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Predictability in the Midst of
Chaos: A Scientific Basis for

Climate Forecasting
J. Shukla

The Earth’s atmosphere is generally considered to be an example of a chaotic
system that is sensitively dependent on initial conditions. It is shown here that
certain regions of the atmosphere are an exception. Wind patterns and rainfall
in certain regions of the tropics are so strongly determined by the temperature
of the underlying sea surface that they do not show sensitive dependence on
the initial conditions of the atmosphere. Therefore, it should be possible to
predict the large-scale tropical circulation and rainfall for as long as the ocean
temperature can be predicted. If changes in tropical Pacific sea-surface tem-
perature are quite large, even the extratropical circulation over some regions,
especially over the Pacific-North American sector, is predictable.

At the beginning of the 20th century it was
hypothesized that 1t should be possible to
predict weather by solving the mathematical
equations that describe the physical laws that
govern the motion of air. It took several
decades to develop an appropriate set of

that aspects of the tropical atmosphere do not
conform to the above definition of chaos. The
tropical flow patterns and rainfall, especially
over the open ocean, are so strongly deter-
mined by the underlying sea-surface temper-
ature (SST) that they show little sensitivity to

predict large-scale changes in the winter sea-
son mean circulation over North America
several months in advance, as indeed was the
case for the 1997-1998 El Nino. However,
the extent to which this apparent high poten-
tial predictability of the tropical and extra-
tropical atmosphere can be realized in routine
forecasting will depend on our ability to pre-
dict the SST itself.

The numerical model used in this research
has been described (3). The dynamic equa-
tions and the numerical techniques used to
integrate the model are the same as those
used by the U.S. National Weather Service
for routine weather prediction, and the accu-
racy of short-range weather forecasts made
with this model 1s comparable to the state-of-
the-art weather forecast models.

Two sets of simulations were carried out
with the same prescribed SST but quite large
differences in the mitial conditions of the
atmosphere. This simulation requires a selec-
tion of two very different initial conditions.
Rather than choosing them arbitrarily, or con-
structing them artificially, atmospheric states

observed during the past 50 years were cho-
sen. The data show that the Southern Oscil-

Science (1998)



El Nino Southern Oscillation — a source of predictability on seasonal timescales

Figure 2. A 300 hPa geopotential height perturbation (contour
interval 2 decameter) of a steady state linear solution of a five-layer
primitive equation model forced by a deep elliptical heat source

at 15°. The hatching represents the region of heating larger

than 0.5 K/d. Adapted from Hoskins and Karoly [1981].
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Mechanical analogue of forcing and preferred circulation states




Mechanical analogue of forcing and preferred circulation states




Sources of long-range predictability

Seasonal cycle of solar radiation (trivial?)

El Nifo Southern Oscillation (ENSO)

Trace Gases = Momentum =

Planetary Boundary Layer

Stratospheric variability ™ .

Composite of 30 Strong Vortex Events

Sea-ice anomalies

Surface Ocean

Temperature profile of
the ocean. Temperature
decreases with depth. Thermocline

Mid-latitude ocean temperatures

Volcanic eruptions



Regional anomalies in the atmosphere can persist for longer than the
deterministic predictability limit

-> substantial societal impacts

Prospect of predictability beyond that limit arises from interactions with
slowly varying components of the climate system

- need to initialise and model coupled phenomena




Forecast models for seasonal predictions
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Seasonal forecasting

Aim: forecast distribution which sufficiently discriminates interannual signal from
climatological background distribution

Climatology
Forecast

Observation




How well can we forecast ENSO?
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Local SST bias is a function of
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Retrospective seasonal forecast over the period 1901-2010

1. ECMWF’s atmospheric model with prescribed SSTs and sea-ice (ASF-20C)

Initial conditions from ERA-20C:
the ECMWF atmospheric reanalysis of the 20t Century

Weisheimer et al. (QJRMS 2017); O’Reilly et al. (GRL 2017);
Weisheimer et al. (QJRMS 2019)

2. ECMWEF'’s fully coupled atmosphere-ocean-sea-ice model (CSF-20C)

Atmosphere

Atmosphere " Wave Ocean Se ice
Initial conditions from CERA-20C: the first ECMWF coupled ensemble reanalysis of the 20t Century
Weisheimer et al. (BAMS 2020)

» |FS model cycle 41R1 (in-between S4 and SEASS), T,255L91 (ca. 60km) ) + NEMO ORCA1L42 (1°) +LIM2
= Ensemble with 51 or 25 perturbed members

= 4-month forecast initialised on 1st of Feb/May/Aug/Nov each year (focus here: Nov > DJF)

Data are publicly available, see Weisheimer et al. (BAMS 2020)



ENSO during the 20t Century

a) NINO3.4 SST DJF CERA-20C
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Time series of the NINO3.4 SST index anomaly
in the central tropical Pacific during DJF in the
CERA-20C reanalysis. Two examples of strong
El Niflo events near the beginning (1902/03)
and the end (1982/83) of the 20th Century are
depicted by the red stars.

The spatial structure of SST anomalies during
the 1902/03 El Nifio event in the CERA-20C
reanalysis. The strong and large-scale warming
of the central and eastern tropical Pacific is
clearly visible. Cold anomalies develop in the
western parts of the tropical Pacific.

As in b) but for the 1982/83 event

Weisheimer et al. (BAMS 2020)



a) NINO3.4 SST DJF
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a) Time series of the NINO3.4 SST index anomaly in
DJF in the CERA-20C reanalysis (black) and
ensemble mean of the CSF-20C hindcasts (blue).

The spatial structure of SST anomalies during the
1902/03 El Nifio event in the CSF-20C hindcasts.
There is a very good agreement with the strong
and large-scale warming of the central and
eastern tropical Pacific in CERA-20C. The cold
anomalies in the western parts of the tropical
Pacific are also visible.

c) Asin b) for the for 1982/83 event

Weisheimer et al. (BAMS 2020)



Correlation

ENSO forecasts: drift and skill

a) NINO3.4 mean absolute SST
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Drift (upper part) and anomaly correlation skill (lower part) of predictions of the NINO3.4 SST index for different start dates
throughout the calendar year during the hindcast period 1981-2009. CSF-20C data are shown in solid colored lines, SEASS5 in
dashed lines and the lower-resolution SEASS5 in dotted lines (only available for May and November start dates). Different colors

indicate different start dates of the hindcasts. The gray curve in the upper part shows the climatological mean evolution of the

SSTs in ERA-20C over this period.

Weisheimer et al. (BAMS 2020)



ENSO forecast skill during the 20t Century

Correlation
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Decadal variability of ENSO forecast skill

DJF from forecasts initialised in November

30-year moving window correlation coefficients of
the hindcast ensemble mean with reanalysis
(CERA-20C), plotted at central year

gray shaded bands indicate the 5- 95% confidence
intervals

Weisheimer et al. (BAMS 2020)



SEASS5-20C: Biennial (24-month long) reforecasts of the 20t Century

Motivation
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= Can we predict ENSO beyond one year? Has the model climate converged after 2 years?
= How flow-dependent is the predictability of ENSO on seasonal to multi-annual timescales in the
presence of multi-decadal climate variability?

Nov start CERA-20C May start

NINO34 CERA20C mean 30y

B I&Ls |

DJF -

SON -

JUA -

MAM

DJF -

SON -

JUA -

NINO34 CERA20C mean

s = R

I
1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

NINO34 guxf mean 30y ini: 05

SEASS5-20C

DJF
SON |
JIAF
MAM
DJF
SON |

JJA -

mm

»

M
m

I
1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

L
1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

27.45

427.15

+26.85

26.55
I 26.25

30-year moving averages of NINO3.4 SST mean state across the 20" Century

Experiments

Coupled hindcasts initialised from
coupled 20th Century reanalysis
CERA-20C from 1901 to 2010
SEASS low-res model resolution:
T:199L91 (ca. 50km) with ORCA1Z42
(1 degree)

24-month forecasts with 10 ensemble
members

additional experiments to test
sensitivity to ocean initial conditions
(impact of data assimilation and and
atmospheric forcing)
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SEAS5-20C ENSO: skill evolution

Start dates: 1st Nov
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NINO3.4 SST 20-yr moving correlation skill vs. CERA-20C as a function of hindcast epoch and lead time (y-axis, lead time moves up).
The black and white contour lines indicate skill of 0.8 (solid) and 0.6 (dashed) for the experiment (black) and persistence (white).



correlation skill

SEAS5-20C NINO3.4 SSTs: skill evolution

Correlation skill as a function of
hindcast epoch for different lead times
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Seasonal forecasting

Aim: forecast distribution which sufficiently discriminates interannual signal from
climatological background distribution

“Ideal” situation “Real” situation
(tropics) (extra-tropics)
(\ Climatology
Forecast

Observation




Extratropical modes of variability

North Atlantic Oscillation (NAO)

Dominant mode of variability on a range of time scales over the North Atlantic-
European region

Typically defined as the 15t EOF of MSLP or Z500

NAO index: 18t Principal Component or sometimes (mostly for historical reasons)
as normalised MSLP difference between Iceland and the Azores

NAO Index

Pacific North America pattern (PNA)

Prominent natural mode of low-frequency variability in the NH extratropics

Strongly influenced by ENSO
Pacific/North American (PNA) index, 1948 - October 2010
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Seasonal forecasting

Seasonal forecasts of the weather and climate over the Euro-Atlantic region
are difficult due to

» Jow signal-to-noise ratios in predictability of extratropical atmosphere

= teleconnections from tropical forcings are weaker, and perhaps more manifold, than for other
areas in the world

» sample sizes are intrinsically small (mainly limited by number of observed seasons, usually (X30))

Estimates of seasonal predictability, skill and reliability suffer from
rather large uncertainties



Sample uncertainty and correlation skill

lllustration of correlation pitfalls after Anscombe (1973):
= Four pairs of x-y variables with all y variables having the same mean (=7.5) and variance (=4.1)
= Sample size is 11 for each and the correlation between x and y is 0.82 in all four samples

= However, the distributions of variables are very different

Anscombe’s quartet

S o8
° 6
4_

4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
Xq Xo X3 X4
Normally distributed, Not normally distributed, Perfect linear relationship No relationship
“‘well behaved” non-linear relationship except for one outlier with one outlier

Anscombe (Amer. Statist. 1973)



r1901-2009 = 0-31  I'1901-2009 = 0.28

Predictability of the NAO during the 20" Century
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Sample uncertainty and correlation skill

Hindcast skill of the NAO, AO and PNA in DJF
Nov start dates 1981-2016, 51 ensemble members
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Two types of sampling uncertainty




Multidecadal variability of PNA forecast skill

b) PNA correlation skill
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Weisheimer et al. (BAMS 2020)



Multidecadal variability of ENSO - PNA teleconnections

= Weakening of the obs. relationship between NINO3 SSTs and PNA during the mid-Century period
= Ensemble mean model PNA response to NINO3 SSTs is very stable over time (no weakening)
-> Lack of PNA skill in the mid-Century period?
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Signal and noise

RPC - Ratio of Predictable Components
(the signal-to-noise “paradox”)

_ PCops - r(obs, ens mean)
PCroder \/VARsignal/VARtotal

RPC

see Eade et al (GRL, 2014)
PC: predictable parts of the total variance
PC.us : predictable component of the observations

PC.oq4el: Predictable component in the model

= Perfect model ensemble: RPC==

= RPC>1 - underconfidence (overdispersive);
model underestimates real-world predictability

= RPC<1 - overconfidence (underdispersive);
model predictability is larger than in real world

. _ PCobs
RPC of DJF MSLP in GloSea5 (RPC=——)
PCmodel
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Eade et al. (GRL 2014)

The real world seems to have higher
predictability than the model.

See also Scaife & Smith (npj Clim. Atmos. Sci. 2018), Smith et al. (Nature 2020)



Signal and noise

Perfect model ensembles and potential skill

What is a perfect model ensemble?

» Perfect sampling of the underlying probability distribution of the true state

» Over a large number of forecasts, the statistical properties of the truth are
identical to the statistical properties of a member of the ensemble

» |.e., the truth is indistinguishable from the ensemble ®
- Replace observation with ensemble member e
@ O
o ®
® %o o
O
o © °



Signal and noise

Perfect model ensembles and potential skill

Properties of a perfect model ensemble

* Time-mean ensemble spread == RMSE of ensemble mean forecast
» r(perfect model) = corr(ens mean,ens members) - “potential skill”
» RPC of a perfect ensemble ==

= Observed correlation < perfect model correlation ?? ¢



Signal and noise

Perfect model ensembles and potential skill

Implications for non-perfect ensembles
* Time-mean ensemble spread # RMSE of ensemble mean forecast
ensemble spread < RMSE - ensemble is underdispersive

ensemble spread > RMSE - ensemble is overdispersive
= RPC # 1

RPC >1 - underconfidence; VAR,,,, too small, model underestimates predic-
tability of real world, observed correlation > perfect model correlation

RPC <1 - overconfidence; observed correlation < perfect model correlation
model predictability is larger than in real world
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Signal and noise: multidecadal variability

Ratio of Predictable Components (RPC) during different hindcast epochs
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Weisheimer et al. (QJRMS 2019)



Signal and noise: NAO

Decadal variability of the Ratio of Predictable Components (RPC) of the NAO in DJF
black dashed lines show the perfect model RPC=1
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Weisheimer et al. (BAMS 2020)



Signal and noise: what is a perfect model?

Does a perfect model include or exclude the verifying member?

we———— correlation skill with observations
—  perfect model skill excluding verifying member
= perfect model skill including verifying member

correlation skill

# of ensemble members
Weisheimer et al. (QJRMS 2019)



Signal and noise: what is a perfect model?

Does a perfect model include or exclude the verifying member?

3 I I I I I I I I I I
25 w—— RPC with observations |
=  perfect model RPC excluding verifying member
2 = perfect model RPC including verifying member 2
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Weisheimer et al. (QJRMS 2019)



Signal and noise: Robustness of RMSE and correlation skill

» Synthetical long data: “truth” and “ensemble means” with prescribed correlations, n=30,000
= Sub-samples of the “truth” to test robustness for small sample sizes: n=30 ... 300
» Uncertainty = normalized standard deviation of distribution of skill measure (correlation or RMSE)

RMSE vs correlation

-1 -0.5 0
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Weisheimer et al., QURMS (2019)
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% New seasonal hindcast data sets from 1901 to 2010 provide a test bed for estimating seasonal
predictability during distinct recent climate periods (also useful as test bench for deep learning?)

»» Seasonal ENSO forecast skill varies non-monotonically across the Century in coupled and
uncoupled hindcasts with similar levels of skill at the beginning and end of 20" Century (role of
the observing system?)

% Biennial hindcasts SEAS5-20C (1901-2010) test limits of ENSO predictability out to 24 months

o Background state changes show complex behaviour (mean, variability)
o skill drop in spring (barrier) is most sensitive to multi-decadal variability

¢ Evidence for multi-decadal variability of extratropical winter forecast skill (NAO, PNA) with
pronounced drop of skill in mid-Century decades

- Short hindcast period are not sufficiently representative for longer-term behaviour (skill,

confidence) due to decadal climate variability

Mid-Century period stands out as an important period on which to test the performance
of future seasonal forecast systems

— Achieving good forecast skill for recent decades is not sufficient to guarantee similar
good performance in the future
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