Stochastic Climate Dynamics

Henk Dijkstra, IMAU & CCSS Physics Department, Utrecht University, Utrecht, Netherlands

https://webspace.science.uu.nl/~dijks101/styled-6/

Stochastic dynamical systems approach

view of motion

Summary day 1 + 2 + 3

Stochastic linear dynamical systems

$$dX_t = -\gamma X_t dt + \sigma dW_t$$

Hasselmann, null-hypothesis (SST)

Interaction noise and multiple equilibria

 $\frac{dy}{dt} = F - y(1 + \mu^2 (1 - y)^2)$

 $F(t) = \bar{F} + \sigma\xi(t)$

Deterministic nonlinear systems

$$\frac{dx}{dt} = \lambda - x^2$$

bifurcations, transitions, chaos

Interaction noise and internal oscillations

$$dX = (\lambda X - \omega Y - X(X^2 + Y^2))dt + \sigma dW_1$$
$$dY = (\lambda Y + \omega X - Y(X^2 + Y^2))dt + \sigma dW_2$$

ENSO variability

Towards understanding ...

Level of Understanding

Stochastic DS Approach & Predictability

Weather

ENSO

Figure provided by the International Research Institute (IRI) for Climate and Society (updated 18 August 2015).

What determines the skill of these forecasts?

Question time

Prediction problem: pendulum

Results: pendulum

Predictability study of the first kind: effect of initial condition uncertainty

Stochastic linear systems: mixing

$$dq_1 = \frac{p_1}{m_1} dt$$

$$dp_1 = -(k_1 q_1 + \gamma p_1) dt + \sqrt{2\frac{\gamma}{\beta}} dW_1$$

Deterministic nonlinear systems: mixing

Double Pendulum

Formal solution

Trajectories $x(t), t \ge 0$, governed by SDE:

$$dx = F(x,t)dt + G(x,t)dW$$

Conservation of Probabilities:

$$\frac{\partial \rho}{\partial t} = K\rho = -\sum_{i=1}^{N} \frac{\partial}{\partial x_i} (F_i \rho) + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\partial^2}{\partial x_i \partial x_j} (D_{ij} \rho)$$
with
$$D_{ij} = \sum_{k=1}^{N} G_{ik} G_{jk}$$
(diffusion tensor)

deterministic (G = 0): Liouville equation stochastic: Fokker-Planck equation

Example solution Liouville equation

$$\frac{dx}{dt} = ax^2 + bx + c , \ \Delta = \frac{b^2}{4} - ac > 0,$$

$$\frac{\partial \rho}{\partial t} = -\frac{\partial ((ax^2 + bx + c)\rho)}{\partial x} \qquad \rho(x, 0) = \rho_0(x)$$

Deterministic mixing

Steady --> Periodic --> Quasi-periodic --> ... --> Irregular (Chaotic) ... -> Turbulent

Bifurcation theory (one control parameter)

Poincare section & map

period: p

 $\mathbf{x}_{k+1} = \mathbf{F}(\mathbf{x}_k, p)$

Fixed points of Poincare map:

 $\mathbf{x} - \mathbf{F}(\mathbf{x}, p) = 0$

Stability of Periodic Orbits: I $\mathbf{x}_{k+1} = \mathbf{F}(\mathbf{x}_k)$

Stability of Periodic Orbits: II

Idealized atmospheric flow

r: vertical temperature difference

 $\dot{x} = s(y - x)$ $\dot{y} = -xz + rx - y$ $\dot{z} = xy - bz$

The Lorenz system

Edward Lorenz (1917-2008)

s = 10, b = 10/3, r: control parameter

Bifurcation diagram

r = 21

Behavior of x(t)

Chaotic behavior: sensitivity to initial conditions

Lorenz attractor

Routes to Chaotic behavior

1. Three-frequency route

2. Period-doubling route

3. Quasi-periodicity route

4. Global bifurcations
 (e.g. Homoclinic/Heteroclinic)
 connections

5. Intermittency

6. other (e.g. crisis)

Global bifurcations: homoclinic orbits

Ex:

Horseshoes

11 11 11 11 11	11 11 11 11	88 88 88 88 88

Cantor - set

Spread of trajectories: Lorenz

Error growth in the Lorenz model

Examples of finite-time error growth on the Lorenz attractor for three probabilistic predictions starting from different points on the attractor.

Lyapunov exponent

$$d(t) = x'(t) - x(t)$$

$$\lambda_i = \lim_{t \to \infty} \frac{1}{t} \ln \left| \frac{d_i(t)}{d_i(0)} \right|$$

Lorenz equations: 0.9056, 0, -14.5723

 $\lambda > 0 \rightarrow \,$ chaotic motion

Question time

Atmospheric flow

Numerical Weather Prediction Model

Grid: N x M x L

Dimension phase space: $d = k \times N \times M \times L$

Typically: $d = 10^5 - 10^9$

State of the art: 10 km horizontal resolution

Origin of the 'plume' in weather forecasts

Numerical weather prediction models: many Lyapunov exponents > 0

Weather prediction

Lorenz (1969): ... one flap of a sea-gull's wing may forever change the future course of the weather

Ensemble forecasting

How to choose the initial conditions of the ensemble members (the initial PDF)?

Optimal modes

$$\frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}), \qquad \mathbf{x}(t) = \mathcal{M}(\mathbf{x}(t_0)),$$

$$\mathcal{M}(\mathbf{x}(t_0) + \mathbf{y}(t_0)) = \mathcal{M}(\mathbf{x}(t_0)) + \frac{\partial \mathcal{M}}{\partial \mathbf{x}} \mathbf{y}(t_0) + \mathcal{O}(\epsilon^2) \approx \mathbf{x}(t) + \mathbf{y}(t),$$

$$\mathbf{y}(t) = \mathcal{L}(t_0, t) \mathbf{y}(t_0),$$
tangent linear model
$$\mathbf{L} \equiv \mathcal{L}(t_0, t_1).$$

$$\|\mathbf{y}(t_1)\|^2 = \langle \mathbf{L}\mathbf{y}(t_0), \mathbf{L}\mathbf{y}(t_0) \rangle = \langle \mathbf{L}^T \mathbf{L}\mathbf{y}(t_0), \mathbf{y}(t_0) \rangle,$$

$$\mathbf{L}^T \mathbf{L} \mathbf{v}_i = \sigma \mathbf{v}_i$$

singular values/vectors -> most expanding directions

Flow dependence of forecast errors

If the forecasts are coherent (small spread) the atmosphere is in a more predictable state than if the forecasts diverge (large spread)

Processes limiting predictability: formation of High and Low pressure systems and their interaction

0Z 1/9/2015

Positive Feedback - > Instability of the Jet Stream

Predictability limits

Statistics of ensemble mean forecast error (r.m.s.e.; solid line) and ensemble spread (dotted line) in Northern Hemisphere systems

Data based methods: Machine Learning

"Learning is any process by which a system improves performance from experience." - Herbert Simon

Definition by Tom Mitchell (1998):

Machine Learning is the study of algorithms that

- improve their performance P
- at some task T
- with experience E.

A well-defined learning task is given by <*P*, *T*, *E*>.

Supervised Learning: regression

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x

-y is real-valued == regression

Reservoir Computing

Pathak et al., Chaos, (2017, 2018)

4 ***

Results for the Lorenz'63 model

Summary: Numerical Weather Prediction

Chaotic behavior plays a very different role in uncertainties of weather and climate forecasting

Sensitivity to initial conditions; Lyapunov exponent

Future weather forecasts: – relevant processes are instabilities of the large-scale atmospheric circulation with typical time scales of up to 5 days

limited prediction skill beyond 10 days

Reservoir Computing methods are promising to extend this horizon

Ensemble forecasting using Singular Vectors

Question time

Aspects of ENSO predictability

Internal (possibly chaotic) variability Memory: ocean adjustment Strong atmospheric high frequency variability

`External' variation of the background climate Effects of Indian Ocean & Atlantic Ocean Tropical - Extratropical interactions in the Pacific

Procedure

different models

Spring Predictability Barrier, models

Nov-Jan forecast

ENSO forecast skill 2002-2011

Lead Time [Month] Barnston et al. (2011)

Machine Learning: Artificial Neural Networks (ANNs)

Input: Attributes/Features

Example ANN with simple cost function

Cost function: $J(\mathbf{w}) = \frac{1}{2}((y_1 - o_1)^2 + (y_2 - o_2)^2)$

Training problem

 $min_{\mathbf{w}} J(\mathbf{w})$ Solve:

4

Method: Gradient Descent

 $\mathbf{w}_{k+1} = \mathbf{w}_k + \Delta \mathbf{w}_{k+1}$ $\Delta \mathbf{w}_{k+1} = -\eta \nabla J(\mathbf{w}_k)$

Approach: model selection

Hybrid Prediction Model

• ARIMA(p,d,q) (standard taken p = 12, d = 1, q = 1)

 Artificial Neural Network (ANN) applied to residual (2 x 1 x 1: three layers with 2, 1 and 1 neuron)

Error measure:

NRMSE
$$(y^A, y^B) = \frac{1}{\max(y^A, y^B) - \min(y^A, y^B)}$$

 $\times \sqrt{\frac{\sum_{t_1^{\text{test}} \le t_k \le t_n^{\text{test}} (y_k^A - y_k^B)^2}{n}}.$

Nooteboom et al. ESD (2018)

Warm Water Volume (WWV)

Attributes

Evolving Complex Network measures (SSH, c₂)

Wind-stress noise (PC₂)

 $c_s = \frac{sn_s}{N}$

Results

Prediction hybrid model

Question time

Summary: ENSO Prediction

The predictability of El Nino is limited by a Spring Predictability Barrier where growth of model errors is largest. Skill at 6 months lead time is only about 0.5.

Deep Learning (Artificial Neural Networks) is a powerful method for skillful ENSO forecasting (with many pitfalls) beyond the Spring Predictability Barrier

Main problem: insufficient data