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What are seasonal forecasts?

IPCC AR5



Science (1998)



El Niño Southern Oscillation – a source of predictability on seasonal timescales

http://iri.columbia.edu/enso

Global ENSO teleconnections

http://iri.columbia.edu/enso


Mechanical analogue of forcing and preferred circulation states



Mechanical analogue of forcing and preferred circulation states



§ Seasonal cycle of solar radiation (trivial?)

§ El Niño Southern Oscillation (ENSO)

§ Other tropical ocean SSTs

§ Local land surface conditions

§ Stratospheric variability

§ Sea-ice anomalies

§ Mid-latitude ocean temperatures

§ Volcanic eruptions

Sources of long-range predictability



Regional anomalies in the atmosphere can persist for longer than the 
deterministic predictability limit 

à substantial societal impacts

Prospect of predictability beyond that limit arises from interactions with 
slowly varying components of the climate system 

à need to initialise and model coupled phenomena
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Climatology

Forecast
Observation

Seasonal forecasting

Aim: forecast distribution which sufficiently discriminates interannual signal from 
climatological background distribution 



How well can we forecast ENSO?



Local SST bias is a function of 
§ forecast lead time
§ season

System 5 (Nov 2017 onwards)
System 4 (Nov 2011 - Oct 2017)
System 3 (March 2007 - Nov 2011)

Nini3.4 SST drift
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1. ECMWF’s atmospheric model with prescribed SSTs and sea-ice (ASF-20C)

Initial conditions from ERA-20C: 
the ECMWF atmospheric reanalysis of the 20th Century

Weisheimer et al. (QJRMS 2017); O’Reilly et al. (GRL 2017); 
Weisheimer et al. (QJRMS 2019)

2. ECMWF’s fully coupled atmosphere-ocean-sea-ice model (CSF-20C)

Initial conditions from CERA-20C: the first ECMWF coupled ensemble reanalysis of the 20th Century

§ IFS model cycle 41R1 (in-between S4 and SEAS5), TL255L91 (ca. 60km) ) + NEMO ORCA1L42 (1º) +LIM2
§ Ensemble with 51 or 25 perturbed members
§ 4-month forecast initialised on 1st of Feb/May/Aug/Nov each year (focus here: Nov à DJF)

October 29, 2014

Climate reanalyses at ECMWF spanning 1900-2010
Æ reconstruct the past weather (synoptic situation)
Æ reconstruct climate (low-frequency variability)

ERA-20C: the ECMWF atmospheric reanalysis of the 20th century

Atmosphere Land Wave
ORA-20C: the ECMWF ocean reanalysis of the 20th century

Ocean Sea ice

Atmosphere Land Wave Ocean Sea ice

CERA-20C: the first ECMWF coupled ensemble reanalysis of the 20th centuryOctober 29, 2014

Climate reanalyses at ECMWF spanning 1900-2010
Æ reconstruct the past weather (synoptic situation)
Æ reconstruct climate (low-frequency variability)

ERA-20C: the ECMWF atmospheric reanalysis of the 20th century

Atmosphere Land Wave
ORA-20C: the ECMWF ocean reanalysis of the 20th century

Ocean Sea ice

Atmosphere Land Wave Ocean Sea ice

CERA-20C: the first ECMWF coupled ensemble reanalysis of the 20th century

Retrospective seasonal forecast over the period 1901-2010

Weisheimer et al. (BAMS 2020)

Data are publicly available, see Weisheimer et al. (BAMS 2020)
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Weisheimer et al. (BAMS 2020)

ENSO during the 20th Century

a) Time series of the NINO3.4 SST index anomaly 
in the central tropical Pacific during DJF in the 
CERA-20C reanalysis. Two examples of strong 
El Niño events near the beginning (1902/03) 
and the end (1982/83) of the 20th Century are 
depicted by the red stars. 

b) The spatial structure of SST anomalies during 
the 1902/03 El Niño event in the CERA-20C 
reanalysis. The strong and large-scale warming 
of the central and eastern tropical Pacific is 
clearly visible. Cold anomalies develop in the 
western parts of the tropical Pacific. 

c) As in b) but for the 1982/83 event
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a) Time series of the NINO3.4 SST index anomaly in 
DJF in the CERA-20C reanalysis (black) and 
ensemble mean of the CSF-20C hindcasts (blue). 

b) The spatial structure of SST anomalies during the 
1902/03 El Niño event in the CSF-20C hindcasts. 
There is a very good agreement with the strong 
and large-scale warming of the central and 
eastern tropical Pacific in CERA-20C. The cold 
anomalies in the western parts of the tropical 
Pacific are also visible. 

c) As in b) for the for 1982/83 event

Weisheimer et al. (BAMS 2020)

ENSO in CSF-20C
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a) NINO3.4 mean absolute SST

b) NINO3.4 anomaly correlation

Drift (upper part) and anomaly correlation skill (lower part) of predictions of the NINO3.4 SST index for different start dates 
throughout the calendar year during the hindcast period 1981-2009. CSF-20C data are shown in solid colored lines, SEAS5 in 

dashed lines and the lower-resolution SEAS5 in dotted lines (only available for May and November start dates). Different colors
indicate different start dates of the hindcasts. The gray curve in the upper part shows the climatological mean evolution of the 

SSTs in ERA-20C over this period. 
Weisheimer et al. (BAMS 2020)

ENSO forecasts: drift and skill
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a) NINO3.4 mean absolute SST

b) NINO3.4 anomaly correlation
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b) NINO3.4 anomaly correlation
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Decadal variability of ENSO forecast skill 

• DJF from forecasts initialised in November

• 30-year moving window correlation coefficients of 
the hindcast ensemble mean with reanalysis 
(CERA-20C), plotted at central year

• gray shaded bands indicate the 5- 95% confidence 
intervals

Weisheimer et al. (BAMS 2020)

ENSO forecast skill during the 20th Century

coupled hindcasts

coupled hindcasts

atmosphere-only hindcasts

Southern Oscillation Index

Southern Oscillation Index

SSTs



SEAS5-20C: Biennial (24-month long) reforecasts of the 20th Century 

Motivation
§ Can we predict ENSO beyond one year? Has the model climate converged after 2 years?
§ How flow-dependent is the predictability of ENSO on seasonal to multi-annual timescales in the 

presence of multi-decadal climate variability?
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Experiments
§ Coupled hindcasts initialised from 

coupled 20th Century reanalysis 
CERA-20C from 1901 to 2010

§ SEAS5 low-res model resolution: 
Tco199L91 (ca. 50km) with ORCA1Z42 
(1 degree)

§ 24-month forecasts with 10 ensemble 
members

§ additional experiments to test 
sensitivity to ocean initial conditions 
(impact of data assimilation and and
atmospheric forcing)

30-year moving averages of NINO3.4 SST mean state across the 20th Century 



SEAS5-20C NINO3.4 SSTs: variability

30-year moving averages of NINO3.4 SST standard deviation (amplitude) across the 20th Century 

CERA-20C

SEAS5-20C
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SEAS5-20C ENSO: skill evolution

NINO3.4 SST 20-yr moving correlation skill vs. CERA-20C as a function of hindcast epoch and lead time (y-axis, lead time moves up). 
The black and white contour lines indicate skill of 0.8 (solid) and 0.6 (dashed) for the experiment (black) and persistence (white). 

Start dates: 1st Nov

Start dates: 1st May



SEAS5-20C NINO3.4 SSTs: skill evolution

Correlation skill as a function of lead 
time for different hindcast epochs 

Correlation skill as a function of 
hindcast epoch for different lead times 



“Ideal” situation
(tropics)

“Real” situation
(extra-tropics)

Climatology

Forecast
Observation

Seasonal forecasting

Aim: forecast distribution which sufficiently discriminates interannual signal from 
climatological background distribution 



North Atlantic Oscillation (NAO)
§ Dominant mode of variability on a range of time scales over the North Atlantic-

European region
§ Typically defined as the 1st EOF of MSLP or Z500
§ NAO index: 1st Principal Component or sometimes (mostly for historical reasons) 

as normalised MSLP difference between Iceland and the Azores

Pacific North America pattern (PNA)
§ Prominent natural mode of low-frequency variability in the NH extratropics
§ Strongly influenced by ENSO

Wallace & Gutzler (MWR 1981)

Extratropical modes of variability



Seasonal forecasts of the weather and climate over the Euro-Atlantic region 
are difficult due to

§ low signal-to-noise ratios in predictability of extratropical atmosphere

§ teleconnections from tropical forcings are weaker, and perhaps more manifold, than for other 
areas in the world

§ sample sizes are intrinsically small (mainly limited by number of observed seasons, usually O(30))

Estimates of seasonal predictability, skill and reliability suffer from 
rather large uncertainties

Seasonal forecasting



Anscombe’s quartet

Illustration of correlation pitfalls after Anscombe (1973):

§ Four pairs of x-y variables with all y variables having the same mean (=7.5) and variance (=4.1)

§ Sample size is 11 for each and the correlation between x and y is 0.82 in all four samples

§ However, the distributions of variables are very different

Normally distributed,
“well behaved”

Not normally distributed,
non-linear relationship

Perfect linear relationship
except for one outlier

No relationship
with one outlier

Anscombe (Amer. Statist. 1973)

Sample uncertainty and correlation skill
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Hindcast skill of the NAO, AO and PNA in DJF
Nov start dates 1981-2016, 51 ensemble members

ensemble
size 

uncertainty

sample
years

uncertainty

Two types of sampling uncertainty 

Sample uncertainty and correlation skill

Courtesy Tim Stockdale
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Multidecadal variability of PNA forecast skill



uncoupled PNA corr skill
coupled PNA corr skill

observed corr PNA vs NINO3
uncoupled corr PNA vs NINO3

coupled corr PNA vs NINO3

§ Weakening of the obs. relationship between NINO3 SSTs and PNA during the mid-Century period
§ Ensemble mean model PNA response to NINO3 SSTs is very stable over time (no weakening)

à Lack of PNA skill in the mid-Century period?

Multidecadal variability of ENSO - PNA teleconnections

O’Reilly et al. (GRL 2017)
Weisheimer et al. (BAMS 2020)
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RPC – Ratio of Predictable Components
(the signal-to-noise “paradox”)

see Eade et al (GRL, 2014)

PC: predictable parts of the total variance

PCobs : predictable component of the observations

PCmodel: predictable component in the model

§ Perfect model ensemble: RPC==1

§ RPC > 1  à underconfidence (overdispersive); 
model underestimates real-world predictability

§ RPC < 1  à overconfidence (underdispersive); 
model predictability is larger than in real world

Signal and noise

Eade et al. (GRL 2014)

RPC of DJF MSLP in GloSea5 (𝐑𝐏𝐂 =
𝐏𝐂𝐨𝐛𝐬
𝐏𝐂𝐦𝐨𝐝𝐞𝐥

)

The real world seems to have higher 
predictability than the model.

See also Scaife & Smith (npj Clim. Atmos. Sci. 2018), Smith et al. (Nature 2020)



Perfect model ensembles and potential skill

What is a perfect model ensemble?
§ Perfect sampling of the underlying probability distribution of the true state

§ Over a large number of forecasts, the statistical properties of the truth are 
identical to the statistical properties of a member of the ensemble

§ I.e., the truth is indistinguishable from the ensemble

à Replace observation with ensemble member

Signal and noise



Perfect model ensembles and potential skill

Properties of a perfect model ensemble
§ Time-mean ensemble spread == RMSE of ensemble mean forecast

§ r (perfect model) = corr(ens mean,ens members) à “potential skill”

§ RPC of a perfect ensemble == 1
§ Observed correlation ≤ perfect model correlation ??

Signal and noise



Perfect model ensembles and potential skill

Implications for non-perfect ensembles
§ Time-mean ensemble spread ≠ RMSE of ensemble mean forecast

ensemble spread < RMSE   à ensemble is underdispersive

ensemble spread > RMSE   à ensemble is overdispersive

§ RPC ≠ 1

RPC > 1 à underconfidence; VARsignal too small, model underestimates predic-
tability of real world, observed correlation > perfect model correlation

RPC < 1 à overconfidence;   observed correlation < perfect model correlation
model predictability is larger than in real world

Signal and noise



Weisheimer et al. (QJRMS 2019)

Signal and noise: multidecadal variability

1912-1940

1942-1970

1981-2009

1901-2009

Ratio of Predictable Components (RPC) during different hindcast epochs
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Decadal variability of the Ratio of Predictable Components (RPC) of the NAO in DJF
black dashed lines show the perfect model RPC=1
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Signal and noise: NAO

1901-2010:

RPC=1.05

1901-2010:

RPC=1.19

coupled hindcasts

atmosphere-only hindcasts



Signal and noise: what is a perfect model?

# of ensemble members

co
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n 
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correlation skill with observations
perfect model skill excluding verifying member
perfect model skill including verifying member

Weisheimer et al. (QJRMS 2019)

Does a perfect model include or exclude the verifying member?



Signal and noise: what is a perfect model?

# of ensemble members

R
PC

RPC with observations
perfect model RPC excluding verifying member
perfect model RPC including verifying member

Weisheimer et al. (QJRMS 2019)

Does a perfect model include or exclude the verifying member?
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Weisheimer et al., QJRMS (2019)

Signal and noise: Robustness of RMSE and correlation skill

§ Synthetical long data: “truth” and “ensemble means” with prescribed correlations, n=30,000
§ Sub-samples of the “truth” to test robustness for small sample sizes: n=30 … 300
§ Uncertainty = normalized standard deviation of distribution of skill measure (correlation or RMSE)

RMSE vs correlation Uncertainty vs sample size

“true” correlation =0.5

Uncertainty vs “true” correlation

n=30
n=300

correlation                   RMSE



v New seasonal hindcast data sets from 1901 to 2010 provide a test bed for estimating seasonal 
predictability during distinct recent climate periods (also useful as test bench for deep learning?)

v Seasonal ENSO forecast skill varies non-monotonically across the Century in coupled and 
uncoupled hindcasts with similar levels of skill at the beginning and end of 20th Century (role of 
the observing system?)

v Biennial hindcasts SEAS5-20C (1901-2010) test limits of ENSO predictability out to 24 months
o Background state changes show complex behaviour (mean, variability)
o skill drop in spring (barrier) is most sensitive to multi-decadal variability

v Evidence for multi-decadal variability of extratropical winter forecast skill (NAO, PNA) with 
pronounced drop of skill in mid-Century decades

à Short hindcast period are not sufficiently representative for longer-term behaviour (skill, 
confidence) due to decadal climate variability

Mid-Century period stands out as an important period on which to test the performance 
of future seasonal forecast systems

à Achieving good forecast skill for recent decades is not sufficient to guarantee similar 
good performance in the future

Conclusions
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