
Book: Dynamical Oceanography
Author: Dijkstra, H. A.; email: H.A.Dijkstra@uu.nl

Chapter: 3, Exercise: 3.2: Properties of the Coriolis acceleration
Version: 1

a. Show, in the same way as in section 3.1.2, that the rotation of the (e1, e3) plane induces an
acceleration −2Ωw cos θ in the e1 direction and an acceleration 2Ωu cos θ in the e3 direction.

The vertical plane spanned by e1 and e3 rotates clockwise with angular velocity Ω cos θ. Consider
the movement of fluid parcels in the plane (e1, e3). Within a time ∆t the coordinate system (e1, e3)
rotates over an angle ∆tΩ cos θ. A parcel which moves at t = 0 uniformly along e3 with velocity w
arrives after ∆t in point A, with |OA| = w∆t. With respect to the rotating coordinate system, the
parcel will have an displacement (in the negative e1 direction): −w(∆t)2Ω cos θ. The acceleration
is uniform in the negative direction of e1 and when denoted by ac

1, the displacement can be written
as 1

2a
c
1(∆t)2. From the last two relations it follows that ac

1 = −2Ωw cos θ in the e1.

In the same way, an expression can be derived for the component of the apparent acceleration in
the direction of e3. A fluid parcel which moves uniformly in the e1 direction with velocity u is
displaced with respect to the rotation coordinate system , in ∆t, in the positive e3 direction. In
the same way as before, it follows that the displacement is u(4t)2Ω cos θ and ac

3 = 2Ωu cos θ in the
e3 direction.

In section 3.1.2 we derived the expression for the Coriolis acceleration ~ac.

b. Show that ~ac ⊥ ~Ω and ~ac ⊥ ~v.

As ~ac = −2~Ω∧~v, the acceleration vector is orthogonal to ~Ω and ~v. This can also be shown by using
the scalar product of vectors. For example, given that ~ac = (2Ω(v sin θ−w cos θ),−2Ωu sin θ, 2Ωu cos θ)
and ~v = (u, v, w) it results that ~ac ·~v = 2Ωu(v sin θ−w cos θ)−2vΩu sin θ+w2Ωu cos θ = 0. There-
fore, ~ac⊥~v.
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