Stochastic Climate Dynamics

Henk Dijkstra, IMAU & CCSS Physics Department, Utrecht University, Utrecht, Netherlands

https://webspace.science.uu.nl/~dijks101/styled-6/

Summary 29/9 + 6/10

Stochastic linear dynamical systems

$$dX_t = -\gamma X_t dt + \sigma dW_t$$

Hasselmann, null-hypothesis (SST)

Deterministic nonlinear systems

$$\frac{dx}{dt} = \lambda - x^2$$

bifurcations, attractors

Interaction noise and multiple equilibria

$$\frac{dx}{dt} = -\alpha(x-1) - x(1+\mu^2(x-y)^2),$$

$$\frac{dy}{dt} = F - y(1+\mu^2(x-y)^2),$$

$$F(t) = \bar{F} + \sigma\xi(t)$$

noise induced transitions

Artist's view of Climate Variability

Observations

El Niño variability

sea surface temperature anomaly ([°]C)

6 SEP 2015 - 3 OCT 2015

Mean Sea Surface Temperature

The mean seasonal cycle

1997-1998 vs 2015-2016

Sea Surface Temperature Anomaly (SSTA)

January 01, 1997

January 01, 2015

Phase locking of ENSO to the seasonal cycle

NINO3 SST anomaly, observations

Neelin et al. (1997)

Question time

Stochastic dynamical systems approach

Ingredient 1: Wind response to sea surface temperature anomalies

A positive sea surface temperature anomaly induces a westerly (towards the east) wind anomaly west of the sea surface temperature anomaly

The Southern Oscillation

Annual mean surface winds

Sir Gilbert Walker 1868-1958

Correlation of Sea Level Pressure anomalies with those in Darwin

SOI = pressure anomaly (Tahiti - Darwin)

El Nino and the Southern Oscillation are one phenomenon: ENSO

Ingredient 2: Effect of winds on ocean upwelling & thermocline slope

A westerly wind anomaly causes a: - reduction in upwelling - smaller thermocline slope

Annual mean upwelling (cm/day)

Subsurface ocean observations

`Normal'

El Nino

Ingredient 3: Equatorial ocean wave dynamics

Ingredient 4: `Unresolved' processes

equatorial zonal wind anomaly 850 hPa

Hierarchy of Models

Zebiak - Cane model (1987)

VOLUME 115

Steve Zebiak

Mark Cane

A Model El Niño-Southern Oscillation*

STEPHEN E. ZEBIAK AND MARK A. CANE Lamont-Doherty Geological Observatory of Columbia University, Palisades, NY 10964 (Manuscript received 1 December 1986, in final form 23 March 1987)

Ocean Component of the ZC model

Equations: SST

 u_s, v_s, w_s follow directly from τ^x

A: atmospheric operator $\tau^x = \tau^x_{ext} + \gamma A(T - T_0)$

Coupled (Bjerknes') feedbacks

Question time

Annual mean state

- External wind induces weak upwelling and slight slope in the thermocline
- Coupled feedbacks generate the cold tongue/warm pool structure

Stability of the annual mean state

perturbations

Hopf bifurcation

Ex: Hopf bifurcation

The ENSO mode

Spatial patterns: background state Period: ocean wave dynamics + SST adjustment

Spectral origin of the Hopf bifurcation

Jin & Neelin, JAS, 1993

Mechanism: wave oscillator

$$\frac{dT(t)}{dt} = \hat{a}h_{eq}(x_c, t - \frac{1}{2}\tau_K) + \hat{b}h_{off-eq}(x_c, t - [\frac{1}{2}\tau_R + \tau_K]) - cT(t)^3$$

$$\sim 1 \text{ months} \qquad \sim 5 \text{ months}$$

Mechanism: recharge oscillator

Phase locking to the seasonal cycle

Linear mechanism: seasonal variation in coupling strength

Question time

Unresolved' processes

Harrison & Vecchi, (1997)

Results: Cane-Zebiak

NINO3.4

NINO3.4

Feng & Dijkstra, Chaos, (2017)

Stochastic Hopf bifurcation

$$dX = (\lambda X - \omega Y - X(X^2 + Y^2))dt + \sigma dW_1$$
$$dY = (\lambda Y + \omega X - Y(X^2 + Y^2))dt + \sigma dW_2$$

$$\frac{\partial r}{\partial x} = \frac{x}{r} \qquad \frac{\partial r}{\partial y} = \frac{y}{r} \qquad \qquad \frac{\partial \theta}{\partial x} = -\frac{y}{r^2} \qquad \frac{\partial \theta}{\partial y} = \frac{x}{r^2}$$

$$\frac{\partial^2 r}{\partial x^2} = \frac{y^2}{r^2} \qquad \frac{\partial^2 \theta}{\partial y} = \frac{2\pi y}{r^2} \qquad \frac{\partial^2 \theta}{\partial y} = \frac{2\pi y}{r^2}$$

$$\frac{\partial^2 r}{\partial x^2} = \frac{y^2}{r^3} \qquad \frac{\partial^2 r}{\partial y^2} = \frac{x^2}{r^3} \qquad \qquad \frac{\partial^2 \theta}{\partial x^2} = \frac{2xy}{r^4} \qquad \frac{\partial^2 \theta}{\partial y^2} = -\frac{2xy}{r^4}$$

 $dR = (\lambda R - R^3 + \frac{\sigma^2}{2R})dt + \sigma(\cos\Theta dW_1 + \sin\Theta dW_2)$ $d\Theta = \omega dt + \frac{\sigma}{R}(-\sin\Theta dW_1 + \cos\Theta dW_2)$

Fokker-Planck equation

$$d\mathbf{X}_t = \mathbf{f}(\mathbf{X}_t, t)dt + \mathbf{g}(\mathbf{X}_t, t)d\mathbf{W}_t$$

$$\frac{\partial p}{\partial t} = -\frac{\partial}{\partial x_i}(f_i p) + \frac{1}{2}\frac{\partial^2}{\partial x_i \partial x_j}(D_{ij} p)$$

 $D_{ij} = g_{ik}g_{kj}.$

$$\frac{\partial p}{\partial t} = -\frac{\partial [(\lambda r - r^3 + \frac{\sigma^2}{2r})p]}{\partial r} - \frac{\partial (\omega p)}{\partial \theta} + \frac{\sigma^2}{2}(\frac{\partial^2 p}{\partial^2 r} + \frac{1}{r^2}\frac{\partial^2 p}{\partial^2 \theta})$$

Stationary distribution

The mean seasonal cycle

Synchronization with the seasonal cycle

Zebiak-Cane model results

Devil's Terrace

Question time

Summary

El Nino is a large-scale pattern of interannual sea surface temperature variability in the equatorial Pacific

El Nino can be understood as an oscillatory mode of variability of the coupled equatorial ocean - global atmosphere system affected by atmospheric noise

> Dynamical systems framework: Stochastic Hopf Bifurcation

Physical mechanism: Recharge oscillator