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a. Determine the dimensional vertical velocity field associated with the equatorial Kelvin wave and
the j = 1 Rossby wave.

We consider the reduced gravity model of section 11.2.2. The pressure in the second layer is given
by

p2∗ = p∗|−H+ζ∗ + (−H + ζ∗ − z) (ρ+ ∆ρ) g = h∗ρg + (−H + ζ∗ − z) (ρ+ ∆ρ) g.

Since the second layer is motionless, horizontal derivatives vanish and hence

0 = ρ
∂(η∗ − ζ∗)

∂x∗
+ (ρ+ ∆ρ)

∂ζ∗
∂x∗

⇒ ∂ζ∗
∂x∗

= − ρ

∆ρ
∂η∗
∂x∗

and similarly for the y-derivative. So, ζ∗ = − ρ
∆ρη∗, and h∗ = H+η∗

(
1 + ρ

∆ρ

)
= H−ζ∗

(
1 + ∆ρ

ρ

)
.

The vertical velocities at the top and at the thermocline are given by (11.2d) and (11.4b):

w∗|η∗ =
Dη∗
dt∗

, w∗|−H+ζ∗ =
Dζ∗
dt∗

,

and are hence both proportional to Dh∗
dt∗

, which in the linearized model of section 11.4 simplifies to

∂h∗
∂t∗

=
Hc0
L

∂h

∂t
.

Because horizontal velocities in the upper layer are independent of z, the vertical velocity is linear in
z (continuity equation). So, the vertical velocity field is completely determined by h.

(
N.B.: unlike

MdT’s claim made during the tutorial session, the horizontal velocities in section 11.2 cannot a
priori be assumed independent of z. However, for the linearized, unforced, nondissipative equations
in section 11.4 this is indeed the case; make sure you understand this!

)
For the Kelvin wave, we have

hK(x, y, t) = ĥK(y)ei(kx−σt) ; ĥK(y) = HKe
−y2/2 ; σ = k

where HK is an arbitrary constant.
For the j = 1 Rossby wave, we consider the low-frequency / long wave limit, for which the

dispersion relation is given by (11.39):

σ = −k
3
.

In order to find the meridional structure of h, we combine equations (11.19a) and (11.19c), and
subsequently substitute the travelling wave solutions given by (11.20) to find

∂2h

∂x2
− ∂2h

∂t2
= y

∂v

∂x
+

∂2v

∂y∂t
,

ĥ
(
σ2 − k2

)
= i (ykv̂ − σv̂′)⇒ ĥ =

−1
8iσ

(3yv̂ + v̂′) .

Using expressions (11.27), (11.35a) and (11.35b) then gives

ĥR =
−1
8iσ

(
3

(√
1
2
ψ0 − ψ2

)
+

(√
1
2
ψ0 + ψ2

))
=

1
2
√

2iσ

(
ψ2(y)√

2
− ψ0(y)

)
,

where the ψi(y) are the Hermite functions in (11.27). Then hR(x, y, t) = ĥR(y)ei(kx−σt).
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b. Determine the ratio of the sea surface height amplitude and the thermocline depth amplitude for
both waves as in a.

When the sea surface height amplitude is given by ε (positive upward) and the thermocline ampli-
tude by δ (positive downward), then we find

δ = ε
ρ

∆ρ

where ∆ρ is the density difference between the upper and lower ocean lower. With c0 =
√
g′H =

2 ms−1 and H = 100 m, it follows that ∆ρ/ρ = c20/(gH) = 4× 10−3.

c. During an El Niño the eastern Pacific thermocline can deepen by 50 m. Compute the amplitude
of the sea surface height anomaly during such an event.

With δ = 50 m, we find

ε = δ
∆ρ
ρ

= 20 cm.
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