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Optimal temporal propagation.
EBEF�BE, Turning, Alex de Grassi

All of us are familiar with day-to-day weather phenomena. The typical time scale of
the processes associated with the weather is a few days. Most of us also know that
weather predictions with a lead time longer than about ten days are not very reli-
able because of the chaotic nature of the atmospheric flow on these time scales.
As Chuck Leith, referring to the Lorenz ‘butterfly effect’, put it: ‘It is not all
butterflies, even talking about the weather can change the weather . . .’ (see e.g.,
http://www.archives.ucar.edu/exhibits/washington/science/early atmos sci).

As we have seen in Chapter 6, the state vector of the climate system involves not only
the atmospheric flow but also the ocean circulation, land and sea ice and, for exam-
ple, land-surface properties. Climate change refers to the long-term (50–100 years)
development of the climate state due to internal variability and the variations in exter-
nal (e.g., solar) forcing. Over the past several decades, the trajectory of this system is
also influenced by the release of CO2 due to human activities, which can be seen as
an external radiative forcing on these time scales.

Regardless of these changes in the radiative forcing conditions, it is of central
importance to know the predictability horizons of climate variability on different time
scales. We address this issue in this final chapter, again from a stochastic dynamical
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Figure 12.1 (a) Sketch of a single pendulum in vacuum, consisting of a mass m at
the end of a rope with length L which is connected to a fixed surface. (b) The same
pendulum except that it now moves in air that is heated at the upper surface.

systems point of view. In Section 12.1, the essence of the prediction problem is
illustrated using a simple example. Then in Section 12.2, measures of predictability,
such as predictive power and relative entropy, are presented. This is followed by the
methodology (Section 12.3) to study the behaviour of nearby trajectories needed to
assess error propagation. In the next section (12.4), methods to incorporate observa-
tions into models to ‘steer’ trajectories are discussed. As we see, many dynamical
systems concepts and methods are used in the study of the predictability of phenomena
in the climate system.

12.1 The prediction problem

It is often questioned in the popular media: how can we ever aim to predict the climate
state for 2050 with some confidence if we cannot predict the weather more than a
few days ahead with a reasonable skill? This question is at the heart of the prediction
problem, and we address it in the next section.

12.1.1 A simple example

Consider, first, a single pendulum (Fig. 12.1) where a massm is connected to the end of
a wire of length L, which is connected to a fixed surface. The position of the mass can
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Figure 12.2 Plot of the amplitude of the angle φ(t) of the mass of a simple pendulum
forL = 1 m, g = 9.8 ms−2 versus time (in s) without (drawn) and with (dash-dotted)
the presence of air friction (γ = 0.1 s−1). The initial conditions are φ(0) = 0 and
dφ/dt = 5.

be completely specified by the angle φ. The prediction problem can be loosely formu-
lated as follows: if at a certain time we release the mass of the pendulum at a specific
angle (and with a specific speed), what is the position of the mass at a later time?

As a first approach, we idealise the situation as being in a vacuum (Fig. 12.1a). We
can use Newton’s second law with gravity as the only force to give the equation for
the angle position as

d2φ

dt2
+ g

L
sinφ = 0, (12.1)

where g is the gravitational acceleration. If we know both φ and dφ/dt at the initial
time t0, then (12.1) provides a model to calculate φ(t1) from φ(t0). For small angles
φ, we can approximate sinφ ≈ φ and (12.1) can be solved as

φ(t) = A sinω0t + B cosω0t ; ω0 =
√
g

L
,

where A and B are determined from the initial conditions. A typical solution of
φ(t) is shown as the drawn curve in Fig. 12.2; once the initial conditions are known
accurately, we can make an accurate prediction of the position and velocity of the
mass at a later time.

If, instead, the pendulum motion is considered to occur in air, the problem is
suddenly much more complicated (Fig. 12.1b). The air undergoes a complex motion,
interacts with the mass of the pendulum and introduces rapid fluctuations in the
position of the mass of the pendulum. We can call these fast motions of the pendulum
the ‘weather’ of the pendulum and the slow motion of the mass of the pendulum its
‘climate’.
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304 Predictability

For an exact prediction of the pendulum’s weather, one would need to represent the
interactions of the air with the pendulum mass. We can divide, for example, the air
volume into grid boxes and compute the motion of the air parcels using the Navier-
Stokes equations. As the motion of the air is chaotic on the small time scale (much
smaller than the time scale of the period 2π/ω0 of the pendulum), we are certainly
not able to predict the detailed position of the pendulum mass on this time scale.

However, we may predict the effect of the air on the pendulum’s ‘climate’ relatively
easily. For example, the effect of the collisions of the air molecules with the pendulum
mass can be represented as a simple net frictional force, giving a modified equation
(12.1), again for small φ as

d2φ

dt2
+ γ dφ

dt
+ g

L
φ = 0. (12.2)

In this case, we use a so-called parameterisation and do not need to compute the
positions of the air parcels. However, the use of this parameterisation has its toll.
There is now a friction coefficient γ in the model that is unknown, and it needs to be
determined empirically.

The behaviour of the position of the mass of the pendulum (for a specific value of
γ ) is shown as the dash-dotted curve in Fig. 12.2, and it is clear that it approaches
zero for t → ∞ due to the presence of the friction. When the air around the pendulum
is slowly heated at the boundary of the container (Fig. 12.1b), the motion of the air
parcels will be affected (the viscosity of the air is temperature dependent) and hence
also the slow variations in the position of the pendulum. This effect could be taken
into account by a temperature-dependent friction coefficient γ .

In summary, because the ‘climate’ of the pendulum is determined by very different
processes than its ‘weather’, detailed predictions of the position of the pendulum on
the long time scale (the ‘climate’) still may be made despite the fact that the air motion
(and the pendulum’s ‘weather’) is unpredictable on the short time scale.

However, the processes responsible for the ‘climate’ of the pendulum also may lead
to unpredictable behaviour. An example is the slightly more complicated system of
the double pendulum (Fig. 12.3a). In vacuum, Newton’s law now leads to a coupled
set of nonlinear equations given by

φ̈1 + g

L1
sinφ1 + m1

m1 +m2

L2

L1

[
cos(φ2 − φ1)φ̈2 − sin(φ2 − φ1)φ̇2

2

] = 0,

φ̈2 + g

L2
sinφ2 + L1

L2

[
cos(φ2 − φ1)φ̈1 + sin(φ2 − φ1)φ̇2

1

] = 0,

where a dot indicates differentiation to t . A plot of the variable cosφ1(t) is shown in
Fig. 12.3b, displaying irregular oscillations. It is well known that this double pendulum
system displays chaotic behaviour, with the largest Lyapunov exponent being positive
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Figure 12.3 (a) The double pendulum consisting of two massesm1 andm2 connected
by strings of length L1 and L2. (b) Solution cosφ1 for the case m1 = m2 = 1 kg,
L2 = 2 m,L1 = 1 m and g = 9.8 ms−2. The initial conditions are φ1(0) = φ2(0) = π
and dφ1/dt = 0, dφ2/dt = 5.

(Stachowiak and Okada, 2006). The new element here is that this pendulum system
already displays chaotic motion on the ‘climate’ time scale, limiting predictability of
the system, even if no air molecules are considered.

A pendulum system having even more complexity is the double pendulum placed
in air that is heated from the boundaries. Here both the ‘weather’ and the ‘climate’ of
the pendulum have very different limits of predictability and interact with each other,
whereas there are also slowly varying boundary influences affecting the motion of the
air and the pendulum.

12.1.2 Prediction using climate models

As seen in Chapter 6, a climate model is the recipe that relates future states to
past states, similarly to the equation of the pendulum in the previous section. Such
models necessarily have many approximations to the real world as a spatially and
temporally discrete representation of the state vector is used and parameterisations
are incorporated (with uncertain parameters). With a given initial condition, the model
can be used to compute future states; this is usually referred to as a simulation.

There are several reasons why it is not so useful for predictions to perform a single
simulation with a particular climate model over a certain time period: (i) the initial
conditions are poorly known, (ii) there are many uncertainties in the representation
of physical and chemical processes (Section 6.4) and (iii) the presence of internal
variability may introduce a random element in the model solutions, as in the double
pendulum motion (Section 12.1.1).
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Figure 12.4 Global mean, annual mean and surface air temperature projections from
fifteen different global climate models under three different greenhouse emission
scenarios from 2000 to 2100 (thin lines): SRES A2 (red), A1B (green), and B1
(blue), designated as high-, medium-, and low-emission paths, respectively. The
same models forced with historical forcings are shown as the thin grey lines, and the
observed global mean temperatures from 1950 to 2007 are shown as the thick black
line. The multimodel mean for each emission scenario is shown with thick coloured
lines (figure from Hawkins and Sutton, 2009). (See Colour Plate.)

This has motivated the use of the following types of multiple simulations, or
ensembles:

• The standard ensemble: in these simulations, one considers the sensitivity of the cli-
mate model solutions to the initial conditions and provides an ensemble of ‘equally
likely climate development’.

• The perturbed-parameter ensemble: here one investigates the uncertainties due to the
representation of physical and chemical processes by varying parameters in the cli-
mate model; prominent examples can be found on http://www.climateprediction.net.

• The multimodel ensemble: here one investigates the uncertainties due to a different
representation of physical processes in different models. The different models serve
as a perturbed parameter ensemble and the different simulations with a single model
as a standard ensemble.

The final aim with these ensemble methods is to estimate a range of possible trajec-
tories from an uncertain initial condition with an imperfect model.

An example of the use of ensemble simulations is given in Fig. 12.4 from simulation
efforts carried out for the IPCC-AR4 assessment (Hawkins and Sutton, 2009), where
one is interested in, for example, the global mean surface temperature up to 2100.
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Figure 12.5 The relative importance of each source of uncertainty in decadal mean
surface air temperature preductions is shown by the fractional uncertainty (the 90%
confidence level divided by the mean prediction), for the global mean, relative to the
warming since the year 2000 (i.e., a lead of zero years) (figure from Hawkins and
Sutton, 2009).

Here, an additional element of uncertainty comes from the future forcing conditions,
for example, future emissions, and hence simulations for different so-called emission
scenarios are performed. Hence, predictions are usually referred to as projections. In
Fig. 12.4, the annual mean global mean surface temperature from fifteen different
Global Climate Models is plotted for three different emission scenarios (low: B1;
medium: A1b; and high: A2). The spread around the multimodel mean provides here
an estimate of effect of model uncertainty on future climate under different emission
scenarios.

The different contributions to the uncertainty (due to internal variability, model
uncertainty and forcing scenario uncertainty) for decadal scale global mean tempera-
ture predictions is shown in Fig. 12.5; the initial condition uncertainty is not important
on the longer time scales. On the shorter lead times, the internal variability is the most
important component, whereas the contribution of the forcing scenario uncertainty
is relatively small. Indeed, in Fig. 12.4, the model results for the different scenarios
are very similar up to 2040. On the longer time scale, however, scenario uncertainty
becomes dominant.

12.2 Concepts of predictability

Objective measures of predictability have been developed since the work of Lorenz
(1969). Predictability studies of the first kind address how uncertainties in the initial
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state affect the prediction at a later stage. Indeed, initial uncertainties can amplify as
the prediction lead time increases, thus limiting the predictability of the first kind.
Examples are weather prediction and El Niño prediction (which is a climate prediction
of the first kind). For these studies, a standard ensemble is suited from which it can
be seen how nearby trajectories behave.

Predictability studies of the second kind address the predictability of the response
of the system to changes in boundary conditions. Examples are the response of atmo-
spheric flows due to changes in sea-surface temperature and the response of climate
to changes in orbital insolation variations. For these kinds of studies, a parameter
ensemble is suited as it shows how trajectories for nearby parameter values behave.

In this section, after a more abstract discussion on the density of trajectories, a
measure of predictability is presented for predictability of the first kind, that is, the
concept of predictive power.

12.2.1 The Liouville equation

For a one-dimensional stochastic dynamical system, as discussed in Section 3.5, the
probability density function p(x, t) of the random variable Xt , evolving according to
the Itô SDE,

Xt = X0 +
∫ t

0
a(Xs, s)ds +

∫ t

0
b(Xs, s) dWs, (12.4)

is determined by the Fokker-Planck equation (3.73), that is,

∂p

∂t
+ ∂(ap)

∂x
− 1

2

∂2(pb2)

∂x2
= 0. (12.5)

For a deterministic system (with b = 0), this reduces to the so-called Liouville
equation,

∂p

∂t
= −∂(ap)

∂x
. (12.6)

Given an uncertainty in the initial conditions, represented by an initial probability
density function p(x, 0) = f (x), the Liouville equation provides the development of
the probability density function in time. For an N-dimensional deterministic system

dx
dt

= F(x), (12.7)

with initial condition x(0) = x0, the probability density function is usually indicated
by a density ρ(x, t), and the Liouville equation (12.6) generalises to

∂ρ

∂t
+

N∑
k=1

∂(ρFk)
∂xk

= 0. (12.8)
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12.2 Concepts of predictability 309

Equation (12.8) can be formally solved as (Ehrendorfer, 1994)

ρ(x, t) = f (x0) e−
∫ t

0 ψ(x(x0,s))ds, (12.9)

where f (x) is again the initial density and ψ is given by

ψ(x) =
N∑
k=1

∂Fk
∂xk

, (12.10)

which is the trace of the Jacobian matrix.

Example 12.1 Solution of the 1D Liouville equation In Ehrendorfer (1994), the
one-dimensional example

dx

dt
= ax2 + bx + c , � = b2

4
− ac > 0, (12.11)

is considered. With x(0) = η, the solution of (12.11) can be determined as

x(η, t) = r1(aη + r2)eγ t − r2(aη + r1)

−a(aη + r2)eγ t + a(aη + r1)
, (12.12)

with r1 = b/2 + √
�, r2 = b/2 − √

� and γ = r1 − r2, as can be verified by direct
substitution. To obtain the density ρ(x, t), we determine ψ = 2ax + b and use it to
obtain

ρ(x, t) = f (η)e−
∫ t

0 (2ax(η,s)+b)ds, (12.13)

which eventually provides an expression of ρ in terms of η. The latter is implicitly a
function of x and t through inversion of (12.12), giving

η = η(x, t) = 1

a

[
ax(r2eγ t − r1) + r1r2(eγ t − 1)

ax(1 − eγ t ) − r1eγ t + r2

]
(12.14)

to finally give

ρ(x, t) = f (η)

γ 2
exp(bt + 2r1

γ
ln[aη(e−γ t − 1) − r2 + r1e−γ t ]

−2r2
γ

ln[aη(1 − eγ t ) + r1 − r2eγ t ]). (12.15)

In Fig. 12.6, the development of the density ρ over time (six values in the interval
t ∈ [0, 0.3]) is shown for a = −1, b = 1 and c = 2. The initial density is Gaussian
with a mean x̄ = −2 and variance 0.1. In this case, the fixed points of the dynamical
system (12.11) are determined by x2 − x − 2 = 0, of which x̄ = −1 is unstable and
x̄ = 2 is stable. In time, the density moves away from the unstable fixed point to give
a substantial spread. �
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Figure 12.6 Development of the probability density function ρ(x, t) in time for the
problem (12.11) with a = −1, b = 1 and c = 2 (redrawn from Ehrendorfer, 1994).

12.2.2 Predictive power

Several measures have been developed of the predictability of nonlinear systems, such
as predictive power (Schneider and Griffies, 1999) and prediction utility (Kleeman,
2002). Of those, we discuss only the predictive power next.

Consider the random n-dimensional state vector of a system Xν where ν indicates
a time index. Indicate a particular realisation by xν and denote its prediction by x̂ν .
Because of the stochastic nature of the system, there is a prediction error

eν = xν − x̂ν → xν = x̂ν + eν, (12.16)

and hence in terms of random variables, this can be written as

Xν = X̂ν + Eν, (12.17)

where the predictor X̂ν is the random vector of which x̂ν is a realisation.
The probability distribution of the state Xν is the climatological distribution, which

reflects the prior (before any predictive information is available besides the clima-
tological mean) uncertainty. The statistical properties of Xν can, for example, be
obtained by analysing a long data set of observations or a long control simulation of
a particular model. The probability distribution of the prediction error Eν reflects the
a posteriori uncertainty that remains after the prediction has become available. Intu-
itively, in particular for univariate processes, one would expect that the predictability
of the system is low if the variance of the prediction error is as large (or larger) than
the climatological variance.

For multivariate processes, measures based on information theory can be used to
quantify predictability. The degree of uncertainty associated with a probability density
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function px(x) of a random variable x is given by the entropy (Cover and Thomas,
2006)

Sx = −k
∫
px(x) lnpx(x)dx, (12.18)

where k is a constant. The quantity Sx can be seen as the additional information, say,
the average number of bits, which is necessary to completely specify x.

The prior entropy SXν is the average missing information when only the clima-
tological distribution is known. The posterior entropy SEν is the average missing
information after the prediction has become available. The predictive information Rν ,
given by

Rν = SXν − SEν , (12.19)

is the average information about the state contained in the prediction; it should always
be positive. The predictive powerαν ∈ [0, 1] is then defined as (Schneider and Griffies,
1999)

αν = 1 − e−Rν . (12.20)

When the probability distribution of an n-dimensional state vector X is Gaussian
(see Section 3.2), with covariance matrix �, then it can be shown (Schneider and
Griffies, 1999) that

Sx = k

2
(n+ n log 2π + ln det(�)), (12.21)

which can be easily verified for n = 1 for which� = σ 2 and pX given by (3.8). When
the climatological covariance matrix is indicated by �ν and the covariance matrix of
the prediction error by Cν , the predictive information is given by

Rν = −k
2

ln
detCν
det�ν

, (12.22)

and with the choice k = 1/n, the predictive power αν is finally determined as (using
the product rule of determinants)

αν = 1 − e−Rν = 1 − (detCν�ν
−1)

1
2n . (12.23)

For univariate processes with climatological variance σ 2
c and prediction error variance

σ 2, αν reduces to

αν = 1 − σ 2

σ 2
c

. (12.24)

When the prediction error variance is equal to the climatological variance, the pre-
dictive power is indeed zero. In this case, the prediction does not add any additional
information than already available through the climatology.
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In practice, the matricesCν and�ν can be determined by performing a long control
and a standard ensemble simulation. From the long control integration, we obtain a
trajectory xcν , ν = 1, . . . N , where the superscript c refers to the control simulation.
From this time series, the mean and (time-independent) covariance matrix of the
climatological distribution can be estimated as

x̄ = 1

N

N∑
ν=1

xcν, (12.25a)

�̂ν = 1

N − 1

N∑
ν=1

(xcν − x̄)(xcν − x̄)T . (12.25b)

Next, consider a standard ensemble of the same model in which M (N � M)
initial conditions x1

0, . . . , x
M
0 are integrated forward in time. At time tν , these initial

conditions have evolved to states x1
ν, . . . , x

M
ν . The mean of theM-member ensemble

x̂ν = 1

M

M∑
i=1

xiν (12.26)

is a prediction of the model state xν at lead time tν .
The residuals

eiν = xiν − x̂ν (12.27)

form a sample of the prediction error distribution and are unbiased as they have zero
(ensemble) mean. The sample covariance matrix of the residuals, given by

Ĉν = 1

M − 1

M∑
i=1

eiν(e
i
ν)
T ,

= 1

M − 1

M∑
i=1

(xiν − x̂ν)(xiν − x̂ν)T , (12.28)

is then an estimate of the prediction error covariance matrix.

Example 12.2 North Atlantic multidecadal predictability An example of the use
of the predictive power was given in Schneider and Griffies (1999) using the ensemble
simulation results of Griffies and Bryan (1997) regarding North Atlantic multidecadal
variability. The data consist of twelve ensemble simulations over a period of 30 years
in addition to the 200-year control simulation with the GFDL-R15 model. A principal
component analysis of the dynamic topography of the control simulation provides the
first two EOF patterns as shown in Fig. 12.7; the EOFs together explain about 35%
of the variance of the dynamic topography field. EOF1represents variations in the
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Figure 12.7 First (a) and second (b) EOF of North Atlantic dynamic topography
(cm). The amplitude is scaled by the standard deviations of the associated principal
components (figure from Schneider and Griffies, 1999).

strength of the North Atlantic Current’s northeastward drift, whereas EOF2 displays
gyre-shaped variations in the North Atlantic circulation, with the strongest current
variations located in the central portion of the basin.

The data from the ensemble integrations are projected onto the space formed by
the two EOFs, and estimates of covariance matrix Ĉν are obtained for each lead time
ν = 1, . . . , 30 years. Fig. 12.8 shows the predictive power (here indicated as PP) as
a function of lead time ν with 95% confidence intervals obtained by Monte Carlo
simulation of 1,000 samples (cf. Section 5.2). The bias of the PP estimate is small
enough that the PP can be considered significantly greater than zero when the 95%
confidence interval does not include zero.

The null hypothesis is that the climatological covariance matrix �ν and the pre-
diction error covariance matrix Ĉν are equal, in which case there are no predictable
components in the state space of the two EOFs. This null hypothesis is rejected at
the 95% significance level for PPs greater than 0.28 (which is the dash-dotted line in
Fig. 12.8). The overall PP decays rapidly over the first ten years of the forecasting lead
time, remains marginally significant up to about year 17 and becomes insignificant
beyond year 17. �
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Figure 12.8 Overall predictive power (PP) for the first two EOFs for North Atlantic
dynamic topography as a function of forecast lead time (figure from Schneider and
Griffies, 1999).

12.3 Behaviour of nearby trajectories

From the previous sections, it is clear that the spread of trajectories for different initial
conditions is crucial for predictability of the first kind. The predictive power measure
is based on this spread. One of the central measures of the spread of trajectories is
the Lyapunov exponent of the model (cf. Section 2.5). However, these exponents are
not easy to determine for complicated climate models. What is usually only available
is a climate model with specific choices for parameters for which we have to specify
initial conditions and then integrate these in time. In this section, we discuss methods
addressing the spread of trajectories in such climate models.

12.3.1 Linear view: singular vectors

We write the model equations of an autonomous dynamical system as

dx
dt

= F(x), (12.29)

and indicate the solution x at time t of a trajectory starting at x(t0) for time t0 as
(Kalnay, 2003)

x(t) = M(x(t0)), (12.30)

where M is often referred to as the propagator.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139034135.013
Downloaded from https://www.cambridge.org/core. Universiteitsbibliotheek Utrecht, on 19 Jul 2018 at 14:36:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139034135.013
https://www.cambridge.org/core


12.3 Behaviour of nearby trajectories 315

A nearby trajectory y can be determined by looking at the evolution of the initial
conditions x(t0) + y(t0), where, for example, y(t0) = εv with ||v|| = 1 and ε � 1. By
Taylor expansion, we find

M(x(t0) + y(t0)) = M(x(t0)) + ∂M
∂x

y(t0) + O(ε2) ≈ x(t) + y(t), (12.31)

where y satisfies

dy
dt

= J y, (12.32)

with J is the Jacobian matrix of F. The linear system of equations (12.32) is called the
tangent linear model, and its solutions are indicated by (using the notation L(t0, t) =
∂M/∂x)

y(t) = L(t0, t)y(t0), (12.33)

indicating the propagation of the initial perturbation y(t0) to the perturbation y(t) at
time t .

When the interval (t0, t) is split into two intervals (t0, t1) and (t1, t), the evolution
of the perturbation is given by (integrating first up to t1 and then to t)

y(t) = L(t1, t)L(t0, t1)y(t0) → L(t0, t) = L(t1, t)L(t0, t1). (12.34)

With the standard inner product 〈, 〉 on R
n, the adjoint of the tangent linear model LT

is defined as 〈Lv,w〉 = 〈v,LTw〉, and it follows that

LT (t0, t) = (L(t1, t)L(t0, t1))T = LT (t0, t1)LT (t1, t). (12.35)

This shows that the adjoint tangent linear model can be viewed as starting at time t
and following the trajectory backwards in time.

To determine the action of the (adjoint) tangent linear model on vectors, we use the
notation L ≡ L(t0, t1). For any matrix n× n matrix L, there exist unitary matrices U
and V (with UTU = VTV = I, the identity matrix) such that

UTLV = S, (12.36)

where S is a diagonal matrix containing the singular values σi, i = 1, . . . n of L.
Multiplying (12.36) from the left with U gives

LV = US → Lvi = σiui (12.37)

and multiplying (12.36) from the right with VT gives, similarly,

UTL = SVT → LTU = VST = VS → LT ui = σivi . (12.38)

The vi are called the right (or initial) singular vectors and the ui the left (or final)
singular vectors. Combining both (12.38) and (12.37) gives

LTLvi = σiLT ui = σ 2
i vi , (12.39)

and hence the initial singular vectors can be determined as eigenvectors of LTL.
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Figure 12.9 (a) Application of the tangent linear model forward in time and the adjoint
tangent linear model backward in time to a two-dimensional sphere at initial time.
(b) Application of the adjoint tangent linear model backward in time and the tangent
linear model forward in time to a two-dimensional sphere at final time (figure based
on Kalnay, 2003).

By applying L to each initial singular vector vi , the norm of this vector is changed
by a factor σi , and its direction will be rotated to that of the vector ui . Similarly, by
applying LT to each ui , the norm of this vector is changed by a factor σi , and its
direction will be rotated to that of the vector vi (Fig. 12.9). If L is applied first to vi
and then LT to ui , the norm of the vector vi is changed by a factor σ 2

i . As the σi are
real and ordered as σ1 > σ2 > . . . > σn, the norm of the vector v1 is affected most.

Having understood the action of L and LT , we can now consider the behaviour
of nearby trajectories associated with the initial perturbation vector y(t0). These can
behave very differently, and for the prediction problem, we are in particular interested
in which directions; the distance between x(t) and the trajectory starting at x(t0) + y(t0)
is maximal, say in the norm ‖, ‖ associated with standard inner product, at time t = t1.
Using the tangent linear model, with y(t1) = Ly(t0), we find

‖y(t1)‖2 = 〈Ly(t0),Ly(t0)〉 = 〈LTLy(t0), y(t0)〉, (12.40)

which suggests that this optimisation problem is solved by the singular vectors, and
hence the first singular vector is also called the first optimal vector.

In Xue et al. (1997), the singular values and vectors are determined from the
tangent linear model of the Zebiak-Cane ENSO model (Section 8.2). The method of
constructing the tangent linear model makes use of principle component reduction
and a large ensemble of two-year simulations. In Fig. 12.10, the first singular vector
optimised over a time interval of six months from January of model year 26 is shown.
The thermocline is deeper over much of the western part of the basin, and the westerly
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Figure 12.10 The first singular vector (SST, wind and thermocline depth) of the local
TLM of the Zebiak-Cane model of ENSO optimised at 6 months from January of
year 26 (figure from Xue et al., 1997).

wind anomalies of the singular vector are dominant in the eastern Pacific. With this
perturbation on the model state, it develops into a substantial El Niño–like anomaly
pattern after six months, with SST anomalies reaching up to 2◦C (Xue et al., 1997).

12.3.2 Nonlinear view: CNOPs

When it is aimed to take nonlinear aspects of the spread of trajectories into account,
one has to resort to nonlinear optimisation methods, maximising optimal growth of
some norm of the solution. To study nonlinear mechanisms of trajectory divergence,
Mu (2000) proposed the concept of nonlinear singular vectors and nonlinear singular
values, and it was applied in Mu and Wang (2001) to shallow-water flows. In Mu and
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Duan (2003), the concept of the conditional nonlinear optimal perturbation (CNOP)
was introduced, which we discuss next.

In general, assume that the equations governing the evolution of perturbations can
be written as ⎧⎨⎩

∂x
∂t

+ F (x; x̄) = 0,

x|t=0 = x0,
in �× [0, te], (12.41)

where t is time, x(t) = (x1(t), x2(t), . . . , xn(t)) is the perturbation state vector on a
basic state x̄ and F is a nonlinear differentiable operator. Furthermore, x0 is the initial
perturbation, (x, t) ∈ �× [0, te] with � a domain in Rn, and te < +∞.

Suppose the initial value problem (12.41) is well posed, and the nonlinear prop-
agator M is defined as the evolution operator of (12.41), which determines a tra-
jectory from the initial time t = 0 to time te. Hence, for fixed te > 0, the solution
x(te) = M(x0; x̄)(te) is well defined, that is,

x(te) = M(x0; x̄)(te). (12.42)

For a chosen norm ‖ · ‖, the perturbation x0δ is called the conditional nonlinear
optimal perturbation (CNOP) with constraint condition ‖x0‖ ≤ δ if and only if

J (x0δ) = max
‖x0‖≤δ

J (x0), (12.43)

where the ‘cost function’ J is given by

J (x0) = ‖M(x0; x̄)(te)‖. (12.44)

The CNOP is the initial perturbation whose nonlinear evolution attains the maximal
value of the functional J at time te with the constraint conditions. The CNOP can
be regarded as the most (nonlinearly) unstable initial perturbation superposed on the
basic state.

In Mu et al. (2004), the CNOP approach was applied to the two-box model (Stom-
mel, 1961) of the thermohaline circulation described by the dimensionless equations
(cf. Example 6.1)

dT

dt
= η1 − T (1+ | T − S |), (12.45a)

dS

dt
= η2 − S(η3+ | T − S |), (12.45b)

where T = Te − Tp, S = Se − Sp are the dimensionless temperature and salinity
difference between the equatorial and polar box and = T − S is the dimensionless
meridional overturning streamfunction. The initial perturbation is written as x0 =
(T ′

0, S
′
0) = (δ cos θ, δ sin θ ), where δ indicates the magnitude and θ the direction of

the vector.
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Figure 12.11 (a) Bifurcation diagram for the two-box model (12.45) with η2 as
control parameter and η1 = 3.0, η3 = 0.2. (b) Values of θ the CNOP and the first
linear singular vector (LSV) for the two-box model. (c) Evolution of the cost function
J of the time-dependent solution (figure from Mu et al., 2004).

For a thermally dominant (stable) steady state, the state T̄ = 1.875, S̄ = 1.275,
 ̄ = 0.6 for η2 = 1.02 as indicated as point A in Fig. 12.11a is chosen. Furthermore,
δ = 0.3 is used as a maximum amplitude of the perturbations. The time te = 2.5 is
about half the time the solution takes to equilibrate to steady state from a particular
initial perturbation. The amplitude δ = 0.3 is about 10% of the typical amplitude of
the steady state of temperature and salinity (T̄ , S̄). For θ in the range π/4 < θ <
5π/4, the initial perturbation flow has  ′(0) < 0 and hence weakens the thermally
dominated flow. For other values of θ , the initial perturbation flow has  ′(0) > 0,
which strengthens the thermally dominated flow.
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The results for the CNOP and the first linear singular vectors (LSV) are shown in
Fig. 12.11b. The directions of the LSVs, being independent of δ, have constant values
of θ1 = 1.948 (dashed line) and θ2 = 5.089 (not shown). The directions of the CNOPs
(solid curve) increase monotonously, with δ varying from 0.01 to 0.3. The difference
between the CNOP and (first) LSV is relatively small when δ is small. Integrating
the model with CNOPs and LSVs as initial conditions, respectively, we obtain their
value at time te, which are denoted as CNOP-N and LSV-N in Fig. 12.11c. To make
a comparison, the linear evolution (by the linearised model) of LSVs is also shown
(LSV-L) in Fig. 12.11c. It is clear that CNOPs increase nonlinearly as the initial
perturbation constraint increases, whereas LSV-Ls only increases linearly. The line
of LSV-N is between CNOP-N and LSV-L, but the difference between LSV-N and
CNOP-N is hardly distinguishable in Fig. 12.11c.

12.3.3 Nonlinear view: Lyapunov techniques

In the previous sections, all the measures of growth or decay of vectors along a
trajectory were dependent on the norm chosen, and hence the results can only be
coupled to the physics of the problem when combined with other information of the
model system or observations. As we saw in Section 2.4.3, the Lyapunov exponents
of an attractor indicate whether exponential divergence of trajectories occurs. When
there is a positive Lyapunov exponent, there is sensitivity to initial conditions. These
Lyapunov exponents describe the long-term exponential rate of stretching or contrac-
tion in the attractor and are norm independent. They reduce to the Floquet multipliers
when the trajectory is periodic and to the growth factors of the normal modes when the
trajectory is steady. Lyapunov vectors φi are the generalisation of normal mode vec-
tors of a stable steady state and Floquet vectors for a stable periodic orbit to a general
time-dependent trajectory. In this section, we discuss methods to obtain information
on the Lyapunov vectors directly from the model simulations.

Direct computation

From the Oseledec theorem (see Section 5.5.2), it follows that the Lyapunov exponents
λ±, which characterise the asymptotic evolution of linear disturbances to bounded
trajectories of arbitrary time dependence, can be calculated as λ±

i = ln s±, where s±
are the eigenvalues of the matrices

S± = lim
t→±∞(LT (t0, t)L(t0, t))

1
2(t−t0) , (12.46)

where L(t0, t) is again the tangent linear model. The eigenvalues are norm indepen-
dent, independent of the initial time t0 and λ− = −λ+. A norm-independent set of
Lyapunov vectors φi , such that φi grows at a rate λ±

i as t → ±∞, can also be defined
using the Oseledec theorem (Eckmann and Ruelle, 1985) using nested subspaces and
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can be shown to reduce to Floquet vectors and normal modes when the trajectory is
periodic and steady, respectively.

As can be anticipated from the discussion on singular vectors in the Section 12.3.1,
the set of singular vectors with large optimisation intervals t − t0 are orthogonalisa-
tions of the Lyapunov vectors. Let the evolution of the initial singular vectors vj (t1, t2)
using an optimisation interval t2 − t1 be indicated by

ξ j (t ; t1, t2) = L(t1, t)vj (t1, t2), (12.47)

then the backward singular vectors η̂j (t) and forward singular vectors ξ̂ j (t) are defined
as

η̂j (t) = lim
t1→−∞ ξ j (t ; t1, t), (12.48a)

ξ̂ j (t) = lim
t2→∞ ξ j (t ; t, t2). (12.48b)

To determine a backwards singular vector, the evolved singular vector that was ini-
tialised in the distant past is determined at time t . Similarly, the forward singular
vector is determined by the initial singular vector with an optimisation time far into
the future. The relation between these singular vectors and the Lyapunov vectors is
given by

η̂j (t) =
j∑
i=1

p̂jiφi(t), (12.49a)

ξ̂ j (t) =
N∑
i=j
q̂j iφi(t), (12.49b)

with coefficients p̂ji and q̂j i and where the Lyapunov vectors are ordered with respect
to the magnitude of the Lyapunov exponents.

The relations (12.49) provide a method to compute the Lyapunov vectors (Wolfe
and Samelson, 2007). It follows that 〈φi , ξ̂ j 〉 = 0 for i < j and 〈φi , η̂j 〉 = 0 for i > j ,

and hence the φn can be expressed into the vectors ξ̂ j and η̂j through

φn =
N∑
i=n

〈φn, ξ̂ i〉ξ̂ i , (12.50a)

φn =
n∑
j=1

〈φn, η̂j 〉η̂j , (12.50b)

where the dependence on time has been suppressed. Taking the inner product of
(12.50a) with η̂k and of (12.50b) with ξ̂ k and eliminating the 〈ξ̂ k,φn〉 term leads to
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the linear system of equations

〈η̂k,φn〉 =
n∑
j=1

[
N∑
i=n

〈η̂k, ξ̂ i〉〈ξ̂ i , η̂j 〉
]

〈η̂j ,φn〉 , k ≤ n. (12.51)

The solution of this system of equations provides the expansion coefficients of the
Lyapunov vectors in terms of the backwards singular vectors.

In Wolfe and Samelson (2007), it was realised that because the η̂i and ξ̂ j are
orthonormal sets of vectors, it holds that

N∑
i=1

〈η̂k, ξ̂ i〉〈ξ̂ i , η̂j 〉 = δkj , (12.52)

and hence using this in (12.51), it follows that

n∑
j=1

[
n−1∑
i=1

〈η̂k, ξ̂ i〉〈ξ̂ i , η̂j 〉
]

〈η̂j ,φn〉 = 0 , k ≤ n. (12.53)

With the notation ynk = 〈η̂k,φn〉, k = 1, . . . , n and

Dnkj =
n−1∑
i=1

〈η̂k, ξ̂ i〉〈ξ̂ i , η̂j 〉, k, j ≤ n (12.54)

(12.53) can be written as (with D indicating the matrix with elements Dkj )

Dnyn = 0. (12.55)

The Lyapunov vectors can hence be determined from only the first n− 1 forward
singular vectors and n backward singular vectors. As we saw in Section 12.2.3,
these singular vectors can be obtained from a singular value decomposition for large
optimisation times.

Breeding techniques

A method to determine the leading Lyapunov vector that is often applied in operational
practice is the calculation of so-called Bred vectors. The original idea (Toth and
Kalnay, 1997) was to construct an ensemble of optimal perturbations to carry out
an ensemble forecast by selecting the most important growing error. This essentially
nonlinear method consists of the following steps (Fig. 12.12a):

(i) Add to the initial state x(t0) a small random perturbation δx(t0) to obtain a
perturbed initial state x̃(t0).

(ii) Integrate the model from both the unperturbed and the perturbed initial state for
a given time T = t1 − t0.

(iii) Measure the distance ||δx(t1)|| between the two trajectories at time t1 and rescale
this distance to have the same size as the initial one ||δx(t0)||.
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Figure 12.12 (a) Sketch of the procedure to determine Bred vectors. (b) Bred vector
(left panel) of the zonal velocity starting at 11 November 1988 from the GFDL
MOM2 model using a ten-day breeding interval and corresponding baroclinic energy
conversion (figure from Hoffman et al., 2009). (See Colour Plate.)

(iv) Add this rescaled perturbation to the ‘control simulation’ x(t1) and repeat from
step (ii) until convergence.

After several rescaling steps, the perturbation evolves towards the leading Lyapunov
vector (Toth and Kalnay, 1997), and hence the method ‘breeds’ the nonlinear pertur-
bation that grows fastest. An example of a Bred vector determined from simulations
with a global version of the GFDL MOM2 model (1◦ × 1◦ horizontal resolution in
midlatitudes reducing to 1◦ × 1/2◦ near the equator) with twenty vertical levels and
forced by the NCEP reanalysis data was presented in Hoffman et al. (2009). The zonal
velocity of the Bred vector for a ten-day breeding interval (Fig. 12.12b) starting on
11 November 1988 shows a dipole pattern near South America and a wave pattern
in the Tropical Pacific; the latter could be identified with tropical instability waves
(Hoffman et al., 2009).
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12.4 Data assimilation

The path of the trajectories of climate models can be ‘improved’ by combining the
model outcomes with available observations in so-called data-assimilation methods.
Central to this improvement is an adequate state estimation. Here a distinction is
made among a so-called filter, a smoother and a predictor. Suppose that discrete
measurements x1, . . . , xn are available, and we are interested in a state estimation
x̂k. For a predictor we use only the measurements up to xk−1, for a filter we use
measurements up to xk and for a smoother measurements in the future (xl, l > k) are
also used.

There are basically two classes of data-assimilation methods: (i) those based on
optimisation methods using variational techniques and (ii) those based on ensemble
approaches. The central ideas of all data assimilation methods, however, go back
to those behind the Kalman filter, which we therefore discuss in detail in the next
subsection.

12.4.1 The Kalman Filter

To present the Kalman filter in its simplest form, a one-dimensional linear stochastic
discrete dynamical system of the form, with xj = x(tj ),

xj = cxj−1 + wj, (12.56)

is considered, with c ∈ R and wj representing Gaussian noise having a N(0, σw)
distribution. Suppose that we measure the state of the system through the output
(Fig. 12.13a)

yj = hxj + vj , (12.57)

where h ∈ R and vj again represent Gaussian noise with a N(0, σv) distribution; vj
and wj are independent.

The question that is addressed by the Kalman filter is the following: can we use the
yj to optimally (to minimise the effect of the noise) determine an estimate x̂j of the
state xj?

Assuming that an estimate x̂j−1 is available (Fig. 12.13b), the Kalman filter at time
tj proceeds as follows. First, an a priori estimate x̂−

j is taken as

x̂−
j = cx̂j−1 (12.58)

and used to estimate the output ŷj = hx̂−
j . The difference between this estimate and

the measured yj is, in a second step, used to correct the a priori estimate x̂−
j−1 according

to

x̂j = x̂−
j + kj (yj − ŷj ) = x̂−

j + kj (yj − hx̂−
j ), (12.59)

where kj is the Kalman gain at time tj .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139034135.013
Downloaded from https://www.cambridge.org/core. Universiteitsbibliotheek Utrecht, on 19 Jul 2018 at 14:36:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139034135.013
https://www.cambridge.org/core


12.4 Data assimilation 325

h

C T

+

+

+
wj

xj

xj–1

vj

yj+

h

C T

+

+

+
wj

xj

xj–1

vj

yj+

+

+

h

C kT

–

+

xj

xj–1

yj +

Residual

ˆ

ˆ

ˆˉ

xjˆ

(b)

(a)

Figure 12.13 (a) Block diagram of the original system where the block ‘T’ indi-
cates the time delay (slightly modified from http://www.swarthmore.edu/NatSci/
echeeve1/Ref/Kalman/ScalarKalman.html). (b) Block diagram of the Kalman filter
construction.

To determine kj , a priori e−j and a posteriori ej errors and variances p−
j and pj are

defined as

e−j = xj − x̂−
j ; p−

j = E[(e−j )2], (12.60a)

ej = xj − x̂j ; pj = E[(ej )
2], (12.60b)

where, as in Chapter 3, E[x] denotes the expectation value of x. The a priori error
variance can be written as (using 12.56)

p−
j = E[(xj − x̂−

j )2] = E[(cxj−1 + wj − x̂−
j )2] =

E[(cxj−1 + wj − cx̂j−1)2] = c2pj−1 + σ 2
w, (12.61)

where the last equality arises because wj is uncorrelated to both output and the a
priori estimate. The variance pj−1 (computed at tj−1) is known at time tj .

In the Kalman filter, the gain kj is determined such that pj is minimised, hence,
using (12.59),

∂pj

∂kj
= ∂E[(xj − x̂j )2]

∂kj
= ∂E[(xj − x̂−

j + kj (yj − hx̂−
j ))2]

∂kj
= 0, (12.62)
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from which it follows that

kj = E[(yj − hx̂−
j )(xj − x̂−

j )]

E[(yj − hx̂−
j )2]

. (12.63)

This expression can be simplified using (12.57) according to

E[(yj − hx̂−
j )(xj − x̂−

j )] = E[h(xj − x̂−
j )2] + E[vj (xj − x̂−

j )] = hE[(e−j )2] = hp−
j ,

E[(yj − hx̂−
j )2] = E[(h(xj − x̂−

j ) + vj )2] = h2p−
j + σ 2

v ,

because vj is uncorrelated to both output and the a priori estimate. As a consequence,
(12.63) reduces to

kj = hp−
j

h2p−
j + σ 2

v

= h(c2pj−1 + σ 2
w)

h2(c2pj−1 + σ 2
w) + σ 2

v

, (12.64)

where in the last equation the expression (12.61) for p−
j was used.

Finally, the a posteriori error variance pj can be determined from

pj = E[(xj − x̂j )2] = E[(xj − (x̂−
j + kj (hxj + vj − hx̂−

j )))2]

= E[((xj − x̂−
j )(1 − hkj ) − kjvj )2]

= (1 − hkj )2p−
j + k2

j σ
2
v .

Expressing σ 2
v into p−

j using (12.64), that is,

σ 2
v = p−

j

h(1 − hkj )
kj

, (12.65)

then eventually gives

pj = (1 − hkj )p−
j = (1 − hkj )(c2pj−1 + σ 2

w). (12.66)

We now summarise the two-step process of the Kalman filter and simultaneously
provide its multidimensional extension. In this case, the system and measurement is
described by

xj = Cxj−1 + Wj , (12.67a)

yj = Hxj + Vj , (12.67b)

with obvious extensions from the preceding one-dimensional case, and let �W and
�V indicate the covariance matrices of the noise W and V, respectively.

The predictor and corrector steps in the Kalman filter are then given by

x̂−
j = Cx̂j−1, (12.68a)

x̂j = x̂−
j + Kj (yj − Hx̂−

j ). (12.68b)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139034135.013
Downloaded from https://www.cambridge.org/core. Universiteitsbibliotheek Utrecht, on 19 Jul 2018 at 14:36:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139034135.013
https://www.cambridge.org/core


12.4 Data assimilation 327

The a priori and a posteriori error covariances are given by (compare with [12.60])

P−
j = E[(x − x̂−

j )(x − x̂−
j )T ], (12.69a)

Pj = E[(x − x̂j )(x − x̂j )T ], (12.69b)

and Kj is determined by minimising Pj which results in (compare with [12.64])

Kj = P−
j HT

HP−
j HT +�V

, (12.70)

where the a priori covariance matrix is found from (compare with [12.61])

P−
j = CPj−1CT +�W, (12.71)

and finally the a posteriori covariance matrix is given by (compare with [12.66])

Pj = (I − KjH)P−
j . (12.72)

In the climate data assimilation literature, one often uses a slightly different termi-
nology. Here a background model state xb (instead of x̂−) serves as the prior estimate
with covariance error matrix B (instead of P−). The estimated state is called the anal-
ysis xa (instead of x̂), and the a posteriori covariance matrix is usually indicated by A,
the analysis errors (instead of P). The covariance matrix of the observational errors is
usually indicated by R (instead of �V ), and often the model error covariance �W is
neglected (perfect model). From the Kalman filter, the analysis xa then follows from

xa = xb + K(y − Hxb), (12.73)

and the Kalman-gain matrix K and the analysis errors follow from

K = BHT

HBHT + R
, (12.74a)

A = (I − KH)B. (12.74b)

Although the Kalman filter is a basis for many of the data-assimilation methods
in oceanography and meteorology (and hence its basic technique was presented in
this section), the multidimensional version becomes prohibitively computationally
expensive for large-dimensional dynamical systems, and hence many approximative
Kalman filter methods are in use (Evensen, 2009).

12.4.2 Ensemble-based methods

As mentioned in Section 12.1, ensemble methods are often used in climate modelling.
Here, many simulations are performed with different initial conditions, and using data
assimilation techniques, observations can be used to limit the spread of the ensemble.
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truth ensemblecontrol
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1/1/1991 1/1/1992 1/1/1993 1/1/1994

Figure 12.14 Schematic of the experiment set-up in Leeuwenburgh (2005).

Next, the state vector of ensemble member i is indicated by xi , and we indicate the
ensemble mean operator with an overbar.

Ensemble Kalman Filter

In the Ensemble Kalman filter (EnKF) method with given observations y at a time t ,
these observations first are perturbed (Burgers et al., 1998) to obtain

yi = y + ei → Re = eeT , (12.75)

and the analysis for each ensemble member follows from (12.73) as

xai = xbi + Ke

(
yi − Hxbi

)
. (12.76)

The Kalman gain matrix Ke is now computed using ensemble mean quantities, similar
to (12.74),

Ke = BeHT

HBeHT + Re
, (12.77)

where

Be = (xb − xb)(xb − xb)T , (12.78)

and the analysis error is computed from

A = (xa − xa)(xa − xa)T = (I − KeH)Be + O(N−1/2), (12.79)

if N is the number of ensemble members. The EnKF is used in many prediction and
data-assimilation studies in climate dynamics (Evensen, 2009), and a website with
up-to-date information and codes can be found at http://enkf.nersc.no/.

An example of the use of the EnKF is provided in the identical twin study of
Leeuwenburgh (2005), where SSH data are assimilated into a global ocean model.
The ‘truth’ was created by forcing the ocean model with NCEP reanalysis fields,
whereas during the control and assimilation runs, the model was forced by ERA40
fields (Fig. 12.14). SSH ‘observations’ from the truth were assimilated into along
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12.4 Data assimilation 329

Figure 12.15 Errors in the (a–c) forecast (without data assimilation) and (b–d) analysis
at 8 January 1993, for sea-level height (cm) (a–b) and temperature (◦C) (c–d) at 50
depth (figure from Leeuwenburgh, 2005).

TOPEX/POSEIDON tracks over the equatorial Pacific every ten days. The results indi-
cate that the assimilation of SSH leads to a significant improvement along the equator
in all subsurface fields relative to the unconstrained control simulation (Fig. 12.15).

Particle filtering

With an ensemble of trajectories (or particles), we obtain at a certain time a sampling
of the probability density function of the background (or prior estimate), and through
the Kalman filter, we obtain an estimate of the probability density function of the anal-
ysis (or posterior estimate). When the model is nonlinear and/or the prior probability
density function is non-Gaussian, the EnKF methodology is no longer appropriate.
One of the possibilities is to use Bayes’s theory to determine the posterior probability
density function from the prior probability density function using the extra informa-
tion provided by additional observations. This requires that the probability density
functions are properly sampled and ensemble methods are ideally suited to do so; it
leads to so-called particle filter methods (Van Leeuwen, 2009).

To illustrate the basics of a particle filter method, assume that the model is repre-
sented by the equations

xk+1 = Mk(xk,Wk), (12.80)

where xk is the state vector at time tk, M is the propagator and Wk is the noise in the
model. At time tk, the observation vector is indicated by yk. To determine the proba-
bility density function of the state vector xk, N independent particles or trajectories
are available (from a model simulation over the interval [tk−1, tk]), which provide
states xik, i = 1, . . . , N . The probability density function of the model, pN (xk), can
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weighting weighting

t=0 t=10 t=20

Figure 12.16 Schematic of the standard particle filter method with importance sam-
pling (figure from Van Leeuwen, 2009).

then be represented by

pN (xk) = 1

N

N∑
i=1

δ(xk − xik), (12.81)

where δ is the Dirac function.
Suppose now that at an initial time t = t0,N trajectories are computed. As observa-

tions are not yet taken into account, the particles are given an equal weightwi0 = 1/N ,
as any of these trajectories could be close to later observations and pN (x0) is chosen
(Fig. 12.16). After time �t = t1 − t0, the prior probability density function of the
model pN (x1) can be computed through (12.81), which can be written as

pN (x1) =
N∑
i=1

wi0δ
(
x1 − xi1

)
. (12.82)

Next, the observations y1 are taken into account to compute a posterior probability
density function. The joint probability of two events a and b can be written in two
ways using conditional probabilities

P (a ∈ A, b ∈ B) = P (a ∈ A|b ∈ B)P (b ∈ B), (12.83a)

P (a ∈ A, b ∈ B) = P (b ∈ B|a ∈ A)P (a ∈ A), (12.83b)

and, combining these two relations, we find Bayes’s theorem

P (a ∈ A|b ∈ B) = P (b ∈ B|a ∈ A)P (a ∈ A)

P (b ∈ B)
. (12.84)
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In the particle filter methodology, Bayes’s theorem is used in the form

pN (x1|y1) = pN (y1|x1)pN (x1)

pN (y1)
=

N∑
i=1

wi1δ
(
x1 − xi1

)
, (12.85)

where the new weights are found from (using [12.82])

wi1 = pN (y1|x1)

pN (y1)
wi0. (12.86)

The probability pN (y1|x1) of the observation y1 given the model state x1, is directly
linked to the observational error. For example, with a univariate measurement y1

having a Gaussian distribution with a variance σ 2
obs , the probability follows from

pN (y1|x1) ∼ e
− (H (x1)−y1)2

2σ2
obs , (12.87)

where H (x1) is the model equivalent of the observation calculated using the obser-
vational operator H . The probability pN (y1) serves as a normalisation that can be
calculated by the constraint

N∑
i=1

wi1 =
N∑
i=1

pN (y1|x1)

pN (y1)
wi0 = 1. (12.88)

Once the new weights have been determined, the posterior probability density function
is known. In the particle filter procedure, the weights of the different particles increase
when the trajectories are closer to observations (see Fig. 12.16).

A typical example, where horizontal mixing coefficients in a global ocean model
are estimated from sea-level observations using a particle filter method, can be found
in Vossepoel and Van Leeuwen (2007). Let the horizontal diffusion coefficient for heat
and salt be indicated by KH and the horizontal viscosity by AH . In a 128-member
ensemble starting from the same initial conditions, the ocean model is integrated
forward in time. For each ensemble member, the diffusivity and viscosity are taken
as AH = cA0

H and KH = cK0
H , where c is chosen from a uniform distribution on the

interval (0, 1) and A0
H and K0

H are standard values.
From the simulations, the global sea-surface height field is determined, and the

spread of this quantity in the ensemble is shown in Fig. 12.17a. In the regions where
the spread of the ensemble is largest, the sea level is most sensitive to differences
in lateral mixing parameterization. Synthetic sea-level observations are next taken
from a simulation of the model with a value c = 0.2 (and also from c = 0.8) and
random uncorrelated noise has been added with a standard deviation of 5 cm. These
‘observations’ are assimilated using the particle filter, and the weightswi from (12.86)
are shown for both cases (c = 0.2 and c = 0.8) in Fig. 12.17c–d. The narrow weights
for the case c = 0.2, compared with those for c = 0.8, indicate a high sensitivity of
sea level to horizontal mixing when the global horizontal mixing (the ‘truth’ from a
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low mixing model case) is low. The shape of the weights for c = 0.8 demonstrates
the strong nonlinear dependence of sea level on the horizontal mixing coefficients.
The resulting sea level in the inverse estimation for the case c = 0.8 is close to the
synthetic truth (Fig. 12.17b).

12.4.3 Variational data assimilation

The Kalman filter result (12.74) is optimal, and it can be shown that the analysis xa

in (12.73) is a solution of the optimisation problem (Lorenc, 1988)

xa = min
x
J (x), (12.89)

where the cost function J is given by

J (x) = (x − xb)TB−1(x − xb) + (y − Hx)TR−1(y − Hx). (12.90)

The variational data assimilation methods used differ in (i) the cost function J
that is minimised, (ii) which control variable is used in the minimisation and (iii)
how errors are taken into account. As an example, we provide a brief description of
4D-Var. Here the control variable is the initial state x(t0) at time t = t0. Suppose the
initial condition wb(t0) of the background model is given. The analysis is the model
trajectory that simultaneously minimises the distance to the initial background wb(t0)
and the observations {yi : i = 0, · · · , N − 1}. This is an optimisation problem, which
in the incremental 4D-Var formulation (Courtier et al., 1994) is stated as

δwa = min
δw
J (δw), (12.91a)

J (δw) = δwTB−1δw +
N−1∑
i=0

dTi R−1
i di , (12.91b)

di = yi −HiM(t0, ti)(wb(t0)) − HiL(t0, ti)δw. (12.91c)

In the preceding equations, J is the cost function that measures the distance to
the observations and the initial conditions, δwa is the optimal increment on the
initial background wb(t0) state and di is the departure of the model trajectory from
observation yi (Fig. 12.18). The operators M and Hi are the evolution operator and
the observation operator with L and Hi their linearisations around the background
trajectory wb(ti). The matrices B and Ri are the covariance matrices for the background
errors and observational errors. Given an optimum δwa of (12.91), the analysis wa(ti)
is given by

wa(ti) = M(t0, ti)(wb(t0) + δwa). (12.92)

A minimum of the cost function J is computed, for example, with a quasi-Newton
conjugate gradient method in which the gradient ∇J is needed. For (12.91), the
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Figure 12.17 (a) Root mean square sea level for the 128-member ensemble of the global ocean model. The contour interval is 2 cm. (b)
Difference between synthetic observations and inverse estimate for c = 0.8. (c) Values of wi for each of the ensemble members as a
function of c, with ‘observations’ for the case c = 0.2. (d) Same as (c) with ‘observations’ for the case c = 0.8 (figure from Vossepoel
and Van Leeuwen, 2007).
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Figure 12.18 Sketch of the 4D-Var method, showing an assimilation interval with 4
points and indicating the model trajectory, the observations and the analysis.

gradient is given by

∇J (δw) = 2B−1δw − 2
N−1∑
i=0

L(t0, ti)
THT

i R−1
i di . (12.93)

For explicit time integration models, the procedure is to evaluate the cost function by
forward time stepping, whereas the gradient is evaluated by integrating backward in
time using the adjoint model L(t0, ti)T . For 4D-Var with implicit time stepping, only
forward time stepping is used to evaluate the gradient (Terwisscha van Scheltinga and
Dijkstra, 2005).

The 4D-Var method is used in many applications in the geosciences, such as
numerical weather prediction (Lorenc, 2007), atmospheric reanalysis (Kalnay et al.,
1996; Compo et al., 2011) and ocean state estimation (Wunsch and Heimbach, 2007;
Moore et al., 2011). Comparisons between the use of 4D-Var and EnKF methods on
several atmospheric models are provided in Kalnay et al. (2007) and Buehner et al.
(2010).

12.5 Outlook

The aim of this chapter was to show the role of concepts of (stochastic) dynamical
systems theory in climate prediction. As we have seen, one of the central elements
in prediction is the amplification of errors (perturbations) along trajectories. Many
systems, even on climate time scales, are nonlinear and display non-Gaussian statistics,
and concepts of CNOPs, Lyapunov vectors and Bred vectors are better suited in real
applications than those (e.g., singular vectors) based on linear systems and Gaussian
statistics. The concepts of dynamical systems are now also widely and successfully
applied in prediction systems where, by incorporating observations through data
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assimilation, adequate state estimations and useful predictions can be obtained for
highly nonlinear systems.

The skill of numerical weather prediction has improved over the years, and forecasts
a few days ahead over many regions over the globe have reasonable skill. The growth
of perturbations associated with instabilities in the atmospheric flow field limits the
predictability horizon to about ten days. On the seasonal time scale, skill is improving,
and regions of high-potential predictability (Rowell, 2010) are being identified. El
Niño prediction is hampered by the existence of the spring predictability barrier, with
a large growth of errors during the northern hemispheric spring due to a particular
sensitivity of the equatorial ocean-atmosphere system (Duan et al., 2009). There is
much activity in the area of decadal predictability (Keenlyside et al., 2008), but the
processes controlling the predictability horizons are not very clear yet. In the IPCC-
AR4 and also for the next IPCC assessment, attempts are made to determine the range
of possible future climate states in 2100 from ensembles of simulations with a suite
of global climate models (Meehl et al., 2007). As mentioned in Section 12.1, the
additional uncertainty here is the forcing of the system, in particular the concentration
of atmospheric greenhouse gas concentrations. Hence, in the IPCC-AR4 assessment,
one only talks about projections instead of predictions.

Important issues in climate research where the potential of dynamical systems
has not been fully explored are the detection of critical behaviour and the a priori
determination of extremes. How do we sense that the climate state vector is close
to a transition point such as a Hopf bifurcation or a saddle-node bifurcation? Can
we predict the approximation of these points from the methods used in the previous
sections with a useful skill? In recent years, there has been substantial effort to detect
transition behaviour from time series (Held and Kleinen, 2004; Livina and Lenton,
2007; Scheffer et al., 2009; Lenton, 2011; Thompson and Sieber, 2011), although
in many cases, the available data series are too short to provide convincing answers.
Extreme behaviour is centrally important in climate change issues: eventually, it is
the extremes in temperature (heat waves) and precipitation (flooding) that provide
most impact and damage to nature and society. The analysis of extreme behaviour
in dynamical systems is currently an active research area (Sterl et al., 2008; Holland
et al., 2012).

The main challenge of the application of all the techniques in this chapter to
problems in climate predictability is related to the ‘curse of dimensionality’. The
spatial resolution and the number of processes represented in climate models will
increase with time (cf. Chapter 6), and a model in which all dynamically relevant
scales of motion are represented will have an estimated 1012 degrees of freedom.
With the speed of processors being stagnant and the computer hardware switching to
graphical processors units (GPUs) and multicore platforms, enormous challenges lie
ahead to be able to apply data-assimilation techniques to future climate models on
the algorithm aspects, the data-handling aspects and the high-performance computing
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aspects. Definitely, major technical hurdles must be cleared before reliable forecasts
of future climate conditions can be produced using the best climate models available.

Finally, although this may not be realised by the general public and policy makers,
climate prediction provides a historic opportunity for humankind to determine at least
one aspect of life relatively far into the future with a specified quantitative uncertainty.
The impact of such predictions cannot be underestimated, as is now already the case
for numerical weather predictions a few days ahead.
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