Book: Dynamical Oceanography Author: Dijkstra, H. A.; email: H.A.Dijkstra@uu.nl Chapter: 3, Exercise: 3.2: Properties of the Coriolis acceleration Version: 1

a. Show, in the same way as in section 3.1.2, that the rotation of the $(\mathbf{e}_1, \mathbf{e}_3)$ plane induces an acceleration $-2\Omega w \cos \theta$ in the \mathbf{e}_1 direction and an acceleration $2\Omega u \cos \theta$ in the \mathbf{e}_3 direction.

The vertical plane spanned by e_1 and e_3 rotates clockwise with angular velocity $\Omega \cos \theta$. Consider the movement of fluid parcels in the plane (e_1, e_3) . Within a time Δt the coordinate system (e_1, e_3) rotates over an angle $\Delta t\Omega \cos \theta$. A parcel which moves at t = 0 uniformly along e_3 with velocity warrives after Δt in point A, with $|OA| = w\Delta t$. With respect to the rotating coordinate system, the parcel will have an displacement (in the negative e_1 direction): $-w(\Delta t)^2\Omega \cos \theta$. The acceleration is uniform in the negative direction of e_1 and when denoted by a_1^c , the displacement can be written as $\frac{1}{2}a_1^c(\Delta t)^2$. From the last two relations it follows that $a_1^c = -2\Omega w \cos \theta$ in the e_1 .

In the same way, an expression can be derived for the component of the apparent acceleration in the direction of e_3 . A fluid parcel which moves uniformly in the e_1 direction with velocity u is displaced with respect to the rotation coordinate system, in Δt , in the positive e_3 direction. In the same way as before, it follows that the displacement is $u(\Delta t)^2 \Omega \cos \theta$ and $a_3^c = 2\Omega u \cos \theta$ in the e_3 direction.

In section 3.1.2 we derived the expression for the Coriolis acceleration \vec{a}^c .

b. Show that $\vec{a}^c \perp \vec{\Omega}$ and $\vec{a}^c \perp \vec{v}$.

As $\vec{a}^c = -2\vec{\Omega} \wedge \vec{v}$, the acceleration vector is orthogonal to $\vec{\Omega}$ and \vec{v} . This can also be shown by using the scalar product of vectors. For example, given that $\vec{a_c} = (2\Omega(v\sin\theta - w\cos\theta), -2\Omega u\sin\theta, 2\Omega u\cos\theta)$ and $\vec{v} = (u, v, w)$ it results that $\vec{a_c} \cdot \vec{v} = 2\Omega u(v\sin\theta - w\cos\theta) - 2v\Omega u\sin\theta + w2\Omega u\cos\theta = 0$. Therefore, $\vec{a_c} \perp \vec{v}$.