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a. Show, in the same way as in section 3.1.2, that the rotation of the (e1,es) plane induces an
acceleration —2Qw cos O in the e direction and an acceleration 2Qu cos @ in the es direction.

The vertical plane spanned by e; and e3 rotates clockwise with angular velocity €2 cos 6. Consider
the movement of fluid parcels in the plane (e, e3). Within a time At the coordinate system (e, e3)
rotates over an angle AtQ cosf. A parcel which moves at ¢ = 0 uniformly along e3 with velocity w
arrives after At in point A, with |[OA| = wA¢. With respect to the rotating coordinate system, the
parcel will have an displacement (in the negative e; direction): —w(At)?Q cosf. The acceleration
is uniform in the negative direction of e; and when denoted by af, the displacement can be written
as 3a$(At)?%. From the last two relations it follows that a§ = —2Qw cos 6 in the e;.

In the same way, an expression can be derived for the component of the apparent acceleration in
the direction of e3. A fluid parcel which moves uniformly in the e; direction with velocity u is
displaced with respect to the rotation coordinate system , in At, in the positive e3 direction. In
the same way as before, it follows that the displacement is u(/At)?Q cos @ and a§ = 2Qu cos 0 in the
es direction.

In section 3.1.2 we derived the expression for the Coriolis acceleration ac.

b. Show that @ L and @ L .

As @ = —20 AT, the acceleration vector is orthogonal to Q) and 7. This can also be shown by using
the scalar product of vectors. For example, given that a. = (2Q(v sin 8—w cos 0), —2Qu sin 6, 2Qu cos §)

and ¥ = (u, v, w) it results that dr - = 2Qu(v sin @ — w cos ) — 2vQu sin 6 +w2Qu cos § = 0. There-
fore, a,. L.



