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Abstract

Dominating varieties by liftable ones

Remy van Dobben de Bruyn

Algebraic geometry in positive characteristic has a quite different flavour than
in characteristic zero. Many of the pathologies disappear when a variety admits
a lift to characteristic zero. It is known since the sixties [Ser61] that such a
lift does not always exist. However, for applications it is sometimes enough to
lift a variety dominating the given variety, and it is natural to ask when this is
possible.

The main result of this dissertation is the construction of a smooth projective
variety over any algebraically closed field of positive characteristic that cannot be
dominated by another smooth projective variety admitting a lift to characteristic
zero. We also discuss some cases in which a dominating liftable variety does
exist.
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1. Introduction

1.1 Main problem

Let k = F̄p, and let X be a smooth proper variety over k. A lift1 of X to
characteristic 0 is a smooth proper morphism X → SpecR, where R is a DVR
with residue field k such that the fraction field K = FracR has characteristic 0,
together with an isomorphism X0

∼= X. Serre showed [Ser61] that there exists
a smooth projective threefold X that cannot be lifted to characteristic 0, and
Mumford improved this to a surface [Mum61], [Ill05, §8.6].

The idea of Serre’s construction is to start with a finite abelian group G that
has an action G → PGLn(k) that cannot be lifted to a map G → PGLn(R).
The action of G on Pn−1 could have fixed points, but there exists a complete
intersection Y ⊆ Pn−1 on which G acts without fixed points. Then construct X
as the quotient Y/G, and prove that if X lifts, then so does the action of G on
H0(Y,OY (1)), contradicting the choice of the action G→ PGLn(k).

In Serre’s example, there is a finite étale map Y → X where Y is a complete
intersection. In particular, Y can be lifted to characteristic 0, by just lifting the
equations that define it. A natural question is the following.

Question 1. Let X be a smooth projective variety over an algebraically closed
field k of characteristic p > 0. Does there exist a smooth proper variety Z
together with a dominant rational map Z 99K X such that Z admits a lift to
characteristic 0?

The main result, given in Theorem 2 below, is a negative answer to this question.
The variety X we construct is a (smooth projective) surface of general type.

In Theorem 6.3.1, we prove that if X is a surface of Kodaira dimension κ ≤ 1,
there does always exist a surface Z dominating X that can be lifted, at least if
char k ≥ 5. Because every curve can be lifted as well, the example we construct
is therefore in some sense the ‘smallest’ possible example.

1.2 Outline of the proof

Just like in Serre’s example, the idea is to show that if a lift exists, there is some
extra structure that can be lifted along. However, in Serre’s example the extra
structure is a finite étale morphism Y → X with a group action, and we are
trying to prevent varieties above X from lifting. Therefore, we will instead lift
along extra structure living below X. We prove the following result on lifting
morphisms to genus ≥ 2 curves (see Theorem 5.4.4).

Theorem 1. Let R be a DVR with residue field k and fraction field K. Assume
that K̄ is isomorphic to C and that k is algebraically closed. Let X → SpecR be
a smooth proper morphism, and let C be a smooth projective curve of genus g ≥ 2
over the residue field k of R. Let ψ : X0 → C be a morphism with ψ∗OX0 = OC .

1We give a more general definition of a lift in Definition 6.1.1.
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Then there exists a generically finite extension R → R′, a smooth projective
curve Y → SpecR′, a morphism φ : X ×R R′ → Y, and a commutative diagram

X0

C Y0 ,

ψ φ0

χ

(1)

where χ is purely inseparable. In particular, χ is a power of the relative Frobenius
if char k = p > 0, and χ is an isomorphism if char k = 0.

If char k = 0, there is a deformation-theoretic proof using a vanishing theorem
of Kollár [Kol86, Thm. 2.1(iii)]; see Theorem 5.5.1. However, if char k = p > 0,
then the obstruction space does not vanish in general, cf. Example 5.5.4.

Because there are no morphisms of degree > 1 between two curves of the same
genus g ≥ 2 in characteristic 0, one can show (see Remark 5.4.10) that if
X0 → C lifts after composing with Frobn, it cannot be lifted after composing
with further powers of Frobenius. Thus, one cannot simply replace Kollár’s
vanishing theorems by vanishing theorems for Frobenius pullbacks [Ara04].

Instead, the proof of Theorem 1 uses a theorem of Simpson (Theorem 5.3.8) that
says that non-rigid rank 2 local systems on XK̄ are pulled back from a curve.
We construct an auxiliary π1-representation of the curve C, and pull it back to
πét,`

1 (X0) ∼= πét,`
1 (XK̄) to obtain a local system on XK̄ . Then Simpson’s theorem

produces a morphism to a curve Y over K̄. We prove that Y has good reduction
Y over a generically finite extension R′ of R, and that the special fibre Y0 is
related to the original curve C by the commutative diagram (1).

To apply Theorem 1 to the liftability problem, we prove the following result in
Corollary 7.2.8 (for r ≥ 4) and its improvement Corollary 7.3.3 (for r ≥ 3). The
proof also relies on Lemma 7.1.6.

Lemma. Let r ≥ 3, and let C1 = . . . = Cr be a supersingular curve of genus
g ≥ 2. Then there exists a very ample line bundle L on

∏
Ci with the following

property: if Ci are curves lifting the Ci, then no multiple L ⊗m for m > 0 can
be lifted to

∏
Ci.

The proof uses the decomposition (Theorem 4.4.10)

Pic

(∏
i

Ci

)
=
∏
i

Pic(Ci)×
∏
i<j

Hom(JacCi ,JacCj ).

The coordinates corresponding to the homomorphisms φji : JacCi → JacCj can
be arranged in a non-commutative diagram (for simplicity drawn if r = 4)

JacC1
JacC2

JacC3
JacC4

.

φ21

φ31 φ42

φ43

(2)
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If we choose the φji such that the compositions in diagram (2) corresponding
to the loops

• • • • • •

• • , • • , • •

generate End◦(JacC1), then this prevents L from lifting. Indeed, if L lifts,
then so does diagram (2), which gives simultaneous lifts of all endomorphisms
of the supersingular abelian variety JacC1

. This is impossible by a dimension
count.

This argument is carried out in detail in Corollary 7.2.8, which relies on a
theorem of Albert (Theorem 7.2.1) on the generation of absolutely semisimple
algebras. This proof actually needs r ≥ 4 curves, but we provide an improvement
to r ≥ 3 curves in Corollary 7.3.3 using a more refined argument.

The lemma together with Theorem 1 implies the main theorem (Theorem 7.4.3):

Theorem 2. Let L be as in the lemma above, and let X ∈ |L ⊗n| be a general
smooth section for n� 0. If k ⊆ k′ is a field extension and Z is a smooth proper
k′-variety with a dominant rational map Z 99K X ×k k′, then Z cannot be lifted
to characteristic 0.

Indeed, assume Z admits a lift Z to characteristic 0. Then Theorem 1 shows that
the morphisms Z → Ci lift, up to taking its Stein factorisation and composing
by a power of Frobenius. Assume for simplicity that we get actual morphisms
Z → Ci. Then the image of the morphism Z →

∏
Ci is a lift of some multiple

mX as a divisor, contradicting the choice of L .

The actual proof is more difficult, because the morphisms Z → Ci only lift
after taking Stein factorisation and up to a Frobenius twist. In the argument
above, we realise X ∈ |L | on the one hand as a line bundle whose components
(as in diagram (2)) generate End◦(JacC1

), but on the other hand as the image
of the map Z →

∏
Ci. The intermediate notion that the φji generate all

endomorphisms coming from an isogeny factor of JacCi (Definition 7.1.2) is
stable under pullback (Lemma 7.1.7). However, the difficulty is that image is
only well-behaved under pushforward.

To get around this problem, we want to choose the divisor X ∈ |L ⊗n| in
such a way that for any product covering g :

∏
C ′i →

∏
Ci, the inverse image

g−1(X) ⊆
∏
C ′i is still irreducible. Indeed, then Lemma 7.4.2 implies that any

irreducible subvariety V ⊆
∏
C ′i with image X ⊆

∏
Ci is a member of |g∗L ⊗d|

for some d ∈ Z>0. Note that when we construct X, we do not yet know what
the covers C ′i → Ci are, so we need to construct an X that g−1(X) ⊆

∏
C ′i

is irreducible for all finite coverings C ′i → Ci. We prove in Proposition 3.2.4
that this product covering property (Definition 3.2.2) holds for a general smooth
section X ∈ |L ⊗n| for n� 0.
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1.3 Structure of the argument

Main construction

The construction outlined above is carried out in detail in the last chapter
(Chapter 7). The main theorem (Theorem 2 above) is proved as Theorem 7.4.3.
The construction of a line bundle on

∏
Ci that does not lift is carried out

in Section 7.2 and Section 7.3, using Lemma 7.1.6. Because of the difficulties
indicated at the end of the introduction, most results are stated in a more general
setting than explained in the introduction; see Setup 7.1.1 and Definition 7.1.2.
In particular, we need to control what happens when applying finite covers
C ′i → Ci; this happens in Lemma 7.1.7.

The penultimate chapter (Chapter 6) contains an introduction to lifting. We
work with a more general definition of a lift than the one stated in the intro-
duction; see Definition 6.1.1 and Lemma 6.1.3. We prove in Theorem 6.3.1 that
surfaces of Kodaira dimension ≤ 1 can always be dominated by a liftable surface.

Main technical chapters

The methods that go into the proof are divided into abelian methods (Chapter 4)
and anabelian methods (Chapter 5). The former is largely a survey of classical
results about Hom schemes between abelian varieties, the Picard scheme of a
product, and specialisation maps. The latter is built around Simpson’s theorem
(Theorem 5.3.8) and its application to lifting morphisms to a curve (Theorem 1
above, see Theorem 5.4.4).

Auxiliary results

The proof of Theorem 1 relies on a study of Stein factorisation and base change
(Chapter 2), which is of independent interest. We give conditions under which
Stein factorisation commutes with base change, as well as some counterexamples.

Finally, Chapter 3 contains some Bertini theorems that are needed to control
what happens with X ⊆

∏
Ci under pulling back along finite maps gi : C ′i → Ci,

cf. the end of the introduction above. The main result is Proposition 3.2.4.

Leitfaden

Chapter 3:
Product covering property

Chapter 4:
Picard groups of products

Chapter 7:
Main construction

Chapter 2:
Stein factorisation
and base change

Chapter 5:
Lifting maps to curves

Chapter 6:
Basics on lifting
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1.5 Notation and terminology

In this document, a variety over a field k will always mean a geometrically
integral, separated scheme of finite type over k. When we say curve, surface,
threefold, etc., this is always understood to be a variety.

A scheme S has equicharacteristic 0 if for all s ∈ S, the residue field κ(s) has
characteristic 0. Equivalently, S is a Q-scheme, i.e. all positive integers are
invertible in OS .

A smooth proper variety X over F̄p is supersingular if there exists a model
X0 over a finite field Fq such that the eigenvalues of the q-power Frobenius
on H∗ét(X,Q`) are all half integer powers of q. Note that if X is defined over
a given finite field k, we might need to pass to a finite extension of k to get
these Frobenius eigenvalues. By [Del74] and [Kro57, I], this is equivalent to the
assertion that for any i, all slopes of the Frobenius action on Hi

ét(X,Q`) are i/2.

In general, we will write Mor(X,Y ) for the set of morphisms of schemes X → Y .
When working over a base S, everything is understood to be over that base.
If A and B are group schemes over S, then Hom(A,B) will denote the set of
homomorphisms of S-group schemes, to distinguish this from Mor(A,B). We
use the same distinction for the scheme versions Mor(A,B) and Hom(A,B).
The group Hom(A,B)⊗Q is denoted by Hom◦(A,B), and similarly for End◦(A)
(this notation is recalled in Definition 4.3.5 for the reader’s convenience).

A pointed S-scheme (X,σ) is an S-scheme X with a section σ : S → X of the
structure morphism X → S. A morphisms of pointed S-schemes (X,σ)→ (Y, τ)
is a morphism f : X → Y such that f ◦σ = τ . A rational map of integral schemes
(S-schemes) f : X 99K Y is a morphism of schemes (S-schemes) f : U → Y
defined on a dense open U ⊆ X.

A Q-rng is a rng (i.e. a not necessarily commutative ring without unit) that is
also a Q-vector space.

Let X → S be a morphism between finite type k-schemes. Then a statement P
holds for a general member Xs if there exists a dense open U ⊆ S such that P
holds for all Xs with s ∈ U . If this is the case, then a general member of the
family is an Xs with s ∈ U , often assumed to be a closed point. If k is a finite
field, there need not exist a general member that is defined over k.

If R is a DVR (discrete valuation ring) and X → SpecR is a morphism of
schemes, then we will denote by X0 the special fibre and Xη the generic fibre.
We sometimes write SpecR = {0, η} or SpecR = {s, η}; in this case the special
point s equals the point 0.

If X is a scheme and x̄ a geometric point, then πét
1 (X, x̄) denotes the étale

fundamental group, and πét,`
1 (X, x̄) its maximal pro-` quotient. We denote the

topological fundamental group of a C-variety X by πtop
1 (X,x). Unless otherwise

specified, a representation ρ : πét
1 (X, x̄)→ G (or its pro-`-variant) to a profinite

group G will always assumed to be continuous. We will omit mention of the
base point x̄ or x when it does not play an important role.
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2. Stein factorisation and base change

Unfortunately, Stein factorisation does not commute with base change in general;
see Lemma 2.1.4 and Remark 2.1.5. We collect some conditions under which it
does (Corollary 2.2.3), as well as a counterexample (Example 2.3.3).

2.1 Stein factorisation after base change

Let φ : X → Z be a proper morphism of schemes. The Stein factorisation of φ
is

X
f−→ Y

g−→ Z,

where Y = Specφ∗OX . It has the property that f∗OX = OY , and g is integral.
If moreover Z is locally Noetherian, then g is finite. See [EGA3I, Cor. 4.3.2] for
the locally Noetherian case, and see [Stacks, Tag 03H2] for the general situation.
The main lemma one proves is the following.

Lemma 2.1.1. Let f : X → Y be a proper morphism such that f∗OX = OY .
Then f has geometrically connected fibres.

Proof. See [loc. cit.].

The converse is not always true, as we will see below. However, we do get a
converse under stronger hypotheses.

Lemma 2.1.2. Let f : X → Y be a proper and flat morphism whose geometric
fibres are reduced and connected. Then f∗OX = OY .

Proof. The κ(y)-varieties Xy satisfy H0(Xy,OXy ) = κ(y). Cohomology and
base change [Har77, Thm. III.12.11] now implies that f∗OX is locally free of
rank 1, and f∗OX ⊗OY κ(y) ∼= κ(y) for all y ∈ Y . This implies that the natural
map OY → f∗OX is an isomorphism.

Setup 2.1.3. Let S be a scheme, let φ : X → Z be a proper morphism of
S-schemes, and let

X
f−→ Y

g−→ Z

be its Stein factorisation, i.e. f is proper with f∗OX = OY , and g is integral.

Lemma 2.1.4. Let S, X, Y , and Z be as in Setup 2.1.3, and let T → S be
arbitrary. If Y ′ = Spec fT,∗OXT , then we have a diagram

XT → Y ′
h−→ YT → ZT .

The morphism h is integral with geometrically connected fibres, hence is radicial.

Proof. By definition, Y ′ is the Stein factorisation of fT , which proves that h is
integral. By Lemma 2.1.1, f has geometrically connected fibres, hence so does h.
Hence, for each point y ∈ YT , the fibre Y ′y → y is geometrically connected and
integral, hence consists of a single point y′ whose residue extension κ(y)→ κ(y′)
is purely inseparable. This forces h to be radicial [EGA1, Prop. 3.5.8].
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Remark 2.1.5. Alternatively, Y ′ could have been defined as SpecφT,∗OXT ,
since φT differs from fT by the affine morphism gT . Thus, Y ′ can also be viewed
as the Stein factorisation of φT .

Comparing the Stein factorisation of φ with that of φT , we see that the only new
part that can be introduced to the Stein factorisation of φT is the morphism h.
Our main goal is to understand h, but unfortunately we can only prove some
results when we put strong conditions on X and Y . The general question with
geometric restrictions on X and Z is hard.

For the record, we state an easy case in which base change always holds.

Lemma 2.1.6. Let S, X, Y , and Z be as in Setup 2.1.3. If T → S is flat, then
the morphism h of Lemma 2.1.4 is an isomorphism.

Proof. This follows since formation of φ∗OX commutes with flat base change.

Corollary 2.1.7. Let S, X, Y , and Z be as in Setup 2.1.3. Assume moreover
that S is integral with generic point η, that Z is normal, and that each component
of Z dominates S. If φη,∗OXη = OZη , then φ∗OX = OZ .

Proof. The inclusion η → S is flat, hence Stein factorisation commutes with
base change along η → S. Then g : Y → Z is an integral morphism that is
an isomorphism above η ∈ S. Thus, above each component Zi of Z the map
g : g−1(Zi) → Zi is an integral morphism that is birational, hence it is an
isomorphism since Zi is normal and integral.

Example 2.1.8. The assumptions of the corollary are satisfied for example if S
is locally Noetherian, integral, and normal, and Z → S is a normal morphism,
i.e. a flat morphism whose geometric fibres are normal and locally Noetherian.
See [EGA4II, Cor. 6.8.1] for the definition, and [EGA4II, Cor. 6.5.4] for the proof
that this implies that Z is normal.

2.2 Pushforward and base change

In this section, we will consider conditions on X and Y in Setup 2.1.3 that force
the map h of Lemma 2.1.4 to be an isomorphism.

Setup 2.2.1. Let S and f : X → Y be as in Setup 2.1.3. We will moreover
assume that X and Y are of finite type over S, with integral and normal
geometric fibres Xs̄ and Ys̄ for all s ∈ S.

Lemma 2.2.2. Let S and f : X → Y be as in Setup 2.2.1. Then for every
s ∈ S, the map h : Spec fs̄,∗OXs̄ → Ys̄ of Lemma 2.1.4 sits in a commutative
diagram

Y
(p−n)
s̄ Ys̄

Spec fs̄,∗OXs̄

FrobnYs̄/s̄

for some n ∈ Z≥0. Here, we understand that n = 0 if charκ(s) = 0.
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Proof. The morphism Spec fs̄,∗OXs̄ → Ys̄ is finite and radicial. But both Xs̄

and Ys̄ are normal integral varieties over the algebraically closed field κ(s̄).
Hence, Spec fs̄,∗OXs̄ is the normalisation of Ys̄ in a purely inseparable field
extension of K(Ys̄). Such an extension is dominated by K(Ys̄)

1/pn for some n.
The integral closure of Ys̄ in this further field extension is just Y (p−n)

s̄ , since the
latter is finite over Ys̄ and integrally closed since Ys̄ is.

Corollary 2.2.3. With the assumptions of Setup 2.2.1, if all points of S have
characteristic 0, then fs̄,∗OXs̄ = OYs̄ for all s ∈ S.

In Example 2.3.3, we give examples in any positive characteristic p showing that
n need not be 0 in Lemma 2.2.2, even if X and Y are smooth over S. There
should exist similar counterexamples in mixed characteristic.

Corollary 2.2.4. With the assumptions of Setup 2.2.1, if the fibres of Y → S
are 1-dimensional, then for every s ∈ S the map h : Spec fs̄,∗OXs̄ → Ys̄ is a
power of Frobenius.

Proof. It is the normalisation morphism in a finite purely inseparable extension
of the function field K(Ys̄) (compare the proof of Lemma 2.2.2). But the only
purely inseparable extensions of a transcendence degree 1 field extension K(Ys̄)
over an algebraically closed field κ(s̄) are of the form K(Ys̄)

1/pn for some n.

2.3 Counterexample in positive characteristic

One can ask whether Corollary 2.2.3 is also true in characteristic p > 0 or
in mixed characteristic. In Example 2.3.3, we construct a counterexample in
arbitrary positive characteristic p, where in fact X → S and Y → S are smooth.

Lemma 2.3.1. Let C be an elliptic curve over an algebraically closed field k,
and let f : C ′ → C be a nontrivial αp-torsor. Then C ′ is an elliptic curve.

Proof. A nontrivial αp-torsor over a normal integral scheme is integral, because
it is Zariski-locally given by adjoining a p-th root of a non-p-power. Moreover,
f∗OC′ has a filtration by coherent subsheaves whose subquotients are OC , hence

χ(C ′,OC′) = χ(C, f∗OC′) = p · χ(C,OC) = 0. (2.3.1)

If C ′ is not smooth, then its normalisation is P1. By Riemann–Hurwitz, there
are no dominant maps from P1 to an elliptic curve (even in characteristic p).
Thus, C ′ is smooth, hence an elliptic curve by (2.3.1).

Remark 2.3.2. The result is not true over non-algebraically closed fields k
unless one assumes that the torsor is geometrically nontrivial. This is the basis
for our example: we will construct a family of geometrically nontrivial αp-torsors
degenerating to an αp-torsor that is nontrivial but comes from the ring extension
F̄p[x]→ F̄p[ p

√
x], hence picks up a finite part in its Stein factorisation.

Example 2.3.3. Let R = F̄p[t], and let S = SpecR. Set Y = Spec F̄p[t, x] ∼= A1
R.

Let E be a supersingular elliptic curve over F̄p, and consider the constant elliptic
curve E = E × Y → Y .
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The short exact sequence 0→ αp → OE → OE → 0 on the flat site of E gives a
long exact sequence

0 H0(E,OE)[t, x] H0(E,OE)[t, x]

H1(E , αp) H1(E,OE)[t, x] H1(E,OE)[t, x] ,

Frob∗

δ

Frob∗

where H0(E,OE) and H1(E,OE) are 1-dimensional vector spaces over F̄p. Since
E is supersingular, the Frobenius action on H1 is zero. Let η ∈ H1(E,OE) be a
nonzero element, and choose a lift β ∈ H1(E , αp) of ηt ∈ H1(E,OE)[t, x]. Then
the fibre β0 of β over t = 0 ∈ S maps to 0 in H1(E,OE)[x], so β0 = δ(f) for
some f ∈ H0(E,OE)[x]. Replacing β by β + δ(x − f), we may assume that
β0 = δ(x). Let X → E be the αp-torsor corresponding to β, and let f : X → Y
be the map X → E → Y .

We will prove that X → S is smooth (Proposition 2.3.8), that f∗OX = OY
(Corollary 2.3.6), and that this is not true in the fibre above 0 (Lemma 2.3.9).

Lemma 2.3.4. For any y ∈ Y not lying above 0 ∈ S, the κ(y)-variety Xy is an
elliptic curve (in particular, it is smooth and geometrically connected).

Proof. Let s 6= 0 be the image of y in S, and consider β|Eȳ ∈ H1(Eȳ, αp). It is
nonzero, since its image in H1(Eȳ,OEȳ ) = H1(E,OE)⊗F̄p κ(ȳ) is ηs. Hence, the
αp-torsor Xȳ → Eȳ is nontrivial. The result now follows from Lemma 2.3.1.

Corollary 2.3.5. The morphism f : X → Y is smooth above S \ {0}.

Proof. It is flat with smooth fibres, hence smooth [EGA4IV, Thm. 17.5.1].

Corollary 2.3.6. The morphism f : X → Y satisfies f∗OX = OY .

Proof. Lemma 2.1.2 and Lemma 2.3.4 imply that fS\{0},∗OXS\{0} = OYS\{0} .
Then Corollary 2.1.7 implies that f∗OX = OY , since Y is normal.

Lemma 2.3.7. The fibre X0 is isomorphic to E × Spec F̄p[ p
√
x].

Proof. By construction, we have β0 = δ(x). Hence the αp-torsor X0 → E0 is
given by adjoining a p-th root of x ∈ H0(E0,OE0) = H0(E,OE)[x].

Proposition 2.3.8. The morphism X → S is smooth.

Proof. Clearly X → S is flat, since X → E and E → S are. Thus, again by
[EGA4IV, Thm. 17.5.1], it suffices to prove that all fibres are smooth. The
morphism XS\{0} → S \ {0} is smooth, by Corollary 2.3.5 and since Y → S
is smooth. Finally, the fibre X0 is smooth since it equals E × Spec F̄p[ p

√
x] by

Lemma 2.3.7.

Thus, f : X → Y is a proper morphism of smooth S-schemes with f∗OX = OY .

Lemma 2.3.9. The morphism f0 : X0 → Y0 does not satisfy f0,∗OX0
= OY0

.

Proof. This is the morphism E × Spec F̄p[ p
√
x]→ Spec F̄p[x]. The pushforward

of the structure sheaf corresponds to the finite extension F̄p[x]→ F̄p[ p
√
x].
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3. Bertini theorems for products

3.1 Two Bertini theorems

The main results of this section are Lemma 3.1.2 and Lemma 3.1.3. We start
with a well-known lemma; the proof is included for the reader’s convenience.

Lemma 3.1.1. Let f : X → Y be a projective morphism of Noetherian schemes,
and let O(1) be a relatively ample sheaf. Let F be a coherent sheaf on X. Then
there exists n0 ∈ Z>0 such that

Hi(Xy,Fy(n)) = 0

for all y ∈ Y , all n ≥ n0, and all i > 0.

Proof. By generic flatness [EGA4II, Thm. 6.9.1], there is a nonempty open
U ⊆ Y such that F |f−1(U) is flat over U . By a Noetherian induction, we obtain
a stratification of Y by locally closed subsets Vi over which F is flat. The
question only concerns the fibres of f , and the result for each member of a
finite covering of Y proves the result for Y . Thus, replacing Y by

∐
Vi, we may

assume F is flat over Y . Similarly, we may assume that Y is integral and affine.

Now Serre vanishing [EGA3I, Thm. 2.2.1] shows that there exists n0 such that
Rif∗F (n) = 0 for all n ≥ n0 and all i > 0. Then cohomology and base change
[Har77, Thm. III.12.11] and a descending induction on i show that the natural
map Rif∗F (n) ⊗ κ(y) → Hi(Xy,Fy(n)) is an isomorphism, which proves the
lemma.

Lemma 3.1.2. Let f : X → Y be a smooth projective morphism of relative
dimension d of k-schemes, let e = dimY , and let H be an ample divisor on X.
Then there exists n0 ∈ Z>0 such that for all n ≥ n0 and for a general divisor
D ∈ |nH|, each fibre D ∩Xy has at most e singular points.

In particular, each fibre has isolated singularities.

Proof. Since OX(H) is ample on X, it is also f -ample [EGA2, Prop. 4.6.13(v)].
Write Xe+1

Y for the (e+1)-fold fibre product X×Y . . .×Y X, and let T ⊆ Xe+1
Y be

the open set where all coordinates are pairwise distinct. The map π : T → Y is
smooth of relative dimension d(e+1), so dimT = de+d+e. For i ∈ {1, . . . , e+1},
write ∆0,i = {(x0, . . . , xe+1) ∈ X ×Y T | x0 = xi}. Let Z ⊆ X ×Y T be the
subvariety given by the ideal sheaf

IZ := I2
∆0,1
· · · I2

∆0,e+1
,

so that the fibre over t = (x1, . . . , xe+1) ∈ T is the finite subscheme Zt ⊆ Xπ(t)

given by m2
x1
· · ·m2

xe+1
. Applying Lemma 3.1.1 to the morphism X ×Y T → T

and the sheaf IZ , we conclude that there exists n0 ∈ Z>0 such that the map

H0
(
Xy,OXy (nH|Xy )

)
→ H0

(
Zt,OZt(nH|Xy )

)
(3.1.1)

is surjective for all y ∈ Y , all t ∈ Ty, and all n ≥ n0.
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Consider the incidence scheme Wn ⊆ |nH| × T given by

Wn =

{
(D, t) ∈ |nH| × T

∣∣∣∣∣ Zt ⊆ D∣∣Xπ(t)

}
.

Write π1 and π2 for the projections to |nH| ∼= PM and T respectively. The
fibre of π2 above any t ∈ T has codimension `(Zt) = (e + 1)(d + 1) in |nH|
by surjectivity of (3.1.1). Hence, Wn has codimension (e + 1)(d + 1) in each
component of |nH|×T . Since |nH|×T has dimensionM+de+d+e, we conclude
that Wn has dimension M − 1, hence π1 cannot be dominant. The complement
of the image is an open U ⊆ |nH| above which the required property holds.

The case Y = Spec k (so e = 0) recovers an asymptotic version of the classical
Bertini theorem on smooth hyperplane sections. The proof is essentially the
same. In the classical version, surjectivity holds already for n = 1 when H is
very ample, because H separates tangent vectors.

Lemma 3.1.3. Let X be a projective k-variety with an ample line bundle H,
let T be a k-scheme of finite type, and let Z ⊆ T ×X be a subscheme such that
dimZt ≥ 1 for all t ∈ T . Then there exists n0 ∈ Z>0 such that for every n ≥ n0,
a general member of |nH| does not contain any member Zt.

Proof. We reduce to the case that Z is flat over T and T is integral by the
same argument as in the proof of Lemma 3.1.1. Then the Hilbert polynomial
χ(Zt,O(nH)) is independent of t [EGA3II, Thm. 7.9.4]. Since dimZt ≥ 1, the
Hilbert polynomial has degree ≥ 1. Hence, there exists n0 ∈ Z>0 such that
χ(Zt,O(nH)) > dimT + 1 for all n ≥ n0. By Lemma 3.1.1, after enlarging n0

if necessary, we also have

H1(X, IZt(nH)) = 0, Hi(Zt,OZt(nH)) = 0

for all t ∈ T , all n ≥ n0, and all i > 0. Now consider the incidence scheme

Yn =
{

(D, t) ∈ |nH| × T
∣∣∣ Zt ⊆ D} .

Write π1 and π2 for its projections to |nH| ∼= PM and T respectively. If n ≥ n0,
then the fibre of π2 above any t ∈ T has dimension

h0(X,OX(nH))− h0(Zt,OZt(nH)) = h0(X,OX(nH))− χ(Zt,OZt(nH))

< h0(X,OX(nH))− dimT − 1.

Hence, Yn has dimension strictly smaller than h0(X,OX(nH))− 1 = M , so π1

cannot be dominant.

Remark 3.1.4. The family Z of all hypersurfaces in Pm of degree ≤ d shows
that even if H is very ample, the multiple needed to avoid a family of subvarieties
can be arbitrarily large, and depends on Z as well as on X and H.

Remark 3.1.5. The assumption on the dimension of the fibres cannot be
dropped: no very ample linear system avoids all points in X.

Remark 3.1.6. If k is finite, there need not exist a general member of |nH|
that is defined over k. It would be interesting to see if there are analogues of
Lemma 3.1.2 and Lemma 3.1.3 for a set of positive density (cf. [Poo04]).
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3.2 Products of finite coverings

We will work in the following setup.

Setup 3.2.1. Let k be a field, and let C1, . . . , Cr be smooth projective curves
over k. We will write X = C1× . . .×Cr, with projection maps πi : X → Ci. We
will consider finite coverings fi : C ′i → Ci of the Ci by smooth projective curves
C ′i, and in this case we will write X ′ = C ′1× . . .×C ′r, with the map f : X ′ → X.
The projections X ′ → C ′i are also denoted by πi.

We are interested in the following property for divisors D ⊆ X.

Definition 3.2.2. Let C1, . . . , Cr and X be as in Setup 3.2.1. Then we say
that an effective divisor D ⊆ X satisfies the product covering property if for
all finite coverings C ′i → Ci of the Ci by smooth projective curves, the inverse
image D′ = f−1(D) ⊆ X ′ is geometrically irreducible. In particular, D itself is
geometrically irreducible.

Using the Bertini theorems from the previous section, we will show that a
sufficiently general divisor D satisfies this property; see Proposition 3.2.4.

Lemma 3.2.3. Let r ≥ 2, and let D ⊆ C1×. . .×Cr be an effective ample divisor.
Assume that D is geometrically normal and does not contain π−1

i (xi) ∩ π−1
j (xj)

for any i 6= j and any xi ∈ Ci, xj ∈ Cj, and that D ∩ π−1
i (xi) is generically

smooth for all i and all xi ∈ Ci. Then D satisfies the product covering property.

Proof. Since all statements are geometric, we may assume k is algebraically
closed. Let fi : C ′i → Ci be finite coverings by smooth projective curves. If fi is
purely inseparable, then it is radicial, hence a homeomorphism. This does not
affect irreducibility, so we only have to treat the case that the fi are separable,
i.e. generically étale.

The inverse image D′ = f−1(D) is ample since D is [EGA2, Cor. 6.6.3], hence
D′ is connected since r ≥ 2 [Har77, Cor. III.7.9]. Since D′ is a divisor in a
regular scheme, it is Cohen–Macaulay [Stacks, Tag 02JN]. We will show that
the assumptions on D imply that D′ is regular in codimension 1. Then Serre’s
criterion implies that D′ is normal [EGA4II, Thm. 5.8.6]. Then D′ is integral,
since it is normal and connected [EGA4II, 5.13.5].

Now let x′ ∈ D′ be a point of codimension 1, and consider the image x′i of x′ in
C ′i. Let η′i be the generic point of C ′i. Let x, xi, and ηi be the images of x′ in
X, of x′i in Ci, and of η′i in Ci respectively. Consider the set

I =
{
i ∈ {1, . . . , r}

∣∣ x′i = η′i
}

=
{
i
∣∣ xi = ηi

}
.

If |I| > 2, then {x′} ⊆ π−1
i (xi) ∩ π−1

j (xj) ∩ π−1
k (xk), contradicting the fact

that x′ has codimension 1 in D′. If |I| = 2, then x′ is the generic point
of π−1

i (x′i) ∩ π
−1
j (x′j), hence D contains π−1

i (xi) ∩ π−1
j (xj), contradicting the

assumptions on D. Hence, |I| ≤ 1. If |I| = 0, then x maps to ηi for each i, hence
OD,x contains the fields κ(ηi) for all i. Since fi is separable, the field extension
OCi,ηi → OC′i,η′i is étale. Hence, x is in the étale locus of D′ → D, so OD′,x′ is
a regular ring since OD,x is [EGA4IV, Prop. 17.5.8].
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Finally, if |I| = 1, then x is the generic point of a component of D ∩ π−1
i (xi),

and similarly for x′. As in the case |I| = 0, the extensions C ′j → Cj for j 6= i do
not affect normality at x, so we may assume that C ′j = Cj for j 6= i. Then the
natural map D′∩π−1

i (x′i)→ D∩π−1
i (xi) is an isomorphism (since κ(xi)→ κ(x′i)

is an isomorphism, because k is algebraically closed).

Consider the local homomorphism OC′i,x′i → OD′,x′ . It is flat because every
irreducible component ofD′ dominates C ′i. Moreover, the fibreOD′,x′/mx′iOD′,x′
is a field, as D′∩π−1

i (x′i) = D∩π−1
i (xi) is generically smooth by the assumptions

on D. Since OC′i,x′i is regular and OC′i,x′i → OD′,x′ is flat and local, we conclude
that OD′,x′ is a regular ring [EGA4II, Prop. 6.5.1].

Proposition 3.2.4. Let C1, . . . , Cr be smooth projective curves over k, and
assume r ≥ 3. Let H be an ample divisor on X = C1 × . . . × Cr. Then there
exists n0 ∈ Z>0 such that for all n ≥ n0, a general divisor D ∈ |nH| satisfies
the product covering property of Definition 3.2.2.

Proof. There exists n0 such that for all n ≥ n0, the divisor nH is very ample.
Then a general D ∈ |nH| is smooth, so in particular geometrically normal. By
Lemma 3.1.2 (increasing n0 if necessary), for a general D all fibres D ∩ π−1

i (xi)
for xi ∈ Ci have isolated singularities; in particular they are generically smooth.
By Lemma 3.1.3 (again increasing n0 if needed), a general D does not contain
the families π−1

i (xi) ∩ π−1
j (xj), which have dimension ≥ 1 since r ≥ 3. Then

Lemma 3.2.3 shows that these D satisfy the product covering property.

Remark 3.2.5. On the other hand, for r ≤ 2 no divisor has the product covering
property. For r ≤ 1 this is obvious. For r = 2, we claim that for any effective
D ⊆ C1 × C2, there exist coverings fi : C ′i → Ci such that f−1(D) is reducible.

Indeed, we may assume D is irreducible. Then it dominates either C1 or C2;
say that it dominates C2. The generic points of f−1(D) are then the points of
D∩(C ′1×SpecK(C ′2)), so it suffices to consider the divisorD∩(C1×SpecK(C2)).
Without loss of generality we may assume that it has degree d > 1; if the degree
is 1 we first replace C1 by a cover. If it has degree d > 1, then after a degree d
extension of C2 it splits off a rational point, hence becomes reducible.

This argument also shows that there is no hope for more general covers of
C1 × . . . × Cr. Indeed, a suitable covering of K(C2 × · · · × Cr) will split off a
rational point, as in the argument for r = 2.

Example 3.2.6. The conclusion of Proposition 3.2.4 is not true for all smooth
divisors D ∈ |nH|. For example, let r = 3, Ci = P1 with coordinates [xi : yi],
and let D be given by x1x2x3 − y1y2y3 ∈ H0((P1)3,O(1)�3). Consider the
affine charts associated with inverting one of {xi, yi} for each i. Then the local
equations are xyz − 1 and xy − z, both of which define a smooth surface.

However, if we take the covers given by C ′i = P1 with map C ′i → Ci given by
[xi : yi] 7→ [x2

i : y2
i ], then D′ splits as V (x1x2x3 − y1y2y3)∪ V (x1x2x3 + y1y2y3).

So even when D is smooth (in arbitrary characteristic), it does not automatically
satisfy the product covering property. This D violates the assumptions of
Lemma 3.2.3 because it contains π−1

1 ([0 : 1]) ∩ π−1
2 ([1 : 0]).

14



4. Abelian methods

4.1 Extension of rational morphisms

We recall a few classical results that we will use repeatedly.

Definition 4.1.1. An abelian scheme A→ S is a smooth proper group scheme
over S with geometrically connected fibres.

Theorem 4.1.2 (Weil). Let S be a normal Noetherian scheme, let X → S be
smooth, and let A→ S be an abelian scheme. If f : X 99K A is a rational map
of S-schemes, then f extends uniquely to a morphism f : X → A of S-schemes.

Proof. This follows from [BLR, Thm. 4.4.1].

Corollary 4.1.3 (Néron extension property of abelian schemes). Let S be the
spectrum of a DVR R with fraction field K, and let A→ S be an abelian scheme.
If X is a smooth S-scheme, then

HomS(X,A)
∼→ HomK(XK , AK).

Proof. A K-morphism XK → AK is a rational morphism X 99K A of S-schemes,
hence it extends (uniquely) by Theorem 4.1.2.

Corollary 4.1.4. Let S be a normal Noetherian scheme, let X → S be smooth,
and let C → S be a smooth proper curve over S with a section σ such that the
fibres Cs have genus ≥ 1. If f : X 99K C is a rational map of S -schemes, then
f extends (uniquely) to a morphism f : X → C of S-schemes.

Proof. The section σ gives an Abel–Jacobi map C → Pic0
C/S of S-schemes,

which is a closed immersion since the Cs have genus ≥ 1. Composing the
rational map X 99K C with the Abel–Jacobi map C → Pic0

C/S gives a rational
map X 99K Pic0

C/S , which extends to a morphism by Theorem 4.1.2.

See Section 4.4 for a rephrasing of the Abel–Jacobi map in terms of the relative
Albanese Alb1

C/S .

We give an alternative argument when S = Spec k is the spectrum of a field k,
because we need a variant of this argument at some point as well. This proof
does not use that C has a section.

Second proof (if S = Spec k). Let Γ̄f ⊆ X × C be the closure of the graph, so
that we get a commutative diagram

Γ̄f

X C .

f̄π

f

Since π is birational and X is smooth, the fibres of π are rationally connected
[Mur58]. Since g(C) ≥ 1, there are no nonconstant maps P1 → C, hence f̄
contracts the fibres of π. Since π is proper, the universal property of contractions
[EGA2, Lem. 8.11.1] implies that f̄ factors through X.
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4.2 Hom schemes of abelian schemes

We collect some proofs of well-known facts about homomorphisms between
abelian schemes over an arbitrary base S. In particular, Theorem 4.2.8 shows
that the Mor scheme between abelian schemes is always representable. Note
that we do not assume A → S to be locally projective (so a priori the M or
functor is only representable as an algebraic space; see Lemma 4.2.2).

Remark 4.2.1. Given two abelian schemes A, B over S, we write HomS(A,B)
for the set of morphisms of S-group schemes A → B, and MorS(A,B) for the
set of all morphisms of S-schemes, and similarly for the corresponding sheaves
H om and M or and their representing representing objects Hom and Mor.

Lemma 4.2.2. Let A and B be abelian schemes over S. Then the functor

H omS(A,B) : (Sch /S)op −→ Set

T 7−→ HomT (AT , BT )

is representable by an algebraic space HomS(A,B) that is separated and locally
of finite presentation over S.

Proof. The functor M orS(A,B) parametrising all S-morphisms A→ B is rep-
resentable by an open subspace MorS(A,B) of the algebraic space HilbA×SB/S
that is locally of finite presentation over S; see [Stacks, Tags 0D1B and 0D1C].
Moreover, HilbA×SB/S is separated over S by [Stacks, Tag 0DM7]. Then it
follows that MorS(A,B) is separated, since open immersions are separated and
the composition of separated morphisms is separated.

A morphism of S-schemes f : A → B is a morphism of group schemes if and
only if the diagram

A×S A B ×S B

A B

f×f

µ µ

f

commutes. Thus, in the Mor space, the morphisms of abelian schemes are cut
out by the inverse image of ∆MorS(A×SA,B) under the morphism

MorS(A,B) −→MorS(A×S A,B)×S MorS(A×S A,B)

f 7−→ (f ◦ µ, µ ◦ (f × f)).

SinceMorS(A×SA,B) is separated by the same argument as above, we conclude
that HomS(A,B) is a closed subspace of MorS(A,B).

In Corollary 4.2.4, we will show that HomS(A,B) is in fact representable by
a scheme. We will use this in Theorem 4.2.8 to prove that MorS(A,B) is also
representable by a scheme.

Lemma 4.2.3. Let A and B be abelian schemes over S. Then HomS(A,B) is
locally quasi-finite over S.

16

http://stacks.math.columbia.edu/tag/0D1B
http://stacks.math.columbia.edu/tag/0D1C
http://stacks.math.columbia.edu/tag/0DM7


Proof. By [Stacks, Tag 06RW], we have to show that for each Spec k → S where
k is a field, the space |HomS(A,B)×S Spec k| is discrete. Since Hom commutes
with base change, we have to show that |Homk(Ak, Bk)| is discrete. We may
assume k is algebraically closed. Since abelian varieties over a field are projective,
this Hom space is representable by a scheme [FGA, TDTE IV, 4.c].

Let T be any connected finite type closed subscheme of Homk(Ak, Bk), and
consider the map f : AT → BT over T corresponding to T → Homk(Ak, Bk).
Let t0 ∈ T be a closed point, and consider g = f − ft0 . Since gt0 is constant 0,
the rigidity lemma [GIT, Prop. 6.1(3)] implies that g factors through AT → T .
Hence, g is constant 0, and thus f = ft0 . Therefore, the closed immersion
T → Homk(Ak, Bk) factors through the structure morphism T → Spec k, which
forces T to be a point.

Corollary 4.2.4. Let A and B be abelian schemes over S. Then HomS(A,B)
is representable by a scheme.

Proof. An algebraic space that is separated and locally quasi-finite over a scheme
is a scheme [Stacks, Tag 03XX].

Lemma 4.2.5. Let A and B be abelian schemes over S. Then HomS(A,B) is
unramified1 over S.

Proof. A locally finitely presented morphism is unramified if and only if each
fibre is [EGA4IV, Cor. 17.4.2]. Since Hom commutes with base change, we may
assume that S = Spec k where k is a field. We may assume that k is algebraically
closed, since the property of a morphism being unramified is fpqc local on the
target [Stacks, Tag 02VM]. Now the argument of the proof of Lemma 4.2.3
shows that any connected finite type subscheme of Homk(Ak, Bk) is isomorphic
to Spec k.

Remark 4.2.6. If we already knew that HomS(A,B) were representable by a
scheme, we could have skipped Lemma 4.2.3 and proved Lemma 4.2.5 directly.
However, we used the quasi-finiteness to argue the representability. Note that
directly verifying whether an algebraic space is unramified over S is a little bit
more cumbersome [Stacks, Tag 03ZH].

Lemma 4.2.7. Let A and B be abelian schemes over S. Then every finitely
presented closed subscheme Z ⊆ HomS(A,B) is finite over S.

Proof. The question is local on S, so we may assume S is affine. Because the
Hom functor commutes with arbitrary base change and everything is finitely
presented, we may assume S is Noetherian by a standard limit argument. If
T = SpecR is an S-scheme, where R is a DVR with fraction field K, then the
map

HomR(AR, BR)→ HomK(AK , BK)

is an isomorphism by the Néron extension property (Corollary 4.1.3).

1In the sense of EGA [EGA4IV, Def. 17.3.1]. The Stacks project calls this G-unramified
[Stacks, Tag 02G3]; the only difference is the finite presentation vs. finite type assumption.
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Hence, the same is true when we restrict to the closed subspace Z. This proves
the valuative criterion of properness for Z, where we may restrict to the DVR
case since S is Noetherian and Z of finite type [EGA2, Thm. 7.3.8]. Since
HomS(A,B) is locally quasi-finite over S by Lemma 4.2.3, this forces Z to be
finite over S [EGA3I, Prop. 4.4.2].

Theorem 4.2.8. Let A and B be abelian schemes over S. Then the natural
transformation

ψ : MorS(A,B)→ HomS(A,B)×B
{f : AT → BT } 7→ (f − f(0), f(0))

is an isomorphism. In particular, MorS(A,B) is representable by a scheme that
is separated and locally of finite presentation over S. Every finitely presented
closed subscheme of MorS(A,B) is proper over S.

Proof. Any T -morphism g : AT → BT mapping 0 to 0 is a morphism of group
schemes [GIT, Prop. 6.4]. In particular f −f(0) is indeed in HomS(A,B)(T ) as
claimed. One easily checks that an inverse to ψ is given by (g, h) 7→ g+h, where h
is viewed as the constant map AT → T → BT given by h : T → BT . This proves
the first statement, and the others follow from Corollary 4.2.4, Lemma 4.2.2,
and Lemma 4.2.7.

Remark 4.2.9. The proof above also works when A and B are abelian algebraic
spaces, with the conclusion that MorS(A,B) is representable by an algebraic
space. However, Raynaud proved [FC90, Thm. I.1.9] that every abelian algebraic
space is actually a scheme, so this does not give a more general statement.

4.3 Specialisation of endomorphisms

Definition 4.3.1. Let S = SpecR be the spectrum of a DVR R, with fraction
field K and residue field k. Let T be an S-scheme satisfying the valuative
criterion of properness. Then we define a specialisation map

sp: T (K)→ T (k)

as the composition of the isomorphism T (K)
∼←− T (R) coming from the valuative

criterion of properness with the natural map T (R)→ T (k).

Lemma 4.3.2. This map is functorial in R and T .

The main examples for us are T = MorS(A,B) and T = HomS(A,B), where
A and B are abelian schemes over S. These both satisfy the valuative criterion
of properness; see Lemma 4.2.7 and Theorem 4.2.8.

Remark 4.3.3. Because T = HomS(A,B) is actually unramified over S, one
can also define a specialisation map sp: T (κ(s̄))→ T (κ(s̄′)) for any specialisation
s  s′ in S by going through the strict Henselisation at s′. This gives a more
general notion of specialisation, at the expense of passing to the algebraic closure
of the residue fields.
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Corollary 4.3.4. For abelian schemes A and B over S, the specialisation map

sp: Hom(AK , BK)→ Hom(Ak, Bk)

is an injective group homomorphism. Given a third abelian scheme C over S,
the diagram

Hom(BK , CK)×Hom(AK , BK) Hom(AK , CK)

Hom(Bk, Ck)×Hom(Ak, Bk) Hom(Ak, Ck)

◦

sp× sp sp

◦

(4.3.1)

commutes.

Proof. The map is the one from Definition 4.3.1. It is a group homomorphism
by Lemma 4.3.2, because addition is given by a morphism of schemes

HomS(A,B)×S HomS(A,B)→ HomS(A,B).

Similarly, diagram (4.3.1) commutes since composition is given by a morphism
of schemes. Since HomS(A,B) is unramified (Lemma 4.2.5) and separated
(Lemma 4.2.2), the specialisation map is injective [EGA4IV, Prop. 17.4.9]

Definition 4.3.5. Given abelian varieties A and B over a field k, we write
Hom◦(A,B) for Hom(A,B)⊗Z Q. We note that there is an obvious analogue of
Corollary 4.3.4 for Hom◦ instead of Hom.

Lemma 4.3.6. Let k be an algebraic extension of a finite field, and let A be an
abelian variety of dimension g over k. Then

2g ≤ dim End◦(A) ≤ 4g2.

Moreover, the dimension equals 4g2 if and only if A is isogenous to a power of
a supersingular elliptic curve all of whose endomorphisms are defined over k.

Proof. For k finite, this is [Tat66, Thm. 3.2]. Since any finite-dimensional
subspace of End◦(A) is defined over a finite field, the general case follows.

Remark 4.3.7. If k is any field in characteristic p > 0, and A is an abelian
variety isogenous to a power of a supersingular elliptic curve E all of whose
endomorphisms are defined over k, then dim End◦(A) = 4g2.

Indeed, since E is supersingular, we have dim End◦(Ek̄) = 4, so the same holds
over k since all endomorphisms are defined over k. In fact, such E have to be
defined over a finite field, see e.g. [Sil09, Thm. V.3.1(a)]. In fact, there exists a
finite field F such that E and all endomorphisms of E are defined over F, since
End(E) is a finitely generated group.

Lemma 4.3.8. Let k be a field of characteristic 0, and let A be an abelian
variety of dimension g over k. Then

1 ≤ dim End◦(A) ≤ 2g2.

Moreover, the dimension equals 2g2 if and only if A is isogenous to a power of
a CM elliptic curve all of whose endomorphisms are defined over k.
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Proof. First assume k = C, and let A ' An1
1 × . . .×Anrr be a decomposition up

to isogeny in pairwise non-isogenous simple factors Ai of dimension gi. Then

End◦(A) ∼=
r∏
i=1

Mni(End◦(Ai)).

Since Ai is simple, the ring End◦(Ai) is a division algebra (“Schur’s lemma”).
On the other hand, it acts on H1(Ai,Q) ∼= Q2gi ; say that it has dimension ri as
End◦(Ai)-vector space. Then 2gi = ri · dim End◦(Ai), so dim End◦(Ai) ≤ 2gi.
Hence, we get

dim End◦(A) ≤
r∑
i=1

2gin
2
i ≤ 2

r∑
i=1

g2
i n

2
i

≤ 2

( r∑
i=1

gini

)2

= 2g2

The second inequality is an equality if and only if gi = 1 for all i. The first
inequality is an equality if and only if dim End◦(Ai) = 2gi = 2 for all i, i.e. Ai is
a CM elliptic curve. Finally, the last inequality is an equality if and only if r = 1.
That is, A = Ag1, where A1 is a CM elliptic curve. This proves the result for
k = C, and the general result follows from a Lefschetz principle argument.

Corollary 4.3.9. Let A be an abelian scheme over a mixed characteristic DVR
R such that Ak is isogenous to a power of a supersingular elliptic curve all of
whose endomorphisms are defined over k. Then the specialisation map

sp: End◦(AK)→ End◦(Ak)

is not surjective.

Proof. This follows from Remark 4.3.7 and Lemma 4.3.8, and the fact that the
specialisation map is Q-linear by Corollary 4.3.4.

4.4 Picard scheme of a product

In this section, we want to compute the Picard scheme of a product in terms
of the Picard schemes of each of the factors. We will work with the relative
Albanese Alb1

X/S . The map X → Alb1
X/S is initial among maps from X to

torsors under abelian schemes over S [FGA, TDTE VI, §3].

We will first treat the case of binary products in Lemma 4.4.5 and its corollaries.
For the general case, we will assume for simplicity that each of the factors has a
section. The main result is Theorem 4.4.10.

Setup 4.4.1. Let S be a scheme, and let fi : Xi → S (1 ≤ i ≤ r) be proper flat
morphisms of finite presentation, such that fi,∗OXi = OS holds universally.

We let f : X → S be the fibre product X1×S . . .×SXr. Then f∗OX = OS holds
universally. We will also assume that PicXi/S is representable and contains an
abelian scheme over S whose support is Pic0

Xi/S .
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Remark 4.4.2. Under these assumptions, Alb0
Xi/S exists as a scheme, and

Alb1
Xi/S as an algebraic space. If fi has a section, then Alb1

Xi/S = Alb0
Xi/S ,

so in particular it is a scheme.

Still under the same assumptions, existence of Alb1
Xi/S as a scheme is stated

without proof in [FGA, TDTE VI, Thm. 3.3(iii)]. However, not every torsor
under an abelian scheme is representable [Ray70, Ex. XIII.3.2]. It is not clear
if Alb1 is always representable by a scheme, but Raynaud’s example suggests
that this need not be true in general.

Example 4.4.3. If all fi are flat and locally projective with integral geometric
fibres, then PicXi/S is representable by a scheme [FGA, TDTE V, Thm. 3.1].
The assumption on Pic0 of Setup 4.4.1 is for example satisfied if Pic0

Xi/S is
smooth over S (e.g. if S has equicharacteristic 0), or when S is a field.

Remark 4.4.4. Under the assumptions of Setup 4.4.1, formation of PicXi/S ,
Pic0

Xi/S , Alb0
Xi/S , and Alb1

Xi/S commutes with arbitrary base change of S.
For Pic, this follows since sheafification on the big fppf site commutes with base
change. For Pic0, it follows from the definition [SGA6, Exp. XIII, 4.1]. Finally,
for Alb0 and Alb1 this is [FGA, TDTE VI, Thm. 3.3(iii)].

Lemma 4.4.5. Let fi : Xi → S and f : X → S be as in Setup 4.4.1, and assume
r = 2. Then there exists a canonical short exact sequence

0→ PicX1/S → PicX/S
ψ→MorS(X1,PicX2/S)→ 0

of sheaves on (Sch /S)fppf .

Proof. The Grothendieck spectral sequence for the composition of the pushfor-
wards along X → X1 → S gives the exact sequence of low degree terms

0 R1f1,∗(π1,∗O×X) R1f∗O×X f1,∗(R
1π1,∗O×X)

R2f1,∗(π1,∗O×X) R2f∗O×X .

ψ

(4.4.1)

Since f2,∗OX2 = OS holds universally, we have π1,∗O×X = O×X1
. Hence, the first

two terms are PicX1/S and PicX/S respectively. The third term has T -points
given by

f1,∗(R
1π1,∗O×X)(T ) = f1,∗(PicX/X1

)(T ) = PicX/X1
(X1 × T )

= PicX2/S(X1 × T ) = MorS(X1,PicX2/S)(T ).

Surjectivity of ψ may be checked fppf-locally, and formation of the Pic and Mor
schemes commutes with base change. Hence, we may assume f2 has a section,
so π1 : X → X1 has a section as well. Then the map R2f1,∗O×X1

→ R2f∗O×X has
a section, so it is injective. Surjectivity of ψ then follows from (4.4.1).

Lemma 4.4.6. Let S, Xi, fi, X, and f be as in Setup 4.4.1, and assume r = 2.
Then any section σ2 of f2 induces a splitting of the short exact sequence of
Lemma 4.4.5.
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Proof. The section induces a retraction (σ2)∗X1
: PicX/S → PicX1/S .

Lemma 4.4.7. Let S, Xi, fi, X, and f be as in Setup 4.4.1, and assume r = 2.
Then any section σ1 of f1 induces an isomorphism

MorS(X1,PicX2/S)
∼→ PicX2/S ×MorS

(
(X1, σ1), (Pic0

X2/S , 0)
)

α 7→ (α ◦ σ1, α− α ◦ σ1).

Proof. Note that α−α ◦ σ1 maps the point σ1(s) of the fibre (X1)s to Pic0
X2/S ,

hence the entire fibre lands in Pic0
X2/S since X1 the fibre (X1)s is geometrically

connected. The inverse is given by (α, β) 7→ α+β (compare Theorem 4.2.8).

Corollary 4.4.8. Let S, Xi, fi, X, and f be as in Setup 4.4.1, and assume
r = 2. If both fi have sections σi, then there is a noncanonical isomorphism

PicX/S
∼→ PicX1/S ×PicX2/S ×HomS(Alb1

X1/S ,Pic
0
X2/S).

Moreover, Alb1
X1/S is noncanonically isomorphic to the trivial torsor Alb0

X1/S.

Here, Hom means homomorphisms of torsors under abelian schemes or, in case
of abelian schemes, homomorphisms of abelian schemes.

Proof. By Lemma 4.4.6 and Lemma 4.4.7, the sections σ1 and σ2 induce an
isomorphism

PicX/S
∼→ PicX1/S ×PicX2/S ×MorS

(
(X1, σ1), (Pic0

X2/S , 0)
)
.

By the universal property of the Albanese, the last term is isomorphic to
HomS(Alb1

X1/S ,Pic
0
X2/S). This proves the required isomorphism, and the

final statement follows since X1 has a section, hence so does Alb1
X1/S since X1

maps to it.

Corollary 4.4.9. Let S, Xi, fi, X, and f be as in Setup 4.4.1, and assume
r = 2. Then Pic0

X/S = Pic0
X1/S ×Pic

0
X2/S, and the same holds for Alb0 and

Alb1.

Proof. Consider the pullback map ψ : Pic0
X1/S ×Pic

0
X2/S → Pic0

X/S . Since
both Xi are flat of finite presentation over S, they have a section fppf locally.
To show ψ is an isomorphism, it suffices to do so fppf-locally, so we may assume
Xi have a section. Then Corollary 4.4.8 gives an isomorphism

PicX/S
∼→ PicX1/S ×PicX2/S ×HomS(Alb0

X1/S ,Pic
0
X2/S).

But the Hom term is unramified over S by Lemma 4.2.5. Hence, the identity
component is just S, so ψ is an isomorphism. This proves the statement about
Pic0.

The statement about Alb0 follows since it is the dual of the (unique) abelian
subscheme of Pic whose support is Pic0. The statement about Alb1 follows by
checking that the map X1 ×X2 → Alb1

X1/S ×Alb1
X2/S satisfies the universal

property of Alb1
X/S .
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Theorem 4.4.10. Let fi : Xi → S and f : X → S be as in Setup 4.4.1. Assume
that each fi has a section σi. Then there is a noncanonical isomorphism

PicX/S ∼=
r∏
i=1

PicXi/S ×
∏
i<j

HomS(Alb0
Xi/S ,Pic

0
Xj/S).

Proof. We proceed by induction. The case r ≤ 1 is trivial, and the case r = 2
follows from Corollary 4.4.8. For the general case, note that Corollary 4.4.8
gives an isomorphism

PicX/S ∼= PicX1/S ×PicX′/S ×HomS(Alb0
X1/S ,Pic

0
X′/S),

where X ′ = X2 × . . .×Xr. Then the result for X follows inductively from that
for X ′, along with Corollary 4.4.9.

Remark 4.4.11. Note that the argument above does not use the theorem of
the cube to carry out the induction, but instead relies on the computation of
Pic0 of a product. One can use this to give an alternative (albeit somewhat
cumbersome) proof of the theorem of the cube.

Corollary 4.4.12. Let k be a field, and let X1, . . . , Xr be projective k-varieties
with Xi(k) 6= ∅, and let X be their product. Then there is a noncanonical
isomorphism

Pic(X) ∼=
r∏
i=1

Pic(Xi)×
∏
i<j

Homk(Alb0
Xi/k,Pic

0
Xj/k).

Proof. The Xi satisfy the assumptions of Setup 4.4.1; see also Example 4.4.3.
Moreover, Pic(Xi) equals PicXi/k(k) whenXi(k) 6= ∅ [FGA, TDTE V, Cor. 2.3].
The result now follows from Theorem 4.4.10, again using that the Xi have a
rational point.

Remark 4.4.13. It seems that in the absence of a section, the best one can
hope for is a short exact sequence

0→
r∏
i=1

PicXi/S → PicX/S →
∏
i<j

HomS(Alb1
Xi/S ,Pic

0
Xj/S)→ 0,

where the first map is given by multiplying the pullbacks. However, the author
does not know how to construct such a sequence, even in the case r = 2.

We also address the functoriality of the isomorphism of Theorem 4.4.10.

Lemma 4.4.14. Let fi : Xi → S and f : X → S be as in Setup 4.4.1, and let
f ′i : X ′i → S and f ′ : X ′ → S satisfy the same assumptions. Let gi : X ′i → Xi be a
morphism of S-schemes for each i, and let g : X ′ → X be the product morphism.
Assume that each fi (f ′i) has a section σi (σ′i), and that gi ◦ σ′i = σi. Under the
isomorphism of Theorem 4.4.10, the pullback PicX/S → PicX′/S is given by((

Li

)
i
,
(
φji
)
i<j

)
7→
((
g∗iLi

)
i
,
(
g∗jφjigi,∗

)
i<j

)
.
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Proof. The coordinates corresponding to PicX′i/S are given by pulling back
along σ′j for all j 6= i. Since gjσ′j = σj , these coordinates are given by g∗iLi

where Li is the pullback of L along σj for all j 6= i. The other coordinates are
given by a line bundle on Xi × Xj that is trivial along σi × Xj and Xi × σj .
This corresponds to a map Xi → Pic0

Xj/S , which factors through the Albanese.
Pulling back to X ′i ×X ′j then corresponds to the map

X ′i
gi−→ Xi

φji−→ Pic0
Xj/S

g∗j−→ Pic0
X′j/S

.

The universal property of the Albanese gives a commutative diagram

X ′i Alb0
X′i/S

Xi Alb0
Xi/S ,

gi gi,∗

where we write Alb0 instead of Alb1 because Xi and X ′i have a section.
Moreover, the horizontal arrows are chosen to map the sections σi and σ′i to 0.
Thus, the pullback of φji is g∗jφijgi,∗.

Finally, we prove compatibility of the isomorphism of Theorem 4.4.10 with the
specialisation maps of Definition 4.3.1.

Lemma 4.4.15. Let fi : Xi → S and f : X → S be as in Setup 4.4.1, where S
is the spectrum of a DVR R. Assume that each fi has a section σi. Then we
get a commutative diagram

Pic(XK)

r∏
i=1

Pic(Xi,K)×
∏
i<j

HomK(Alb0
Xi,K/K ,Pic

0
Xi,K/K)

Pic(Xk)

r∏
i=1

Pic(Xi,k)×
∏
i<j

Homk(Alb0
Xi,k/k

,Pic0
Xi,k/k

) ,

∼

sp sp

∼

where the specialisation maps are the ones from Definition 4.3.1 (applied com-
ponentwise on the right hand side).

Proof. The definition of the specialisation map uses the valuative criterion of
properness, which acts componentwise on a product. Moreover, we are using
the same section σi to define both horizontal isomorphisms of Theorem 4.4.10
and Corollary 4.4.12.
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5. Anabelian methods
Our main input is a theorem of Simpson, see Theorem 5.3.8. We think of this
as some sort of anabelian statement, and we use it to lift maps to curves. See
Theorem 5.4.4 for the precise statement.

5.1 Representation and character schemes

Let G be an algebraic group (i.e. a finite type group scheme) over a field k,
and let Γ be a (discrete) group. Under mild assumptions, there are k-schemes
R(Γ, G) and M(Γ, G) parametrising homomorphisms Γ → G and conjugacy
classes of homomorphisms Γ→ G respectively.

The case G = GLn and Γ = Z∗n corresponds to n-tuples of invertible matrices,
which was studied in this language in [Pro76]. The case Γ finitely generated
and G = GLn is studied in [LM85]. The case SL2 was studied in [BL83, §5]
and [CS83, §1], both under the assumption that Γ is finitely generated. Finally,
[Nak00] studied GLn over SpecZ, without assumptions on Γ.

One can easily formulate much more general settings, like replacing k with any
base S, and G with any group scheme over S. As far as the author is aware, a
systematic study in the most general setting is still lacking from the literature.
However, most applications are to representations (i.e. G = GLn) of fundamental
groups of smooth proper k-varieties, so it seems that there is no need for a more
general machinery (besides perhaps clarity and uniformity in exposition).

Remark 5.1.1. The terminology stems from [Sai96]. Since representation and
character varieties are in general neither reduced nor irreducible, we will say
representation/character scheme instead of variety.

Definition 5.1.2. Let G be an algebraic group over k, and let Γ be a group.
Then the representation functor R(Γ, G) is the functor

(Sch /k)op → Set

T 7→ Hom(Γ, G(T )).

In most reasonable cases, this is representable by a k-scheme R(Γ, G), called the
representation scheme of Γ with values in G.

Lemma 5.1.3. Let G be an algebraic group over k, and let Γ be a group. If Γ
is finitely generated or G is affine, then R(Γ, G) is representable by a k-scheme.

Proof. If Γ is presented as 〈{γi}i∈I
∣∣ {rj}j∈J〉, then R(Γ, G) is given by

R(Γ, G)(T ) =
{

(γi)i ∈ G(T )I
∣∣ rj((γi)i) = 1 for all j ∈ J

}
.

Since G→ Spec k is separated [SGA3I, Exp. VIA ,0.3], we conclude that R(Γ, G)
is a closed subfunctor of GI . Thus, the functor R(Γ, G) is representable whenever
the product GI exists. This is true when G is affine [Stacks, Tag 0CNI]1, or
when I is finite.

1This also follows from [EGA4III, §8.2], but it is never explicitly stated there.
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Remark 5.1.4. On the other hand, if G is an elliptic curve over a field k, then
the infinite product GI does not exist, even as an algebraic space. Indeed, the
argument of [Stacks, Tag 078E] for P1 can be generalised to any quasi-projective
k-variety that is not affine, by replacing the covering SL2 → P1 with Jouanolou’s
trick [Jou73, Lemme 1.5], and the sheaf O(−2, . . . ,−2) with some quasi-coherent
sheaf with nonzero higher cohomology, which exists by [EGA2, Thm. 5.2.1]

Thus, if Γ is a free group on infinitely many generators and G is an elliptic curve
over a field k, then R(Γ, G) is not representable by an algebraic space.

Definition 5.1.5. Let Γ be a group, and let G be an algebraic group over k.
Then define the conjugation action of G on the functor R(Γ, G) by

G(T )×R(Γ, G)(T )→ R(Γ, G)(T )

(g, ρ) 7→ (γ 7→ gρ(γ)g−1).

If R(Γ, G) is representable, this is an action of G on the scheme R(Γ, G). The
quotient stack [R(Γ, G)/G] is denoted M (Γ, R), and is called the character stack
of Γ with values in G.

Definition 5.1.6. Let Γ be a group, and let G be a reductive algebraic group
over k. In particular G is affine, hence so is R(Γ, G). Then the character scheme
M(Γ, G) is the GIT quotient R(Γ, G)//G.

The map R(Γ, G)→M(Γ, G) is a uniform categorical quotient, and if char k = 0
then it is in fact a universal categorical quotient [GIT, Thm. 1.1]. However, it
is not typically a geometric quotient:

Example 5.1.7. Let Γ = Z, and let G = GL2 over SpecC. Then R(Γ, G) is
just G, with the conjugation action. The matrices(

1 t
0 1

)
are all conjugate for t 6= 0, and their orbit closure contains the identity matrix.
Thus, we see that not all orbits are closed, so R(Γ, G) → M(Γ, G) is not a
geometric quotient.

However, this problem disappears if we only consider absolutely irreducible
representations.

Definition 5.1.8. Let ρ : Γ→ GLn(T ) be a representation. Then we say that
ρ is absolutely irreducible if t∗ρ is irreducible for every map t : Spec k → T .
Equivalently, for every point t ∈ T , denoting by t̄ an algebraic closure, the
representation t̄∗ρ is irreducible.

Lemma 5.1.9. Let ρ : Γ→ GLn(R) be a representation, where R is a ring. The
following are equivalent:

(1) ρ is absolutely irreducible;
(2) ρ(Γ) generates Mn(R) as R-algebra;
(3) ρ(Γ) spans Mn(R) as R-module.
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Proof. Implications (2) ⇔ (3) follow since ρ(Γ) is closed under multiplication.
Statements (1) and (3) can be checked after tensoring with κ(p) for all primes
p in R, and are insensitive to field extension, so we may assume R = k is an
algebraically closed field. Moreover, we clearly have (2) ⇒ (1), and the converse
follows from Burnside’s theorem [Bou12, Cor. 2 of Prop. 5.3.4]1.

Definition 5.1.10. We say that a representation ρ : Γ → SLn(T ) is absolutely
irreducible if the induced representation Γ→ GLn(T ) is absolutely irreducible.
We can use the criteria from Lemma 5.1.9 to check this. There are similar
notions for other standard groups, like Sp2n, etc.

Lemma 5.1.11. Let G = GLn or G = SLn over some field k. Then the
subfunctor R(Γ, G)irr of R(Γ, G) of absolutely irreducible representations is an
open subfunctor.

Proof. (Following [Nak00, §3].) We use criterion (3) in Lemma 5.1.9: given
an n2-tuple γ1, . . . , γn2 of elements of Γ, the elements ρ(γi) span Mn(R) as
R-module if and only if a certain n2 × n2 determinant does not vanish. This is
a standard open of R(Γ, G), and R(Γ, G)irr is the union of these standard opens
running over all n2-tuples in Γ.

Remark 5.1.12. Since the determinants used in the proof of Lemma 5.1.11
are equivariant under the conjugation action, they are G-equivariant elements
of Γ(R(Γ, G),O). Hence, in fact the open subfunctor R(Γ, G)irr is pulled back
from an open subscheme M(Γ, G)irr ⊆ M(Γ, G) (remember that the latter is
just the GIT quotient, cf. Definition 5.1.6). Moreover, R(Γ, G)irr →M(Γ, G)irr

is a uniform categorical quotient, since the same holds for R(Γ, G)→M(Γ, G).

Theorem 5.1.13 (Nakamoto). Let G = GLn or G = SLn over a field k. Then
the map R(Γ, G)irr →M(Γ, G)irr is a PGLn-torsor, hence a universal geometric
quotient. Moreover, the functions on M(Γ, G) are generated by the coefficients of
the characteristic polynomials of ρ(γ), where ρ : Γ→ G(R(Γ, G)) is the universal
representation.

Proof. For G = GLn, this is [Nak00, Cor. 6.8 and Rmk. 6.9]. For G = SLn, this
is [Nak00, Thm. 6.18]. We note that PSLn = PGLn on the level of schemes, i.e.
the sheaf quotient of SLn by µn is represented by PGLn.

Remark 5.1.14. In fact, the results from [Nak00] hold over SpecZ. Instead of
GIT, the quotient is constructed using characteristic polynomials, cf. the last
statement of Theorem 5.1.13.

One could be tempted to replace GIT by the good moduli spaces of [Alp13],
but we note that GLn and SLn are not linearly reductive over fields of positive
characteristic. In that light, the results of [Nak00] are all the more remarkable.

Definition 5.1.15. Let Γ be a group, let G be an algebraic group over k, and
let ρ : Γ→ G(`) be a representation, where k ⊆ ` is a field extension. Then ρ is
rigid if it corresponds to an isolated point in the character scheme M(Γ, G).

1The numbering in Bourbaki is not consistent with earlier editions.
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This terminology is inconsistent with the standard usage of the word rigid
in deformation theory, where it is usually an infinitesimal criterion. Rigid
representations need not be infinitesimally rigid.

Lemma 5.1.16. Let Γ be a finitely generated group, let G = GLn or G = SLn
over a field k, and let ρ0 : Γ→ G(`) be a representation, where k ⊆ ` is a field
extension. Then the following are equivalent:

(1) ρ0 is non-rigid;
(2) there exists an integral k-scheme T with an `-point t, a representation

ρ : Γ → G(T ) such that t∗ρ = ρ0, and an element γ ∈ Γ such that not
all coefficients of the characteristic polynomial Pρ(γ) ∈ Γ(T,OT )[X] are
integral over k.

The scheme T in (2) can be chosen to be of finite type over k.

Proof. By Theorem 5.1.13, the coefficients of the characteristic polynomials of
ρuniv(γ) for γ ∈ Γ give the coordinates of an affine embedding M(Γ, G) ⊆ AS
for some set S. Since Γ is finitely generated, M(Γ, G) is of finite type over k
[GIT, Thm. 1.1], so we may assume that S is finite. Note that ρ0 is rigid if and
only if its connected component in M(Γ, G) is Artinian, local, and finite over k.

Hence, if ρ0 is rigid and (T, t) is an integral k-scheme as in (2), then T maps
to a point in M(Γ, G). Hence, the scheme-theoretic image of T in M(Γ, G) is
finite over k, so the same goes for any coordinate projection M(Γ, G) → A1

corresponding to a coefficient of the characteristic polynomial Pρuniv(γ) for γ ∈ Γ.
This means that the corresponding coefficient of Pρ(γ) is integral over k, which
proves (2) ⇒ (1).

Conversely, if ρ0 is non-rigid, then let T be an irreducible component through ρ0.
Then T is positive dimensional, hence Γ(T,OT ) contains elements that are not
integral over k. Since it is generated by coefficients of characteristic polynomials
Pρ(γ) for γ ∈ Γ, we conclude that one such coefficient is not integral over k. This
proves (1)⇒ (2). The final statement follows sinceM(Γ, G) is of finite type.

Remark 5.1.17. The representation ρ of (2) has the property that the fibres
near ρ0 are not conjugate to ρ0. The converse is true if ρ0 is absolutely irreducible,
but not in general. This has to do with the fact that R(Γ, G)→M(Γ, G) is not
a geometric quotient, cf. Example 5.1.7. However, R(Γ, G)irr →M(Γ, G)irr is a
geometric quotient, by Theorem 5.1.13.

Remark 5.1.18. It seems plausible that there could exist non-finitely generated
groups Γ such that M(Γ, G) contains an isolated point ρ0 such that κ(ρ0) is not
algebraic over k. Then ρ0 is rigid when viewed in M(Γ, Gk), but not rigid in
M(Γ, Gκ(ρ0)), since (ρ0, ρ0) ∈ Specκ(ρ0)⊗k κ(ρ0) is not an isolated point. The
author does not know such an example.

On the other hand, if Γ is finitely generated, then the notion of rigidity for an
`-point does not depend on the choice of the base field k. Indeed, an isolated
point is then necessarily defined over a finite extension of k, and so remains
isolated after base change.
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5.2 Construction of local systems on curves

We construct auxiliary local systems that will be used in Theorem 5.4.4.

Remark 5.2.1. If C is a smooth proper curve of genus g over an algebraically
closed field k and ` is a prime invertible in k, then [SGA1, Exp. XIII, Cor. 2.12]
gives

πét,`
1 (C) ∼=

(
Z∗2g/〈

g∏
i=1

[ai, bi]〉

)∧`
.

Hence, if g ≥ 2, there exists a quotient πét,`
1 (C)� Z∗2` , where Z∗2` is the pro-`

completion of the free group Z∗2. For example, consider the map Z∗2g → Z∗2
mapping a1 and a2 to free generators, and all other ai and bi to 1. Note that
this maps

∏
[ai, bi] to 1 since all bi go to 1, so it induces a surjection

Z∗2g/〈
∏

[ai, bi]〉� Z∗2.

Taking the `-adic completion gives the required map.

Lemma 5.2.2. Let ` be a prime, and m,n ∈ Z>0. Then the subgroup

Um,n := 1 + (`m, tn)M2(Z`[[t]]) ⊆ GL2(Z`[[t]])

is a pro-` group, which is torsion-free if ` > 2 or m ≥ 2.

Proof. For the first statement, note that Um,n is the kernel of the reduction map

GL2(Z`[[t]])→ GL2(Z[t]/(`m, tn)).

Hence, Um,n is an open normal subgroup. The quotient U1,1/Um,n is identified
with the kernel of GL2(Z[t]/(`m, tn))→ GL2(Z/`), hence has `4(mn−1) elements.
The intersection of the Um,n is 1, so U1,1 is pro-`, hence so is each Um,n. For
the second statement, note that the exponential map gives a homeomorphism

exp: (`2, t)M2(Z`[[t]])
∼−→ 1 + (`2, t)M2(Z`[[t]]),

with the property that exp(x+ y) = exp(x) exp(y) whenever x and y commute.
In particular, its restriction to a cyclic subgroup is a group homomorphism, so
the right hand side is torsion-free since the left hand side is. If ` > 2, then we
may replace `2 by `.

Notation 5.2.3. Given a representation ρ : G → GLn(R), we will write ρ̄ for
the induced map G→ PGLn(R), and similarly for SLn and PSLn.

Proposition 5.2.4. Let ` be a prime. Then there exists a representation
ρ : Z∗2` → SL2(Q`) with image landing in SL2(Z`) such that for every finitely
generated subgroup G ⊆ Z∗2` whose closure is open, the representation ρ|G has
the following properties:

(1) ρ|G is Zariski dense;
(2) ρ|G is absolutely irreducible;
(3) the image of ρ̄|G : G→ PSL2(Q`) is torsion-free;
(4) ρ|G is not rigid.
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Proof. We will construct ρ as the mod t reduction of a representation

ψ : Z∗2` → SL2(Z`[[t]]).

Since the subgroup 1 + (`2, t)M2(Z`[[t]]) ⊆ GL2(Z`[[t]]) is pro-`, defining a
representation from Z∗2` into it is equivalent to defining a representation of Z∗2,
i.e. giving two elements corresponding to the free generators a and b of Z∗2.
Then let ψ : Z∗2` → SL2(Z`[[t]]) be given by

a 7→
(

1 + t `2

0 (1 + t)−1

)
, b 7→

(
1 + `2 0
`2 (1 + `2)−1

)
,

and let ρ be the mod t reduction.

Now let G ⊆ Z∗2` be a finitely generated subgroup whose closure is open. In
particular, Ḡ has finite index, so there exist m,n ∈ Z>0 with am, bn ∈ Ḡ. The
Zariski closure of ρ(G) contains the profinite closure of ρ(G), hence it contains

ρ(a)m =

(
1 `2

0 1

)m
, ρ(b)n =

(
1 + `2 0
`2 (1 + `2)−1

)n
.

One easily sees that these generate a Zariski dense subgroup, which proves (1).
Then (2) follows from Lemma 5.1.9. Statement (3) follows from Lemma 5.2.2
and the observation that the image of a torsion-free subgroup of SL2(Z`) in
PSL2(Z`) is torsion-free, since the kernel of SL2(Z`)→ PSL2(Z`) is torsion.

By construction, tr(ψ(am)) = (1 + t)m + (1 + t)−m, which is a non-constant
element of Z`[[t]]. Let c, d ∈ Z>0 be such that the image of tr(ψ(am)) in
Z`[[t]]/(`c, td) is non-constant. Since Ḡ contains am and ψ is continuous, there
exists g ∈ G such that

tr(ψ(g)) ≡ tr(ψ(am)) mod (`c, td).

Hence, tr(ψ(g)) is non-constant, hence not algebraic over Q`, so Lemma 5.1.16
proves that ρ|G is not rigid. The final statement follows by construction.

Corollary 5.2.5. Let C be a curve of genus g ≥ 2 over an algebraically closed
field k, and let ` be a prime invertible in k. Then there exists a representation
ρ : πét

1 (C)→ SL2(Q`) with image landing in SL2(Z`) such that for every finitely
generated subgroup G ⊆ πét

1 (C) whose closure is open, the representation ρ|G
has the following properties:

(1) ρ|G is Zariski dense;
(2) ρ|G is absolutely irreducible;
(3) the image of ρ̄|G : G→ PSL2(Q`) is torsion-free;
(4) ρ|G is not rigid.

Proof. By Remark 5.2.1, there exists a surjection πét
1 (C) � Z∗2` . Now let

ρ′ : Z∗2` → SL2(Q`) be the representation constructed in Proposition 5.2.4, and
let ρ be its pullback to πét

1 (C). For any finitely generated subgroup G ⊆ πét
1 (C)

whose closure is open, the same properties hold for its image in Z∗2` . Hence, the
result follows from Proposition 5.2.4.
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5.3 Local systems and maps to curves

The main input is Theorem 5.3.8, which is a mild generalisation of a theorem
by Simpson. We will use it in Section 5.4 to deduce a liftability statement for
maps to curves.

We start by recalling some results on pushforward maps of fundamental groups.

Lemma 5.3.1. Let f : X → Y be a dominant morphism that is locally of finite
type between connected schemes, and assume that Y is geometrically unibranch.
Let x̄ be a geometric point of X, and let ȳ = f(x̄). Then the pushforward
f∗ : πét

1 (X, x̄)→ πét
1 (Y, ȳ) is an open map.

Proof. Since Y is geometrically unibranch and connected, its reduction Y red is
integral, and if Ỹ denotes the normalisation of Y red then the map Ỹ → Y is
radicial. Hence it induces an isomorphism on fundamental groups, also after
base change. Thus, we may assume Y is normal and integral. Since X and Y are
connected, the fundamental groups do not depend on the basepoints x̄, ȳ. Thus,
we may assume that x̄ is a geometric generic point of an irreducible component
X1 ⊆ X dominating Y . We get the commutative diagram

Gal(K(X1)) Gal(K(Y ))

πét
1 (X, x̄) πét

1 (Y, ȳ) .

(5.3.1)

Since Y is normal, the right vertical arrow is surjective [SGA1, Exp. V, Prop. 8.2].
Note that the map πét

1 (X, x̄)→ πét
1 (Y, ȳ) is always closed since it is a continuous

map of profinite groups. To show that such a map is open, it suffices to prove
that the image has finite index. In diagram (5.3.1), this property for the bottom
map is implied by the same property for the top map.

Now K(Y ) ⊆ K(X1) is a finitely generated field extension. Treating the finite
separable, finite purely inseparable, and finitely generated purely transcendental
cases separately, we get an open embedding, an isomorphism, and a surjection
on Galois groups respectively.

See also [Kol03, Lemma 10] for the case of varieties over an algebraically closed
field, but our proof is easier and more general.

Remark 5.3.2. The statement is not true even for varieties over an algebraically
closed field if we do not make some sort assumption on Y . Indeed, consider a
nodal cubic curve C with its normalisation f : C̃ → C. Then f is dominant and
finite, but πét

1 (C̃) = 0 and πét
1 (C) ∼= Ẑ. Thus, f∗ is not an open map.

Remark 5.3.3. If f is proper with geometrically connected fibres, then f∗ is
actually surjective [SGA1, Exp. IX, Cor. 5.6].

Definition 5.3.4. Let k be a field, and X a finite type Deligne–Mumford stack
over k. Then X is an orbifold stack if X is smooth over k and the stabiliser at
the generic point of every component of X is trivial. If moreover dimX = 1,
then X is an orbicurve.
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See [BN06] for a more detailed discussion of DM curves and orbicurves, including
a classification of the latter.

Remark 5.3.5. If Y is an orbicurve over C, then it only has finitely many points
y1, . . . , yn with nontrivial stabilisers. Then Y \ {y1, . . . , yn} is a curve over C,
and πtop(Y) is the quotient of πtop

1 (Y \ {y1, . . . , yn}) by γnii , where γi is a loop
around yi, and ni is the orbifold degree at yi.

Remark 5.3.6. The statement of Lemma 5.3.1 is true for a dominant morphism
f : X → Y, where Y is an orbifold stack. Indeed, in this case Y has an open
substack that is representable by a scheme U . The map πét

1 (U) → πét
1 (Y) is

surjective since Y is normal, so the result for Y easily follows from that for U ,
by the same argument as the proof of Lemma 5.3.1.

Corollary 5.3.7. Let k be a field, let X be a smooth k-variety, and let Y be
a smooth proper orbicurve with infinite étale fundamental group. Then every
rational map X 99K Y extends to a morphism X → Y.

Proof. There does not exist a nonconstant map P1 → Y: by Remark 5.3.6 the
map πét

1 (P1) → πét
1 (Y) is open, which is impossible if πét

1 (Y) is infinite. Thus,
the second proof of Corollary 4.1.4 carries through in this setting as well.

Theorem 5.3.8 (Simpson). Let X be a smooth proper variety over C. Let
ρ : πtop

1 (X) → SL2(C) be a representation with Zariski-dense image. Then at
least one of the following holds:

(1) ρ is rigid and is a subquotient of a variation of Hodge structure;
(2) there exists a map f : X → Y where Y is an orbicurve, and a representation

τ : πtop
1 (Y)→ PSL2(C) such that ρ̄ = τ ◦ f∗.

In case (2), if the image of ρ̄ in PSL2(C) is torsion-free, then we may take Y to
be an actual curve Y .

Remark 5.3.9. Since there exist rigid rank 2 local systems on curves, the two
statements of Theorem 5.3.8 are not mutually exclusive.

Proof of Theorem. The first statement is [Sim91, Thm. 10] if X is smooth and
projective; see also [CS08] for an alternative proof, a quasi-projective version,
and a much more detailed discussion.

Now let X be smooth and proper, and let ρ : πtop
1 (X)→ SL2(C) be a non-rigid

representation with Zariski dense image. By Chow’s lemma [EGA2, Thm. 5.6.1]
and resolution of singularities [Hir64], there exists a smooth projective variety
X̃ with a birational morphism π : X̃ → X.

Then π induces an isomorphism on fundamental groups; for étale fundamental
groups this is [SGA1, Exp. X, Cor. 3.4], and for topological fundamental groups
this is classical. From the projective case treated above, we get a morphism
f̃ : X̃ → Y where Y is an orbicurve and a representation τ : πtop

1 (Y)→ PSL2(C)
such that

ρ̄ ◦ π∗ = τ ◦ f̃∗.
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But since the image of ρ is Zariski dense, the fundamental group of Y is infinite.
Thus, by Corollary 5.3.7, the map f̃ : X̃ → Y factors through a map f : X → Y.
This proves the first statement in the smooth proper case.

The last statement follows from the description of πtop
1 (Y) of Remark 5.3.5: if

Y → Y is the coarse space, then the kernel of the natural map πtop
1 (Y)→ πtop

1 (Y )
is generated by torsion elements γi. Thus, if the image of τ in PSL2(C) is torsion-
free, then τ factors through πtop

1 (Y ).

Remark 5.3.10. Let ρ : πtop
1 (X) → SL2(C) be a Zariski-dense representation

that is not rigid, such that the image in PSL2(C) is torsion-free. Then the
theorem gives a map X → Y to a curve such that ρ̄ factors through πtop

1 (Y ).
However, this Y is not unique, and we will measure the failure of uniqueness.

Corollary 5.3.11. Let X be a normal proper variety over an algebraically closed
field k. Let ρ : πét

1 (X)→ G be a homomorphism with infinite image. If ρ factors
through two maps f : X → C, f ′ : X → C ′ where C and C ′ are smooth curves,
then it factors through a smooth curve C ′′ dominating both C and C ′.

Proof. By assumption, there exist morphisms f : X → C and f ′ : X → C ′ and
maps τ : πét

1 (C)→ G and τ ′ : πét
1 (C ′)→ G such that ρ = τ ◦ f∗ = τ ′ ◦ f ′∗. Note

f and f ′ are nonconstant since ρ is nontrivial, hence C and C ′ are proper since
X is.

Now suppose that the induced map X → C × C ′ is dominant. Then by
Lemma 5.3.1, the map πét

1 (X) → πét
1 (C × C ′) has open image. We have an

isomorphism πét
1 (C × C ′) = πét

1 (C) × πét
1 (C ′) since C and C ′ are smooth and

proper [SGA1, Exp. X, Cor. 1.7]. But the image of πét
1 (X)→ πét

1 (C)× πét
1 (C ′)

is contained in the subgroup

H =

{
(α, β) ∈ πét

1 (C)× πét
1 (C ′)

∣∣∣∣ τ(α) = τ ′(β)

}
.

Since the image of ρ is infinite, this subgroup H has infinite index, contradicting
the fact that πét

1 (X) → πét
1 (C) × πét

1 (C ′) has open image. Thus, we conclude
that X → C × C ′ is not dominant, hence its image is contained in a (possibly
singular) curve D. Take C ′′ to be the normalisation of D, and note that ρ factors
through C ′′ since it factors through C and X is normal.

Corollary 5.3.12. With the assumptions of Corollary 5.3.11, if f ′∗OX = OC′ ,
then f factors through f ′:

X
f ′→ C ′ → C.

Proof. The assumption on f ′ forces the map C ′′ → C ′ of the conclusion of
Corollary 5.3.11 to be an isomorphism.

5.4 Lifting maps to curves

We will use the results from the previous sections to prove a liftability statement
about maps to curves.
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Setup 5.4.1. Let R be a DVR whose residue field k is algebraically closed (of
arbitrary characteristic), such that the algebraic closure of the fraction field
K = FracR is isomorphic to C. Equivalently, K is a field of characteristic 0 of
cardinality the continuum.

Remark 5.4.2. Alternatively, one can demand that R is a ring of characteristic
0 of cardinality the continuum, since the cardinality of a domain equals that of
its fraction field (remarkably, this is true for both finite and infinite domains, for
different reasons). The field k is necessarily of cardinality at most the continuum.

Example 5.4.3. Let R be a complete DVR of mixed characteristic whose residue
field k is countable and algebraically closed. Then R is a finite extension of
W (k). The latter has cardinality the continuum since W (k) ∼= kN as sets. Hence
R has the same cardinality since it is a finite extension.

From Simpson’s theorem (Theorem 5.3.8), we deduce the following theorem.

Theorem 5.4.4. Let R, k, and K be as in Setup 5.4.1, and let X → SpecR
be a smooth proper morphism. Let C be a smooth proper curve over k of genus
g ≥ 2 and ψ : X0 → C a morphism of k-varieties such that ψ∗OX0

= OC . Then
there exists a generically finite extension R → R′ of DVRs, a smooth proper
curve Y over R′, a morphism φ : X ×R R′ → Y, and a commutative diagram

X0

C Y0 ,

ψ φ0

χ

where χ is purely inseparable. In particular, χ is a power of the relative Frobenius
if char k = p > 0, and χ is an isomorphism if char k = 0.

Remark 5.4.5. Thus, given a lift of X0 over R, any map ψ : X0 → C for
g(C) ≥ 2 with φ∗OX0

= OC can be lifted along with X0, up to an extension of
R and a purely inseparable morphism.

Remark 5.4.6. The theorem does not require k to have characteristic p > 0.
In equicharactersitic 0, the theorem is a deformation result for maps to smooth
proper hyperbolic curves. In Section 5.5, we give a deformation-theoretic proof
in equicharacteristic 0.

Proof of theorem. Let ` be a prime invertible in k, and let ρ : πét
1 (C)→ SL2(Q`)

be the representation constructed in Corollary 5.2.5. Note that its image lands
in SL2(Z`). The map ψ∗ : πét

1 (X0)→ πét
1 (C) is surjective by Remark 5.3.3, and

the specialisation map πét
1 (XK̄)→ πét

1 (X0) is surjective [SGA1, Exp. X, Cor. 2.4].
Thus, the composite map πét

1 (XK̄)→ πét
1 (C) is surjective. By abuse of notation,

we will denote the pullback of ρ to πét
1 (X0) or πét

1 (XK̄) by ρ as well, and we will
write ρ̄ for the respective representations to PSL2 instead of SL2.

We have K̄ ∼= C, so we get a C-variety XK̄ . Then πét
1 (XK̄) is the profinite

completion of πtop
1 (XK̄) [SGA1, Exp. XII, Cor. 5.2]. If G denotes the image of

πtop
1 (XK̄) in πét

1 (C), then G is a finitely generated dense subgroup of πét
1 (C).

By Corollary 5.2.5, the pullback of ρ to πtop
1 (XK̄) is a Zariski-dense, absolutely

irreducible, non-rigid representation whose image in PSL2(Q`) is torsion-free.
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Choosing an injection Q` ↪→ C, we get a representation ρ : πtop
1 (XK̄)→ SL2(C).

Then Simpson’s Theorem 5.3.8 implies that there exists a smooth proper curve
Ȳ over C, a map φ : XK̄ → Ȳ , and a representation τ : πtop

1 (Ȳ )→ PSL2(C) such
that ρ̄ = τ ◦ φ∗. Replacing Ȳ by Specφ∗OXK̄ if necessary, we may assume
that φ satisfies φ∗OXK̄ = OȲ . Then φ has connected geometric fibres, so
the pushforward φ∗ : πtop

1 (XK̄) → πtop
1 (Ȳ ) is surjective. Hence, τ lands in the

profinite group PSL2(Z`) ⊆ PSL2(C), so τ extends uniquely to a representation
of the étale fundamental group, which by abuse of notation we denote by

τ : πét
1 (Ȳ )→ PSL2(Z`).

Now Ȳ is defined over some finite extension K ′ of K, i.e. there exists a smooth
proper curve Y over K ′ such that Y ×K′ K̄ ′ ∼= Ȳ . Extending K ′ further, we may
also assume that Y has a rational point, and the map φ : XK̄ → Ȳ is defined
over K ′. We then have a Gal(K̄ ′/K ′)-equivariant surjection

φ∗ : πét,`
1 (XK̄)� πét,`

1 (YK̄′). (5.4.1)

As XK has good reduction X , the Gal(K̄/K)-action on πét,`
1 (XK̄) is unramified.

Let R′ be the localisation of the integral closure of R in K ′ at any prime above
mR. Then the Gal(K̄ ′/K)-action on πét,`

1 (XK̄) is unramified, so the same holds
for the Gal(K̄ ′/K ′)-action on πét,`

1 (YK̄′) by the surjection (5.4.1). By a theorem
of Takayuki Oda [Oda95, Thm. 3.2]1 (“Néron–Ogg–Shafarevich for curves”), this
implies that Y has good reduction. Thus, there exists a smooth proper curve
Y → SpecR′ with generic fibre Y .

We note that the genus of Y is at least 1, for otherwise τ would be trivial,
contradicting the irreducibility of ρ. By Corollary 4.1.4 (here we use that Y has
a rational point), the morphism φ : XK′ → Y extends (uniquely) to a morphism

φ : XR′ → Y.

The specialisation map on étale fundamental groups induces an isomorphism
[SGA1, Exp. X, Cor. 3.9]

sp: πét,`
1 (Ȳ )

∼−→ πét,`
1 (Y0).

This gives a representation τ : πét
1 (Y0) → PSL2(Q`) such that τ ◦ φ0,∗ = ρ on

πét
1 (X0). Moreover, the image is Zariski dense, so in particular infinite. Since
ψ∗OX0 = OC , Corollary 5.3.12 implies that φ0 factors through ψ:

X0

C Y0 .

ψ φ0

χ

Thus, X0 → C → Y0 is the Stein factorisation of φ0. On the other hand, by
Corollary 2.1.7 we have φ∗OXR′ = OY , since this holds in the generic fibre and
Y is normal (in fact, regular). Thus, Corollary 2.2.4 implies that χ is purely
inseparable, hence a power of Frobenius.

1Oda’s paper only states the result over a number field, but the methods work over any
DVR. See e.g. [Tam97, Thm. 0.8] for a proof over an arbitrary DVR.
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For our main application to liftability, we want to have a version that does not
require ψ∗OX0

= OC . It is easy to deduce this from the theorem above:

Corollary 5.4.7. Let R, k, and K be as in Setup 5.4.1, and let X → SpecR
be a smooth proper morphism. Let C be a smooth proper curve over k of genus
g ≥ 2, and let ψ : X0 → C be any morphism of k-varieties. Then there exists a
generically finite extension R→ R′ of DVRs, a smooth proper curve Y over R′,
a morphism φ : X ×R R′ → Y, and a commutative diagram

X0

C ′

C Y0 ,

ψ φ0

χ

where χ is purely inseparable. In particular, χ is a power of the relative Frobenius
if char k = p > 0, and χ is an isomorphism if char k = 0.

Proof. If ψ is constant, there is nothing to prove, so we may assume it is
dominant. Let ψ′ : X0 → C ′ be the Stein factorisation of ψ. Note that g(C ′) ≥ 2,
for example because the pushforward JacC′ → JacC is surjective and g(C) ≥ 2.
The result now follows from Theorem 5.4.4, applied to ψ′ : X0 → C ′.

Remark 5.4.8. Instead of deducing Corollary 5.4.7 from Theorem 5.4.4, we
could also prove it directly using the same strategy. This only requires the
following modifications:

In the first paragraph of the proof, the map ψ∗ : πét
1 (X0)→ πét

1 (C) is now only
open by Lemma 5.3.1. Then Corollary 5.2.5 still shows that the local system on
G we get is non-rigid. In the final part of the proof, use Corollary 5.3.11 instead
of Corollary 5.3.12.

Remark 5.4.9. In Theorem 5.5.1 below, we give a deformation-theoretic proof
of Theorem 5.4.4 in equicharacteristic 0, relying on a vanishing theorem of Kollár
[Kol86, Thm. 2.1]. This shows that in equicharacteristic 0, we do not need the
generically finite extension R→ R′.

Remark 5.4.10. In mixed characteristic, the situation is a bit more mysterious.
Indeed, Theorem 5.4.4 shows that ψ can be lifted after postcomposition with a
power of Frobenius. However, this power of Frobenius is unique.

Indeed, assume φ : X → Y is a lift of Frobn ◦ψ and φ′ : X → Y ′ is a lift of
Frobn+r ◦ψ with r > 0 (without loss of generality, X , Y, and Y ′ are all defined
over the same DVR R). We will also assume that φ∗OX = OY , as was the case
for the curve Y constructed in Theorem 5.4.4. We get a commutative diagram

X Y Y ′

X0 Y0 Y ′0 .

φ

φ′

Frobr
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Let ρ : πét
1 (Y ′0)→ SL2(Q`) be the representation constructed in Corollary 5.2.5.

Pulling back to Y ′
K̄

and YK̄ gives representations whose pullbacks to XK̄ agree.
Hence, Corollary 5.3.12 implies that φ′

K̄
factors through φK̄ , i.e. we get a map

F : YK̄ → Y ′K̄ such that F ◦ φK̄ = φ′
K̄
. Extending R if necessary, this comes

from a map F : YK → Y ′K .

By Corollary 4.1.4, this extends to a map F : Y → Y ′ with F ◦ φ = φ′. Hence
F0 ◦ φ0 = Frobr ◦φ0, so F0 = Frobr because φ0 is an epimorphism (this is easy
to check by hand, but it also follows from [Stacks, Tag 023Q]). Thus, we have
filled in the diagram:

X Y Y ′

X0 Y0 Y ′0 .

φ F

Frobr

For all s ∈ SpecR, the morphism Fs : Ys → Y ′s is flat (since it is a dominant
morphism of curves). Since Y → SpecR is flat, the fibrewise criterion of flatness
[EGA4III, Thm. 11.3.10] shows that F is flat; in particular degF = deg(Frobr).
But by Riemann–Hurwitz there are no degree pr maps (for r > 0) between two
smooth proper hyperbolic curves of the same genus in characteristic 0.

Remark 5.4.11. Thus, we cannot simply replace Kollár’s vanishing theorems
by “Frobenius-vanishing theorems” (cf. [Ara04]). It would be interesting to see
whether Theorem 5.4.4 is true without any Frobenii. This is related to the
example constructed in Example 2.3.3, but there Y = A1

R. Perhaps one can
make a similar example where Y is a smooth proper hyperbolic curve.

5.5 Deformation theory of morphisms to curves

We will use a vanishing theorem of Kollár [Kol86, Thm. 2.1] to give a deformation-
theoretic proof of Theorem 5.4.4 in characteristic 0.

Theorem 5.5.1. Let k be a field of characteristic 0, let X and C be smooth
proper varieties over k such that C is a curve of genus g ≥ 2, and let ψ : X → C
be a morphism such that ψ∗OX = OC . Then the natural map

Defψ → DefC

is an isomorphism.

Remark 5.5.2. Observe that the statement is stronger than Theorem 5.4.4; for
example, we no longer need a generically finite extension of DVRs R→ R′. We
will see in Example 5.5.4 that our proof of Theorem 5.5.1 breaks down in positive
characteristic. The author does not know if the stronger deformation-theoretic
statement is still true in mixed characteristic.

Proposition 5.5.3. Let X and Y be finite type k-schemes, and let ψ : X → Y
be a morphism such that ψ∗OX = OY and HomY (ΩY , R

1ψ∗OX) = 0. Then the
natural map

Defψ → DefX

is an isomorphism.
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Proof. See e.g. [Vak06, Thm. 5.1 (arXiv version)] or [BHPS13, Prop. 3.10].

Proof of Theorem 5.5.1. By Proposition 5.5.3, it suffices to show that

HomC(ΩC , R
1ψ∗OX) = 0.

If n = dimX, then [Kol86, Cor. 7.8] shows that R1ψ∗OX ∼= ωC⊗ (Rn−2ψ∗ωX)∨,
hence

HomC(ωC , R
1ψ∗OX) = H0(C, (Rn−2ψ∗ωX)∨)

∼= H1(C,ωC ⊗Rn−2ψ∗ωX)∨.

If char k = 0, this vanishes by [Kol86, Thm. 2.1(iii)], since ωC is ample.

We finish our discussion by exhibiting an example in positive characteristic where
the obstruction space

HomC(ΩC , R
1ψ∗OX)

of Proposition 5.5.3 does not vanish. This also gives a particular example where
Kollár’s vanishing result does not hold in positive characteristic.

Example 5.5.4. Let k be an algebraically closed field of characteristic p > 2.
Let f : D → S = P1 be the non-isotrivial family of supersingular compact type
genus 2 curves as constructed in [Mor81], with Jacobian1 g : A → S. Then
[Mor81, II, Prop. 3.1] shows that

Lie(A/S) = OS(1)⊕OS(−p).

Note that the geometric fibres of f are reduced and connected (because they
are semistable curves), so f∗OD = OS holds universally (Lemma 2.1.2). Let
h : C → S = P1 be a morphism from a smooth curve C of genus g ≥ 2 that
is ramified only in points s ∈ S such that Ds is smooth, and assume that
d := deg(h) > 4g − 4. Consider the base change X = D ×S C, with the map

ψ : X → C.

Note that X is smooth. Indeed, D is smooth [Mor81, II, Prop. 2.5(iii)], and by
construction every point of X is either étale over D or in the smooth locus of
ψ : X → C. The Jacobian of X → C is the base change B = A×S C, hence

Lie(B/C) = h∗
(
OS(1)⊕OS(−p)

)
.

Since Pic0
X/C = B̂, we conclude that

R1ψ∗OX = Lie(B̂/C) = Lie(B/C) = h∗ (OS(1)⊕OS(−p)) .

But since d = deg(h) > 4g − 4, we have deg h∗(OS(1)) = d > 4g − 4, hence

deg H omC(ωC , h
∗(OS(1))) > 2g − 2.

We conclude that HomC(ωC , R
1ψ∗OX) 6= 0, showing that the obstruction space

of Proposition 5.5.3 does not always vanish in positive characteristic.

1Moret-Bailly constructs D as a family of divisors in A, whence the notation.
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6. Lifting varieties

6.1 The general lifting problem

We use a very general definition of a lift of a proper scheme X over a field k of
characteristic p. At the expense of enlarging the field k, it can be reduced to
the case of a mixed characteristic DVR; see Lemma 6.1.3.

Definition 6.1.1. Let k be a field of characteristic p > 0, and let X be a proper
k-scheme. Then a lift of X to characteristic 0 consists of the following data:

• An irreducible pointed scheme (S, η) such that κ(η) has characteristic 0,
• A field Ω with an embedding k ↪→ Ω and a morphism Spec Ω→ S,
• A flat proper morphism X → S,
• An isomorphism φ : X ×S Spec Ω

∼−→ X ×Spec k Spec Ω.

By abuse of notation, we sometimes refer to X → S or even Xη → Specκ(η) as
the lift of X.

The situation is summarised by the diagram

X ×k Ω X ×S Spec Ω X Xη

Spec Ω S Specκ(η) ,

∼
φ

where the two squares are pullbacks.

Remark 6.1.2. In Definition 6.1.1, if char k = charκ(η) (either both 0 or both
p > 0), then X is a deformation of X instead of a lift.

Lemma 6.1.3. Let X be a proper k-scheme with char k = p > 0. If there exists
a lift of X, then there also exists a lift where S = SpecR, with R a DVR that is
essentially of finite type over SpecZ, and η is the generic point.

Proof. If S has a point η of characteristic 0, then its generic point also has
characteristic 0. Thus, we may assume η is the generic point. Let s be the
image of Spec Ω→ S. Replacing S by the reduction of an open neighbourhood
of s, we may assume that S is affine and integral. By a standard limit argument
[EGA4III, Prop. 8.9.1], we may assume that S is a domain of finite type over Z.

Blowing up in the closure of {s} gives a map (S′, s′)→ (S, s) of pointed varieties,
where S′ is the blowup and s′ the generic point of the exceptional divisor.
Replacing Ω by a larger field if necessary, we can extend κ(s)→ Ω to κ(s′)→ Ω.
Thus, we may replace (S, s) by (S′, s′), so we may assume that s is a codimension
1 point (but S is no longer affine). Base change the family to the local ring OS,s,
and normalise to get a DVR (again, this possibly requires enlarging Ω).

Remark 6.1.4. Thus, in Definition 6.1.1, we may assume S = SpecR, where
R is a DVR. The fraction field K = FracR has characteristic 0, and both k and
the residue field of R embed into Ω. We will write 0 (or s) and η for the special
and generic point of SpecR respectively.
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6.2 Lifting divisors and line bundles

We use a decidedly scheme-theoretic construction of various specialisation maps,
using Definition 4.3.1 and Lemma 4.3.2. For a more intersection theoretic
approach, see [SGA6, Exp. X, §7] or [Ful98, §20.3]. We work over a DVR R.

Remark 6.2.1. For a proper scheme X over R, the formalism of Definition 4.3.1
gives a specialisation map sp: HilbX/R(K) → HilbX/R(k). Explicitly, this
takes a subscheme Z ⊆ XK and maps it to the special fibre of its (scheme-
theoretic) closure Z̄ ⊆ X .

Similarly, we obtain a specialisation map for DivX/R, and one for PicX/R if the
latter is proper, e.g. when X → SpecR is smooth and proper with geometrically
connected fibres [FGA, TDTE VI, Thm. 2.1].

These specialisation maps satisfy the expected compatibilities when going from
divisors to line bundles. In Section 4.3 we studied specialisation of morphisms
of abelian schemes, and by Lemma 4.4.15 the (noncanonical) isomorphism in
Theorem 4.4.10 commutes with these specialisation maps.

Remark 6.2.2. However, we have PicX/R(K) = Pic(XK̄)Gal(K̄/K), which need
not equal Pic(XK) (and similarly for Pic(X0)). A different method is needed to
construct a specialisation map on Picard groups (as opposed to Picard schemes).
We will give a definition under the additional hypothesis that X is smooth (and
proper) over R; see [SGA6, Exp. X, §7] or for the general case.

Now all schemes in sight are regular, so we may replace the Picard group by the
class group. Then [Har77, Prop. II.6.5] gives an exact sequence

Zπ0(X0) → Cl(X )→ Cl(XK)→ 0.

But in fact the first map vanishes, since all connected components of X0 are
principal divisors in X . Then define the specialisation map as the composition

Cl(XK)
∼← Cl(X )→ Cl(X0).

The careful reader should check that this definition satisfies the required com-
patibilities with the specialisation maps already defined.

Definition 6.2.3. Let X be a proper scheme over R. Then we say that a
subvariety (resp. divisor, or line bundle if X → SpecR is also smooth) of X0

lifts to X if it is in the image of the specialisation map.

In particular, we deduce the following result.

Lemma 6.2.4. Let X be a smooth proper scheme over a DVR R. Let D ⊆ X0

be an effective divisor. Consider the following statements.

(1) D lifts as a subvariety;
(2) D lifts as a divisor.
(3) OX0

(D) lifts as a line bundle.

Then (1) and (2) are equivalent, and they imply (3).
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Proof. For (1)⇔ (2), note that any lift ofD as a subvariety has pure codimension
1, by the flatness assumption. Since everything is smooth, we do not have to
worry about Weil divisors versus Cartier divisors. The commutative diagram

Div(XK) Cl(XK)

Div(X0) Cl(X0)

sp sp

immediately shows (2) ⇒ (3).

Remark 6.2.5. The implication (3) ⇒ (2) is false in general. We give two
examples in equicharacteristic 0 or p (so lift should be replaced by deformation).

Example 6.2.6. Let Fn = P(OP1 ⊕ OP1(n)) be the nth Hirzebruch surface.
There exists a family X → Spec k[t] with X0

∼= F2 and Xt ∼= F0 for all t 6= 0.
For example, we can use the nonzero element α ∈ Ext1

P1
k
(O(1),O(−1)) coming

from the Koszul complex

0→ O(−1)→ O⊕O → O(1)→ 0

of the generators x, y ∈ O(1) to obtain an element

tα ∈ Ext1
P1
k
(O(1),O(−1))[t] = Ext1

P1
k[t]

(O(1),O(−1)).

This gives a rank 2 vector bundle E on P1
k[t] whose fibre above 0 is O(−1)⊕O(1),

and all other fibres are O ⊕ O. Taking X = P(E ) → P1
k[t] → Spec k[t] gives a

family whose special fibre is F2 and all other fibres are F0.

The specialisation map sp: Pic(Xη)→ Pic(X0) is an isomorphism, for example
because the generators of each fibre [Beau96, Prop. IV.1] can be defined in
families. But F2 has a (−2)-curve [loc. cit.], whereas F0 = P1 × P1 does not.
This curve can therefore not be deformed as a divisor, but its associated line
bundle can be deformed.

Example 6.2.7. Similarly, there exists a family X → Spec k[t](t) whose generic
fibre is the blowup of P2 at three points in general position, and the special fibre
is the blowup of P2 at three points on a line.

For example, consider the open U ⊆ (P1)[3] ∼= P3 where the points are pairwise
distinct. It has a strict closed subset Z where the three points are collinear,
and we can choose a (germ of a) line hitting Z transversely. This gives a map
Spec k[t](t) → U . Then blow up U at the universal points and pull back to
Spec k[t](t).

The strict transform of the line through the three points is a (−2)-curve in the
special fibre, and again the generic fibre has no (−2)-curves. But one can again
see easily that the specialisation map sp: Pic(Xη)→ Pic(X0) is an isomorphism.
Thus we get a curve that cannot be deformed as a divisor, but its associated
line bundle can be deformed.
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6.3 Lifting surfaces of small Kodaira dimension

We use the (Enriques–)Bombieri–Mumford classification of surfaces in positive
characteristic [Mum69b; BM77; BM76], as well as well-known liftability results
by Deligne [Del81], Mumford [Mum69a], Norman and Oort [NO80], and Seiler
[Sei88], to show the following result.

Theorem 6.3.1. Let k be an algebraically closed field of characteristic p ≥ 5,
and let X be a smooth proper surface of Kodaira dimension κ(X) ≤ 1. Then
there exists a surjection Z → X from a smooth projective surface Z that can be
lifted to a finite extension of W (k).

Before giving the proof, we recall the following corollary of the Bombieri–
Mumford classification in positive characteristic:

Theorem 6.3.2 (Bombieri–Mumford). Let k be a field, and let X be a minimal
surface over k. Then

(1) κ(X) = −∞ if and only if X is ruled;
(2) if κ(X) = 0, then one of the following holds:

(i) X is a K3 surface;
(ii) X is an abelian surface;
(iii) X is elliptic, or possibly quasi-elliptic if char k ∈ {2, 3};

(3) if κ(X) = 1, then X is elliptic, or possibly quasi-elliptic if char k = 2.

Proof. Parts (1) and (3) follow from the main result of [Mum69b], which also
implies that 12KX ≡ 0 in case (2). Then the discussion before Thm. 5 in
[BM77] gives a table of five possibilities for the numerical invariants. One of
them cannot be realised [Thm. 5], and the the others correspond to K3 surfaces
[Thm. 5], abelian surfaces [Thm. 6], bielliptic surfaces (or possibly quasi-bielliptic
if char k ∈ {2, 3}) [Prop.], and Enriques surfaces [BM76]. Finally, it is proven in
[BM76, Thm. 3] that every Enriques surface is elliptic, or possibly quasi-elliptic
if char k = 2.

Proof of Theorem 6.3.1. Let X → Y be a minimal model. By Theorem 6.3.2,
since char k ≥ 5, we are in one of the following three cases:

(1) Y is ruled;
(2) Y is a K3 surface or abelian surface;
(3) Y is an elliptic surface.

In case (1), either Y ∼= P2 (hence Y lifts to W (k)), or Y is given by a pair
(C,E ) of a smooth projective curve C and a rank 2 vector bundle E on C.
Then C lifts to a curve C over W (k), because curves are unobstructed and
algebraisable. Moreover, E is unobstructed as Ext2

C(E ,E ) = 0, and every formal
lift is algebraisable by the Grothendieck existence theorem [EGA3I, Cor. 5.1.6].
This gives a lift of Y over W (k).

In case (2), Y lifts to a finite extension of W (k) by [Del81, Cor. 1.8] if Y is a
K3 surface, and by [Mum69a] and [NO80, Cor. 3.2] if Y is an abelian surface.
Thus, in cases (1) and (2), we can lift Y over a finite extension R of W (k).
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Writing X → Y as a chain X = X0 → X1 → . . . → Xr = Y of blowups in
points pi ∈ Xi, we will prove by descending induction that Xi can be lifted over
R. Indeed, the result for i = r follows from the above. If Xi is a lift of Xi over
R, then by Hensel’s lemma we can lift pi to a point of Xi, whose blowup gives a
lift of Xi−1. This finishes the proof in cases (1) and (2).

In case (3), X is also an elliptic surface. Choosing a smooth curve C ′ ⊆ X not
contained in any fibre of π, we see that the elliptic surface X ′ = X ×C C ′ → C ′

has a section. If Z → X ′ is a resolution of singularities, then Z → C ′ is a smooth
elliptic surface with a section, hence Z lifts to W (k) by [Sei88, Thm. 4.4].

Remark 6.3.3. In the ruled and elliptic cases, we actually get a lift to W (k),
whereas in the K3 and abelian cases, we need a finite extension W (k) → R.
Only the elliptic case requires an actual cover Z → X; the others can be lifted
on the nose. We don’t know if this stronger conclusion also holds in the elliptic
case, but the answer to this question is probably known to experts.

Remark 6.3.4. The most essential use of the assumption char k ≥ 5 is that
Seiler’s result [Sei88] is only stated in this case. It seems plausible that for
elliptic and quasi-elliptic fibrations in characteristic 2 and 3 a similar argument
could work.
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7. A variety that cannot be dominated by
one that lifts

7.1 Lifting line bundles on products of curves

We will study line bundles on products of curves. We give a condition under
which a line bundle L on C1 × . . .×Cr has the property that for any lifts Ci of
Ci, the line bundle L does not lift to

∏
Ci; see Lemma 7.1.6. This will be used

in the counterexample to Question 1; see Construction 7.4.1.

Setup 7.1.1. Let k be a field, and let C1, . . . , Cr be smooth projective curves
over k with Ci(k) 6= ∅, and let X be their product. We will choose isomorphisms
Alb0

Ci/k
∼= Pic0

Ci/k, and denote both by JacCi .

The Ci are a particular instance of Setup 4.4.1, so Corollary 4.4.12 gives an
isomorphism

Pic(X) ∼=
r∏
i=1

Pic(Ci)×
∏
i<j

Homk(JacCi ,JacCj ).

If L ∈ Pic(X) then we write

L =
((

Li

)
i
,
(
φji
)
i<j

)
∈

r∏
i=1

Pic(Ci)×
∏
i<j

Hom(JacCi ,JacCj ). (7.1.1)

The φji can be arranged into the following (non-commutative) diagram (for
simplicity drawn when r = 4).

JacC1
JacC2

JacC3 JacC4 .

φ21

φ31 φ42

φ43

We set φij = φ>ji (the Rosati transpose with respect to the principal polarisation
coming from the theta-divisor), and we write φi1...im = φi1i2 · · ·φir−1im for any
i1, . . . , im. For each i, write E(L )i for the Q-subrng of End◦(JacCi) generated
by the endomorphisms φi1...im of JacCi1 with i1 = im = i and m ≥ 3. It may
or may not contain 1. Equivalently, it is the Q-vector space generated by the
φi1...im , since the set of such endomorphisms is closed under multiplication.

Definition 7.1.2. Let Ci and X be as in Setup 7.1.1, and let L ∈ Pic(X).
Then L corresponds to an isogeny factor A of JacCi if there exists an isogeny
factor

JacCi A
π

ι
(7.1.2)

such that E(L )i = ιEnd◦(A)π. Here, π is a surjective homomorphism and ι is
an element of Hom◦(A,JacCi) such that πι = id.

Equivalently, E(L )i = pEnd◦(JacCi)p for some idempotent p ∈ End◦(JacCi).
Indeed, isogeny factors as in (7.1.2) correspond to idempotents p ∈ End◦(JacCi)
by setting p = ιπ, and under this correspondence we have

ιEnd◦(A)π = pEnd◦(JacCi)p.
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If E(L )i = End◦(JacCi), then we say that L generates all endomorphisms
of JacCi . This is a special case of the above, where we take A = JacCi , or
equivalently p = id.

Remark 7.1.3. We will study how the E(L )i change under specialisation
(Lemma 7.1.4) and under finite coverings C ′i → Ci of the curves (Lemma 7.1.7).

Note that E(L )i is only a Q-rng, and not a ring in general; the reason we do
not include the identity is because of the functoriality properties we will prove
below. See in particular Lemma 7.1.4 (4), Lemma 7.1.7 (4), and Remark 7.1.8.

Lemma 7.1.4. Let R be a DVR, and let Ci be smooth projective geometrically
integral curves over SpecR that admit a section. Let X be their fibre product.
Let LK ∈ Pic(Ci,K), and let L0 ∈ Pic(Ci,0) be its specialisation. If Li,K (Li,0)
and φji,K (φji,0) denote the components of LK (L0) as in (7.1.1), then

(1) Li,0 = sp(Li,K) for all i;
(2) φji,0 = sp(φji,K) for all i, j;
(3) φi1...im,0 = sp(φi1...im,0) for all i1, . . . , im;
(4) E(L0)i = sp(E(LK)i) for all i. Hence, E(L0)i ∼= E(LK)i as Q-rngs;
(5) If L0 corresponds to an isogeny factor A0 of JacCi,0 , then LK corresponds

to a unique isogeny factor AK of JacCi,K , and A is a lift of A0.

Proof. The first two statements are Lemma 4.4.15. The third statement follows
from the second since specialisation commutes with composition (Corollary 4.3.4).
The first statement in (4) is immediate from (3), and the second follows since
specialisation is injective, again by Corollary 4.3.4.

For the final statement, if E(L0)i = pEnd◦(JacCi,0)p for some idempotent p,
then (4) implies that p = sp(q) for some q. Since specialisation is injective,
we conclude that such q is unique, and that q is an idempotent as well. Let
AK be the isogeny factor corresponding to q. Then AK has good reduction
by Néron–Ogg–Shafarevich [ST68, Thm. 1], since JacCi,K does. Let A be the
Néron model over SpecR.

Let (ι, π) correspond to the idempotent q as in (7.1.2). Then π extends uniquely
to a morphism π : PicCi/R → A by Corollary 4.1.3. Similarly, if n is such that
nι ∈ Hom(AK ,JacCi,K ), then nι extends uniquely to a morphism A → PicCi/R,
which we also denote nι. The uniqueness property implies that π0ι0 = id and
ι0π0 = p, which proves that p corresponds to the reduction A0.

Finally, if ψ ∈ E(LK)i, then qψ = ψ = ψq, since this holds after applying sp by
part (4), and since specialisation is injective by Corollary 4.3.4. Thus,

E(LK)i ⊆ qEnd◦(JacCi,K )q.

The reverse inclusion follows from the dimension count

dimE(LK)i = dimE(L0)i = dim End◦(A0)

≥ dim End◦(AK) = dim(qEnd◦(JacCi,K )q),

again using injectivity from Corollary 4.3.4. This proves (5).
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Remark 7.1.5. We note that the converse of (5) is not true. For example, let
C1 = C2 = E be an elliptic curve over R such that End◦(EK) = Q but End◦(E0)
is bigger (such examples exist in both pure characteristic 0 or p, or in mixed
characteristic). Let φ21 be the identity, so that E(LK)1 = Q and E(L0)1 = Q.
Then LK corresponds to the isogeny factor EK , but L0 does not correspond to
any isogeny factor, since E(L0)1 is the subring Q ( End◦(E0).

This gives a criterion for a line bundle on a product of curves that implies that
it cannot be lifted along with the curves.

Lemma 7.1.6. Let C1, . . . , Cr be curves over k all of whose endomorphisms
are defined over k. Let L be a line bundle on

∏
Ci that corresponds to a

supersingular isogeny factor A of End◦(JacCi) for some i (see Definition 7.1.2).
If Ci are curves over a DVR R that lift the Ci, then no multiple L ⊗m for m > 0
can be lifted to

∏
Ci.

Proof. Note that E(L ⊗m)i = E(L )i, so we may take m = 1. Suppose Ci are
lifts of the Ci and L̃ is a lift of L . By Lemma 7.1.4 (5), L̃K corresponds
to a lift AK of A, and Lemma 7.1.4 (4) shows that End◦(AK) ∼= End◦(A).
But A = JacCi/k is a supersingular abelian variety, so by Corollary 4.3.9 it is
impossible to lift all its endomorphisms simultaneously.

In the next two sections, we will construct such line bundles, when r ≥ 4 and
r ≥ 3 respectively; see Corollary 7.2.8 and Corollary 7.3.3.

Lemma 7.1.7. Let Ci and X be as in Setup 7.1.1, and let C ′i and X ′ satisfy
the same assumptions. Let gi : C ′i → Ci be a finite morphism, and denote by
g : X ′ → X the product. Let L ∈ Pic(X), and let L ′ = g∗L . If Li (L ′i ) and
φji (φ′ji) denote the components of L (L ′) as in (7.1.1), then

(1) L ′i = g∗iLi for all i;
(2) φ′ji = g∗jφjigi,∗ for all i, j;
(3) φ′i1...im = deg(gi2) · · · deg(gim−1

) · g∗i1φi1...imgim,∗ for all i1, . . . , im;
(4) E(L ′)i = g∗iE(L )igi,∗ for all i. Hence, E(L ′)i ∼= E(L )i as Q-rngs;
(5) If L corresponds to an isogeny factor A of JacCi , then L ′ corresponds

to the isogeny factor A of JacC′i ;
(6) If g(C ′i) = g(Ci), then the converse of (5) holds as well.

Proof. The first two statements are Lemma 4.4.14 if i < j; the case i > j easily
follows from that since φij = φ>ji and g∗i = (gi,∗)

>. The third statement follows
from the second, because gi,∗g∗i : JacCi → JacCi is multiplication by the degree
of gi. The fourth statement is immediate from the third. For (5), note that
the pair (ι, π) = ( 1

deg(gi)
g∗i , gi,∗) realises JacCi as isogeny factor of JacC′i . The

result then follows immediately from (4) and Definition 7.1.2. Finally, in (6)
the isogeny pair (ι, π) = ( 1

deg(gi)
g∗i , gi,∗) is an isomorphism. We may repeat the

proof argument for (5) using the pair (ι−1, π−1).

Remark 7.1.8. We saw that JacCi is an isogeny factor of JacC′i . If none of
the other isogeny factors of JacC′i is isomorphic to one of the factors of JacCi ,
then End◦(JacCi) is a factor of the semisimple ring End◦(JacC′i).
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If this is not the case, then the inclusion g∗i End◦(JacCi)gi,∗ ⊆ End◦(JacC′i) can
for example look like an inclusion of rngs (but not of rings)

Mn(D) ⊆Mn+1(D)

for some division algebra D. Thus, End◦(JacCi) is not a factor of End◦(JacC′i).

7.2 Generation of separable algebras

We give an elementary geometric proof of the following well-known theorem.

Theorem 7.2.1 (Albert [Alb44]). Let k be an infinite field, and let A be an
absolutely semisimple k-algebra. Then A can be generated over k by two elements.

Our main application is Corollary 7.2.8, which is an example of the situation of
Lemma 7.1.6. In Section 7.3, we improve this result to Corollary 7.3.3; the only
difference with Corollary 7.2.8 is the number of curves and the minimal genus
needed. The current section is included because it is less technical, and suffices
for the construction of a counterexample to Question 1.

Remark 7.2.2. Absolutely semisimple algebras are also known as separable
algebras. They are finite products of matrix algebras over division rings whose
centre is separable over k [Bou12, Thm. 13.3.1]1. Hence, if k is perfect, then A
is absolutely semisimple if and only if it is semisimple.

Definition 7.2.3. For a k-vector space V , write A(V ) for the affine space of
points of V . It’s functor of points is A(V )(R) = V ⊗k R, and a choice of a basis
gives an isomorphism to AdimV .

Note that if A is a k-algebra, then the multiplication A(A) × A(A) → A(A)
is a morphism of schemes. If (A, (−)†) is a k-algebra with involution, then
(−)† : A(A)→ A(A) is a morphism of schemes (in fact, it is a linear map).

Lemma 7.2.4. Let A be a finite-dimensional k-algebra, and let r ∈ Z≥0. Then
the subfunctor Ur ⊆ A(A)r given by {(xi) ∈ Ar ⊗k R

∣∣ R〈{xi}〉 = A⊗k R} is a
(possibly empty) open subfunctor.

Proof. Let N∗r be the free monoid on r generators ei, and φ the forgetful map

φ : Ar ∼= HomMon(N∗r, A)→ HomSet(N∗r, A).

Since the multiplication A(A)×A(A)→ A(A) is algebraic, this gives a morphism
of schemes

φ : A(A)r → A(A)N
∗r
.

Concretely, the coordinate of φ(x1, . . . , xr) corresponding to ei1 · · · eis ∈ N∗r is
given by xi1 · · ·xis ∈ A.

For any set I, the locus UI ⊆ A(A)I of I-tuples that generate A as a k-vector
space is Zariski open, because it is given by the nonvanishing of certain n× n
minors, where n = dimA. Thus, Ur = φ−1(UN∗r ) is open as well.

1The numbering in Bourbaki is not consistent with earlier editions.
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Definition 7.2.5. In the matrix algebra Mn(k), we will write ρ for the cyclic
rotation matrix of order n given by ei 7→ ei+1 for i < n and en 7→ e1. We will
write eij for the single-entry matrix that maps ej to ei and all other ek to 0.

Lemma 7.2.6. The matrix algebra Mn(k) is generated over k by ρ and any
single-entry matrix eij.

Proof. Every ei′j′ can be made as ρaeijρb for suitable a and b.

Proof of Theorem. Since k is infinite, the Zariski open U2 ⊆ A(A)2 has a k-point
if and only if it is (scheme-theoretically) nonempty. To show that U2 is nonempty,
we may replace k by its algebraic closure. Then A is a product of matrix
algebras; say A =

∏m
i=1Mni(k). Let λi be pairwise distinct nonzero scalars

for i ∈ {1, . . . ,m} (we can do this because k is infinite). Let x, y ∈
∏
iMni(k)

be the elements x = (xi)i and y = (yi)i defined as follows. Set xi = ρ as
in Definition 7.2.5 (understood to be the identity if ni = 1). Set yi = λi if
ni = 1, and yi = λi + e12 if ni > 1. We claim that x and y generate A, i.e. the
k-subalgebra B = k〈x, y〉 ⊆ A equals A.

Indeed, B surjects onto each factor πi : A → Mni(k) by Lemma 7.2.6. The
element zi =

∏
j 6=i(y−λj)nj maps to 0 under πj for j 6= i. Under πi, it maps to

an upper triangular matrix that is invertible because λj 6= λi for j 6= i. Choose
a lift wi ∈ B of πi(zi)−1 under the surjection B � Mni(k). Then the element
wizi ∈ B is the i-th coordinate projector (0, . . . , 1, . . . , 0). Since B surjects onto
each factor and contains the coordinate projectors, it equals A.

Example 7.2.7. To see that the result is false for finite fields, consider the
separable F2-algebra A = F5

2. Since any element x ∈ A satisfies x2 = x, the
algebra it generates has dimension ≤ 2. Thus, any two elements of A can only
generate a 4-dimensional subalgebra of A.

Corollary 7.2.8. Let k be an extension of F̄p, and let C be a supersingular
curve over k of genus g ≥ 1. Let r ≥ 4, and set Ci = C for all i ∈ {1, . . . , r}.
Then there exists a very ample line bundle L on

∏
Ci that generates all endo-

morphisms of JacC1
in the sense of Definition 7.1.2.

Proof. As in Setup 7.1.1, we get an isomorphism

Pic(X) ∼=
r∏
i=1

Pic(Ci)×
∏
i<j

Homk(JacCi ,JacCj ),

and for any L ∈ Pic(X) we write

L =
((

Li

)
i
,
(
φji
)
i<j

)
∈

r∏
i=1

Pic(Ci)×
∏
i<j

Hom(JacCi ,JacCj ). (7.2.1)

Since r ≥ 4, part of this data sits in a (not necessarily commutative!) diagram

JacC1
JacC2

JacC3 JacC4 .

φ21

φ31 φ42

φ43

(7.2.2)
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By Theorem 7.2.1, the separable algebra End◦(JacC1
) can be generated over Q

by two elements x, y; without loss of generality x, y ∈ End(JacC1
) are integral.

If we set φ42 = x, φ43 = y, and all other φji = 1, then the maps

φ1421 = φ>41φ42φ21 : JacC1
→ JacC1

φ1431 = φ>41φ43φ31 : JacC1
→ JacC1

φ1321 = φ>31φ32φ21 : JacC1
→ JacC1

are given by x, y, and 1 respectively.

This corresponds to going around the following loops in diagram (7.2.2):

• • • • • •

• • , • • , • • .

If p ∈ C(k) is a rational point, then the line bundle O(p)�r is very ample. Hence,
for d� 0, the line bundle

L =
((
OCi(dP )

)
i
,
(
φji
)
i<j

)
is very ample. Since x, y, and 1 generate End◦(JacC1) as Q-rng, the Q-rng
E(L )1 of Definition 7.1.2 equals End◦(JacC1). Thus, L generates all endo-
morphisms of JacC1

.

Remark 7.2.9. The proof of Theorem 7.2.1 shows that A can actually be
generated by two elements as k-rng, as opposed to as k-algebra. The only
difference is whether one is allowed to use the identity element.

Indeed, the set where the words xi1 · · ·xis for s ≥ 1 (i.e. omitting the empty
word 1) generate A is still Zariski open (the same proof as Lemma 7.2.4 applies).
Moreover, in Lemma 7.2.6, we don’t need the identity. Finally, in the proof of
Theorem 7.2.1, the generators we chose automatically give the identity element:
if n is a common multiple of the ni, then xn = 1.

Remark 7.2.10. Thus, in the proof of Corollary 7.2.8, we could have just used
the two loops

• • • •

• • , • • .

However, using just one loop does not seem to be sufficient, because the k-
subalgebra generated by one element is commutative and therefore does not
equal A in general. This is why we needed r ≥ 4 in this section. In the next
section, we show that if r ≥ 3, then using one loop and its inverse is still enough
to generate all endomorphisms.

7.3 Generation by Rosati dual elements

The main result of this section is an improvement of Corollary 7.2.8, given below
in Corollary 7.3.3.
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The main difference is the number of curves required: it suffices to have r ≥ 3
instead of r ≥ 4 (see also Remark 7.2.10). The advantage of this is that we can
make the example we produce in Theorem 7.4.3 a surface instead of a threefold.

This section is a bit more technical than the previous, and can be skipped by
the reader for whom a threefold counterexample to Question 1 is sufficient.

Theorem 7.3.1. Let (A, φ) be a polarised supersingular abelian variety of di-
mension g ≥ 2 over a field k containing F̄p. Then there exists an element
x ∈ End◦(A) such that x and x† = φ−1x>φ generate End◦(A) as Q-rng.

Proof. Any supersingular abelian variety over a field containing F̄p is isogenous
to Eg, where E is a supersingular elliptic curve. Then D = End◦(E) is the
quaternion algebra over Q ramified only at p and ∞, and End◦(A) ∼= Mg(D).
Moreover, when A is supersingular, the Rosati involution on End◦(A) does not
depend on the rational polarisation used [Eke87, Prop. 1.4.2], so we may assume
that φ is the product polarisation. Then the Rosati involution on Mg(D) is
given by

(−)† : Mg(D)→Mg(D)

(aij) 7→ (a†ji),

where a† = Trd(a)− a is the Rosati involution on D = End◦(E).

By the same argument as Lemma 7.2.4, the set of elements x ∈ A(Mg(D)) such
that x and x† generate Mg(D) as Q-rng is Zariski open. Thus, it has a Q-point
if and only if it is nonempty, i.e. if and only if it has a Q̄-point. Thus, it suffices
to study End◦(A)⊗Q Q̄. The algebra End◦(A)⊗Q Q̄ is isomorphic to M2g(Q̄),
with involution (−)† given by

(
a11 b11

c11 d11

)
· · ·
(
a1g b1g
c1g d1g

)
...

...(
ag1 bg1
cg1 dg1

)
· · ·
(
agg bgg
cgg dgg

)
 7→



(
d11 −b11

−c11 a11

)
· · ·
(
dg1 −bg1
−cg1 ag1

)
...

...(
d1g −b1g
−c1g a1g

)
· · ·
(
dgg −bgg
−cgg agg

)
 .

Now consider the matrix

x =


0 1

0 1
. . .

1
0

 .

We want to show that the Q̄-subrng B of M2g(Q̄) generated by x and x† is
M2g(Q̄). One easily computes

x2g−1 = e1,2g,

x2g−3 = e1,2g−2 + e2,2g−1 + e3,2g,

(x2g−3)† = − (e2g−3,2 + e2g,1 + e2g−1,4) .
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Write a = x2g−1 and b = (x2g−3)†, which makes sense because g ≥ 2. Then
ab = −e11, hence bab = −e2g,1. Hence, x− bab is the rotation matrix ρ−1 from
Definition 7.2.5. Thus, by Lemma 7.2.6, the matrix algebraM2g(Q̄) is generated
(as Q̄-rng) by x− bab and a, for example. Thus, B = M2g(Q̄).

Remark 7.3.2. The theorem is false for g = 1. Indeed, for any x ∈ D, we
have x† = Trd(x)− x, so in particular x and x† commute. Therefore, the non-
commutative algebra D can never be generated by an element and its Rosati
transpose.

Corollary 7.3.3. Let k be an extension of F̄p, and let C be a supersingular
curve over k of genus g ≥ 2. Let r ≥ 3, and set Ci = C for all i ∈ {1, . . . , r}.
Then there exists a very ample line bundle L on

∏
Ci that generates all endo-

morphisms of JacC1
in the sense of Definition 7.1.2.

Proof. The proof is the same as that of Corollary 7.2.8, with the following
modifications:

Instead of diagram (7.2.2), we only have the diagram

JacC1

JacC2
JacC3

.

φ21 φ31

φ32

(7.3.1)

By Theorem 7.3.1, there exists x ∈ End◦(JacC1
) such that x and x† generate

End◦(JacC1
) as Q-rng, where we take the Rosati involution with respect to

the principal polarisation on JacC1
coming from the theta divisor. This means

exactly that x and x> generate End◦(JacC1).

Now set φ21 = x, and φ31 = φ32 = 1. Then the maps

φ1321 = φ>31φ32φ21 : JacC1 → JacC1

φ1231 = φ>21φ
>
32φ31 : JacC1 → JacC1

are given by x and x> respectively. Pictorially, this corresponds to going around
the following loops in diagram (7.3.1):

• •

• • , • • .

The rest of the proof is identical to that of Corollary 7.2.8.

7.4 The construction

We give a negative answer to Question 1. To be precise, we construct smooth
projective varieties X of every dimension ≥ 2 over F̄p for every prime p, such that
no smooth projective variety Z dominating X can be lifted to characteristic 0.
The construction is carried out in Construction 7.4.1, and we prove its properties
in Theorem 7.4.3.
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Construction 7.4.1. Let p be a prime, let r ≥ 3 be an integer, and let k = F̄p.
Let C1 = . . . = Cr = C be a supersingular curve over k of genus g ≥ 2. For
example, the Fermat curve xq+1 +yq+1 +zq+1 = 0 is supersingular whenever q is
a power of p [SK79, Lem. 2.9]. Alternatively, a smooth member of Moret–Bailly’s
family [Mor81; Mor79] is a supersingular of curve genus 2.

Set Y = C1 × . . . × Cr. By Corollary 7.3.3 (or Corollary 7.2.8 if r ≥ 4), there
exists a very ample line bundle L on Y that generates all endomorphisms of
JacC1 in the sense of Definition 7.1.2.

Finally, we define X ⊆ Y as a smooth divisor in |nL | for n � 0 that satisfies
the product covering property of Definition 3.2.2. Such a divisor exists by
Proposition 3.2.4 and the usual Bertini smoothness theorem.

The following result will be useful in the proof.

Lemma 7.4.2. Let g : X → Y be a finite flat morphism of finite type k-schemes.
Let V ⊆ X be an irreducible subscheme, and let W = f(V ). If g−1(W ) is
irreducible, then g∗[W ] = d · [V ] for some d ∈ Z>0.

Proof. Note that W is irreducible since V is. Since specialisations lift along
finite morphisms, we have dim(V ) = dim(W ) = dim(g−1(W )). Hence, V
is a component of g−1(W ). Since g−1(W ) is irreducible, we conclude that
V = g−1(W ) holds set-theoretically. Therefore, g∗[W ] is a multiple of [V ].

Theorem 7.4.3. Let X be as in Construction 7.4.1. If k ⊆ k′ is a field extension
and Z is a smooth proper k′-variety with a dominant rational map Z 99K X×kk′,
then Z cannot be lifted to characteristic 0.

Remark 7.4.4. Since X is a divisor in a product of r ≥ 3 curves, we get
examples in every dimension ≥ 2. Of course, if X is an example of dimension d
and Y is anym-dimensional smooth projective variety, then X×Y is an example
of dimension d+m.

Remark 7.4.5. Since curves are unobstructed, the result in dimension 2 is the
best possible. Moreover, by Theorem 6.3.1, every smooth projective surface X
of Kodaira dimension κ(X) ≤ 1 can be dominated by a liftable surface, so our
surface of general type is to some extent the ‘easiest’ example possible.

Proof of Theorem. By Corollary 4.1.4, the rational maps Z 99K X → Ci can be
extended to morphisms ψi : Z → Ci. Hence, the rational map Z 99K X ⊆

∏
i Ci

extends to a morphism f : Z → X.

Assume Z admits a lift to characteristic 0. By Lemma 6.1.3, there exists a
lift Z → S where S = SpecR with R a DVR that is essentially of finite type
over SpecZ (see Definition 6.1.1 for additional notation). Upon enlarging k′
and the residue field κ of R, we may assume that they both equal Ω. We may
assume Ω is a countable algebraically closed field by a limit argument. Passing
to the completion of R, we may assume that R is complete. Replacing (k,Ci)
by (k′, Ci ×k k′), we may also assume that k = k′. Thus, the fields k, k′, κ, and
Ω are equal, and are a countable algebraically closed field containing F̄p.
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Now we are in Setup 5.4.1 (see Example 5.4.3). Applying Corollary 5.4.7 to the
maps ψi : Z → Ci obtained by composing f with the projections πi : X → Ci,
we conclude that there exist finite extensions of DVR’s R→ R′i, smooth proper
curves Yi → SpecR′i, morphisms φi : Z ×R R′i → Yi over R′i, and commutative
diagrams

Z

Y(p−ni )
i,0

Ci Yi,0 ,

hi
ψi φi,0

gi χi

where all χi are radicial. We may assume all R′i are the same DVR R′. Replacing
(R,Z) by (R′,Z ×R R′) we may also assume for simplicity that R = R′. We
will write C ′i = Y

(p−ni )
i,0 , Y ′ =

∏
C ′i, and Y =

∏
Yi (recall that Y =

∏
Ci; see

Construction 7.4.1).

For each of the morphisms indexed by the subscript i, the same notation without
the subscript is understood to be the product morphism. The product is taken
over the target in all cases, and over the source when that also depends on the
index i. For example, we get morphisms g : Y ′ → Y , and φ : Z → Y, etcetera.
We then get the commutative diagram

Z

Y ′

Y Y0 .

h
ψ φ0

g χ

Consider the image h(Z) ⊆ Y ′. It satisfies g(h(Z)) = X. Then g−1(X) ⊆ Y ′ is
irreducible since X satisfies the product covering property of Definition 3.2.2 by
Construction 7.4.1. Hence by Lemma 7.4.2, there exists some d ∈ Z>0 such that

g∗[X] = d · [h(Z)].

Let W be the scheme theoretic image of φ : Z → Y, and let W ′ be the scheme-
theoretic image of φ0. Since Z is flat over R, the sheaf OZ is π-torsion free.
Hence, the subsheaf OW ⊆ φ∗OZ is also π-torsion free, so W is flat over R.
Therefore, W is a lift of W0 as a divisor.

Moreover, since φ is proper, it is surjective onto its image, so W0 = W ′ set-
theoretically. But Z0 is integral, hence so is W ′, so W0 is a multiple of W ′.
Moreover, χ−1(W ′) is irreducible since W ′ is and since χ is radicial. Thus,
Lemma 7.4.2 gives χ∗[W0] = e · [h(Z)] for some e ∈ Z>0. Hence

g∗[X] = d
e · χ

∗[W0].

Note that L generates all endomorphisms of the supersingular abelian variety
JacC1

by Construction 7.4.1. Applying Lemma 7.1.7 (5) to g and Lemma 7.1.7
(6) to χ, we conclude that W0 corresponds to the isogeny factor A = JacC1

.
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Since W0 lifts as a divisor, by Lemma 6.2.4 the corresponding line bundle lifts
as well. This contradicts Lemma 7.1.6, since W0 corresponds to a supersingular
isogeny factor.

Remark 7.4.6. The proof of Corollary 7.3.3 shows that the set of L ∈ Pic(Y )
that generate all endomorphisms of JacC1

in the sense of Definition 7.1.2 form a
Zariski open subset of NS(Y )⊗Q. Similarly, the set of X ∈ |nL | that satisfy the
product covering property of Definition 3.2.2 is Zariski open, and nonempty if
n� 0. This shows that ‘most’ divisors in Y = C1×. . .×Cr give counterexamples
to Question 1.

It is conceivable that there exists L generating all endomorphisms of JacC1

such that certain smooth members D ∈ |nL | can be dominated by a liftable
variety Z. For such Z, the curves C ′i → Ci of the proof of Theorem 7.4.3 cannot
all be equal to Ci, for otherwise the product covering property is not needed
in the proof of Theorem 7.4.3 above. It would be interesting to study if there
exist smooth members D ∈ |nL | such that g−1(D) ⊆

∏
C ′i for certain covers

gi : C
′
i → Ci has a component that is liftable as divisor on

∏
C ′i. This would

show that the answer to Question 1 is not invariant under deformations of X.

Remark 7.4.7. Our methods do not address the weaker question of dominating
X by a smooth proper variety Z that admits a formal lift to characteristic
0. Similarly, our methods do not answer Bhatt’s question [Bha10, Rmk. 5.5.5]
whether every smooth projective varietyX can be dominated by a smooth proper
variety Z that admits a lift to the length 2 Witt vectors W2(k).

Although it is possible that a closer analysis of the abelian methods of Chapter 4
give bounds on dimensions of endomorphism algebras over rings like W2(k),
the main obstacle is that the methods of Chapter 5 rely on a deep theorem
of Simpson in complex geometry (Theorem 5.3.8). Thus, the current method
of proof is not suited for deformation-theoretic results. See also the additional
remarks in Section 5.4 and Section 5.5; in particular Remark 5.4.9, Remark 5.4.10
and Remark 5.5.2.
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