 

€ 

1
L

dUα
dtα

∑ SαSγ
*⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
dx

0

L
∫ ≡ −

1
L

 2πilβ /L( )UαUβ
α,β
∑ SαSβSγ

*
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 0

L
∫ dx 	.	

	
The integral on the left hand side is non-zero only if 

€ 

α = γ . The integral on the right 
hand side is non-zero only if 

€ 

α + β = γ  (because 

€ 

SαSβ = Sα+β ). We are, in fact, 
projecting eq. (10) on one basis function, 

€ 

Sγ .  
 This procedure yields a non-linear first-order ordinary equation, describing the 
time rate of change of the amplitude or Fourier coefficient, 

€ 

Uγ , as follows.	
	

€ 

dUγ
dt

= − 2πilβ /L( )Uα
α,β
∑ Uβδγ ,α+β 	.      (11) 

 
 The Fourier-coefficient, 

€ 

Uγ , is expressed as a sum of a real part (superscript, R) 
and an imaginary part (superscript, I) as follows: 
 

€ 

Uγ =Uγ
R + iUγ

I .        (12) 
 
 The velocity, u, is a real physical variable, which means that (exercise 1) 
 

€ 

Uγ =U−γ
*  ,         (13a) 

 
or 
 

€ 

Uγ
R =U−γ

R ; Uγ
I = −U−γ

I        (13b) 
 
(see the appendix to this lecture). The boundary conditions, u=0 at x=0 and at x=L 
(eq. 6), implying a sine-dependence, are fulfilled if 
 

€ 

Uγ
R = −U−γ

R ; Uγ
I = −U−γ

I .       (14) 
	
Conditions (13b) and (14) imply that 
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Figure 3. A wave at the onset of breaking (full line) and its approximate form given by a 
limited number of spectral components, N (L=2π). 
 
 

€ 

Uγ
R = 0 and U0

I = 0
	,	 	 	 	 	 	 	 	 (15)	

 
so that, according to the definition (12) 
 

€ 

Uγ = iUγ
I          (16) 

 
and eq. 11 becomes 
 

€ 

dUγ
I

dt
= 2πlβ /L( )UαI
α,β
∑ Uβ

I δγ ,α+β 	,      (17a) 

	
or 
 

€ 

dUγ
I

dt
= IγαβUα

I

α,β
∑ Uβ

I ,	       (17b)	

	
where the “interaction coefficient”,  
	

€ 

Iγαβ ≡ 2πlβ /L( )δγ ,α+β 	 	 	 	 	 	 	 (18) 
	
describes the interaction between different spectral components, i.e. the energy 
transfer from one spectral component to the other. In the example shown in figure 1a,  
energy is transferred from wave number 1 to higher wave numbers, or smaller scales, 
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as time passes. When the wave reaches the point of breaking, energy will have spread 
over the full spectrum of wave numbers. This is another way of saying that the wave, 
just before the onset of breaking, can only be described accurately if we take many 
Fourier components into account, as is illustrated in figure 3. However, the problem 
is tractable only if we take a finite number of wave numbers into account, i.e. if we 
truncate the Fourier series (8). The next section describes a severely truncated 
approximation to the advection equation. This approximation is called a “low-order 
model”. 
 
 
3. A low order model 
 
To investigate schematically how the nonlinear energy transfer between spectral 
components takes place, we analyse a very severely truncated spectral representation 
of the advection equation, which takes into account only wave numbers, l=1 and l=2. 
We should also take into account wave numbers, l=-1 and l=-2. In view of eq. 18 and 
the selection rule, 
 

€ 

γ = α + β ,         (20) 
 
the only possible interactions are listed in Table 1. 
 
γ α β 
1 2 -1 
1 -1 2 
2 1 1 
 
Table 1. Wave number combinations giving non-zero contributions to the interaction 
coefficient (eq. 18) in the lowest order nonlinear truncation of the advection equation, which 
takes only wave numbers 1 and 2 inside the truncation. 
 
 
Interactions with wave numbers outside the truncation are neglected. The low order 
model, derived form eq. 17a, consists of the following two coupled nonlinear 
equations. 
 

€ 

dX
dt

= −CXY 	;	 	 	 	 	 	 	 	 	 (20a) 

€ 

dY
dt

= CX 2 	,	 	 	 	 	 	 	 	 	 (20b) 

 
with  
 

€ 

X ≡U1
I ; Y ≡U2

I  and C ≡
2π
L
	.		 	 	 	 	 (21) 

 
If we multiply eq. 20a by X and multiply eq. 20b by Y and subsequently add the 
resulting equations we obtain 
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Figure 4. Steady states (red dots), at (0, Y0) and at (0, -Y0), and their stability properties, 
indicated by arrows, of the two-component conservative low order model (eqs. 20a,b).   
 
 

€ 

X dX
dt

+Y dY
dt

= 0,	 	

	
or alternatively, 
 

€ 

d
dt

1
2
X 2 +Y 2( )⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
≡
dK
dt

= 0 	.	 	 	 	 	 	 	 (22) 

 
This shows that total kinetic energy, K, is conserved. Kinetic energy is redistributed 
between the two components by the nonlinear interactions. In this model the kinetic 
energy spectrum, 

€ 

Kγ , is restricted to two wave numbers. Eq. 22 indicates that the 
solution of the low-order model (20a,b) lies on a circle in state-space or phase-space 
(figure 4). The radius of this circle is equal to 2K. Since K is conserved, K is 
determined by the initial condition at t=0, i.e. 
 

€ 

K =
1
2
X 0( )2 +Y 0( )2( )	.	 	 	 	 	 	 	 (23) 

 
The steady state solution are defined as values of X and Y for which 
 

€ 

dX
dt

= 0 and dY
dt

= 0 		 	 	 	 	 	 	 	 (24)	

	
We thus find the system 
 

€ 

X0 = 0 and X0Y0 = 0.	 	 	 	 	 	 	  (24) 
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The subscript ‘0’ stands for steady state. Together with eq. 23, we find that the steady 
state points in phase-space are (0,Y0) and (0,-Y0). These points are encircled in figure 
4.  In both steady state solutions all kinetic energy is in the smallest scale of motion.     
 Multiple steady states are characteristic for nonlinear systems. The nonlinear 
system (20a,b) will ultimately settle into one of the two steady states only if the 
steady state is stable to small perturbations. The stability of a steady state can be 
examined by perturbing the steady state as follows 
 

€ 

X = X0 +δX( ) ,	 	 	 	 	 	 	  (25a) 

€ 

Y = Y0 +δY( ) .		 	 	 	 	 	 	  (25a)	
 
Inserting these definitions into the governing equations (20a,b) yields 
 

€ 

d
dt

X0 +δX( ) = −C X0 +δX( )Y Y0 +δY( ) ,	 	 	 	 	 (26a) 

€ 

d
dt

Y0 +δY( ) = C X0 +δX( )2 	.	 	 	 	 	 	 	 (26b) 

 
Taking into account that (X0,Y0) represents the steady state, 
 

€ 

dδX
dt

= −C X0δY +Y0δX +δXδY( ) ≈ −C X0δY +Y0δX( ) = −CY0δX .	 	 (27a) 

€ 

dδY
dt

= C 2X0δX + δX( )2( ) ≈ 2CX0δX = 0 	.	 	 	 	 	 (27b) 

 
We have neglected products of (small) perturbations. Since C>0, linear stability of the 
steady state is determined by the sign of Y0. The steady state is stable if Y0>0 and 
unstable if Y0<0 (figure 4). However, beware that a perturbation in the Y-direction 
(i.e. δY) of the steady state, which lies on the Y-axis, is always neutrally stable (refer 
to eq. 27b).  Why is this? 
 
 
 
 
 This lecture is intended to introduce the spectral method and linear stability 
analysis and also to illustrate some typical properties of non-linear systems, in 
particular of fluid advection, such as multiple equilibrium states and transfer of 
energy between scales of motion. We will return to these topics later in this course.  
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4. Exercises  
 
 
Exercise 1. 
(a) If we express the velocity, u, as a Fourier series as follows 
 

€ 

u x, t( ) ≡ Uγ
γ
∑ t( )Sγ x( )  

with 
 

€ 

Sγ x( ) ≡ exp 2πilγ x /L( ) 

	
and 

€ 

Uγ 	a complex Fourier coefficient or time-dependent amplitude, then show that u 
is a real physical variable if (eq. 13a) 
 
 

€ 

Uγ =U−γ
* ,	

	
where the asterisk indicates a complex conjugate (see appendix).  
(b) What are the values of the Fourier coefficients, 

€ 

Uγ
R and Uγ

I , at t=0 if  
 

€ 

u x,0( ) = u0 sin
2πx
L

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , 

 
with

€ 

u0 =1 m/s? 
 
 
Exercise 2. 
Derive a low-order model, based on the Fourier transform of the one-dimensional 
advection equation eq. 2, which is repeated here: 
 

€ 

∂u
∂t

+ u ∂u
∂x

= −εu  ,        (2) 

 
taking the wave numbers, 1 and 2  into account. The interactions, satisfying the 
selection rule (eq.19), are listed in table 1.  The term on the right hand side of (2) is 
damping term if ε>0. Repeat the analysis of section (3) for this low order model. This 
analysis consists of the following steps. 
(a) Is kinetic energy conserved? 
(b) Determine the steady states. 
(c) Determine the linear stability of the steady states. 
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Exercise 3. 
Derive a low-order model, based on eq. 17, which is the Fourier transform of the one-
dimensional advection equation eq. 1, taking wave numbers, 1, 2 and 3 into account 
(inside the truncation of the Fourier series approximation of u). The interactions, 
satisfying the selection rule (eq.19), are listed in table 2.  Show that kinetic energy is 
conserved by this three-component low order model 
 
γ α β 
1 2 -1 
1 -1 2 
1 3 -2 
1 -2 3 
2 1 1 
2 3 -1 
2 -1 3 
3 1 2 
3 2 1 
 
Table 2. Wave number combinations giving non-zero contributions to the interaction 
coefficient (eq. 18) in a low order nonlinear truncation of the advection equation, which takes 
wave numbers 1, 2 and 3 inside the truncation. 
 
 
Exercise 4. 
The two-component low-order model of section 3 is not realistic. More wave numbers 
are needed inside the truncation of the Fourier series of u to obtain a better 
approximation to the correct solution before breaking occurs. Write a program (e.g. in 
Python) that integrates the Fourier transform of eq. 2 in time, taking a prescribed 
number of wave numbers inside the truncation of the Fourier series approximation of 
u. The time-derivative can be approximated numerically with a simple Euler forward 
time stepping scheme (provided that the time step is small enough) or, better, with a 
Runge-Kutta scheme 1. Integrate the equations until just before the point of “wave-
breaking” (if u0=1 m/s and L=2π m, breaking occurs when t> 1 s). How many wave 
numbers do you need inside the truncation to reproduce the solution as illustrated in 
figure 1? Check kinetic energy conservation. Plot and discuss the evolution in time of 
the kinetic energy spectrum (the kinetic energy as a function wave number and time). 
 
 
 
 
 
 
 

																																																								
1	https://en.wikipedia.org/wiki/Runge–Kutta_methods	
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6. Appendix 
 
The Kronecker delta function is defined as 
 

€ 

δα,β =1 if α = β ; 

€ 

δα,β = 0 if α ≠ β . 
 
The complex conjugate of 
 

€ 

Sγ ≡ exp ilγ x( ) = cos ilγ x( ) + isin ilγ x( ) 
 
is 
 

€ 

S
γ
* ≡ exp −ilγ x( ) = cos −ilγ x( ) + isin −ilγ x( ) = cos ilγ x( ) − isin ilγ x( )  . 

 
 
 
 
 


