Introduction

Toy-Climate-Models

Model 1, of ENSO, consisting of three time-dependent coupled nonlinear ordinary differential equations, is a simple example of a grid-point model having chaotic solutions. Models 2, illustrating the tight control of climate by the biosphere, consists of two time-dependent coupled nonlinear ordinary differential equations plus seven diagnostic relations.

Models 3 is an energy balance model which illustrates the ice-albedo feedback. It is a very simple gridpoint model with very interesting non-linear behaviour

Aarnout van Delden, Institute for Marine and Atmospheric Research (IMAU) (BBG 615) Utrecht University <u>a.j.vandelden@uu.nl</u> More information about the toy models: <u>http://www.staff.science.uu.nl/~delde102/SOAC.htm</u>

(C-2A).

Toy model 1**Time integration: results**There is about 1 El Niño-event every 2 years, but the **period isnot constant**. In between "events" T_E - T_W is about -2.5°C and U isabout -1 m/s. This is typical of a "chaotic" system.

	Questions
Plot	the probability density function (pdf) of the chaotic
solu	tion of the model (say: of T _E -T _W) and compare with the
pdf (of the Southern Oscillation Index
App	ly Principal Component Analysis to the chaotic solution
of th	e model
Con	npare this model with present day theoretical ideas
aboi	ut how El Niño works. What physical effects does it
negl	lect?
Can	you think of improvements to this model?

References

Articles and books

A.J.Watson and J.E.Lovelock, 1983: Biological homeostasis of the global environment: the parable of Daisyworld. **Tellus**, 35B, 284-289.

James Lovelock, 1988: The ages of Gaia. Oxford University Press. 255 pp.

J.W. Kirchner, 2002: The Gaia hypothesis: fact, theory and wishful thinking, **Climatic Change**, 52, 391-408.

Wood, A.J. et al., 2008: Daisyworld: A review. **Reviews of Geophysics, 46**, RG1001, 23 pp., 2008, doi:10.1029/2006RG000217.

T.E. Graedel and P.J. Crutzen, 1995: **Atmosphere, Climate, and Change**. Scientific Americal Library. 196 pp.

One-dimensional energy balance model

Aim is the estimation of the effect on the **temperature of the Earth's surface** of **changes in the planetary albedo** (due to changes in ice cover) and the Solar constant due to changes in activity of the Sun or due to changes in the earth's orbit as a **function of latitude**, ϕ .

For **mean annual conditions**, the equation for the vertically, **zonally averaged heat balance** of the earth-atmosphere system is:

$Q(1-\alpha) = I + A$

 $Q(\phi)$ =solar radiation coming to the outer boundary of the atmosphere $\alpha(\phi, T)$ =albedo;

 $I(\phi, T)$ =outgoing radiation

 $A(\phi, T)$ =loss (if A>0) of energy from a particular latitude belt as a result of the atmosphere and hydrosphere circulation, including heat redistribution of phase water transformations. For the earth-atmosphere system as a whole we have, A=0, giving the "zero-dimensional EBM".

Toy model 3 Budyko model

Equilibrium: $Q(1-\alpha) - I = A$

With:
$$Q = \frac{S_0}{4} s(x)$$
$$I = I_0 + b(T - h\Gamma)$$
$$A = \beta(T - T_P)$$

gives

$$\beta(T-T_P)-bT=-\frac{S_0}{4}s(x)(1-\alpha)+I_0-bh\Gamma$$

This equation is solved as an initial-value problem by solving the following equation:

$$C\frac{dT}{dt} = Q(1-\alpha) - I - A$$

where C is a heat capacity and integrating the equation until a steady state is reached, i.e. l.h.s. is equal to zero.

Toy model 3		
Questions		
average temperature as a functior	n the	

Investigate the global average tempe value of the Solar constant.

Investigate the solution as a function initial state

Plot the steady state OLR-TOA and the steady state absorbed Solar radiation as a function of latitude.

Introduce a more sophisticated parametrization of insolation. For instance you may introduce a seasonal cycle and investigate the solution in dependence on obliquity and eccentricity.

a.j.vandelden@uu.nl