

Universiteit Utrecht

[Faculty of Science Physics and Astronomy]

Palaeoclimate variability

Can the past tell us about the future?

Anna von der Heydt

Institute for Marine and Atmospheric Research, Utrecht University, The Netherlands.

call to of the European Union

How hot will the Earth be in 2100?

Will temperatures rise steadily or can we expect sudden accelerations?

... and after 2100? Dr. A

Complex Climate System

Complex Climate System

Energy balance of the Earth

Physical climate system = mostly fluids!

Fluids....

Air

Foam

Water

Granular media

... can show complex patterns

Motion in fluids occurs on

- Length scales of mm till 10.000 km
- Time scales of seconds till years

Fluid flows can become...

unstablechaoticunpredictable?

Climate variability

Climate on Earth - last 65 Myr

Climate on Earth - last 65 Myr

Antarctica 34 myr ago: tipping point?

35	34	33	32
	Millions of y	ears ago	Elderfield, Nature 2000

TUE 06 OCT 35.000.000 BC <mark>≈ 23°</mark> **≈ 24°** 8-9 **4-6** Antarctic Weather Service

© Michiel Baatsen

Antarctic glaciation: Why end of Eocene?

Oldest hypothesis (Kennett 1977): The opening of SO gateways has been crucial within the processes leading to the glaciation of Antarctica.

Antarctic glaciation: Why end of Eocene?

Hypothesis 2:

A critical threshold in atmospheric CO₂ was reached allowing rapid ice sheet growth on Antarctica.

Decreasing CO₂ — Tipping?

Decreasing CO₂

Feedback processes:

- Mass balance height
- Merging of ice caps

2-step transition - other options for tipping

Ocean circulation

Ocean circulation

Conceptual climate model

Simple Earth System model: Gildor & Tziperman 2000, 2001, 2002

- ★ Land/ocean fraction adapted to Eocene values.
- ★ Optional: Ocean biogeochemistry & dynamic atmospheric pCO₂.

NP

Multiple Ocean Circulation States

Tigchelaar, vdH, Dijkstra, Clim. Past (2011)

Antarctic glaciation: Why end of Eocene?

Hypothesis 2b:

A change in global ocean circulation caused step 1, reduced CO₂ and brought ice sheet closer to critical transition.

Combination of 2 hypotheses?

ARTICLES PUBLISHED ONLINE: 30 JANUARY 2017 | DOI: 10.1038/NGE02888

Enhanced weathering and CO₂ drawdown caused by latest Eocene strengthening of the Atlantic meridional overturning circulation

Geneviève Elsworth^{1*}, Eric Galbraith^{1,2,3}, Galen Halverson¹ and Simon Yang⁴

On timescales significantly greater than 10^5 years, atmospheric p_{CO_2} is controlled by the rate of mantle outgassing relative to the set-point of the silicate weathering feedback. The weathering set-point has been shown to depend on the distribution and characteristics of rocks exposed at the Earth's surface, vegetation types and topography. Here we argue that largescale climate impacts caused by changes in ocean circulation can also modify the weathering set-point and show evidence suggesting that this played a role in the establishment of the Antarctic ice sheet at the Eocene-Oligocene boundary. In our simulations, tectonic deepening of the Drake Passage causes freshening and stratification of the Southern Ocean, strengthening the Atlantic meridional overturning circulation and consequently raising temperatures and intensifying rainfall over land. These simulated changes are consistent with late Eocene tectonic reconstructions that show Drake Passage deepening, and with sediment records that reveal Southern Ocean stratification, the emergence of North Atlantic Deep Water, and a hemispherically asymmetric temperature change. These factors would have driven intensified silicate weathering and can thereby explain the drawdown of carbon dioxide that has been linked with Antarctic ice sheet growth. We suggest that this mechanism illustrates another way in which ocean-atmosphere climate dynamics can introduce nonlinear threshold behaviour through interaction with the geologic carbon cycle.

Potential for "cascading tipping" mechanism?

Potential tipping elements in the Earth System

Cascading Tipping: concept

Simplest tipping points:

- ★ Back-to-back saddle node (bistable systems).
- ★ Hopf bifurcation (stationary oscillatory transition).

Combine simple tipping points by dependency of forcing parameter in following system on the state of the leading system.

Fold-fold cascade

Cascading: MOC - Antarctic ice sheet

- Leading (bistable) system: global meridional overturning circulation (MOC).
- MOC transition SPP→TH leads to:
 - ★ cooling deep ocean
 - enhanced atmospheric CO₂ drawdown (vertical mixing)
- Following (bistable) system: Antarctic ice sheet
 - ★ Ice sheet inception depends on atmospheric CO₂.

induced MOC

transition

Figures by M. Clemenkowff (2019)

Ocean circulation 35 myr ago

Late Eocene geography

Ocean circulation 35 myr ago

Late Eocene geography

Eocene: PMOC - Multiple equilibria

Dr. Anna von der Heydt

Baatsen, vdH et al., Global Planet. Change. (2018)

Eocene: PMOC - Multiple equilibria

Eocene geography: Sea surface response

Ocean circulation 35 myr ago

Ocean circulation 35 myr ago

Conclusions

Several tipping elements in climate subsystems have been identified. A directional coupling provides the possibility of cascading tipping.

The Eocene-Oligocene transition

- ★ is characterised major ice buildup on Antarctica, changes in the carbon cycle and ocean circulation reorganisation.
- ★ in two steps may be explained by cascading tipping of 1. MOC and
 2. land ice, coupled via atmospheric CO₂ (conceptual model).
- Eocene continental geometry:
 - ★ Potential for multiple equilibria of the Pacific MOC (3D ocean model).
 - ★ Extreme seasonality & Antarctic summer-monsoon climate inhibits ice growth in Antarctic interior (coupled climate model).
 - Mild, less extreme coastal regions may allow for (regional) glaciers to develop (coupled climate model).

Thanks: <u>www.pastearth.net</u>

32