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(a) (b)

Figure 18. (a) Sea-surface temperature anomaly field (with respect to the 1982-2010
mean) of December, 1997, at the height of the 1997/1998 El Niño. Data from NOAA,
see http://www.emc.ncep.noaa.gov/research/cmb/sst analysis/. (b) Correlations of sea level
pressure anomalies over the Tropic Pacific, illustrating the Southern Oscillation.

5. El Niño/Southern Oscillation

5.1. Phenomena

About once every four years, the sea surface temperature in the equatorial eastern
Pacific is a few degrees higher than normal (Philander 1990). Near the South American
coast, this warming of the ocean water is usually at its maximum around Christmas.
Long ago, Peruvian fishermen called it El Niño , the Spanish phrase for the “Christ
Child”.

During the last decades, El Niño has been observed in unprecedented detail thanks
to the implementation of the TAO/TRITON array and the launch of satellite-borne
instruments (McPhaden & coauthors 1998). The relevant quantities to characterize
the state in the equatorial ocean and atmosphere are sea level pressure, sea surface
temperature (SST), sea level height, surface wind and ocean sub-surface temperature.

The annual mean state of the equatorial Pacific sea-surface temperature is character-
ized by the zonal contrast between the western Pacific “warm pool” and the “cold tongue”
in the eastern Pacific. The mean temperature in the eastern Pacific is approximately
23◦C, with seasonal excursions of about 3◦C. What makes El Niño unique among other
interesting phenomena of natural climate variability is that it has both a well-defined
spatial pattern and a relatively well-defined time scale. The pattern of the sea-surface
temperature anomaly for December 1997 is plotted in Fig. 18a and shows a large area
where the SST is larger than average. Changes in the tropical atmospheric circulation
are strongly connected to changes in sea-surface temperature . Hence, there are strong
correlations between surface pressure anomalies, as shown in Fig. 18b.

An index of this sea-surface temperature anomaly pattern is the NINO3 index, defined
as the sea-surface temperature anomaly averaged over the region 5◦S –5◦N, 150◦W–
90◦W. In the time series (blue curve in Fig. 19a), the high NINO3 periods are known
as El Niño’s and the low NINO3 periods as La Niña’s. There is no clear-cut distinction
between El Niño’s, La Niña’s, and normal periods, rather the system exhibits continuous
fluctuations of varying strengths and durations with an average period of about 4 years
(blue curve in Fig. 19b).

The red curve in Fig. 19a is the normalized pressure difference between Tahiti (Eastern
Pacific region) and Darwin; this index is referred to as the Southern Oscillation Index
(SOI). It measures the variations in the tropical surface winds, dominated by the trade
winds. When the SOI is negative (positive) , the pressure in Tahiti is relatively low (high)
with respect to that in Darwin and hence the trade winds are weakened (strengthened).
The anti-correlation of the NINO3 index and the SOI is obvious from Fig. 19a and the
spectrum of the SOI in Fig. 19b also shows a similar broad peak as the NINO3 index
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(a)

(b)

Figure 19. (a) Time series of the NINO3 index (dark) and SOI (light) over the years 1900-2000.
(b) Spectrum of the NINO3 index (dark) and SOI (light) in (a), where on the vertical axis the
product of frequency f and the spectral power S(f) is plotted (figure based on Dijkstra & Burgers
(2002)).

(centered at about 4 year). As El Niño and the Southern Oscillation are one phenomenon,
it is referred to as the ENSO phenomenon.

There are relations between the seasonal cycle, the spatial sea-surface temperature
pattern of the annual-mean state and the El Niño variability. Large sea-surface temper-
ature anomalies often occur within the cold tongue region. In addition, El Niño is to
some extent phase-locked to the seasonal cycle as most El Niño’s and La Niña’s peak
around December. The root mean square of the NINO3 index is almost twice as large in
December than in April.

When one considers the spectrum of the NINO3 index (Fig. 19b), also energy is found
at lower frequencies, in particular in the decadal-to-interdecadal range (Jiang et al. 1995;
Zhang et al. 1997; Fedorov & Philander 2000). The strength of El Niño before the mid-
1970s appears to be smaller than that after this period; this transition is sometimes
referred to as the ‘Pacific climate shift’ (Trenberth 1997). According to NCEP data, the
standard deviation of the SOI (NINO3) for 1951-1975 is 1.64 (0.81), to be compared for
1976-2000 where it is 1.84 (1.00). The spatial pattern of these (multi)decadal changes
is fairly similar to that of the interannual variability, but the sea-surface temperature
anomalies at the eastern side of the basin extend from the equator to midlatitudes (Zhang
et al. 1997).

5.2. The Zebiak & Cane model

To capture the oscillatory behavior of ENSO dynamically, a coupled atmosphere-ocean
model is required, which admits feedbacks between perturbations to the equatorial east-
erlies, the thermocline depth, and equatorial SSTs, and as such allows the spontaneous
growth of anomalies. We shall also see that oceanic wave dynamics are important to the
development and decay of El Niño’s, and so necessary in a minimal model of ENSO.

5.2.1. Model formulation

Zebiak & Cane (1987), hereon ZC, consider a 1 1
2 -layer reduced gravity ocean (depicted

in Figure 20) below a constant-depth mixed layer of temperature T , which feels a
temperature-dependent wind stress

τx = τxext + µA(T − T0), (5.1)

for some atmospheric operator A, and coupling parameter µ (with µ = 0 corresponding
to the entirely uncoupled case, and µ = 1 describing “normal” coupling).

The reduced gravity ocean model equations for the horizontal velocities (u, v) and
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Figure 20. The ocean component of the ZC model. A thermocline of density ρ overlies a denser
stationary layer of density ρ + ∆ρ. The ocean feels atmospheric wind stress and temperature
through constant depth mixed layer of temperature T .

thermocline depth h are

∂u1

∂t
− β0yv1 = −g′ ∂h∂x + τx

ρH , (5.2a)

β0yu1 = −g′ ∂h∂y , (5.2b)

∂h

∂t
= −H

(
∂u1

∂x + ∂v1
∂y

)
, (5.2c)

with boundary conditions

x = 0 :
∫∞
−∞ u1(y)dy = 0, (5.3a)

x = L : u1 = 0, (5.3b)

y → ±∞ : u1, v1, h, bounded. (5.3c)

The evolution of the mixed layer temperature T is governed by an advection-diffusion
equation with relaxation back to the radiation equilibrium temperature T0 as follows

∂T

∂t
+ u1

∂T

∂x
+ v1

∂T

∂y
+ w1H(w1)

T − Ts(h)

H
+ αT (T − T0)− κH∇2T = 0, (5.4)

where H is the Heaviside function (needed because the mixed layer temperature is
only affected by net upwelling). In addition, the subsurface temperature Ts(h) is a
monotonically increase function of h and κH is a horizontal diffusion coefficient. The
boundary conditions for the mixed layer temperature are

x = 0, L : ∂T∂x = 0, (5.5a)

y → ±∞ : T bounded. (5.5b)

5.2.2. Equatorial wave dynamics in the ZC model

Consider free waves with τx = 0, corresponding to no wind stress input, and no
coupling with the mixed layer temperature field T . Let u = û(y)ei(kx−σt) and define

v = v̂(y)ei(kx−σt) and h = H + ĥ(y)ei(kx−σt) similarly. Then

−iσû− β0yv̂ = −ikg′ĥ, (5.6a)

β0yû = −g′ĥ′, (5.6b)

−iσĥ+H(ikû+ v̂′) = 0. (5.6c)
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Solutions with v̂ = 0 are determined from

−σû = −g′kĥ, (5.7a)

−σĥ+Hkû = 0, (5.7b)

(5.7c)

which has a non-zero solution only if

σ2 = k2g′H, (5.8)

and so
σ

k
= ±

√
g′H ≡ ±c0. (5.9)

We can also solve for ĥ and û, since

β0yû =
β0yg

′kĥ

σ
= −g′ĥ′, (5.10)

and so

ĥ(y) = ĥ(0) exp

[
−β0k

2σ
y2

]
≡ ĥ(0) exp

[
−1

2

(
y

λ0

)2
]
, (5.11)

where λ0 =
√
c0/β0 is the Rossby deformation radius. Note that for ĥ(y) to be bounded

as y → ±∞ we have to set σ/k = +c0. These eastward propagating waves are called
equatorial Kelvin waves.

The general case v̂ 6= 0 can also be solved by using the Hermite polynomials Hn, giving

ûj(y) = 1
2
√

2

(
ψj+1(y)√
j+1

− ψj−1(y)√
j

)
, (5.12a)

ĥj(y) = 1
2
√

2

(
ψj+1(y)√
j+1

+
ψj−1(y)√

j

)
, (5.12b)

v̂j(y) = ψj(y), (5.12c)

where

ψj(y) =
Hj(y/λ0) exp[−(y/λ0)2/2]

(2jj!π1/2)1/2
, (5.13)

and the corresponding phase speeds are

cj = − c0
2j + 1

. (5.14)

These westward propagating waves are called equatorial Rossby waves.

5.2.3. Coupled feedbacks in the ZC model

To explore the feedbacks possible in the full model, consider a perturbation (denoted by
hats) to some steady state (denoted by overbars) of the simplified temperature equation

∂T

∂t
= −wT − Ts(h)

H
. (5.15)

Linearizing about the steady state, this becomes

∂T̂

∂t
= −ŵ T̄ − Ts(h̄)

H
− w̄ T̂ − T

′
s(h̄)ĥ

H
. (5.16)

Now it can be seen that if there is a warm anomaly in the mixed layer (i.e. T̂ > 0)

giving rise to a deepening of the thermocline (i.e. ĥ > 0), the second term on the right



40

of equation 5.16 will be positive, leading to more warming. This positive f eedback is
known as the thermocline feedback.

Similarly, from the first term on the right of equation 5.16, it can be deduced that
a positive temperature anomaly, associated with a reduction in upwelling (ŵ < 0), will
likewise enhance the positive temperature anomaly, acting as a positive feedback. This
is called the upwelling feedback. An analogous treatment of the zonal advection terms of
the temperature equation

∂T

∂t
= −u∂T

∂x
(5.17)

yields linearized equation

∂T̂

∂t
= −ū∂T̂

∂x
− û∂T̄

∂x
. (5.18)

Now a positive temperature anomaly will produce a zonal velocity anomaly û that acts
to enhance this anomaly by the advection of the mean temperature field T̄ . This is the
zonal advection feedback.

5.3. Hopf bifurcation in the ZC model

The zonal wind stress τx is decomposed into an external and a coupled contribution
(Van der Vaart et al. 2000):

τx = τxext + τxc , (5.19)

The coupled part of the wind stress is assumed to be proportional to the zonal wind field
ua, i.e., τxc = ρHγτU , with γτ a constant coefficient. The velocity field U is determined
from an equivalent barotropic atmospheric model given by (Matsuno 1966; Gill 1980)

∂U

∂t
− β0yV −

∂Θ

∂x
+ aMU = 0 (5.20a)

∂V

∂t
+ β0yU −

∂Θ

∂y
+ aMV = 0 (5.20b)

∂Θ

∂t
− c2a(

∂U

∂x
+
∂V

∂y
) + aMΘ = Q (5.20c)

where (U, V ) are the low level winds, Θ the geopotential height (with dimension m2/s2),
aM is a damping coefficient and ca is the phase speed of the first baroclinic Kelvin wave
in the atmosphere. The flow is forced by a representation of the adiabatic heating term
Q (having dimension m2/s3) given by

Q = αT (T − T0) (5.21)

The external wind stress τxext does not depend on the coupled feedbacks within the
basin and can be thought of to represent the easterly stress component due the Hadley
circulation and it is assumed constant in the zonal direction (Dijkstra & Neelin 1995).
In the meridional direction the external wind stress is assumed to be symmetric with
respect to the equator, having the form (Van der Vaart et al. 2000)

τxext = −τ0e[− 1
2 ( y
La

)2], (5.22)

where τ0 is a typical amplitude of the external wind stress and La is the atmospheric
Rossby deformation radius.

In order to obtain the proper climatology of the present-day Pacific together with
realistic ENSO variability, the standard parameter values as in Table 3 are used. The
coupling parameter µ0 is a dimensionless product of the dimensional parameters and is
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Table 3. Values of dimensional parameters used in the ZC model.

L = 1.5× 107 [m] c0 = 2 [m/s]
ca = 30 [m/s] H = 200 [m]
H1 = 50 [m] H2 = 150 [m]
τ0 = 0.01 [Pa] Ts0 = 23.0 [◦C]
am = 1.3× 10−8 [s−1] T0 = 30.0 [◦C]

as = 5.0× 10−6 [s−1] Ĥ = 40 [m]
aT = 9.25× 10−8 [s−1] h0 = 20 [m]
Am = 2.5× 10−6 [s−1] β0 = 2.2× 10−11 [(ms)−1]
g′ = 0.02 [ms−2] La = 1.5× 106 [m]
αT = 5.4× 10−3 [m2s−3K−1] γτ = 6.5× 10−6 [s−1]

given by

µ0 = µ
αT γτ∆TL

2

c2oc
2
a

(5.23)

where ∆T is a typical SST difference over the basin, here taken as ∆T = 1◦C. The
dimensionless parameter µ is used below to control the strength of the coupling.

To solve the model equations numerically, variables are expanded into spectral basis
functions, with Chebychev polynomials in zonal direction and Hermite functions in
meridional direction Van der Vaart et al. (2000). The solutions are then obtained by
a collocation method with Nx collocation point in the zonal direction and Ny in the
meridional direction. In the deterministic ZC model, with the parameters as in Table 1,
a Hopf bifurcation occurs at µ = µc = 3.0 Van der Vaart et al. (2000). When the coupling
strength is smaller than µc, for example µ = 2.7, the system is in the subcritical regime
where it exhibits a damped ENSO oscillation when no noise is present. This is shown in
the behavior of the NINO3.4 index (red curve) in Fig. 21a. When the coupling strength
is increased to just above the critical value (µ = 3.02 > µc), the system will enter
the supercritical regime where the NINO3.4 index displays an interannual oscillation
(red curve in Fig. 21c) and the spectrum shows a peak at about 4 years (red curve in
Fig. 21d). When an additive (white) noise forcing is added to the deterministic zonal
wind stress (Eq. 5.22), the response of the ZC model is shown as the black curves in
Fig. 21a-b (subcritical) and 21c-d (supercritical). In the subcritical regime, the noise
forcing is necessary to excite the ENSO variability, while in the supercritical regime, the
noise forcing simply causes a higher amplitude of ENSO variability (Roulston & Neelin
2000).

5.4. Physical mechanisms for ENSO

We have seen from the ZC model that with idealized ocean-atmosphere coupling and
oceanic wave dynamics it is possible to find oscillatory solutions in certain parts of
parameter space that resemble ENSO in amplitude and period. Below we heuristically
describe two mechanisms that might give rise to such oscillatory behavior.

Consider a positive temperature anomaly at the equator in the Pacific ocean, which
corresponds to a positive SSH anomaly on-equator, with compensatory negative SSH
anomalies off-equator to the north and south. We have seen that such a signal may
propagate eastwards as an equatorial Kelvin wave on the equator, which may be inter-
preted as the eastward propagating and growth of an El Niño. Meanwhile, the off-equator
signal will propagate westward as a Rossby wave and, on reaching the westerward basin
boundary, may be reflected as an equatorial Kelvin wave. This reflected wave signal has
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Figure 21. The response of the Zebiak and Cane (ZC) model. Red curves are for the
deterministic model and black curves are for the stochastic model with red noise wind-stress
forcing. (a) The NINO3.4 index at a coupling strength µ = 2.7, (b) The amplitude spectrum for
(a), (c) Same as (a) but at µ = 3.02, (d) The amplitude spectrum for (c).

the possibility of interfering with and killing the original positive temperature anomaly,
ending the El Niño. Whilst this delayed oscillator mechanism of El Niño undoubtedly
influences ENSO dynamics, a consideration of the timescales involved (from the Kelvin
and Rossby wave speeds) does not explain the observed ENSO period of four to seven
years (Schopf & Suarez 1988; Battisti 1988).

An alternative mechanism that produces longer timescale variability comes from con-
sidering the overall basin adjustment. A positive SST anomaly in the eastern Pacific will
produce a westerly wind stress anomaly. The wind stress acts to change the thermocline
slope, piling up water and so depressing the thermocline in the east, whilst shoaling the
thermocline in the west. Such a perturbation to the thermocline slope will enhance the
SST perturbation, acting as a positive feedback. As the positive temperature anomaly
strengthens, there is a divergent transport of heat off-equator by the ocean, which
shoals the thermocline, suppressing the SST anomaly and so reducing the westerly wind
anomaly. The shoaling of the thermocline eventually carries the system into the opposite
phase, with a negative SST anomaly in the east, and so an easterly wind stress anomaly.
This causes the convergent transport of heat to the equator, resulting in the ‘recharge’ of
the ocean heat content there. As such, this mechanism is known as the recharge oscillator
view of ENSO (Jin 1997). This process is shown schematically in Fig. 22.
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Figure 22. A schematic of the stages of the recharge oscillator mechanism for ENSO.

5.5. The irregularity of ENSO

So far we have seen that the oscillatory behavior of El Nino Southern Oscillation
(ENSO) mechanism was related to the saturation of a unstable mode above the threshold
of a Hopf bifurcation, corresponding to a given critical coupling strength between the
atmosphere and the ocean. However, this does not explain the irregularity, for example in
the NINO3 time series. Two views exist on this irregularity: in one view it arises through
nonlinear interactions between ENSO and the seasonal cycle, in another it arises solely
through atmospheric noise.

5.5.1. Deterministic chaos

An interesting point in the record of the ENSO signal is the signature of some mean
seasonal cycle. For the western tropical Pacific ocean, negative anomalies in the records
of zonal winds occur around April, whereas positive anomalies occur around December.
Furthermore, sea surface temperature (SST) anomalies are observed at the same periods:
positive SST anomalies are associated with negative zonal wind anomalies, and negative
SST anomalies are associated with positive zonal wind anomalies. It is important to note
that ENSO events and the seasonal cycle are sensitive to the same environmental factors
such as wind forcing and the ocean circulation. ENSO’s non-linear interaction with the
seasonal cycle is characterized by a tendency to synchrony in periodic, subharmonic
oscillation.

An idealized model to understand the interaction of an external and internal frequency
is the circle map

xn+1 = xn +Ω − K

2π
sin(2πx) (mod 1) (5.24)

In order to illustrate the tendency for phase-locking we pick up a constant driving
frequency Ω and a starting point x0. The result of the iterations displaying the interaction
between anomalies and the driving cycle is obtained by displaying the computed winding
number W , given by

W = lim
n→∞

xn − x0

n
(5.25)

in the (Ω, x) plane, for all the described Ω. As we increase the parameter K in the non-
linear forcing, an increasing number of ‘windows’ are opening and widening in the (Ω, x)
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Figure 23. Plot of regions of rational rotation number in the Ω −K plane displaying the
Arnold tongues (Bak et al. (1985)) for the circle map.

space, the so-called Arnold’ tongues. These windows are the orbital periods (Fig. 23) of
limit circles encountered in the iterative process, and correspond to rational multiples
of the driving frequency Ω onto which the system is locking. The frequency ratio of the
model to the driving frequency describe a ”devil’s staircase” as the number and width of
frequency-locked steps (corresponding to the windows) increases infinitely. Above K = 1,
chaotic behavior (sensitive dependence on initial conditions) is found due to the overlap
of Arnold’ tongues. This route to chaotic behavior is called the quasi-periodicity route.

In the Zebiak-Cane model the interaction between the seasonal cycle and the Hopf
bifurcation oscillatory frequency has been studied in the parameter plane spanned by
the atmospheric/oceanic coupling strength parameter µ and the upwelling feedback
parameter δ leading to a so-called ‘Devil’s terrace’ (Fig. 24). As the coupling strength
is increased, both the amplitude and the time scale of the oscillations are enhanced. By
varying the parameters µ and δ, Zebiak-Cane model predicts frequency locked ENSO
events (e.g. 3 ENSO’s in 10 years) in some regions in parameters space and chaotic
behavior in others.

5.5.2. Effects of noise

Unresolved fast and short scales can be integrated into ENSO models by adding noise.
As an example, the westerly wind bursts (WWB) events are characterized by velocities
above 7 m s−1, with a typical duration of a few days. These unresolved processes are
known to trigger the propagation of perturbations in the form of equatorial Kelvin and
Rossby waves. The correlation between this events can be verified in using a singular value
decomposition analysis of the SST-Wind covariance matrix. The response of Zebiak-Cane
model to white noise was shown in Fig. 21 for both subcritical and supercritical regimes.
A remarkable result is that wind-stress noise can trigger a response even before the
critical point for the Hopf bifurcation is reached, that is, while still in the subcritical
regime.
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Figure 24. The Devil’s terrace as computed in Jin et al. (1996). Colors indicate the frequency
locked regimes, with chaotic regimes in between. Along a section for fixed µ, a Devil’s staircase
appears.

To study the effect of noise in more detail, we consider the following SDE system

dXt = (λXt − ωYt −Xt(X
2
t + Y 2

t ))dt+ σdW1, (5.26a)

dYt = (λYt + ωXt − Yt(X2
t + Y 2

t ))dt+ σdW2. (5.26b)

where dW1 and dW2 are independent Wiener processes.
In polar coordinates (r =

√
X2 + Y 2 and θ = arctan X

Y ), we get for the stochastic part
(using Ito’s formula for change of variables and omitting the subscript t):

dR =
∂r

∂x
dX +

∂r

∂y
dY +

1

2

( ∂2r

∂x2
(dX)2 +

∂2r

∂y2
(dY )2

)
+ ...

=
X

r
σdW1 +

Y

r
σdW2 +

1

2

(Y 2

r3
(σ)2 +

X2

r3
(σ)2

)
dt+ ...

=σ(cos θdW1 + sin θdW2)︸ ︷︷ ︸
noise term

+
σ2

2r
dt︸ ︷︷ ︸

additional drift term

,

dθ =− y

r2
σdW1 +

x

r2
σdW2 +

1

2

(2XY

r4
(σ)2 − 2XY

r4
(σ)2)dt+ ...

=σ(
cos θ

r
dW2 −

sin θ

r
dW1)︸ ︷︷ ︸

additional drift term

.

and hence (5.26) is transformed into

dR = (λr − r3 +
σ2

2r
)dt+ σ(cos θdW1 + sin θdW2), (5.27a)

dθ = σ(
cos θ

r
dW2 −

sin θ

r
dW1) + ωdt. (5.27b)

The stationary probability density function is determined from the Fokker-Planck
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equation associated with the stochastic system above. We obtain for the drift

f =

(
λr − r3 + σ2

2r
ω

)
and for the diffusion matrix

g = σ

(
cos θ sin θ
− sin θ

r
cos θ
r

)
The diffusion operator D is then

D = ggT = σ2

(
1 0
0 1

r2

)
and the Fokker-Planck equation

∂p

∂t
= −

∂[(λr − r3 + σ2

2r )p]

∂r
− ∂(ωp)

∂θ
+
σ2

2
(
∂2p

∂2r
+

1

r2

∂2p

∂2θ
) (5.28)

We look for a stationary radially symmetric density function ps(r) which satisfies then

0 = −
(
(λr − r3 +

σ2

2r
)ps
)′

+
σ2

2
p′′s

which can be easily solved through

p′s
ps

= − 2

σ2
λr − 2

r3

σ2
+

1

r

ln ps = − λ

σ2
r2 − r4

2σ2
+ ln r

and finally we obtain

ps(r) = N exp
(λr2

σ2
− r4

2σ2

)
(5.29)

where N is again a normalization constant.


