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Figure 10. Oxygen isotope anomaly (δ18O) from the NGRIP ice core (Andersen & et al.
2004). Peak to peak temperature changes between 50 ky and 20 ky are about 10◦C.

4. Dansgaard-Oeschger Events

4.1. Phenomena

Isotope analyses from ice cores on Greenland provide information on the local temper-
atures over the last 100 ky. The local oxygen isotope anomalies (δ18O) from the NGRIP
ice core are plotted in Fig. 10. Slow variations are associated with the development of the
last ice age of which the extremum occurred around 25 ky. The relatively rapid transitions
(for example between 50 ky and 20 ky) with an equivalent peak-to-peak amplitude of
about 10◦C are called the Dansgaard-Oeschger events (Oeschger et al. 1984). There has
been an extensive discussion on the dominant time scale of these events (Wunsch 2000).
Through careful analysis of the GISP2 (Stuiver & Grootes 2000) record, Schultz (2002)
concludes that between 46 and 13 ky, the onset of Dansgaard-Oeschger events was paced
by a fundamental period of ∼1470 years. Before 50 ky, the presence of such a dominant
period is unclear due to dating uncertainties in the ice core record.

The behavior of the climate system on millennial time scales during the last glacial
period is highly interesting for an understanding of feedbacks between the ocean, atmo-
sphere and cryosphere. There are many indications from proxy data that there have been
large-scale reorganizations of both the atmosphere and ocean associated with Dansgaard-
Oeschger events and a review is provided in Clement & Peterson (2008). In the subpolar
North Atlantic, Dansgaard-Oeschger events were matched with corresponding sea surface
temperature changes of at least 5◦C. A theory of Dansgaard-Oeschger events will have
to explain at least the processes controlling the dominant ∼1500 year time scale of the
variability and the asymmetric character of the transition with a rapid warming and a
relatively slow cooling phase. As discussed in Clement & Peterson (2008), several different
views have been proposed to explain the millennial climate variability during the last
glacial period. Leading theories all involve changes in the Atlantic Ocean circulation.

4.2. The Atlantic Meridional Overturning Circulation

On the large scale, the ocean circulation is driven by momentum fluxes (by the wind),
the tides and affected by fluxes of heat and freshwater at the ocean-atmosphere interface.
The buoyancy fluxes affect the surface density of the ocean water and through mixing and
advection, density differences are propagated horizontally and vertically. In the North
Atlantic, the Gulf Stream transports relatively warm and saline waters northwards.
Part of the heat is taken up by the atmosphere, making the water denser. In certain
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Figure 11. Volume transport of the Atlantic MOC at 26◦N as measured by the
RAPID-MOCHA array from April 2004 to April 2014 (Smeed et al. 2014).

areas (e.g. the Labrador Sea), when there is strong cooling in winter, the water column
becomes unstably stratified resulting in strong convection (Marshall & Schott 1999).
The interaction of this convection with boundary currents (Spall 2003) eventually leads
to the formation of deepwater, which overflows the various ridges that are present in the
topography and enters the Atlantic basin.

This deepwater is transported southwards at a depth of about 2 km, where it enters
the Southern Ocean. Through upwelling in the Atlantic, Pacific and Indian Ocean, the
water is slowly brought back to the surface (Talley 2008). To close the mass balance the
water eventually is transported back in the upper ocean to the sinking areas in the North
Atlantic. In the Southern Ocean, also bottom water is formed which has a higher density
than that from the northern North Atlantic and therefore appears in the abyssal Atlantic
and Pacific. In the North Pacific no deep water is formed.

The Atlantic Meridional Overturning Circulation (MOC) is the zonally integrated
volume transport, characteristic by the meridional overturning stream function. This
transport is mainly responsible for the meridional heat transport in the Atlantic. The
strength and spatial pattern of the MOC are determined by density differences which set
up pressure differences in the Atlantic. There are no observations available to reconstruct
the pattern of the MOC but its strength at 26◦N in the Atlantic is now routinely
monitored by the RAPID-MOCHA array (Cunningham et al. 2007; Srokosz & Bryden
2015). The currently available time series of the MOC strength is shown in Fig. 11
indicating a mean of about 19 Sv, a standard deviation of 5 Sv and a decreasing trend
of about 1.6 Sv over the last decade (Smeed et al. 2014). At 26◦N the heat transport
associated with the Atlantic MOC is estimated to be 1.2 PW (Johns et al. 2011). This
heat is transferred to higher latitudes leading to a relatively mild climate over Western
Europe, compared to similar latitudes on the eastern Pacific coast.

4.3. Stochastic Conceptual Models

The simplest picture one can imagine that captures the key aspects of the MOC can be
traced back to Stommel (1961). It is reasonable to suppose that the transport between
equatorial and polar water reservoirs depends upon their mutual density difference ∆ρ.
A physical reason for this is that denser polar water is more pre-conditioned to convect
to the ocean floor, enhancing meridional overturning. Stommel supposed the existence
of two reservoirs of water, one representing the poles and the other the equator, with
temperatures and salinities Tp, Sp and Te, Se, respectively (see Fig. 12).
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The density of seawater is approximated following a simple linear dependence upon T
and S,

ρ = ρ0 − αT (T − T0) + αs(S − S0), (4.1)

where the thermal expansivity αT and salinity coefficients αs are assumed constant. One
may then express the density difference between the two reservoirs as

∆ρ = −αT (Tp − Te) + αs(Sp − Se), (4.2)

which in turn governs the transport rate per unit volume Q(∆ρ).
The two reservoirs do not only interact with each other, but are individually forced at

their upper surface. The temperature is supposed to relax, over a timescale tr, to the local
atmospheric temperature Ta, which is formulated as Ta = T0− θ/2 for the polar box and
Ta = T0 + θ/2 for the equatorial box. Whereas colder water will have greater tendency
to draw in heat than warmer water, salty water does not stimulate the atmosphere to
rain on it! Consequently, salinity forcing is poorly modelled as a relaxation to some
equilibrium value. A more physical form for the forcing is chosen whereby a prescribed
flux FS/2 of fresh water enters the polar ocean (in the form of rain, meltwater, etc.),
with an equal volume (for simplicity) leaving at the equator by evaporation (−FS/2).
As S0 is the typical value of salinity in the ocean, the result of the freshwater flux is a
decrease in salinity in the polar box with rate proportional to FSS0 and an equivalent
increase in the equatorial box.

The equations governing the two-box system are then (Cessi 1994)

Ṫe = − 1

tr
[Te − (T0 + 1

2θ)]−
Q(∆ρ)

2
(Te − Tp), (4.3a)

Ṡe = +
FS
2H

S0 −
Q(∆ρ)

2
(Se − Sp) (4.3b)

Ṫp = − 1

tr
[Tp − (T0 − 1

2θ)]−
Q(∆ρ)

2
(Tp − Te), (4.3c)

Ṡp = − FS
2H

S0 −
Q(∆ρ)

2
(Sp − Se) (4.3d)

where H is the ocean depth. We can now see that in the form written above, Q(∆ρ) must
be positive. The reason for this is that although Q is physically the advection of water
between two reservoirs, this advection is closed, with as much going in as is coming out
for each reservoir. If you reverse the direction of circulation the quantity of polar water
moving into the equator and vice versa remain unchanged. With this in mind, considering
the simplicity of the model, we are free to choose a functional form for Q that depends
only on the magnitude of ∆ρ. In Cessi (1994), the form

Q(∆ρ) =
1

td
+

q

ρ2
0V

(∆ρ)2, (4.4)

is chosen where V is the volume of each reservoir, q is a dimensional transport coefficient
and td is the timescale of diffusive mixing between the two reservoirs that would occur
in the absence of a density difference.

It is convenient to define the temperature and salinity differences

∆T ≡ Te − Tp, ∆S ≡ Se − Sp (4.5)

and work in terms of these variables. From equations 4.3, we obtain the time evolution
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Figure 12. Schematic of the Stommel two-box model of the meridional overturning circulation

of the temperature and salinity differences:

d∆T

dt
= − 1

tr
(∆T − θ)−Q(∆ρ)∆T, (4.6a)

d∆S

dt
=
Fs
H
S0 −Q(∆ρ)∆S. (4.6b)

Next appropriate scales are introduced to reduce the dynamical variables ∆T and ∆S,
together with time t, to their respective dimensionless forms. Appropriate choices are as
follows

x ≡ ∆T

θ
, y ≡ αs∆S

αT θ
, t′ ≡ t

td
. (4.7)

Once scaled, the dynamical equations for x(t′) and y(t′) read

ẋ = −α(x− 1)− x
[
1 + µ2(x− y)2

]
, (4.8a)

ẏ = F − y
[
1 + µ2(x− y)2

]
, (4.8b)

where

α =
td
tr
, µ2 =

qtd(αtθ)
2

V
, F =

αsS0td
αtθH

FS . (4.9)

The parameter α is the ratio of the diffusive timescale to the timescale over which
temperature would exponentially decay to the local atmospheric value. The parameter µ
measures the strength of the buoyancy-driven convection between the two basins relative
to the diffusive mixing. The parameter F measures the strength of freshwater forcing.
Standard values of the two-box model parameters can be found in Table 2.

We may simplify the equation above by noting that for parameters typical of the real
ocean (see table) α � 1, which means that the reservoirs will equilibrate with their
local forcing temperatures much more rapidly than they are likely to mix each other’s
temperatures. Therefore, we may suppose that x remains close to 1 which reduces the
problem to an ODE in y(t) alone (where we drop the primes on t′ for convenience):

dy

dt
= F − y

[
1 + µ2(1− y)2

]
. (4.10)

If we suppose for now that F = F̄ is independent of time, we can represent the time
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Parameter Meaning Value Unit
tr temperature relaxation timescale 25 days
H mean ocean depth 4,500 m
td diffusion time scale 180 years
ta advection time scale 29 years
q transport coefficient 1.92× 1012 m3s−1

V ocean volume 300× 4.5× 8, 250 km3

αT thermal expansion coefficient 10−4 K−1

αS haline contraction coefficient 7.6× 10−4 –
S0 reference salinity 35 g kg−1

θ meridional temperature difference 25 K

Table 2. Parameters of the Stommel two-box model.

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2

y

F

F = 1.1 

a

b

c

(a)

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2

q

F

q
a

q
b

q
c

L
1

L
2

__

(b)

Figure 13. Bifurcation diagram of the model (4.10) for µ2 = 6.2, showing (a) y and (b)
q = 1 + µ(1− y)2 versus F̄ .

evolution of y using a potential function V (y):

dy

dt
= −V ′(y), where V (y) = −F̄ y +

1

2
y2 + µ2

(
1

4
y4 − 2

3
y3 +

1

2
y2

)
, (4.11)

and its derivative with respect to y is denoted by the prime. The potential V (y) is a
so-called double-well potential with two stable minima and an unstable maximum. In
order to transition from one potential well to the other, a finite amplitude “kick” in y is
required.

Recalling that y is simply the dimensionless salinity difference, we immediately see that
the two reservoirs can remain in a stable state with either a large salinity difference or a
small one. Physically, these correspond to the following: The poles are colder and fresher
than the equator. and if we freshen the poles, we increase ∆S, but because temperature
drives the convection, this freshening reduces ∆ρ and so the MOC weakens. Therefore,
the higher (lower) value of y is usually referred to as the off (on) state of circulation.
Another way to look at it is that in order to balance the freshwater forcing at a large ∆S
we need less mixing between the reservoirs than if we have a smaller ∆S. Ultimately, the
conclusion here is that the meridional overturning circulation can jump between the on
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Figure 14. (a) Realization of the box model starting at ya = 0.24 for F̄ = 1.1, µ2 = 6.2 and
(a) σ = 0.1 and (b) σ = 0.25.

and off states impulsively, given a finite-amplitude perturbation, such as a particularly
large ice-melt event.

As an alternative to the potential V (y), one can also plot the steady solutions ȳ of the
equation (4.10) i.e. solutions of

F̄ − y(1 + µ2(1− y)2) = 0, (4.12)

versus F̄ . This bifurcation diagram, where both y (Fig. 13a) and the dimensionless volume
transport q = 1 + µ(1− y)2 (Fig. 13b) is used, indeed shows that there is an interval of
values F̄ for which there are multiple equilibria. Here the dashed states are unstable and
the drawn states are stable. The interval of multiple states is bounded by two so-called
saddle-node bifurcation points L1 and L2.

4.4. Transitions

Of course, the freshwater forcing F is unlikely to have been constant in reality and
next, we consider F to vary stochastically. This component is represented as white noise
with amplitude σ such that F = F̄ + σξ(t). This leads to the Itô equation

dYt = −V ′(Yt) dt+ σ dWt. (4.13)

Note here that the result of adding fluctuations to F is additive noise in the equation for
Y , rather than noise in the potential V (y).

Starting at one fixed point ya = 0.24, two transient solutions of (4.13) for F̄ = 1.1,
µ2 = 6.2 are plotted in Fig. 14, one for σ = 0.1 and one for σ = 0.25. The transient
solution for η = 0.1 does not make any transition and stays near the equilibrium ya = 1.07
(qa = 4.58). As can be seen, the trajectory for σ = 0.25 undergoes transitions between
the two stable states (yc and ya). Clearly the transitions in Fig. 14b are noise induced
transitions as the value of F̄ is still in the multiple equilibrium regime and smaller than
the F̄ value at the saddle node bifurcation L1 (Fig. 13).

As we have seen in section 3, we can write down the forward Fokker-Planck equation
in order to solve for the probability density function p(y, t) of the process Yt, i.e.,

∂p

∂t
=

∂

∂y

(
V ′(y)p

)
+

1

2
σ2 ∂

2p

∂y2
. (4.14)

Now, in the deterministic case before, we sought time-independent solutions for y. Of
course, it makes no sense to look for truly time-independent solutions for the random
variable Yt, but a statistically steady solution may be found by setting ∂p/∂t = 0 and
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Figure 15. Motion in the double-well potential V (y) from (4.11) with F̄ = 1.1 and µ2 = 6.2.
Top: Potential V (y). Bottom: Stochastic motion (4.13) with noise amplitude σ = 0.2 starting
from Y0 = 0 (left) or Y0 = 1 (right). The time evolution of five realizations are shown, as
well as histograms (blue) from 10, 000 realizations and the probability density (red) obtained
from numerical solution of the corresponding Fokker–Planck equation (4.14). The distribution
labelled t =∞ is the steady-state distribution ps(y) from (4.15).

solving for the function ps(y) satisfying stationary statistics. The solution method is
similar to that for the Ornstein-Uhlenbeck process and the result is,

ps(y) = Ce−
2
σ2
V (y), where C =

(∫ ∞
−∞

e−
2
σ2
V (y) dy

)−1

(4.15)

is the normalization coefficient and we have used the boundary condition that p→ 0 as
y → ±∞.

Numerical results for equations (4.13) and (4.14) are shown in Fig. 15. The histograms
and probability densities are initially peaked at the well near which the system was
launched, indicating that the peak at y = yb is difficult to cross. They do eventually
spread out, though, and attain the steady state given by equation 4.15. In this state,
the system typically fluctuates around in one of the two wells and randomly transitions
between them, while spending more time overall in the deeper well.

4.5. Escape time

Suppose we are in the “on”-state y = ya of the meridional overturning but subject the
system to given, stochastic freshwater forcing. How long is it likely to take for the system
to flip into the other (“off”) state y = yc? To solve this exit-time problem, let the time
when the particle leaves the interval (also referred to as the first exit time) be indicated
by T (y). It can be shown that the mean time T̄ (y) required to escape to yc when starting
from y satisfies the equation:

−1 = −V ′T̄ ′ + 1
2σ

2T̄ ′′, with T̄ (yc) = 0, T̄ ′(−∞) = 0, (4.16)

where the boundary conditions state that it takes no time to reach yc when starting from
yc, and that the escape time varies very little for y far below the potential well at ya
since the restoring deterministic drift is very strong there.

The equation is a linear first-order equation for T̄ ′(y) which we solve by multiplying
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by the integrating factor exp(−2V (y)/σ2):

−e−
2
σ2
V = e−

2
σ2
V
(
−V ′T̄ ′ + σ2

2 T̄
′′
)

= σ2

2

(
e−

2
σ2
V T̄ ′

)′
. (4.17)

Integration of both sides and using the boundary condition T̄ ′(−∞) = 0 yields

T̄ ′(y) = e
2
σ2
V (y)

∫ y

−∞
− 2
σ2 e
− 2
σ2
V (s) ds = − 2

σ2

∫ y

−∞
e

2
σ2

[V (y)−V (s)] ds. (4.18a)

A second integration using T̄ (yc) = 0 yields

T̄ (y) = − 2
σ2

∫ y

z=yc

∫ z

s=−∞
e

2
σ2

[V (z)−V (s)] ds dz. (4.19)

Hence the mean escape time from the “on” state y = ya to the “off” state y = yc is

T̄ (ya) =
2

σ2

∫ yc

z=ya

∫ z

s=−∞
exp

(
2

σ2
[V (z)− V (s)]

)
ds dz. (4.20)

An asymptotic approximation to the above integral can be obtained in the limit of
small noise, where σ2 is much smaller than the typical variation V (yb) − V (ya) of the
potential, so that we can treat M = 2/σ2 as a large parameter. In this case, the main
contribution to the integral in equation 4.20 comes from the region where the exponent
M [V (z) − V (s)] is maximal, i.e. z ≈ yb and s ≈ ya. The contributions from any other
regions are exponentially small and can be ignored. We can thus approximate the result
as

T̄ (ya) ≈M
∫ yb+ε

yb−ε
eMV (z) dz

∫ ya+ε

ya−ε
e−MV (s) ds, (4.21)

where ε > 0 is small.

After a change of variables z = yb+x or s = ya+x, the two integral factors in equation
(4.21) have the form

I ≡
∫ ε

−ε
eMf(x) dx, (4.22)

where M � 1 and f(x) = V (yb +x) or f(x) = −V (ya +x) has a maximum at x = 0. We
have argued that almost all of the contribution to the integral I comes from the region
near this maximum, so we may Taylor expand f(x) as f(x) ≈ f(0) + f ′′(0)x2/2, where
no linear term is present and f ′′(0) < 0 since x = 0 is a maximum. After the expansion,
we can extend the limits to infinity, again because the contributions from regions away
from the exponential maximum near x = 0 are negligible, and hence∫ ε

−ε
eMf(x) dx ≈ eMf(0)

∫ ε

−ε
e−

1
2M |f

′′(0)|x2

dx (4.23a)

≈ eMf(0)

∫ ∞
−∞

e−
1
2M |f

′′(0)|x2

dx (4.23b)

≈ eMf(0)

√
2π

M |f ′′(0)|
, (4.23c)

where we have made use of the standard result
∫∞
−∞ e−αx

2

dx =
√
π/α.
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The two integral factors in equation 4.21 are thus∫ yb+ε

yb−ε
eMV (z) dz ≈

√
2π

M |V ′′(yb)|
eMV (yb), (4.24a)

∫ ya+ε

ya−ε
e−MV (s) ds ≈

√
2π

M |V ′′(ya)|
e−MV (ya), (4.24b)

and hence the mean escape time from the “on” state y = ya to the “off” state y = yc is
approximately

T̄ (ya) = 2π

√
1

|V ′′(ya)| |V ′′(yb)|
exp

(
2

σ2
[V (yb)− V (ya)]

)
. (4.25)

From the calculations, we can see that this escape time is the same from any state in
the well near y = ya over the peak y = yb to any state in the well near y = yc. This
is in line with our intuition that, for weak noise, the deterministic drift quickly drives
the system to the bottom of the well y = ya where it fluctuates until eventually a large
enough random perturbation kicks the system over the crest y = yb and it falls into the
other well y = yc.

4.6. Periodic forcing and noise

Within the autonomous framework above, the system will jump between on and
off states stochastically, but will not display any dominant time scale (e.g. periodic
behaviour), as is observed for Dansgaard-Oeschger events. We therefore augment the
previous model with a periodic modulation to the deterministic part of the freshwater
forcing, so that

F = F̄ + σξ(t) +A sin

(
2π

t

T

)
, (4.26)

where A is the amplitude of periodic forcing and T is the dimensionless period of forcing
(as we are still working with dimensionless variables). The governing equation is thus
dy/dt = −dV/dy + σξ(t), where the potential V (y, t) is chosen as

V (y, t) = −F̄ y +
1

2
y2 + µ2

(
1

4
y4 − 2

3
y3 +

1

2
y2

)
−A sin

(
2π

t

T

)
(y − 0.7). (4.27)

In Fig. 16, we show what happens for a small periodic forcing (A = 0.05) to the mean
forcing F̄ for various values of the noise amplitude σ. For small noise, the system remains
in the deeper well most of the time as expected. For large noise, the probability density
system frequently transitions between the two wells, almost as if the middle peak at
y = yb did not exist, and the periodicity is quite weak. However, for an intermediate
value of noise strength, we recover periodic behaviour on the timescale T . The response
is not a small perturbation, but a jump between on and off states every cycle. We have
ended up with a system exhibiting so-called ‘stochastic resonance’, whereby the noise
is just large enough to switch between states almost every time the background forcing
oscillates.

To explain this mechanism in more details, consider the slightly simplified system with
potential

V (y) = −y
2

2
+
y4

4
− εy cos(Ωτ)

Note that the fixed points location (defined by V ′(y) = 0 and V ′′(y) > 0) do not
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Figure 16. Motion in a time-periodic double-well potential (equation 4.27 with F̄ = 1.1, µ2 = 6.2
and A = 0.05). Top: The potential V at t = −T/2, 0, T/2. Bottom: Stochastic motion with
noise amplitude σ = 0.05 (left), σ = 0.15 (middle), σ = 0.25 (right). The time evolution of
one realization is shown (black curve), as well as the probability density (heat map) obtained
from evolving the corresponding Fokker–Planck equation forward until a time-periodic state is
reached. The period T chosen corresponds to 100 000 years.

Figure 17. Upper: V (y) vs y for τ = 0 (left) τ = π
2Ω

(middle) and τ = π
Ω

(right). Lower:

V (y) vs y for τ = π
Ω

(left) τ = 3π
2Ω

(middle) and τ = 2π
Ω

(right). The state of the system is
represented by the red dot.
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strongly vary with τ if the amplitude ε is small (in which case the fixed points are given
by y± ≈ ±1), unlike the value of the potential V at this fixed points. For ε � 1, these
two values are approximately given by:

V (y±) ≈ V (±1) = −[
1

4
± ε cos(Ωτ)]

Using the Laplace approximation, the transition times are approximately given by:

< t−1→1 >≈ 2π

√
1

−V ′′(0)V ′′(−1)
exp{2[V (0)− V (−1)]

σ2
} ≈
√

2π exp[
1− 4ε cos(Ωτ)

2σ2
]

< t1→−1 >≈ 2π

√
1

−V ′′(0)V ′′(1)
exp{2[V (0)− V (1)]

σ2
} ≈
√

2π exp[
1 + 4ε cos(Ωτ)

2σ2
]

The transition times vary with τ as the potential changes shape. Because the variance in
the transition time is very small compared to the transition time itself, the transition oc-
curs over a small time-interval. As a consequence, the Fourier spectrum has a strong peak
at the forcing frequency Ω. In the case of a small periodic forcing ε, the synchronization
can occur for moderate values of σ.

For example, if we take the small amplitude to be ε = 0.1, the shape of the potential
is very close to a double well. If we suppose that at τ = 0, the state of the system is
near y+ ≈ 1, the transition time < t1→−1 > at this τ is maximal, as the potential well
is deepest. If π

Ω �< t1→−1 > (τ = 0), then the well will change shape and the system
will almost surely exit the well at τ = π

Ω where the mean escape time < t1→−1 > is
minimal: The same reasoning can be applied when the system starts near y− ≈ −1 at
τ = π

Ω . Thus, for small amplitude, the transitions of the system approximately occur
when τ is a multiple of π

Ω , and the system stochastically resonates with the forcing of
angular frequency Ω.

It is unclear whether the Dansgaard-Oeschger events are in fact generated by such a
mechanism (the addition of a ∼1500 year periodicity in freshwater forcing is ad hoc –
we know of no such forcing in reality), but it nonetheless constitutes a fascinating result
that ordered behaviour may come out of the addition of white noise.


