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Notes for the Intercity Geometry Seminar on condensed mathematics in 2022.

1. Locally compact abelian groups

Definition. A topological space X is locally compact if X is Hausdorff and
every point x ∈ X has a compact neighbourhood, i.e. there exist subsets
x ∈ U ⊆ K with U open and K compact.

This implies that X is compactly generated, but not vice versa. For instance,
Q ⊆ R with the induced topology is not locally compact by the Heine–Borel
theorem, yet it is compactly generated (hint: use compact subspaces of the
form {xi | i ∈ N} ∪ {x} for convergent sequences xi → x in Q).

Definition. Write HAb for the category of Hausdorff abelian groups and
LCA for the category of locally compact abelian groups.

Example. The following are examples of locally compact abelian groups:

• Any discrete abelian group, e.g. Z, Z/nZ, or Q. This gives a fully faithful
embedding Ab ⊆ LCA.

• Rn for any n ∈ N.
• The circle group T := R/Z.
• Any profinite (compact Hausdorff totally disconnected) abelian group, e.g.

Zp or Ẑ.
• Any locally profinite (locally compact Hausdorff totally disconnected)
abelian group, e.g. Qp or the finite adèles Afin = Ẑ ⊗ Q = colim−→

n

1
n Ẑ

(topologised as a colimit of open immersions).

Two non-examples:

• An infinite-dimensional topological vector space over R or Qp is never
locally compact. For instance, Cp is not locally compact.

• Q ⊆ R with the subspace topology is not locally compact, as we saw
before. We will only ever consider Q with the discrete topology.
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Warning. Some authors say that A ∈ LCA is compactly generated if there
exists a compact subset Z ⊆ A such that Z generates A as abelian group. We
will mostly avoid this terminology as it clashes with the topological notion.
Every locally compact topological space is compactly generated, but not
every locally compact abelian group is compactly generated in this new sense.
For instance, for a discrete group A this is equivalent to A being finitely
generated.

Remark. The categories HAb and LCA are not abelian: the inclusion
Rdisc → R is both monic and epic, but not an isomorphism. However, they
are quasi-abelian categories:

• they are additive;
• kernels and cokernels exist (for the latter, take coker f = B/f(A));
• kernels are stable under pushout and cokernels are stable under pullback.

Definition. A morphism f : A → B in a quasi-abelian category is strict if
the natural map

coim f im f

coker(ker f) ker(coker f)

is an isomorphism. A complex C• is strictly exact if all maps di : Ci → Ci+1

are strict and the complex is exact.

In HAb or LCA, a morphism f : A→ B is strict if and only if A/ ker f ↪→ B
is a closed embedding. A short exact sequence

0→ A→ B → C → 0

is strictly exact if and only if A ↪→ B is a closed embedding and B → C is a
topological quotient (equivalently, B → C is open).

Example. Some examples of strict short exact sequences:

• 0→ Z→ R→ T→ 0;
• 0→ Zp → Qp → Qp/Zp → 0.

Note that Z and Qp/Zp are discrete, and T and Zp are compact. We will
see later that any A ∈ LCA can be obtained as a successive extension of
discrete and compact abelian groups.
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2. Pontryagin duality

Definition. For A,B ∈ LCA, endow Hom(A,B) ⊆ Cont(A,B) with the
compact-open topology : a subbase is given by the sets

V (K,U) := {f : A→ B | f(K) ⊆ U}

for K ⊆ A compact and U ⊆ B open (subsets, not subgroups). We denote
this internal Hom by Hom(A,B).

Warning. In general, Hom(A,B) is only in HAb, not in LCA. For in-
stance, Hom(Z⊕I ,R) = RI is locally compact if and only if I is finite.

Definition. The Pontryagin dual of A ∈ LCA is A∨ := Hom(A,T).

Note that if 0→ A→ B → C → 0 is strictly exact, then

0→ C∨ → B∨ → A∨

is strictly exact, so (−)∨ is “left exact” in a suitable sense.

Theorem (Pontryagin, van Kampen).

(i) If A ∈ LCA, then A∨ ∈ LCA. If A is compact, then A∨ is discrete.
If A is discrete, then A∨ is compact.

(ii) The natural map A→ A∨∨ is an isomorphism for all A ∈ LCA.
(iii) The functor (−)∨ takes strict exact sequences to strict exact sequences.

We will sketch a proof below; details can for instance be found in [Pon39],
[HR79], and [Mor77]. The one deep ingredient in the proof is:

Theorem (Peter–Weyl, abelian case). If A is compact, then the natural map
A → A∨∨ is injective, i.e. for a ∈ A \ {0} there exists ψ : A → T such that
ψ(a) 6= 0.

This is usually proven using Haar measures, but there is also an elementary
(albeit somewhat long and slightly strange) proof due to Prodanov; see for
instance [DS11] and the references therein.

Proof of duality (outline). Statement (i) is an easy verification. Statement
(iii) for C discrete follows since T is divisible and any homomorphism B → T
extending a continuous homomorphism A→ T is automatically continuous.
Statement (ii) for A ∈ {Z,Z/nZ,T,R} is verified by computation. This
gives (ii) when A is a finitely generated discrete abelian group.

To prove (ii) for any discrete abelian group A, note that A∨∨ is discrete by (i).
An element a ∈ A gives an injection Z/nZ ↪→ A for some n ∈ N (possibly 0

3



or 1), which by (iii) for discrete groups and (ii) for finitely generated discrete
groups gives a commutative diagram

Z/nZ (Z/nZ)∨∨

A A∨∨ .

∼

This shows that A→ A∨∨ is injective.

For any subgroup H ⊆ A, write Ann(H) :=
{
f : A→ T

∣∣ f(H) = 0
}
⊆ A∨,

which is canonically isomorphic to (A/H)∨ by left exactness of (−)∨. Note
that ⋂

H⊆A
f.g.

Ann(H) = 0. (2.1)

If ψ : A∨ → T is an element of A∨∨, then W = ψ−1
(
(−ε, ε)

)
⊆ A∨ is an

open subset containing 0, and its complement Z in A∨ is compact by (i).
Then (2.1) and compactness of Z show that there exists a finitely generated
subgroup H ⊆ A such that Ann(H) ⊆ W , i.e. ψ(Ann(H)) ⊆ (−ε, ε). Since
ψ is a group homomorphism and Ann(H) ⊆ A∨ a subgroup, this forces
Ann(H) ⊆ kerψ. In the commutative diagram with strictly exact rows

0 H A A/H 0

0 H∨∨ A∨∨ (A/H)∨∨

∼

we see that ψ ∈ A∨∨ comes from H∨∨, proving surjectivity of A → A∨∨.
This proves (ii) for A discrete, and (ii) for A compact follows formally since
A∨ is discrete and A→ A∨∨ is injective by Peter–Weyl (exercise).

Now one needs to bootstrap from compact to locally compact abelian groups.
This usually involves proving difficult structure theorems about locally com-
pact abelian groups, e.g. that every A ∈ LCA sits in a strictly exact sequence
0 → Rn × C → A → D with C compact and D discrete. Then (ii) for A
follows from (ii) for Rn, C, and D and (iii) since D is discrete. Finally, the
general case of (iii) is obtained as a formal consequence of (ii).

Remark. Note that if we already knew (iii), then the bootstrap from the
compact to the locally compact case of (ii) would be substantially easier.
For instance, any compact neighbourhood K of 0 in A generates an open
subgroup B ⊆ A that is compactly generated in the sense of topological
abelian groups. Then one shows that there exists a closed lattice Zn ⊆ B
whose quotient C = B/Zn is compact. This gives strict short exact sequences

0 B A D 0

0 Zn B C 0
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withD discrete and C compact, and (ii) forA follows from the same statement
for C, D, and Zn if we knew (iii). However, I am not aware of a proof of (iii)
that does not rely on (ii).

Example. Some examples of Pontryagin duals:

A A∨

Z/nZ Z/nZ
Z T
R R
Zp Qp/Zp
Qp Qp

discrete compact
0→ Z→ R→ T→ 0 0← T← R← Z← 0

0→ Z⊕J → Z⊕I → D → 0 0← TJ ← TI ← C ← 0
(for any discrete abelian group D) (for any compact abelian group C)

Lemma. The “weak Serre subcategory” C ⊆ LCA generated by Z⊕I and TI

for all sets I is LCA.

Here, “weak Serre subcategory” should be taken to mean the smallest (full)
subcategory C ⊆ LCA that contains the given objects and has the property
that for any strict short exact sequence 0→ A→ B → C → 0, if two out of
three are in C then so is the third.

Proof. Any discrete abelian group D sits in a strict short exact sequence
0→ Z⊕J → Z⊕I → D → 0, and dually every compact abelian group C sits
in a strict short exact sequence 0→ C → TI → TJ → 0. So C contains all
discrete and compact abelian groups. By the remark on the previous page,
every A ∈ LCA is a successive extension of discrete and compact abelian
groups.

3. The derived category of locally compact
abelian groups

For any quasi-abelian category C , Schneiders [Sch99] has constructed a de-
rived category Db(C ). It is constructed as Kb(C )/N (C ), where N (C ) is
the saturated triangulated subcategory on the strictly exact complexes in C .

In the special case C = LCA, this was studied in great detail by Hoffman
and Spitzweck [HS07]. In particular, they construct an internal Hom

RHom : Db(LCA)op ×Db(LCA)→ Db(HAb)

extending Hom : LCAop × LCA→ HAb.
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Theorem (Hoffman–Spitzweck).

(i) RHom(Z, B) ∼= B[0] for any B ∈ LCA;
(ii) RHom(TI ,M) ∼=M⊕I [−1] for M discrete;
(iii) RHom(TI ,R) = 0.

We do not attempt to sketch the proof, as even the definition of RHom is
involved and a little counterintuitive.

4. Comparison with condensed abelian groups

Lemma. The functor LCA → Cond(Ab) given by A 7→ A takes strictly
exact complexes to acyclic complexes.

Thus it induces a functor Db(LCA)→ Db(Cond(Ab)).

Proof. A strictly exact complex splits up into strict short exact sequences
0 → A → B → C → 0, so it suffices to treat that case. Then clearly
0→ A→ B → C is exact. Given E ∈ ED and a continuous map f : E → C,
we want to lift to a dashed arrow

B

E C .

π

f

The image f(E) is compact and E is projective in CHaus, so it suffices to
find Z ⊆ B compact with f(E) ⊆ π(Z). Pick 0 ∈ U ⊆ K ⊆ B with U open
and K compact. Since π is open, the open sets π(U + b) ⊆ C for b ∈ B cover
f(E), so finitely many π(U + b1), . . . , π(U + bn) suffice. Then the compact
set

Z :=

n⋃
i=1

(K + bi)

satisfies π(Z) ⊇ f(E).

To separate notation, we will write Hom for the internal Hom in the category
of sheaves on a site; for instance for condensed abelian groups.

Proposition. Let A,B ∈ LCA. Then Hom(A,B) ∼= Hom(A,B).

Proof. Recall the resolution Z[A × A] → Z[A] → A → 0, whose maps are
given by [(a1, a2)] 7→ [a1+a2]− [a1]− [a2] and [a] 7→ a respectively. Tensoring
with the projective module Z[S] for any S ∈ ED gives an exact sequence

Z
[
A×A× S

] φ→ Z
[
A× S

]
→ A⊗ Z[S]→ 0.
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Thus we get

Hom(A,B)(S) = Hom(A⊗ Z[S], B)

=
{
f ∈ Hom(Z

[
A× S

]
, B)

∣∣ f ◦ φ = 0
}

=
{
f ∈ HomCond(Set)(A× S,B)

∣∣ f ◦ φ = 0
}

=

{
f ∈ Cont(A× S,B)

∣∣∣∣∣f(a1 + a2, s) = f(a1, s) + f(a2, s)
for all (a1, a2, s) ∈ A×A× S

}
=
{
f ∈ Cont(A× S,B)

∣∣ f(s) ∈ Hom(A,B) for all s ∈ S
}

= Cont(S,Hom(A,B)) = Hom(A,B)(S).

Theorem. The functor Db(LCA) → Db(Cond(Ab)) is fully faithful. If
A,B ∈ LCA, then Exti(A,B) = 0 if i ≥ 2.

Proof. For the first statement, it suffices to show that the natural map

RHom(A,B)→ RHom(A,B) (4.1)

is an isomorphism for all A,B ∈ LCA. By the results above, this reduces to
the case A,B ∈ {TI ,Z⊕I} as these generate LCA. For the second statement
we reduce to the case where A and B are either compact or discrete, as any
locally compact abelian group is a successive extension of such.

We will use the Hoffman–Spitzweck theorem from §3 above and the results
from the previous talk (amounting to [CS19, Thm. 4.3]):

(i) If A = Z⊕I , then both sides of (4.1) are BI [0]. (For the LCA case,
use part (i) of Hoffman–Spitzweck.) This also shows that if A is any
discrete abelian group, then Exti(A,B) for i ≥ 2 and B ∈ LCA.

(ii) If A = TI and B is discrete, then both sides of (4.1) are B⊕I [−1] by
[CS19, Thm. 4.3(i)] from last talk together with Hoffman-Spitzweck
part (ii). This also shows that Exti(A,B) = 0 for i ≥ 2 in this case.

(iii) If A = TI and B = R, then [CS19, Thm. 4.3(ii)] from last talk and
Hoffman-Spitzweck part (iii) give RHom(A,B) = RHom(A,B) = 0.

(iv) IfA = TI andB = T, then (ii) and (iii) and the strictly exact sequence
0→ Z→ R→ T→ 0 give RHom(A,B) = RHom(A,B) = Z⊕I [0].

(v) If A = TI and B = TJ , then (iv) shows that (4.1) is an isomorphism
and Exti(A,B) = 0 for i ≥ 1. Thus if B is any compact abelian group,
we conclude that Exti(A,B) = 0 for i ≥ 2, since there exists a strictly
short exact sequence 0→ B → TJ → TK → 0.

(vi) If A is compact and B is either discrete or compact, then choosing
a strictly short exact sequence 0 → A → TI → TJ → 0 shows that
Exti(A,B) = 0 for i ≥ 2 by (ii) and (v).
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The first statement of the theorem now follows from (i), (ii), and (v), and
the second from (i) and (vi).

Remark. We finally note that the computations in (i) and (iv) also imply
that RHom(A,T) = A∨[0] for any A ∈ LCA. As far as I understand, this is
not a formal consequence of exactness of (−)∨, as RHom is not constructed
as a universal δ-functor, and it is not at all clear whether T remains injective
in the (much larger) category Cond(Ab).
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