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ABSTRACT 
The non-linear dynamics of two-dimensional thermal convection is investigated with the help of 
two low-order spectral models. 

The first model is the three-coefficient Lorent model, in which the aspect ratio has not been 
used in scaling the variables. This means that the aspect ratio is a free parameter in addition to 
the Rayleigh number and the Prandtl number. The stability and the energetics of steady-state 
convection as a function of the three free parameters are investigated. 

The second model is a ten-coefficient model which describes the evolution and non-linear 
interaction of two horizontal scales of motion (with vertical wave number equal to one). It is 
found that the circulation mostly chooses a steady-state equivalent to the steady-state convective 
solution of the Lorenz model, i.c, a roll with a definite aspect ratio, even when OM or more of the 
seven other coefficients would grow according to linear theory. It is also found that in most 
cases. the larger scale is favoured over the smaller scale, as the Rayleigh number is increased, 
especially at low Prandtl number. This agrees qualitatively with laboratory experiments. 

The paper is. however, principally meant as a contribution to the physical and mathematical 
insight into, as well as an illustration of. the non-linear dynamics of two-dimensional thermal 
convection. 

1. Introduction 
It has been noted by among others &gel (1962), 

that thermal convection at moderate Rayleigh 
numbers is usually dominated by one harmonic, 
while the well-known linear theory of Rayleigh 
(1916) allows for a relatively broad spectrum of 
exponentially growing disturbances. If all these 
disturbances would indeed grow, the convection 
pattern would not be so simple as it apparently is. 
The spectacular selection of one scale of motion 
must be a non-linear process. The non-linear terms 
somehow act to damp all but one of the linearly 
unstable disturbances. 

According to the Rayleigh theory, the most 
preferred aspect ratio (horizontal wavelength, A, 
divided by height, h) of convection cells and rolls 
should be about 3, depending somewhat on 
boundary conditions (Chandrasekhar, 196 I). This 
is, however, not what is observed in the atmosphere, 
nor in the laboratory. Convection cells and rolls are 

observed daily on satellite photographs. They 
mostly form over the ocean to the west of 
mid-latitude depressions. In these regions, polar air 
flows out over relatively warm water. In the first 
instance, two-dimensional roll cloud patterns are 
observed. The aspect ratio of these rolls increases 
gradually as the air travels southward over the 
ocean. Eventually the rolls become unstable and 
three-dimensional cells appear. The aspect ratio of 
these cells has a mean value of 30, while rolls With 
an aspect ratio of 7 have been observed just before 
they become unstable (Walter, 1980) (see Fig. I). 
These values are clearly much larger than pre- 
dicted by the Rayleigh theory. However, Rayleigh 
theory is only valid at the onset of convection, 
when the non-linear advection terms in the govern- 
ing equations are small. As time increases, the 
non-linear terms are of increasing importance and 
they may distribute energy to other scales of 
motion. The increase in aspect ratio in atmos- 
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Fig. 1. North-south cross-section view of a typical polar outbreak over a warm ocean showing aspect ratios of rolls 
and cells for different distances from the ice edge (adapted from Walter, 1980). 

pheric convection has, however, been attributed by 
many workers (e.g. Sheu er 01.. 1980) to anisotropy 
of eddy diffusivity, large-scale subsidence and 
latent heat release. Yet, in laboratory experiments 
of thermal convection, where all of these physical 
factors are absent, the aspect ratio of rolls increases 
to more than double the critical aspect ratio as the 
Rayleigh number is increased (Willis et al., 1972; 
Koschmeider, 1974). It is therefore very likely that 
the non-linear terms also play a significant r6le in 
the scale-enlargement process. 

Segel (1962) investigated the non-linear interac- 
tion of two disturbances in two-dimensional con- 
vection theoretically and found that the equili- 
brium state contained only one of the two linearly 
unstable disturbances. He called this a “pure state”. 
A “mixed” equilibrium state, containing both 
disturbances, could only result if one of the 
disturbances was linearly stable. However, it is not 
clear from Segel’s results which non-linear pro- 
cesses are responsible for this selection. 

In this paper, I intend to investigate and illustrate 
the problems of non-linear scale selection with the 
help of simplified non-linear models of roll con- 
vection. The two basic partial differential equations, 
describing two-dimensional Rayleigh-Benard con- 
vection, will be transformed to wave number 
space, leaving us with an infinite set of ordinary 
differential equations describing the time evolution 
of the amplitude of the stream function and the 
temperature of an infinite number of wave vectors. 
From this system, a limited number of equations, 
describing the evolution of the most energy- 
containing components is selected. This system of 
equations is called a low-order model. The steady 
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state solutions to low-order models are also steady 
state solutions to higher-order models. The uncer- 
tainty lies in the stability of these solutions to 
infinitesimal perturbations in the neglected 
components. 

Low-order models of the atmosphere were 
originally conceived to illustrate some of the effects 
of non-linearity (Lorenz, 1960; Kiillen and Wun 
Nielsen, 1980). but are now increasingly used to 
study specific problems such as blocking (Charney 
and Devore, 1979). The reason that many 
meteorologists have taken their refuge in low-order 
models without knowing for sure whether the 
neglected components are important or not, is that 
they appear to be successful in, at least 
qualitatively, explaining and clarifying certain 
non-linear phenomena in meteorology. By defining 
a low-order model, we can isolate a certain physical 
effect from the total system. In this way, we will 
investigate the interaction of one scale of motion 
with the temperature stratitication (Section 6) and 
the interaction of two scales of motion and the 
temperature stratification (Sections 7-10). Because 
of their relative simplicity, low-order models give 
considerably more qualitative insight into the 
problem than, for example, the perturbation 
approach (Malkus and Veronis, 1958; Kuo and 
Platzman, 1961) or the complicated numerical 
computations based on a Galerkin method reported 
by Clever and Busse (1974). A very restrictive 
assumption which is made in the study by Kuo and 
Platzman (1961) and many other such studies is 
that only one fundamental wave mode is linearly 
unstable, while all other wave modes are excited by 
the non-linear interactions. A relatively strongly 
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forced system, such as the atmosphere, obviously 
allows for many linearly unstable wave modes 
which can grow independently of each other. This 
introduces the possibility of multiple steady states. 
The selection of a particular steady state is then 
dependent on the history and the stability proper- 
ties of the possible steady states. 

The first model we will study is the three- 
codlcient Lorenz (1963) model. This is the 
simplest possible non-linear model of convection. It 
models the interaction of one harmonic with the 
temperature stratitication. In spite of the fact that 
an immense body of literature on this model has 
appeared (e.g. Sparrow, 1982), some interesting 
properties with physical relevance have not yet 
been investigated, primarily because Lorenz par- 
tially scaled the aspect ratio out of the equations, so 
that no meaningful results can be deduced about 
the scale dependence of growth rates and energetics 
without rescaling the equations. 

The second model is a ten-cdticient model with 
which the interaction of two horizontal scales of 
motion can be investigated. Agreement is found 
with &gel's (1962) results in that the flow tends to 
choose a state in which all modes not pertaining to 
a certain, non-linearly selected, scak of motion 
decay to zero, even if they would grow according to 
linear theory. The steady-state convective solution 
is almost always equivalent to the steady-state 
convective solution of the Lorenz model, i.e., a 
symmetric roll circulation with a definite aspect 
ratio. Which mode is selected depends strongly on 
the external parameters of the problem (the Prandtl 
number and the Rayleigh number) and the initial 
conditions. There is a preference for a larger scale 
at high Rayleigh number and low Prandtl number. 

2, To basic equations and boundary 
conditions 

We shall consider convection in two dimensions 
(x, L), between two rigid horizontal boundaries. At 
the lower boundary ( L  = 0), the temperature To is 
maintained and at the upper boundary (z  = h), the 
lower temperature To - AT is maintained. It is 
convenient to divide the temperature field into two 
parts in the following way: 

where 

The parameter r is called the lapse rate; cp is the 
specific heat of dry air at constant pressure; 6is the 
deviation from the linear temperature profile that 
would prevail in the absence of convection. 

Two equations describing two-dimensional dry 
convection are the vorticity equation and the 
thermodynamic equation, respectively: 

av' y 86 -- - V + ga- + vV4 w, 
at a x  

a6 av -= W + r - + k V ' e ,  
at ax 

(2.3) 

where w is the stream function, g is the acceleration 
due to gravity, a is the thermal expansion 
coefficient, v and k are the (constant) eddy diffusion 
coefficients of momentum and heat, respectively, 
W = J(0, w) and Y = J(V2w, v), J being the 
Jacobian operator and 

W is advection of temperature and Y is advection 
of the y-component of the vorticity (=VY). Eq 
(2.3) and (2.4) are based on the Boussinesq 
approximation (e.g. Spiegel and Veronis, 1960). 
Their derivation can be found in Saltzman (1962). 

We will assume stress-free boundary conditions 
at L = 0 and L = h, i.e. 

w = 6 = 0  when t = O  and r = h .  (2.5) 

Lateral boundary conditions are cyclic. 

3. Spectral repmentation 

In this section a spectral representation of the 
eqs. (2.3) and (2.4) will be derived. From this 
representation, truncated models, describing the 
evolution in time of only a few scales of motion will 
be derived. We will first cast the equations in 
non-dimensional form, by writing the variables of 
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the problem in terms of non-dimensional variables, 
denoted by primes, as follows: 

h h 
x=-x ' .  z = - z Z ' ,  

n n 

(3.0 

Introduction of these transformations in (2.3) and 
(2.4) and dropping the primes leads to 

aQ2 ty ae -- - V + 0-  + uQ' I//, (3.2a) 
a1 ax 

(3.2b) 

where 

u = vlk the Prandtl number, (3.3) 

gurh4 
Ilk 

R = -  the Rayleigh number. (3.4) 

From (3.2a. b) we see that u determines the 
relative importance of the non-linear terms. By 
dividing (3.2a) by u we see that, as u becomes 
larger, W becomes relatively more important than 
V. I f  u is very small, V is relatively more important 
than W. 

Let us assume that the stream function wand the 
temperature 8 can be represented as a sum of 
Fourier components having a fundamental wave- 
length nLlh = 2nla in the x-direction and 2n in the 
z-direction as follows: 

w = 1 1 vI.,(r)exp W a x  + )I:)}. ( H a )  
I L 

I I n - - #  

where / is the horizontal wave number, n is the 
vertical wave number and a is equal to 2hlL. a is 
therefore inversely proportional to the aspect ratio 
of the domain, L l h .  and 8 are formally defined in 
the range 0 Q x < 2nla and -n < z Q n. The region 
of physical interest is 0 Q z < n. We have included a 
mirror image domain (-n < z < 0)  because we 
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want to describe, among other things, a funda- 
mental flow with half a wave length in the vertical, 
while retaining orthogonality of the basis functions. 
The coefficients wr.,(l) and 8,&) are assumed to 
be real. A factor i has been incorporated in (3.5b) 
so that ly and 8 of like horizontal wave number will 
be 90° out of phase, which is required in the linear 
solution, but not necessarily in the non-linear 
solution. 

A convenient simplification of the notation, 
introduced by Kuo  and Platzman (1961). results if 
we regard the pair of integers (1. n )  as a vector. The 
notation 8, where a = ( I ,  n) may then be used in 
place of 

Sub, I) = exp I i(1a.x + nz)}. 

The expansion can then be written as 

We further define the function 

(3.6) 

(3.7a) 

(3.7b) 

where lu means a sum over all integral lattice 
points in the plane of a = (/,n). The orthogonality 
of the S,, may be expressed in the form 

where the asterisk designates a complex conjugate, 
while 6 is the Kronecker delta. The integration 
extends over the region 0 < x < Znla, -n < z < + n 
and do is an area element divided by the total area 
4n21a. Substitution of (3.7a. b) into the governing 
equation (3.2a. b) and projection of the result on a 
certain wave vector y gives a set of simultaneous 
ordinary differential equations for the joint 
evolution of  and 8,of the form 

(3.9a) 

d6;. 
dr 

(3.9b) -- - a/,Ra I,.- k$8,+  W,, 

where k! = a2 f; + n; and Ra = R / ( d ) .  By scaling 
length with h l n  and defining a modified Rayleigh 
number, Ra. as above, we shall see that all factors n 
disappear out of the spectral equations. 

The heat advection spectrum W, and the 
vorticity advection spectrum V ,  are found by 
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projecting W and Y on the wave vector y as 
follows: 

W,= 1 -is: Wdo, (3.10a) 

Y,= .fS: Ydo. 

This leads to 

(3.10b) 

(3.1 la) 

(3.11b) 

where we have introduced the coupling coefficients, 

(3.12) 

The evaluation of the above integral gives 

Ld=a( lanp- lpnJ dy.a+pr (3.13) 

where 6 is again the Kronecker delta. Therefore the 
coupling coefficient vanishes unless the selection 
rule 

y = a + P  (3.14) 
is satisfied. In scalar form this means that 

I , =  I .  + Is, ny=  na+ n,q. (3.15) 

From (3.13) it can be seen that 

L;@ = -L*. (3.16) 

From this, we can deduce that the interaction of a 
wave component with itself to itself is impossible. 

The boundary condition at L = 0 is fulfilled only 
if 

w. - m  = -w/."(r), (3. I7a) 

eI.-m = -8/.m (3.17b) 

We shall assume that the horizontal dependence of 
w and 8 is represented by a sine and a cosine series, 
respectively. Therefore 

v- / .m = -v/."(rh (3.18a) 

8-l.,(t) = e l m  (3.18b) 
We shall use relations (3. I7a, b) and (3.18a, b) to 
eliminate the negative wave number amplitudes out 
of the truncated versions of eqs. (3.9a. b). 

4. Energetics 

The total kinetic energy is defined as 

K=fJ ' (u '+  w')do. (4.1 ) 
Since u2 + w' = (Vw)' = V(wVw) - *V' 1y1 

K =  -4 J wv'wdo, (4.2) 
because I V( ...) do = 0. Inserting the expansion 
(3.5a) into (4.2) and making use of the orthogon- 
ality relation (3.8) we get 

(4.3) 

We define the kinetic energy in the component y as 
K, = 4k; The spectral kinetic energy equation is 
found by multiplying (3.9a) by kf vy giving 

(4.4) 

From the above equation, we see that the second 
term on the right-hand side acts dissipatively. The 
dissipation of kinetic energy D, for the wave 
component ycan be written 

D, = 2t~k,!K,. (4.5) 

D, is a quadratic function of the total wave number 
k,.. It is evidently greatest in the smallest scales. The 
first term on the right-hand side of (4.4) represents 
conversion of a potential energy into kinetic energy 
IP, Kl. This is, among other things, a linear 
function of the horizontal wave number I,. Note 
that the potential energy of modes with I, = 0 (the 
mean temperature stratification) is not directly 
available for transformation into kinetic energy. 
Fig. 2 shows the qualitative consequence of the 
quadratic wave vector dependence of the dis- 
sipation and the linear horizontal wave number 
dependence of the forcing. At a certain Ra (= Ra3 
the forcing exceeds the dissipation in only a finite 
band of wave numbers. This represents the linear 
scale selection. We shall see that the non-linear 
terms can bring about a further scale selection. 

We define potential energy in the same way as 
Shirer and Dutton (1979): 

P = -+J J' 8'do. (4.6) 

Substituting the expansion (3.5b) into (4.6) and 
making use of (3.8) and the fact that 8,. = -8,. we 
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0, (n=l )  

[ P K ]  at Ra = Ra, 

Fig. 2. Qualitative picture of the dependence of the 
dissipation and the kinetic energy generation on the 
horizontal wave number. Only in a finite band of wave 
numbers around the critical wavenumber I ,  does the 
kinetic energy generation exceed the dissipation. 

arrive at the spectral expression for the potential 
energy: 

(4.7) 

Adding together the energy contents of all the 
wave components and using the symmetry 
relations (3.17a. b) and (3.18a. b) and assuming no 
mean horizontal flow. we obtain the total kinetic 
and potential energies as follows: 

(4.8) 

The first term on the right-hand side of (4.9) 
represents the potential energy of the mean 
temperature stratification, which is not directly 
available for transfer into kinetic energy. The 
Tellus 36A (1984). 5 

second term on the right-hand side of (4.12) is the 
available potential energy, AP. 

Before concluding this section, we mention an 
interesting parameter which measures the impor- 
tance of convection, namely the Nusselt number. 
Nu. N u  is the ratio of the actual steady state heat 
transport rate to the conductive heat transport rate. 
It is given by (Kuo and Platzman, 196 I): 

I d e  
Ra dz 

N u  = I - - (->,=; (4.10) 

where the angular brackets denote a horizontal 
average. Substituting into (4.10) the expansion 
(3.5b) and using (3. I7b) we obtain, 

N u  = I + I x  he,. .. 
Ra 

n =  I 

5. The stability of the state of rest 

(4. I I )  

I t  is well-known (see e.g., Kuo and Platzman, 
1961) that the system (3.9a. b) becomes linearly 
unstable for all those modes which have a so-called 
critical modal Rayleigh number, Racay, which 
satisfies the criterion 

(5.1) 

Ra,. is a minimum when a/,. = “;.Id2 and n;. = 1. 
This means that a roll with a horizontal length- 
scale which is 2 \/i times greater than h is the first 
unstable convection roll when Ra is increased from 
zero. It becomes unstable at Ra = 2714. 

We say that all wave modes y, for which Racay < 
Ra, are sevexcited. These modes can draw energy 
directly from the mean unstable temperature 
stratification. Other modes will only be able to 
receive energy through the non-linear terms. It can 
be seen from (5.1) that all modes with n,. > I have a 
critical modal Rayleigh number which is at least 
one order of magnitude greater than the modes 
with ni.= I (the so-called “single vertical modes”). 
The first unstable mode with ny = 2 corresponds to 
al; = 2 1 4  and Ra,? = 108. Therefore, because 
they are self-excited, the single vertical modes will, 
in general, play an active r61e at relatively low Ra, 
while all the double vertical modes (n, = 2) are 
passive for Ra < 108, because they can only 
receive energy from the former modes through the 
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non-linear terms. Higher order vertical modes (n, > 
2) are progressively less important, because dis- 
sipation increases with nf while forcing does not 
increase. 

6. The interaction of one scale of motion 
with the mean temperature 
stratification: the Lorenz model 

In this section, we will investigate the interaction 
of one scale of motion with the mean temperature 
stratification. To this end, we truncate the expan- 
sions (3.5a. b) by basically considering only the 
following wave vectors: ( I ,  I )  in the W-expansion 
and (I ,  I )  and (0,2) in the &expansion. Of course, 
we have also to consider the mirror images in the I- 
and n-axis of these wave vectors, but the 
coefficients corresponding to these wave vectors 
can be eliminated with the help of symmetry 
relations (3.17a. b) and (3.18a. b). We will 
therefore derive ordinary differential equations 
describing the time-evolution of the following three 
coefficients: 

The model which results is equivalent to the Lorenr 
(1963) model. It describes a completely symmetric 
roll circulation with an aspect ratio ( L l h )  of 2/a 
(see Fig. 3). We can adjust the aspect ratio of the 
roll (by varying a), but not its shape. From eqs. 
(3.9a, b), we can easily deduce the non-linear 
equations giving the time evolution of X, Y and 2. 
The only non-linear interactions involved are the 
following: ( I ,  - I )  and (0.2) interact to contribute 
to the advection term corresponding to wave vector 
( I ,  I), and (I ,  I )  and (-1. I )  interact to contribute 

to (0.2). Other interactions are not permitted due 
to selection rule (3.15). We ignore all interactions 
with wave vectors outside the truncation. In this 
way, the non-linear terms are energy conserving, 
which is a property of all low-order spectral models 
in which advection terms are the only non- 
linearities (Lorenz, 1982). We then obtain the 
following model equations: 

- L L 

Fig. 3. Stream-line panern of the circulation described 
by the Lorenr model. 

A 

X =  

dX a6 -- -- Y - u(a2 + I)X, 
dt u2 + 1 

(6.1 a) 

dY -- - a  Ra X - (a2 + I )  Y - t X Z ,  (6.Ib) 
dt 

- dz 
dt 
-- - 4 2  + 4aXY. (6.14 

The system is forced through the first term on the 
right-hand side (r.h.s.) of (6. Ib). This feeds into the 
equation of motion through the first term on the 
r.h.s. of (6.la). This in turn leads to stabilization of 
the mean vertical temperature profile through the 
non-linear term in (6.1~). as &.* represents the 
departure of the vertical temperature stratification 
from the initial linear variation. Through the 
non-linear term in (6.Ib). this inhibits further 
growth of the temperature perturbation Y or of 
available potential energy. In this way, the system 
is driven to steady-state convection in which a 
non-linear mean temperature profile is maintained 
against dissipation. Eqs. (6. la, b, c) differ slightly 
from the original Lorenz equations because Lorent 
used a to scale temperature and stream function. 
He thereby partly scaled the aspect ratio out of the 
problem. 

To find the steady-state solutions of (6.la, b, c), 
we set all time derivatives equal to zero. We see 
directly that one possible steady state is (X, Y, 2) 
= (0, 0, 0). i.e., the state of rest. The stability of 
rest can be investigated by linearizing the equations 
(6.la. b, c) around this stead,y state, which can 
then be written compactly as X = MX, where the 
dot represents a time derivative and 

. .  
X 
Y 
z - .  

, M =  

0 0 -4 “1. aRa -(a*+ I )  
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The only eigenvalue of M which can become 
positive is 

a, = -t(d + I)(u + I )  

+ =? u’+ I 

This eigenvalue can be interpreted as the (exponen- 
tial) growth rate of the intensity of convection when 
no non-linearities are taken into account. It is a 
complicated function of u, Ra and u. The growth- 
rate is positive when 

The equations (7.2) have two other steady-state 
solutions, namely 

(6.4a) 
and 

1. ( X ,  Y, Z) = (&;:+I) , T ’ T  
-(d + I)r  r2 

(6.4b) 
where r = (Ra - Ra,)1’2. These two solutions 
represent steady-roll circulations with opposite flow 
directions. We will call this steady circulation a 
“Lorent roll”. It is actually equivalent to what 
Segel (1962) called a pure state. Solutions (6.4a, b) 
are also exactly equivalent to the second-order 
steady-state convective solution obtained in the 
perturbation approach by Kuo and Plattman 
( 196 I). 

The steady-state kinetic energy is found by 
substituting the steady state value of X into (4.8): 

where Ra, is given by (6.3). The steady-state 
kinetic energy is therefore a function of u and Ra 
and independent of u. It is a straightforward matter 
to calculate the position of the maximum of K on 
the u-axis as a function of Ra. The result is plotted 

in Fig. 4. Also shown is the position of the 
maximum of the growth rate 1, as a function of u 
and Ra for u = I, u = 10 and u = 50 (there is only 
one maximum in 1, for each value of Ra!). The 
maximum growth rate curves are symmetric about 
u = I ,  that is, the curve for u = a,, is the same as 
the curve for u = l/uw Even though the maximum 
growth rate shifts to higher u (lower aspect ratio) as 
Ra is increased, the maximum value of the 
steady-state kinetic energy shifts to lower a (higher 
aspect ratio) as Ra is increased. This can be 
understood by noting that the non-linear terms in 
(6.lb. c) contain a factor a. The consequence of 
this is that a roll with low u does not stabilize the 
mean temperature profile as quickly as a roll with 
high u. In other words, the non-linear terms 
moderate the exponential growth rate less effec- 
tively in larger scales of motion. At Ra = 100 (in 
the atmosphere this would be R = 1 0 0 ~ ‘  5 lo4, 
which is a typical order of magnitude of Ra in a 
polar outbreak (Krishnamurti, 1975)), the maxi- 
mum in K is located at u = 1/3, which corresponds 
to an aspect ratio of 6. If the circulation chooses its 
aspect ratio such that the kinetic energy in it is a 
maximum, this could explain the increase of the 
aspect ratio of rolls as Ra increases. This decrease 
in u in conjunction with an increase in Ra is also 
observed in polar outbreaks of air over a warm 
ocean (Walter, 1980) (see Fig. I). As the air flows 
out over the ocean, the depth of the convective 
layer, h, increases steadily due to penetrative 
convection. Since Ra is proportional to h4, Ra 
increases as the air travels farther over the ocean. 
Walter reports values of Uh increasing from 2.8 to 
about 7 as cold air travels southwards over the 
Bering Sea. Eventually the rolls go over into three 
dimensional cells whose aspect ratio keep increas- 
ing. At this stage, latent heat forcing due to 
condensation and evaporation undoubtedly plays a 
significant r6le. To find out whether the flow indeed 
chooses the larger scale, we have to study the 
competition between different scales of motion. 
This is not possible with the Lorent model because 
it contains only one scale of motion. 

By substituting the steady state value of Y into 
(4.9). we find the steady state available potential 
energy: 

-(a2 + 1)’ 
0 2  

AP = 4Ra - Ra,). (6.6) 
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500- 

2 50. 

m a 

probably choose the first most pronounced 8. 
minimum, certainly if Ra increases gradually from 
zero, because there is then only one minimum 
initially. 

The sharp minimum in the steady-state avail- 
able potential energy, however, does not cot- 
respond to a maximum in the steady state kinetic 
energy. To see for which scale the circulation 

-LO 

-60.) 

MAXIMUM I N :  
Y KINETIC ENLRGY 

A (3: 10 GROWTH RATE 
0 0 :  1 I * a=so 

- 
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O; 0.7 1.4 2.1 2.8 3.5 

a 
Fig. 4.  Position of the maximum growth rate (for dflwent a-values) and the maximum steady-state kinetic energy on 
the a-axis as a funaion of Ra. 

(6.7) Fig. 5.  The available potential energy (AP) divided by 
Ra as a function of u for various values of Ra (a = I). 
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If we substitute (6.5) and (6.6) into (6.7). we find 
that 

I 
uRa, 

e=-. 

Therefore, kinetic energy is produced most ef- 
ficiently from available potential energy if a = 
l / f i  ( L / h  = 2 fi) for all Ra. 

Following the theory of Malkus (1954). it has 
often been assumed that the preferred aspect ratio 
is that which maximizes the heat flux, or Nusselt 
number. Substituting Z = rY2 into (4.1 I )  we get 
the following expression for Nu: 

2 2 Ra, 
N U =  I +-(Ra-RaC)=3-- . (6.9) 

Ra Ra 

This is exactly equivalent to the expression for Nu 
obtained from second-order perturbation theory by 
Malkus and Veronis (1958). From (6.9). we see 
that Nu is maximized when a = I / v ~  for all Ra. 
Thus, the heat flux will not be maximized (in 
two-dimensional convection) if that scale is selected 
which maximizes the kinetic energy. It will, 
however, be maximized if that scale is chosen 
which makes the conversion of potential energy 
into kinetic energy most efficient. The steady state 
heat transport is also independent of u. 

The above heuristic selection principles cannot 
give us a definite answer to the question of the 
preferred scale of motion. They give different 
answers, although a larger scale than the first 
self-excited scale (a = ~/fi) is sometimes prefer- 
red, while a smaller scale is never preferred. 
Another approach to this problem is stability 
analysis. The stability of steady convection to 
infinitesimal perturbations can be investigated by 
determining the eigenvalues of the matrix M 
corresponding to eqs. (6. la, b, c), linearized around 
the steady states given by (6.4a, b). The matrix 
becomes 

au 
-a(az+ I )  - 

( a z +  I )  

f i ( a * +  2ar I )  I M = l  aRa, -(az + I )  f 

-4 J 4ar 
d ( a *  + I )  

T 

(6.10) 

(. 
a 

0 7  
0 QB 1.6 2.4 32 4 

a 

Fig. 6. The stability of steady convection as a function of 
u and Ra at u = 10. 

The eigenvalues of M as a function of u and Ra can 
be determined numerically by the standard method 
of Eberlein (see Wilkinson and Reinch, 1971). The 
result for u = 10 (which is the U-value which was 
chosen by Lorenz) is presented in Fig. 6. Only 
regions where all real parts of the eigenvalues are 
negative (stable steady convection) or regions where 
at least one real part of an eigenvalue is positive 
(unstable steady convection) are shown. We find 
that steady convection is unstable when Ra 2 167 
for a roll with a = I/&. Lorenz analytically found 
a value of p = 24.74 (Ra I 4 p )  for the onset of 
instability of steady convection at a = l / f i  and 
u = 10, which means that our result is in agreement 
with that of Lorenz. We also find that the minimum 
value of Ra (=163) for instability of steady 
convection is located at a = 0.77 ( L / H  = 2.6). The 
curve separating stable steady convection from 
unstable steady convection is dependent on u, while 
the curve separating steady convection from rest is 
not. It is also evident from Fig. 6 that the Lorenz 
roll with a larger aspect ratio than 2 4  is stable for 
larger Ra. 

The stability diagram of steady-convection as a 
function of u and Ra for a = I / Z f i ,  a = I / &  
and a = 2/d2 is shown in Fig. 7. We see that the 
Lorenz roll with the greatest aspect ratio is stable 
"innerly" for the greatest values of Ra when I < 
u < 50. The stability of the Lorenz roll to penur- 
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1 l o  50 
U 

Fig. 7. The stability of steady convection as a function of 
oand Re for various values of u 

bations in other scales of motion, the so-called 
“outer stability” of the Lorenr roll, is a matter that 
will be discussed in Section 7. Lorenr’s analytical 
result that for 

4 
U < -  + I ,  1 +a*  

steady convection is stable for all Ra is verified in 
Fig. 7. 

As was noted before, the curve separating 
steady from unsteady convection is dependent on 
u. The value of a where steady convection first 
becomes unstable as Ra is increased, urn*, is 
therefore also a function of u and is plotted in Fig. 
8, as well as the value of Re, Ramin, at which this 
happens. We see that urnin shifts to higher wave 
numbers as u is decreased and it is very tempting to 
say that amIn eoes to V f i  as u goes to infinity. 
However, the numerically calculated points are not 
located exactly on the smooth curve. This could be 
a numerical inaccuracy, although until now, all 
Lorenr’s analytical results have been verified with 
relatively very high accuracy. Besides, the values of 
Ramin do lie on a smooth curve. Nevertheless, we 

0 1 0 2 0 3 0 4 0 5 0  
U 

Fig. 8. amin (0) (the value of u at which steady 
convection first becomes unstable when Ra is increased) 
and Ramin (x)  (Ra-value at which this happens) as a 
function of u. 

can say that for all u < 50, amln > I/&. We can 
thus conclude that a Loren2 roll with an aspect 
ratio just greater than 2 f i  will probably be 
favoured over a Lorenz roll with an aspect ratio 
just smaller than 2 f i  as Ra is increased. 

For Ra > 167, u = 10, a = l / f i ,  for example, 
there are no steady states. All trajectories must 
however stay in a finite region of (X, Y, 2)-space, 
because the system is dissipative. Lorenr in- 
vestigated the behaviour of the system at Ra = 
Rae, u = 10 and u = I / @  He found that the 
solution was non-periodic and that it stayed in a 
complicated region in (X, Y, 2)-space. This region, 
later termed a “strange attractor”, looks roughly 
like a two-dimensional surface. Any solution 
wanders through this region and, given sufficient 
time, will eventually pass arbitrarily close to every 
point in this region. Dynamical processes which 
exhibit this property are sometimes called 
“chaotic”. Lorenz concluded that these findings 
were not very hopeful for medium- to long-range 
deterministic weather prediction. 
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Almost all literature on the Lorenz model has 
concentrated on the chaotic properties of its 
solution. 

7. A low-order model including 
interaction between different scales 
of motion 

In  this section, we will derive a set of equations 
describing the interaction between two horizontal 
scales of motion or, more specificdly, the inter- 
action between two single vertical modes with 
neighbouring horizontal wave numbers, equal to j 
and j + 1. According to the selection rule (3.15). 
these wave modes, however, cannot exchange 
energy with each other without the mediation of a 
double vertical mode. The only modes which are 
excited due to the interaction of (j, I )  and ( j  + I, I )  
are ( I ,  2) and (2 j + I ,  2). We will therefore also 
include these wave vectors in our model. It should 
be stressed that we have assumed no inflow at the 
lateral boundaries, which means that the mean 
shear coefficients, vO.,,, must be equal to zero. We 
will also take (0.4) in addition to (0.2) for the 
temperature, because this gives a more realistic 
representation of the vertical temperature 
stratification, especially at high Ra. It  also ensures 
that each wave mode has a direct stabilizing 
influence on the mean temperature stratification. 
O0., and OOs3 have been left outside the truncation 
because they separately imply that the mean 
temperature perturbation 8 is non-zero. Moreover, 
these modes can only be excited when we choose j 
such that we have a single vertical mode and a 
double vertical mode with identical horizontal wave 
numbers. This is only the case when j = 1. Note 
that we have not confined ourselves exclusively to 
even-parity modes (if (I, + n,) is even, then y has 
even parity; if (I, + ny) is odd, then y has odd 
parity). In many non-linear studies (e.g., Kuo and 
Platzman, 196 I ; Veronis, 1966) the ( I ,  I ) mode (an 
even parity mode) is considered to be the only 
self-excited mode, while all other modes are created 
by non-linear interactions. According to (3.15). the 
odd-parity modes would then never be excited. 
Therefore odd-parity modes are ignored in these 
studies. An effect which is thereby neglected is that 
there could very well be odd-parity modes which 
are self-excited. In the following sections, we will 
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investigate the interaction between two second- 
order Kuo and Platzman (1961) solutions of 
opposite parity. 

The coefficients are defined as follows: 

The system of ordinary differential equations 
describing the evolution in time of these ten 
coefficients is: 

k j  - kl. dA aju - = - ~ - u k : A - ( Z j +  I)a- 
dr kf,  k: 

k:) - k j  
x BC-a- BD, 

k: 
(7.1) 

dB a ( j +  I )  OF- ok: B - ( 2 j +  Ila- k:. - k: -- -- 
di k: k: 

k:) - k: 
x A C + a -  AD, 

k: 
(7.2) 

dC aju k j  - k: 
-=- G - a k i C + ( Z j +  ])a- AB, 
dr k:. k i  

(7.3) 

dD a ( 2 j +  I )  k j  - k: 
uH - uki D - a - AB, -- - 

dr k:, k:, 

x aCF - aBH - aDF - 2jaA1, (7.5) 

d F  
- = a ( j +  I )RaB-k:F- (2 j+  I)aAG 
di 

+ ( 2 j +  I ) aCE+aAH+aDE-2( j+  I)aBI, 

(7.6) 
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dG 
dr 
-- -ajRaC-k:.G+ ( 2 j +  I)aAF 

+ (2 j  + I )  aBE - 4aCJ. (7.7) 

dH -- - a(2j + I )  Ra D - k; H - d F  + aBE 
dr 

- 4(2j + I )  aDJ, (7.8) 

d l  
- = -41 + 4 j d E  + 4( j  + I)aBF, (7.9) dr 

d J  -- - -16J + 8aCG + 8(2j + I)aDH, 
dr 

where 

k: = u2j2 + I ,  k: = a z ( j  + 
k i  = uz + 4, kh = a’(2j + 1)’ + 4. 

(7.10) 

+ I ,  

The first four equations describe the velocity field 
and the last six equations describe the temperature 
field. A good method to check whether we have 
made any mistakes in deriving these equations is to 
verify that the non-linear terms conserve energy as 
defined in Section 4. 

There are three types of non-linearities in this 
model; 

(i) advection of vorticity or redistribution of 
kinetic energy between different scales of motion, 
described by the non-linear terms in (7.1) to (7.4); 

( i )  advection of temperature, which can be split 
into two types: (a) redistribution of available 
potential energy between different scales of motion, 
described by the first four non-linear terms in eqs. 
(7.5) and (7.6) and the first two non-linear terms in 
eqs. (7.7) and (7.8); (b) stabilization of the mean 
temperature stratification, described by the remain- 
ing non-linear terms in (7.5) to (7.8) and all the 
non-linear terms in (7.9) and (7.10). 

This model therefore contains all the different 
physical mechanisms which are responsible for 
non-linear behaviour in thermal convection. The 
Lorenz model only contains the third type of 
non-linearit y. 

Note that a (the aspect ratio of the domain) and j 
(the wave number of the 
parameters. If we let a = 1/2 

( j  + I, I )  or (2, I )  wave mode corresponds to the 
first self-excited mode with Ra, = 6.75. The (j, I)- 
or ( I ,  I )  wave mode has double the aspect ratio and 
becomes linearly unstable at Ra = 11.39. The two 
double vertical modes (I,2) and (2 j  + 1,2) or 
(3.2) have critical modal Rayleigh numbers of 
561.5 and 119.65, respectively. Because these wave 
modes are linearly damped up to such high 
Rayleigh numbers, they will not play such an active 
r6le as the two single vertical modes. They actually 
serve as a (non-linear) syphon of energy between 
the two competing single vertical modes. According 
to (6.3). the (2, I )  wave mode will have the greatest 
growth rate for all values of Ra. In Section 6, we 
saw that as the Rayleigh number is increased, the 
maximum in the kinetic energy shifts to rolls with 
greater aspect ratio. We also saw that a roll with 
large aspect ratio was innerly stable for larger Ra 
than a roll with small aspect ratio. From this, we 
suspect that at a certain Ra, the (I ,  I )  wave mode 
will be favoured over the (2, I )  wave mode and will 
absorb the energy in the (2, I )  wave mode through 
the non-linear terms, because, in contrast to the 
Lorenz model, this model has non-linear terms 
which describe energy transfer from one scale to 
the other. 

The 10-coefficient model reduces to the Lorenz 
model if we ignore the coefficients B,  C, D, F, G, H 
and J or A, C, D, E,  G, H and J .  It thus contains 
two possible Lorenz roll solutions simultaneously. 
If we choose a = I / 3 d  and j = 3 and ignore the 
coefficients D, H and J,  the system reduces to the 
7-coefficient Saltzman ( 1962) model. 

Since the system of eqs. (7.1)-(7.10) is highly 
non-linear, it is not easy and straightforward to 
determine all steady states and their stability. We 
can however, by simplifying the equations in a 
certain way (Section 8) and by numerical experi- 
ments (Section 9). gain some insight into the 
qualitative behaviour of this model and see which 
steady states are important. After that (in Section 
10) we will determine the stability of these solutions 
as a function of u and Ra for certain choices of a 
and j, more accurately. 

8. An approacb to non-linear scale 
selection 

We will first investigate the qualitative behaviour 
of the first type of non-linearity (vorticity advec- 
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tion), which is dominant when u is smaller than 
one, using some ideas developed by Haken ( 1978). 
This will give us some qualitative idea of how 
non-linear scale selection works. Eqs. (7.1H7.4), 
describing the velocity field, can be written as 
follows: 

kj  - k: 
BC 

dA 
-= d A A - ( 2 j +  I l a -  
dr k f  

k: - k2 - I ,  B -(2j  + 114 - A AC 
dB -- 
dr k: 

kk - k f  
+ a -  AD, 

k: 

dD k j  - k f  - = ADD - a - AB, 
dr kk 

(8.4) 

where lA, l a ,  & and l o  are so-called relaxation 
“constants”, through which we have parameterized 
the linear terms, namely, the dissipation and the 
linear effect of the temperature field on the velocity 
field. If we do not ignore the non-linear terms in 
(7.4)-(7.10), we cannot say much about the 
relaxation “constants”, which are then far from 
constant. If we do ignore these terms, we can say 
that, as long as Ra is smaller than the critical 
modal Rayleigh number of either of the double 
vertical modes and greater than the critical modal 
Rayleigh number of either of the single vertical 
modes, 1, and I ,  are positive and & and l o  are 
negative. If we assume u = 1 / 2 4  and j = 1, then 
this assertion is valid for 11.39 < Ra < 119.65. If 
we assume u = l / f i  a n d j  = 1, it is valid for 
13.5 < Ra < 108.5. We can then apply a so-called 
“adiabatic elimination technique” developed by 
Haken (1978). This consists of eliminating the fast 
relaxing variables (in this case C and D) by 
assuming that they follow the self-excited modes (A 
and B) exactly (adiabatically). This means that C 
and D are always in equilibrium with A and B. In 
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that case, we can assume that the time derivatives 
of C and D are zero. This leads to 

k j -  k: 
C=-(2 j+  1)a-  

k i &  AB’ 

&:- k: 
D = a -  A B. 

kh I D  

(8.5) 

(8.6) 

Because C and D are not self-excited, they are 
completely dependent on A and B for their energy. 
Therefore, they can never take the initiative, and 
thus must “obey” the orders of the so-called “order 
parameters” A and B. Neverthekss, C and D play a 
crucial r6e in that they serve as the non-linear 
coupling between the order parameters. In other 
words, all energy flowing from A to B, or vice 
versa, has to flow through C and D. 

Elimination of C and D in (8.1) and (8.2) with 
the help of (8.5) and (8.6) leaves us with, 

dB -- - ( l a  - P Z  A’) 4 dr 

where 

a’(kj - k f )  
PI = 

k: 

( 2 j  + I)’ ( k j  - &:) (kk - k j )  

-a2(k: - k:) 

k: 
P2 = 

(2 j  + 1)’ (k; - k f )  (kk - k f )  + .[ k:& kk AD 

p1 and p2 are certainly positive when k i  > kj .  This 
condition is always satisfied for the choices of a 
and j we will henceforth make, i.e., choices such 
that the scales we consider have aspect ratios in the 
neighbourhood of 2 4 .  For instance, i f j  = 1, then 
a < 1 for pI  and p2 to be positive. Eqs. (8.7) and 
(8.8) describe the competition of the order 
parameters A and B among each other. Looking at 
these equations, we notice the remarkable fact that 
A, if great enough, can cause B to damp out, while 
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B cunnor do the same thing with A. On the 
contrary, if B becomes large enough, it can excite A 
and therefore supress itself. From this, we conclude 
that it is very likely that there is a Rayleigh number 
range (high Ra) in which the largest scale ( A )  will 
take over all the energy from the smaller scale (B). 
In Haken’s words, we say that the mode A then 
“slaves” the other modes. The fact that one mode 
can slave all the other modes, even if some of them 
are linearly unstable, is an intrinsically non-linear 
phenomenon which accounts for the surprising 
degree of order in many non-linear systems which 
are kept far from equilibrium. Eqs. (8.7) and (8.8). 
however, only say something about how kinetic 
energy redistribution between different scales of 
motion by vorticity advection influences scale 
selection. We therefore expect that these equations 
are qualitatively valid only for low 6. An il- 
lustration of these equations will be shown in 
Section 9. 

In the context of this section, the papers by 
Fj0rtoft (1953) and Merrilees and Warn (1975) on 
the changes in the spectral distribution of kinetic 
energy for two-dimensional non-divergent flow 
should be mentioned. Because both enstrophy and 
kinetic energy are conserved in two-dimensional 
non-divergent flow, more kinetic energy usually 
flows from an intermediate scale to a larger scale 
of motion than from an intermediate scale to a 
smalkr scak. Therefore the larger scale is favoured 
over the smaller scale, which is in agreement with 
our result. However, our result is based on a com- 
pletely different argument. It is crucial in our 
deduction that some modes should be linearly 
damped, i.e. have negative A‘s. This is not needed in 
the inviscid theory of Fj0rtoft and its correction by 
Merrilees and Warn. 

9. Some numerical integrations 

We now have a qualitative idea of how non- 
linear scale selection could work. In this section we 
turn to numerical integration of the system (7.1)- 
(7.10), showing that the larger scale indeed takes 
over at higher Raykigh numbers and illustrating 
the qualitative behaviour of the competition eqs. 
(8.7) and (8.8). 
Eqs. (7.1)-(7.10) withj = I and u = 1 / 2 4  are 

integrated using Young’s (1968) method A (doubk 
forward, centred) with a non-dimensional time step 

Al = 0.005 and with all coefficients initially equal 
to zero. We performed an integration of 1200 
non-dimensional time-units and let Ra increase 
linearly in time from 0 to 200. We also imposed a 
random forcing in the form of finite-amplitude 
perturbations on the components A, B, C and D. 
Each time step a perturbation equal to & was 
added to these four components. The sign of the 
perturbation was picked at random. This numerical 
experiment is a crude approximation to what 
happens in a polar outbreak and also to the 
laboratory experiments performed by Willis et al. 
(1972). although the time scales are different. The 
Prandtl number is fixed at one, which is a realistic 
value for the atmosphere. In Fig. 9, the amplitudes 
of the stream function field wave vectors are plotted 
as a function of the Rayleigh number (or time). We 
see that there are three discreet transitions. In the 
beginning, only the smaller scak ( B )  grows to a 
finite value, while the others stay very close to zero, 
i.e. are slaved by B. The system in fact settles into a 
steady state which is equivalent to the Lorenz roll 
solution (6.5a) with u = I/& (aspect ratio equal 
to 24). The slaving of A by B must be due to 
temperature advection. Between Ra = 66 and Ra = 
76, the system suddenly evolves to a new solution 
which is equivalent to the Lorenz roll solution 
(6.5a) with u = 1/24 (aspect ratio equal to 

9 f  

10 80 120 160 200 
Ra 

Fig. 9. The coefficients A (solid line), B (broken line, 
long dashes), C (broken line, medium size dashes) and D 
(broken line, short dashes) as a function of Ra (or time) 
in a numerical integration of the loooeRicicnt model 
(with perturbations (=lo-’) imposed on the four 
coefficients shown, with u = V 2 4 . j  = I, u = I), in 
which Ra was increased linearly in time from 0 to 200 
over I200 time units. 
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Fig. 10. Numerical solution of the 10-coefficient model (with u = l /2d2 andj = I) at Ra = 10. u = 0.1 and initial 
conditions consisting of perturbations equal to lo-'* in A (solid line), B (broken line, long dashes), C (broken line, 
medium sue dashes) and D (broken line, short dashes). AU other components are initially equal to zero. 

4\/2). All stream function amplitudes except A 
(the larger scale) decay to zero, even B, which 
according to our linear analysis should have the 
greatest growth rate. Finally, at Ra 5 120, the 
critical modal Rayleigh number of the (3, 2) wave 
mode (coefficients D and H )  is reached. This 
apparently renders the existing pure large-scale 
circulation unstable, because B, C and D start to 
grow slowly, although A stays dominant until the 
end of the integration at Ra = 200. 

Evidently the system in most cases prefers a pure 
state. In Section 10, we will proceed to determine 
the exact stability as a function of Ra and u of the 
two pure states which were selected in the above 
integration. 

Before that, a nice illustration of the qualitative 
behaviour of the competition eqs. (8.1) and (8.8) 
will be presented. A numerical integration at low 
u(=O. I) and constant Ra(= 10) without random 
forcing was performed. The initial conditions con- 
sisted of small perturbations of the stream function 
field only, given by A(0) = B(0) = C(0) = D(0) = 
lO-'*, whereas E(0)  = F(0) = G(0) = H ( 0 )  = I(0) = 
J(0)  = 0. The time step was & = 0.01. The solution 
is shown in Fig. 10. It is almost periodic with a 
relatively long period of about 200 non- 
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dimensional time units. At Ra = 10, the larger scale 
( A )  is linearly stable because it has a critical modal 
Rayleigh number of 11.39. This means that AA is 
slightly negative. As is positive because B has a 
critical modal Rayleigh number of 6.75. Therefore 
A is completely dependent on B for its energy and 
can indeed grow at the expense of B if B is large 
enough. However, it quickly depletes its own 
source of energy and starts to decay. This gives B 
another chance to grow, which, however, again 
leads to growth of A and subsequent decay of B. 
The nearly periodic solution which ensues is 
analogous to the famous predator-prey model of 
Lotka and Volterra (e.g. Haken, 1978). 

10. Stability analysis of the pun states 

In this section, we will determine the exact 
stability as a function of Ra and u of the two 
Lorenr roll solutions or pure states possible in the 
10-coefficient model. This can be done in the 
familiar way of linearizing the equations around the 
steady state and looking for Ra- and U-values for 
which all real parts of the eigenvalues are negative. 
The 10 by 10 matrix M corresponding to eqs. 
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(7.1)-(7.10) linearized around either one of the two 
steady states has the following structure: 

where the steady state is given by (6.5a). i.e., 

Lmatrix J 
M =  with r = (Ra - RaJ1l2 and Ra, = k;/(a* j3, or by 

(6.5b). but this should, and indeed does not, make 
any difference in the eigenvalues. 

If we are determining the stability of the smaller 
scale (the (j + 1, I)  wave mode), the 6 by 6 matrix 
has the form, 

* [:2] -,,i 
The 3 by 3 matrix in M is given by (6.10). The 
eigenvalues of this matrix correspond to the inner 

0 -a&:, 0 
a(2j+ I)o 

0 

0 

qj Ra - 2jaI - (2 j+  I)aF -aF -k: 

( 2 j +  IW qj Ra 0 (21+ I)aB 
-aF 0 (2 j  + I ) a  Ra aB 0 

stability of the Lorenz roll, the stagiity of which we 
are determining. The eigenvalues of the 6 by 6 
matrix in the middk of M correspond to the 
stability of the particular Lorenz roll to 
infinitesimal perturbations in other scales of 
motion. We will call these “outer” perturbations. 
The last eigenvalue is equal to -16, which 
expresses the fact that the vertical temperature 
stratification coefficient 5(6)o4) acts in stabilizing 
way on the flow. We therefore only have to 
determine the eigenvalues of the 6 by 6 matrix. 

If we are determining the stability of the larger 
scale (the (j, I )  wave mode), the 6 by 6 matrix has 
the form: 

where the steady state is given by (6.5a). i.e., 

with r = (Ra - RaJ1’* and Ra = k“,/(u*(j + 
The eigenvalues of MA and Me are determined 

numerically by the same method as used in Section 
6. Again, Rayleigh number ranges are determined 
for which the solution is stable (all real parts of the 
eigenvalues are negative) or unstable (at least one 
eigenvalue has a real part which is positive). The 
result for u = 1 / 2 4  and j = I as a function of u 
and Ra is shown in Fig. I I .  We have conAned 
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01 i 10 50 

Fig. 11. The stability of the two possible Lorenz roll solutions to the 10-coefficient model as a function of u and Ra 
when u = 1/2\/2 and j = 1. Broken (solid) lines separate innerly (outerly) stable from innerly (outerly) unstable 
regions for the two Lorenz rolls. Thick lines correspond to the large scale Lorenz roll (A: aspect ratio = 4fi) and 
thin lines correspond to the small scale Loren2 roll (B: aspect ratio = 2fi). The letters A and B denote the stability 
of that particular mode in that particular region of parameter space. In the hatched regions there is no stable Lorenz 
roll. 

ourselves to the Prandtl number range 0.1 < u < 50, 
because this is the range in which the most 
interesting behaviour occurs in terms of the 
stability properties of the convective solutions. The 
reason for this is that it is the transition range of 
convection dominated by vorticity advection (u < 
I )  to convection dominated by temperature advec- 
tion (u > I). Moreover, the eddy Prandtl number in 
the atmosphere certainly lies inside this range. In 
Fig. I I, broken lines separate innerly stable from 
innerly unstable regions for the two steady states 
(these lines were already drawn in Fig. 7). The solid 
lines separate regions where the particular h e n r  
roll solution is stable to infinitesimal outer per- 
turbations from regions where it is unstable to 
infinitesimal outer perturbations. The letters A 
(large scale) and B (small scale) denote the stability 
of that particular mode in that particular region of 
parameter space. In the hatched region, neither of 
the two Lorenr roll solutions is stable. That, 
however, does not mean there are no stable steady 
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states in those regions. There could be one or more 
stable mixed states. In the vertically hatched region 
in the lower left corner of Fig. 11, we found 
numerically an almost periodic solution for Ra < 
11.39 (see Fig. 10) when the larger scale is linearly 
stable. When Ra > 11.39, in this same region, we 
find numerically a solution which converges in an 
oscillatory way to a mixed state in which the larger 
scale is dominant. 

It turns out that there is a large region in 
parameter space in which at least two completely 
different stable flow patterns are possible. It 
depends on the initial condiions to which of the 
two solutions the system will evolve. 

Another interesting result, which is in agreement 
with the qualitative result of Section 8, is that at low 
u and sufficiently high Ra, only the larger scale is 
stable. At u = I ,  the smaller scale becomes unstable 
to infinitesimal outer perturbations at Ra = 64. 
This is in agreement with the first numerical 
integration discussed in Section 9 (see Fig. 9). Also 
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the point at which the larger scale becomes 
unstable at Ra = I 19 is correctly reproduced in this 
integration. This last bifurcation point coincides 
with the linear marginal instability of the 
coefficients corresponding to the wave vector 
(2j  + 1, 2). or (3, 2). which have a critical modal 
Rayleigh number of 119.65. 

Fig. I I shows the relative stability of two Lorenr 
rolls, one of which has double the aspect ratio of 
the other. With the scale parameters u andj we can, 
however, not only vary the absolute aspect ratio but 
also the relative aspect ratio of the two possible 
Loren2 roll solutions. The question is, whether the 
stability diagram changes qualitatively if we vary 
the relative scales. If we assume u = I/(( j + ~)fi), 
then the smaller scale ( B )  always has an aspect 
ration of 2 f i .  The ratio, s of the aspect ratio of 
the larger scale to that of the smaller scale is given 
by 

j +  I s=-. 
j 

We will vary s (or j )  and see if the lines of marginal 
outer stability (the solid lines in Fig. I I )  change 
place significantly in parameter space. We repeated 
the stability analysis shown in Fig. I 1  (cor- 
responding to s = 2 )  for s = 1.5, s = 1.25 and s = 
1.1. The result is shown in Fig. 12. It turns out that 
the picture does not change much qualitatively as s 
decreases from 2 to 1.1. The lines of marginal outer 
stability of the larger scale (labeled 2 and 3 in Fig. 

1 I )  hardly change location. A dip appears at u z 6 
in the line of marginal outer stability of the smaller 
scale (labelled I in Fig. I I )  if s = 1.25 and at u z 7 
if s = 1.1. Nevertheless, as is the case with s = 2 
and s = 1.5. as u increases, both lines go to a 
certain asymptotic value of Ra which lies close to 
the critical modal Rayleigh number of the (2 j  + 
1.2) wave mode. 

Before concluding this section, we will determine 
the stability diagram of the two Lorenr rolls in the 
10-coefficient model when u = I/d and j = 1 .  In 
that case, the ( j ,  I )  or ( ] , I )  wave mode (A) 
corresponds to a roll with an aspect ratio of 2 4  
(the first self-excited mode) and the ( j ,  I) or (2, I )  
wave mode (B) corresponds to a roll with an aspect 
ratio of fi. (A) and (B) have critical modal 
Rayleigh numbers of 6.75 and 13.5, respectively. 
According to (6.2) (linear theory), the (2, I )  wave 
mode becomes the fastest growing mode when 
Ra z 54. I ,  but the steady state kinetic energy of the 
large-scale Lorent roll is always greater than that 
of the small-scale Lorenr roll. We again determine 
the signs of the real parts of the eigenvalues of the 
matrices MA and Mg, but this time with u = l / f i  - 
and j = 1. The result is shown in Fig. 13. We again 
find a region in parameter space in which both 
the small-scale and the large-scale Lorenr rolls are 
stable. The large-scale Loren2 roll is the only stable 
solution for relatively low u and relatively high Ra. 
This is again in qualitative agreement with the 
competition eqs. (8.7) and (8.8). 

15 
I I5 
11 

0.1 1 10 
U 

Fig. 12. The lines of marginal outer stability of the two 
Lorem roll solutions of the 10-coelficient model (already 
drawn in Fig. I I for s = 2) for s = 1.1, s = 1.25, s = 1.5 
and s = 2, where the smalkr scale has M aspect ratio 
equal to 2 4 .  

-.--_ .... 
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Fig. 13. As Fig. I I, except a = I/&. The larger-scale 
Lorenr roll (A) therefore has an aspect ratio of 2 f i  
and the smaller scale Lorenr roll (B) has an aspect ratio 
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of fi. 
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11. Summary and conclusions 

We have studied the non-linear behaviour of 
two-dimensional thermal convection as a function 
of Rayleigh number and Prandtl number with the 
help of low-order spectral models. Although these 
models are a crude approximation to the full 
non-linear equations (for instance, in the at- 
mosphere there is a continuous spectrum of wave 
numbers instead of a discrete spectrum), they do 
permit a fairly rigorous investigation of the different 
types of non-linearities which are responsible for 
various observational facts such as scale selection 
and enlargement. The solutions of these low-order 
models display a wide variety of possible types of 
behaviour. We have ignored the possibility of 
chaotic solutions and concentrated on the “or- 
derly’’ solutions and the mechanisms which can 
lead to transition from one such solution to the 
other. We have divided the non-linearities into three 
types, namely, redistribution of kinetic energy 
between different scales of motion, redistribution of 
available potential energy between different scales 
of motion and stabilization of the mean tem- 
perature stratification. The model described in 
Section 7 contains all these non-linear mechanisms. 
The Lorenz model (Section 6) contains only the 
last type, because it describes only one scale of 
motion. In spite of this, we can still infer from the 
Lorenz model that a mode with a larger aspect 
ratio than that of the first self-excited mode will 
probably be preferred over a smaller scale as Ra is 
increased. This, because the maximum steady-state 
kinetic energy of convection shifts to higher aspect 
ratios as Ra increases, in spite of the fact that, 
according to linear theory, the maximum growth- 
rate shifts to lower aspect ratios as Ra increases. 
The reason for this is that the mean temperature 
stratification is stabilized less quickly in larger 
scales of motion. 

Baroclinicly unstable waves show the same 
behaviour (Hart, 198 I). According to linear theory, 
the growth-rate of unstable modes is greatest in 
large zonal wave numbers (tn 2 IS), but the non- 
linear regime is characterized by tn < 10. In this 
case, the basic zonal shear apparently plays the 
same r6le as the temperature stratiilcation in the 
case of convection. The non-linear interaction of 
the growing wave with the mean zonal shear 
produces a correction to the mean zonal shear, 
thereby reducing the available potential energy 
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until there is a non-linear equilibration. This 
equilibration goes least quickly in larger scales of 
motion. 

The question remains as to how realistic the 
Lorenz model is quantitatively. This can best be 
Seen by comparing the Nusselt number as given by 
(6.9) with observations. The problem is that there 
are hardly any observations of Nu for stress-free 
boundary conditions. Malkus (198 I )  has estimated 
theoretically that Nu for stress-free boundary 
conditions is about 13% greater than Nu for rigid 
boundary conditions. At Ra = 100 (R = 9700). Nu 
has been measured to be about 2.2 for air (u = 
0.71) and rigid boundary conditions (Chan- 
drasekhar, I96 1). Therefore, Nu would be approxi- 
mately equal to 2.5 for stress-free boundary 
conditions at the same parameter values. Accord- 
ing to the Lorenz model, the maximum value Nu 
can attain at Ra = 100 is Nu = 2.86. But if the 
aspect ratio of the rolls has increased to 4 4 ,  for 
example, then, according to (6.9). Nu = 2.77. On 
the other hand, Veronis (1966) has calculated 
values for Nu of about 4.8 for Ra = 100. His 
calculations were based on a spectral expansion in 
which all odd-parity wave modes were excluded. 
He concluded that his calculations were reason- 
ably accurate because they agreed to within 1% of 
the next higher approximation and because they 
agreed “almost exactly” with the experimental 
results. However, these experimental results say 
nothing about the absolute value of Nu and can 
also be very well fitted to eqs. (6.9) for Ra < 100. 
The question of the heat transport in a layer with 
stress-free boundary conditions is thus still open. In 
terms of heat transport, the Lorenz model is not so 
unrealistic for Ra < 100 ( R  < 10‘) as is commonly 
assumed. 

The second model permits two horizontal scales 
of motion (with vertical wave number equal to one). 
With this model, we have tried to find an answer to 
the following question: how docs it come about that 
convection at moderate Rayldgh numbers is 
usually dominated by one harmonic, whik many 
modes are linearly unstabk with growth rates 
which do not dfler much? The mode which wins 
can somehow take most advantage of the non- 
linearities, leading to the complete decay of the 
other modes. Somehow, most researchers have 
taken this fact for granted. Intuitively we anticipate 
that the system should strive to the simplest 
possible steady-state solution, because this is 
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probably the solution in which kinetic energy or 
heat transport or efficiency are maximized, or 
available potential energy is minimized. But how 
this comes about is not trivial. In the ten-coefficient 
model, we indeed find that for Ra c 100, the 
selected steady-state solution is almost always 
equivalent to the steady-state solution of the 
simplest possible non-linear model of convection: 
the Lorenz model. Segel (1962) callad this a “pure 
state”. 

We have determined the stability of two possible 
Lorenr roll solutions to perturbations in other 
modes for 0.1 < u < 50 and 0 < Ra < 200. We 
find that the larger scale is favoured over the 
smaller scale as Ra is increased, especially for u < 
1. Vorticity advcction, especially, destabilizes the 
smaller scale of motion. The effect of redistribution 
of availabk potential energy on scale selection is 
more difficult to investigate, because it involves the 
non-linear interaction between two scalar fields, 
resulting in a greater number of non-linear terms in 
the spectral equations. We also find that there is a 
rather large region in parameter space (especially 
when u > I) in which both pure Lorenz roll 
solutions with different aspect ratios are stable to 
infinitesimal perturbations in the other modes. It 
then depends on the initial conditions or history as 
to which solution is chosen. 

In other words, hysteresis is possible in the 
model. The roll aspect ratio as a function of the 
Rayleigh number for u = 6.7 and u = 0.71 as 
observed in the laboratory by Willis et al. (1972) is 
plotted in Fig. 14. It can be seen that when Ra was 
steadily increased in time (as in the numerical 
integration shown in Fig. 9)  at u = 6.7, the aspect 
ratio (at the same Ra) differed from the case when 
Ra was decreased in time. This did not happen 
when u = 0.7 I. Thus, hysteresis is observed at u = 
6.7 but not at u = 0.7 1. It can also be seen that the 
increase in aspect ratio, as Ra increases, goes faster 
at u = 0.71 than at u = 6.7. Our model results are 
compatible with these qualitative observations. 

We have not investigated the stabTty of convec- 
tion rolls to perturbations in the third dimension. 

t 

I I 1 I I 1 ’I, 100 200 300 
Ra 

Fig. 14. The (smoothed) diameter of laboratory convec- 
tion rolls (as a fraction of the critical diameter, A,, at Ra,) 
as a function of Ra, for u = 0.71 (---) and u = 6.7 (4. 

steadily increasing: +, Ra steadily decreasing), as 
measured by Willis et al. (1972). The boundaries were 
not stress-free, so A, = 2.016 h and Rae = 17081~’ = 
17.6 (Chandrasekhar, 1961). 

This implies that the third dimension is not always 
needed for spontaneous changes to occur in the 
diameter of rolls. Therefore, the qualitative obser- 
vation by Willis er al. (1972), who noted that “. . . mechanisms which can change the diameter of 
rolls imply the existence of structure which is 
three-dimensional”, does not always have to hold. 
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