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Toy-Climate-Models 

Aarnout van Delden, 
Institute for Marine and Atmospheric Research (IMAU) (BBG 615) 
Utrecht University 
a.j.vandelden@uu.nl 
More information about the toy models: http://www.staff.science.uu.nl/~delde102/SOAC.htm 

Model 1, of ENSO, consisting of three time-dependent 
coupled nonlinear ordinary differential equations, is a simple 
example of a grid-point model having chaotic solutions. 
Models 2, illustrating the tight control of climate by the 
biosphere, consists of two time-dependent coupled 
nonlinear ordinary differential equations plus seven 
diagnostic relations. 
Models 3 is an energy balance model which illustrates 
the ice-albedo feedback. It is a very simple gridpoint model 
with very interesting non-linear behaviour 

Introduction 

Toy-Climate-Models 
1.  The very simple model of ENSO (El Niño-Southern 

Oscillation) conveys the idea that ENSO is a chaotic 
oscillation. 

2.  The model of Climate biosphere interaction is known 
under the name, “Daisy World” and is an illustration of the 
Gaia-hypothesis. 

3.  This model called the “Budyko-Sellers model”. It 
illustrates hysteresis in the climate system and offering an 
explanation for the existence of ice-ages 

Introduction 

The project consists of writing a program that solves/
integrates the model equations in time (to a steady 
state), and subsequently performing some interesting 
numerical experiments and an interesting analysis of the 
solutions which should come with a physical 
interpretation. 
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Model 1: 
A very simple model of El Niño 
Based on:  

Vallis, G.K, 1986: El Niño: A Chaotic Dynamical 
System? Science, 11 April 1986, 243-245. 

Supervisor: Aarnout van Delden 
a.j.vandelden@uu.nl 
http://www.staff.science.uu.nl/~delde102/SOAC.htm 

Toy model 1 

El Niño: chaotic oscillation in 
Pacific Ocean temperature 

Toy model 1 
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El Niño-Southern Oscillation (ENSO) 

Taken from Vallis (1986) 

TE 

U 

El Niño-event: TE>TW, U>0 

A quasi-periodic phenomenon 

Toy model 1 

A conceptual model of El Niño 
The equatorial pacific ocean is represented as a “box”. The zonal current U at (x,z)=
(0,+1/2) in the upper layer of the ocean is governed by 

If the temperature in 
the west in the upper 
layer of the ocean is 
greater than the 
temperature in the east 
in the upper layer of 
the ocean, that is, 
TW>TE, there is a 
westward surface 
wind, because of the 
convective tendency of 
air to rise (sink) over 
warm (cool) regions. 

X=-Δx/2 x=+Δx/2 

z=+Δz/2 

z=-Δz/2 

€ 

dU
dt

= B TE −TW( )
Δx

−C U −U *( )

B and C are constants and the steady state in the absence of an east-west temperature 
gradient, U=U*<0 represents the effect of stress due to steady tropical westward trade 
winds. 

First term r.h.s. 
represents pressure 
gradient term 

Toy model 1 
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A low-order model of El Niño 
Neglecting variations in the south-north direction and assuming 
incompressibility, we may approximate the continuity equation as follows.  

€ 

UΔz =WΔx

Applying this equation to the gridpoints (x,z)=(±Δx/2, Δz/2), using the boundary 
conditions, the continuity equation (see above) as well as linear interpolation of 
the temperature in both directions, we obtain the following two equations (see 
also the caption of the figure on the previous slide) 

Likewise, neglecting variations in the south-north direction, assuming 
incompressibility and adiabatic conditions, we may write the temperature 
equation in flux form as follows.  

€ 

∂T
∂t

= −
∂ uT( )
∂x

−
∂ wT( )
∂z

€ 

dTW

dt
=

U
2Δx

T −TE( )

€ 

dTE

dt
=

U
2Δx

TW −T ( )

Toy model 1 

A low-order model of El Niño 

€ 

dTW

dt
=

U
2Δx

T −TE( )− A TW −T *( )

€ 

dTE

dt
=

U
2Δx

TW −T ( )− A TE −T *( )

According to these two equations, the steady state solution in the absence of 
motion is undetermined. We, however, expect that the temperature of the ocean 
in rest will adjust to an externally (radiatively) determined temperature. In order 
to incorporate this effect we add a term to both equations such that they 
become: 

€ 

dTW

dt
=

U
2Δx

T −TE( )

€ 

dTE

dt
=

U
2Δx

TW −T ( )

Where A  is a constant and T* is the temperature to which the ocean relaxes in 
the absence of motion. Without loss of generality we may measure the 
temperature with respect to the temperature of the deep ocean, i.e.  

€ 

T = 0

Toy model 1 
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The low-order model of El Niño 

€ 

dTW
dt

= −
UTE
2Δx

− A TW −T *( )

€ 

dTE
dt

=
UTW
2Δx

− A TE −T *( )

€ 

dU
dt

= B TE −TW( )
Δx

−C U −U *( )

Thus, the three equations constituting the low order model of El Niño are 

The first two equations are non-linear. For the case U*=0 mathematical analysis 
is possible which gives some qualitative insight into the behaviour of the model 
(see the Vallis, 1986, p. 244). For B’<AC/T* (where B’=B/(2Δx2)) only 1 steady 
state solution exists: U=0, TE=TW=T*. If B increases, the system will bifurcate 
when B’=AC/T*. The existing solution becomes linearly unstable and two new 
stable solutions appear. All solutions become unstable when B’>(4A+C)C2/T*
(C-2A). 

This is a non-linear 
dissipative dynamical 
system; its solutions are 
bounded. 

Toy model 1 

Time integration 

Using the Runge Kutta scheme we integrate 
this system of 3 non-linear ordinary differential 
equations numerically.  

The parameter values chosen correspond to a 
frictional time scale C of 1/4 month-1, a 
temperature decay time scale (A) of 1 year-1, a 
mean current, U*, of -0.45 m/s, a basin size of 
7500 km, B=2/Δx and T* of 12°C. The value of 
B is approximately equivalent to supposing a 
current of 0.35 m/s can be generated in 1 
month by a temperature difference of 2°C. 

Toy model 1 
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Time integration: results 
There is about 1 El Niño-event every 2 years, but the period is 
not constant. In between “events” TE-TW is about -2.5°C and U is 
about -1 m/s. This is typical of a “chaotic” system.  

Investigate the 
behaviour of the 
model if there is a  
seasonal cycle in the 
U*. Should there be 
a seasonal cycle in 
U*. If so, what period 
does it have?  

Toy model 1 

Time integration: results 

El Niño-event: TE>TW, U>0  

La Niña-event: TE<<TW, U<<0  

plot of same evolution in phase-space 
“strange attractor” 

The collection 
of points in 
phase space 
represents 
the “Climate” 
of the system 

Toy model 1 
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Questions 

Plot the probability density function (pdf) of the chaotic 
solution of the model (say: of TE-TW) and compare with the 
pdf of the Southern Oscillation Index   

Apply Principal Component Analysis to the chaotic solution 
of the model 

Compare this model with present day theoretical ideas 
about how El Niño works. What physical effects does it 
neglect? 

Can you think of improvements to this model? 
a.j.vandelden@uu.nl 

Toy model 1 
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Time integration 
Using the Runge Kutta scheme we integrate 
this system of 3 non-linear ordinary differential 
equations numerically. The Pascal program is 
given on the right of this slide.  

The parameter values chosen correspond to a 
frictional time scale C of 1/4 month-1, a 
temperature decay time scale (A) of 1 year-1, a 
mean current, U*, of -0.45 m/s, a basin size of 
7500 km, B=2/Δx and T* of 12°C. The value of 
B is approximately equivalent to supposing a 
current of 0.35 m/s can be generated in 1 
month by a temperature difference of 2°C. 

Model 2 
A very simple model of Climate-

biosphere interaction 
Based on:  

A.J.Watson and J.E.Lovelock, 1983: Biological 
homeostasis of the global environment: the parable 
of Daisyworld. Tellus, 35B, 284-289. 

Supervisor: Aarnout van Delden 
a.j.vandelden@uu.nl 
http://www.staff.science.uu.nl/~delde102/SOAC.htm 

Toy model 2 
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Daisy world 

Illustration of the Gaia hypothesis, which suggests 
that life on Earth acts in such a way that earth’s 
environment becomes adjusted to an optimum 
state for life’s continuation. Evidence for this 
hypothesis is the low concentration of carbon 
dioxide. 

Toy model 2 

Daisy World 
The Gaia hypothesis is 
illustrated through a computer 
model, called “Daisy World”, of a 
cloudless planet in which the 
environment is defined by 
single variable: temperature, 
and the biosphere by a single 
species: daisies. Daisies grow 
best over a restricted range of 
temperatures, the growth rate 
peaking at 22.5°C and falling to 
zero below 5°C and above 40°C 
(see the figure).  

Graedel & Crutzen (1995) 

Toy model 2 
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Daisyworld: equations 

€ 

Aw,Ab ,Ag ,α p ,βb ,βw,Tp ,Tw,Tb

Nine variables: 

Parameters 

€ 

S0,L,αg ,αb ,αw,γ, p,β,b, I0
€ 

dAw
dt

= Aw Agβw −γ( )

€ 

dAb
dt

= Ab Agβb −γ( )

€ 

Ag =1− Ab − Aw

€ 

βi =1− 4
Topt −Ti( )2

Tmax −Tmin( )2

€ 

Ti −T p( ) =

1
4
S0L α p −αi( )
b+β€ 

α p =αgAg +αbAb +αwAw

€ 

T p=

1
4
S0L 1−α p( )− I0

b

€ 

S0 =1366 W m-2 ;
αg = 0.25;αw = 0.75;αb = 0.15;
γ = 0.3 s-1;β =16 W m-2K-1;
b = 2.2 W m-2K-1; I 0 = 220 W m-2

Two time-dependent equations: 

Toy model 2 

Seven diagnostic relations: 

Questions 

Calculate the equilibrium surface temperature as a function 
of the Solar luminosity.  

Investigate the sensitivity of the solution to changes in the 
value of the parameters, b and β.  

Give a physical interpretation of your results. 

a.j.vandelden@uu.nl 

Toy model 2 
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Model 3 
Energy balance climate model 
Based on:  

M.I.Budyko, Tellus, 21 (1969), 610-619.	


W.D. Sellers, J.Appl.Meteor., 8 (1969), 392-400.	



Supervisor: Aarnout van Delden 
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Toy model 3 
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One-dimensional (Budyko-Sellers) 
energy balance model (EBM) 

A	



Toy model 3 

A model of the latitude dependence of the surface temperature 

€ 

Q(1−α)− I = A

Aim is the estimation of the effect on the temperature of the Earth’s 	


surface of changes in the planetary albedo (due to changes in ice cover)	


and the Solar constant due to changes in activity of the Sun or due to 	


changes in the earth’s orbit as a function of latitude, φ.	


For mean annual conditions, the equation for the vertically, zonally 	


averaged heat balance of the earth-atmosphere system is:	



€ 

Q(1−α) = I + A

Q(φ)=solar radiation coming to the outer boundary of the atmosphere	


α(φ,Τ)=albedo;	


I(φ,Τ)=outgoing radiation	


A(φ,Τ)=loss (if A>0) of energy from a particular latitude belt as a result 
of the atmosphere and hydrosphere circulation, including heat 
redistribution of phase water transformations. For the earth-atmosphere 
system as a whole we have, A=0, giving the “zero-dimensional EBM”.	



One-dimensional energy balance model	


Toy model 3 
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Parametrization of solar radiation	



€ 

Q =
S0
4
s(x) where	



€ 

x = sin φ

The distribution function s(x) is defined as the annual mean insolation 	


at a particular latitude divided by the global average insolation. 	


The global average of s(x) is 1.	



The annual mean insolation distribution function for current conditions 	


can be approximated as	



€ 

s(x) =1.0 − 0.477P2 (x) where	



€ 

P2(x) =
1
2
(3x2 −1)

Toy model 3 

One-dimensional EBM” 

Specification of albedo	



Introduce a temperature dependent albedo:	



€ 

α =α0 if T ≤T0 

α =α0 + T -T0
T1 -T0

α1 -α0( ) if T1 ≥T >T0

α =α1 if T >T1

α0 = 0.6 − 0.8;  α1 = 0.1− 0.3;
T0 = −10°C;  T1 = 0°C;

Toy model 3 



9/3/13 

14 

Parametrization of outgoing radiation	


Dependence on temperature of Earth’s surface, Ts	



This depends on the radiation absorption-emission characteristics of 
the atmosphere. Therefore, not directly evident from simplified theory. 
An empirical formula has been suggested by Budyko (1969) and 
others:	



€ 

I = I0 +b(T − hΓ)

where I0=205 W m-2 and b=2.23 W [m2 °C]-1	



T is sea-level temperature in °C(!), Γ is the lapse rate (6°C km-1) and 	


h the zonal mean height of Earth’s surface	



Toy model 3 

Parametrization of meridional 
flux divergence	



To facilitate the solution of the above equation, the energy flux 	


divergence within the atmosphere and oceans is prescribed as follows*.	



€ 

A = β T −Tp( )

**after W.D. Sellers (J.Appl.Meteor., 8 (1969), 392-400	



€ 

Tp =
1
2

T
−1

1
∫ dx

Tp is the planetary mean sea-level temperature;	


β is a relaxation coefficient.	


Another possibility is to describe the energy flux divergence by a 	


diffusive term as follows**.	



€ 

A =
∂
∂x
1− x2( )KH ∂T∂x

with	



*after M.I.Budyko (Tellus, 21 (1969), 610-619	

KH is diffusivity [W m-2 K-1]	



€ 

Q(1−α)− I = A

€ 

x ≡ sinφ

Toy model 3 
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€ 

A = β T −TP( )

€ 

I = I0 +b(T − hΓ)

€ 

β T −TP( )−bT = −
S0
4
s x( ) 1−α( ) + I0 −bhΓ

€ 

Q =
S0
4
s(x)

€ 

Q(1−α)− I = A

Budyko model	


Equilibrium:	



With:	



gives	



This equation is solved as an initial-value problem by solving the 
following  equation:	



where C is a heat capacity and integrating the equation until a steady 
state is reached, i.e. l.h.s. is equal to zero.	



€ 

C dT
dt

=Q(1−α)− I − A

Toy model 3 

€ 

C dT
dt

=
S0
4
s x( ) 1−α( )− I0 +bhΓ−bT +

∂
∂x
1− x2( )KH

∂T
∂x

The steady state solution of the one-dimensional EBM can be found 
by making the equation on the previous slide time-dependent, i.e.	



(C is a heat capacity) and numerically integrating the equation in time 
with a suitable time-difference scheme* until the solution converges 
to a steady state+. The steady state will depend on the initial 
conditions. 	



Sellers Model	


Toy model 2 

* For instance: the Matsuno scheme	

+ l.h.s. equals zero	
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Questions 
Investigate the global average temperature as a function the 
value of the Solar constant. 

Investigate the solution as a function initial state 

Plot the steady state OLR-TOA and the steady state 
absorbed Solar radiation as a function of latitude. 

Introduce a more sophisticated parametrization of 
insolation. For instance you may introduce a seasonal cycle 
and investigate the solution in dependence on obliquity and 
eccentricity. 

a.j.vandelden@uu.nl 

Toy model 3 


