
Representations of matrix groups

Remy van Dobben de Bruyn
Utrecht Geometry Summer School, 22 August 2024

1. Introduction

Let 𝐺 be a group and 𝑘 a field. Recall that (finite-dimensional) 𝑘 -linear representations
of 𝐺 can be understood in the following ways:

• Actions 𝐺 × 𝑉 → 𝑉 by linear transformations on a (finite-dimensional) 𝑘 -vector
space 𝑉 .

• Homomorphisms 𝐺 → GL(𝑉).
• Upon choosing a basis, homomorphisms 𝐺 → GL𝑛 (𝑘).

In this lecture, we will be interested in representations of (subgroups of) the group GL𝑛 (𝑘)
itself.

Question 1.1. —- What are the representations of a subgroup of GL𝑛 (𝑘)? I.e. what homomor-
phisms 𝜌 : GL𝑛 (𝑘) → GL𝑚(ℓ) are there?

Remark 1.2. —- There are quite a few different cases studied in the literature:

(1) 𝑘 = R or 𝑘 = C and ℓ = C, restricting to continuous representations: studied in
relation to Lie groups, and also in the Langlands programme. In both cases, it is
important to understand infinite-dimensional representations as well.

(2) 𝑘 = Q𝑝 and ℓ = C, again with a continuity hypothesis (don’t ask). This is what
the local Langlands programme is about.

(3) 𝑘 = F𝑞 and ℓ = C: linear algebraic groups over finite fields give an important
class of finite simple groups. All their representations can be constructed purely
geometrically (Deligne–Lusztig theory).

(4) 𝑘 = Z (ok, not a field, but still important) and ℓ = C: these come up in relation
to modular forms, but are also very interesting in their own right (for instance
Margulis superrigidity).

(5) 𝑘 = ℓ and 𝜌 : GL𝑛 (𝑘) → GL𝑛 (𝑘) given by polynomials: algebraic representations of
linear algebraic groups.

Today’s lecture is about (5), focusing in particular on relating properties of a subgroup
𝐺 ⊆ GL𝑛 to properties of its (algebraic) representations.
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Exercise 1.3. —- Verify that

GL2(𝑘) → GL3(𝑘)(
𝑎 𝑏

𝑐 𝑑

)
↦→

©­­«
𝑎2 𝑎𝑏 𝑏2

2𝑎𝑐 𝑎𝑑 + 𝑏𝑐 2𝑏𝑑
𝑐2 𝑐𝑑 𝑑2

ª®®¬
is a group homomorphism.

Ok, so we need to be more systematic.

2. Definitions and examples

Recall from Monday that affine 𝑛-space A𝑛 is the algebraic variety with A𝑛 (𝑘) = 𝑘𝑛.

Definition 2.1. —- An affine 𝑘 -variety 𝑋 is given by the vanishing locus

𝑋 = 𝑉 ( 𝑓1, . . . , 𝑓𝑟 ) =
{
(𝑥1, . . . , 𝑥𝑛) ∈ A𝑛

�� 𝑓1(𝑥1, . . . , 𝑥𝑛) = . . . = 𝑓𝑟 (𝑥1, . . . , 𝑥𝑛) = 0
}

for polynomials 𝑓1, . . . , 𝑓𝑟 ∈ 𝑘 [𝑥1, . . . , 𝑥𝑛].

Example 2.2. —- The following are affine varieties:

• A𝑛,
• the affine part of a conic, e.g. 𝑧2 = 𝑥2 + 𝑦2,
• A1 \ {0}: it is isomorphic to the hyperbola 𝑥𝑦 = 1 in A2:

A1 \ {0}

∼

𝑥𝑦 = 1

(Algebraic geometers: draw pictures over R. Also algebraic geometers: pretend
that every field is algebraically closed.)

• In general, the nonvanishing locus 𝑈 of a single polynomial 𝑔 inside an affine
variety 𝑋 is affine: if 𝑋 = 𝑉 ( 𝑓1, . . . , 𝑓𝑟 ) ⊆ A𝑛, then

𝑈 = 𝑋 \𝑉 (𝑔) � 𝑉
(
𝑓1, . . . , 𝑓𝑟 , 𝑔𝑧 − 1

)
⊆ A𝑛+1,
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since 𝑔(𝑥1, . . . , 𝑥𝑛) ≠ 0 if and only if there exists 𝑧 such that 𝑔(𝑥1, . . . , 𝑥𝑛)𝑧 − 1 = 0,
and such 𝑧 is unique.

Warning 2.3. —- The nonvanishing of more than one polynomial is usually not affine:
e.g. A𝑛 \ {0} = A𝑛 \𝑉 (𝑥1, . . . , 𝑥𝑛) is not affine if 𝑛 ≥ 2.

Definition 2.4. —- An algebraic group is a variety 𝐺 with a group structure 𝑚 : 𝐺 ×𝐺 → 𝐺

given by polynomials.

We are mostly interested in affine algebraic groups.

Example 2.5. —- The following are algebraic groups:

(0) The zero group.
(1) A𝑛 with addition:

A𝑛 ×A𝑛 → A𝑛(
(𝑥1, . . . , 𝑥𝑛), (𝑦1, . . . , 𝑦𝑛)

)
↦→

(
𝑥1 + 𝑦1, . . . , 𝑥𝑛 + 𝑦𝑛

)
.

It is often denoted G𝑛
𝑎, where G𝑎 is the additive group. More generally, any finite-

dimensional vector space 𝑉 gives an algebraic group A(𝑉).
(2) The multiplicative group G𝑚 is A1 \ {0} with multiplication

G𝑚 ×G𝑚 → G𝑚

(𝑥, 𝑦) ↦→ 𝑥𝑦.

(3) An elliptic curve (𝐸, 0) is an algebraic group (but not affine).
(4) GL𝑛 = A𝑛2 \ 𝑉 (det) is algebraic, where det is the ‘universal determinant’ of the

matrix (𝑥𝑖 𝑗)𝑛𝑖, 𝑗=1 in the polynomial variables 𝑥𝑖 𝑗 . The multiplication is matrix
multiplication:

GL𝑛 ×GL𝑛 → GL𝑛( (
𝑥𝑖 𝑗

)𝑛
𝑖, 𝑗=1 ,

(
𝑦𝑖 𝑗

)𝑛
𝑖, 𝑗=1

)
↦→

(
𝑛∑︁

𝑘=1

𝑥𝑖𝑘𝑦𝑘 𝑗

)𝑛
𝑖, 𝑗=1

.

We saw above that it is affine (as the nonvanishing locus of det in A𝑛2
).

(5) SL𝑛 = 𝑉 (det−1) =
{
(𝑥𝑖 𝑗)𝑛𝑖, 𝑗=1 ∈ GL𝑛

�� det(𝑥𝑖 𝑗) = 1
}

is a subgroup of GL𝑛, called
the special linear group.

(6) The subgroup D𝑛 ⊆ GL𝑛 of diagonal matrices, i.e. 𝑥𝑖 𝑗 = 0 if 𝑖 ≠ 𝑗 :

©­­­­«
∗ 0 · · · 0
0 ∗ · · · 0
...

...
. . .

...

0 0 · · · ∗

ª®®®®¬
.
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(7) The upper triangular matrices T𝑛 ⊆ GL𝑛 given by 𝑥𝑖 𝑗 = 0 if 𝑖 > 𝑗 :

©­­­­«
∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...

0 0 · · · ∗

ª®®®®¬
.

(8) The unipotent upper triangular matrices U𝑛 ⊆ T𝑛 given by 𝑥𝑖 𝑗 = 0 if 𝑖 > 𝑗 and
𝑥𝑖𝑖 = 1 for all 𝑖: ©­­­­«

1 ∗ · · · ∗
0 1 · · · ∗
...

...
. . .

...

0 0 · · · 1

ª®®®®¬
.

(9) The orthogonal group 𝑂 (𝑛) =
{
𝐴 ∈ GL𝑛

�� 𝐴⊤𝐴 = 𝐼𝑛
}
.

(10) The unitary group 𝑈 (𝑛) =
{
𝐴 ∈ GL𝑛

�� 𝐴⊤𝐴 = 𝐼𝑛
}
. Non-example: this is not an

algebraic variety, as complex conjugation is not given by polynomials.
(11) Parabolic subgroups of GL𝑛: block upper triangular matrices

𝑃 =

©­­­­­«
∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...

0 0 · · · ∗

ª®®®®®¬
.

For instance, ©­­­­­­«

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗

ª®®®®®®¬
.

Exercise 2.6. —- Check that (5)–(9) and (11) are indeed subgroups of GL𝑛. Can you
define D(𝑉), T(𝑉), and U(𝑉) for a finite-dimensional vector space 𝑉?

Exercise 2.7. —- Show that U2 � G𝑎. Thus, G𝑎 is a subgroup of GL2. Can you embed
G𝑛

𝑎 in GL𝑚 for some 𝑚?

Exercise 2.8. —- Construct a surjective group homomorphism T𝑛 → D𝑛 with kernel U𝑛.

Thus, all affine algebraic groups we have seen so far are subgroups of GL𝑛. This is no
coincidence:

Theorem 2.9. —- Every affine algebraic group 𝐺 admits a faithful representation 𝐺 ↩→ GL(𝑉)
for some finite-dimensional vector space 𝑉 .

For this reason, affine algebraic groups are also called linear algebraic groups.

The proof of the theorem is not very deep, but we omit it because it plays no role in
studying the representations of any of the groups above.
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3. Jordan decomposition

Recall the Jordan normal form:

Lemma 3.1 ( Jordan normal form). —- If 𝐴 ∈ GL𝑛 (𝑘) is a matrix with all eigenvalues in 𝑘 ,
there exists 𝑆 ∈ GL𝑛 (𝑘) such that 𝑆𝐴𝑆−1 is a block diagonal matrix

©­­«
𝐴1 · · · 0
...

. . .
...

0 · · · 𝐴𝑠

ª®®¬
where each 𝐴𝑖 is of the form

©­­­­­­­­­«

𝜆𝑖 1 0 · · · 0 0
0 𝜆𝑖 1 · · · 0 0
0 0 𝜆𝑖 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 𝜆𝑖 1
0 0 0 · · · 0 𝜆𝑖

ª®®®®®®®®®¬
. (3.1)

First proof. Let 𝑃𝐴(𝑡) = det(𝑡 𝐼 − 𝐴) be the characteristic polynomial of 𝐴. Since all
eigenvalues are in 𝑘 , the characteristic polynomial factors as

∏𝑟
𝑖=1(𝑡 − 𝜆𝑖)𝑛𝑖 where the 𝜆𝑖

are the eigenvalues of 𝐴. The generalised eigenspace 𝐸𝜆𝑖 with eigenvalue 𝜆𝑖 is the kernel of
(𝐴 − 𝜆𝑖)𝑛𝑖 , and we have a decomposition 𝑘𝑛 �

⊕
𝑖 𝐸𝜆𝑖 . We may argue for one 𝐸𝜆𝑖 at a

time, so we reduce to the case where 𝐴 has only one eigenvalue 𝜆. Replacing 𝐴 by 𝐴−𝜆𝐼,
we may also assume 𝜆 = 0, so 𝐴𝑛 = 0. Note that 𝐴 has a Jordan normal form with all
eigenvalues 0 if and only if 𝑘𝑛 has a basis of the form

𝐴𝑚1−1𝑣1, . . . , 𝐴𝑣1, 𝑣1, 𝐴
𝑚2−1𝑣2, . . . , 𝐴𝑣2, 𝑣2, . . . , 𝐴

𝑚𝑠−1𝑣𝑠, . . . , 𝐴𝑣𝑠, 𝑣𝑠, (3.2)

where 𝑠 is the number of Jordan blocks and 𝑚𝑖 is the size of each block. We induct on 𝑛,
the case 𝑛 ≤ 1 being obvious. Since ker 𝐴 ≠ 0, we have dim im 𝐴 < 𝑛 by the rank-nullity
theorem. Thus, the induction hypothesis applies to 𝐴 : im 𝐴 → im 𝐴, so we can choose
a basis (3.2) for im 𝐴. We may choose 𝑤𝑖 with 𝐴𝑤𝑖 = 𝑣𝑖 for all 𝑖, and extend the basis
𝐴𝑚1−1𝑣1, . . . , 𝐴

𝑚𝑠−1𝑣𝑠 of im 𝐴∩ker 𝐴 to a basis 𝐴𝑚1−1𝑣1, . . . , 𝐴
𝑚𝑠−1𝑣𝑠, 𝑢1, . . . , 𝑢𝑟 for ker 𝐴.

We then claim that

𝐴𝑚1𝑤1, . . . , 𝐴𝑤1, 𝑤1, 𝐴
𝑚2𝑤2, . . . , 𝐴𝑤2, 𝑤2, . . . , 𝐴

𝑚𝑠𝑤𝑠, . . . , 𝐴𝑤𝑠, 𝑤𝑠, 𝑢1, . . . , 𝑢𝑟 (3.3)

are linearly independent. Indeed, given a linear relation between them, applying 𝐴 kills
the 𝐴𝑚𝑖𝑤𝑖 and 𝑢𝑖 and gives a linear relation between the others, which is zero since they
form a basis of im 𝐴. Thus we are left with a linear relation between 𝐴𝑚𝑖𝑤𝑖 = 𝐴𝑚𝑖−1𝑣𝑖

and 𝑢𝑖, which is again zero because they form a basis for ker 𝐴. Counting shows that
(3.3) is a basis for 𝑘𝑛, as it consists of

dim im 𝐴 + 𝑠 + 𝑟 = dim im 𝐴 + 𝑠 + dim ker 𝐴 − 𝑠 = 𝑛

elements. □
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Second proof. We view 𝑉 = 𝑘𝑛 as a 𝑘 [𝑡]-module where 𝑡 acts by 𝐴 : 𝑉 → 𝑉 . Note that
𝑉 is a torsion 𝑘 [𝑡]-module since 𝑃𝐴(𝑡) acts by 0 on 𝑉 by Cayley–Hamilton. By the
structure theorem of finitely generated modules over a principal ideal domain, there
is a decomposition 𝑉 � 𝑉1 ⊕ . . . ⊕ 𝑉𝑠 with 𝑉𝑖 � 𝑘 [𝑡]/ 𝑓 𝑚𝑖

𝑖
for some monic irreducible

polynomial 𝑓𝑖 and some 𝑚𝑖 > 0. The characteristic polynomial for 𝑡 acting on 𝑉𝑖 is 𝑓
𝑚𝑖

𝑖
,

so we conclude that 𝑃𝐴(𝑡) =
∏𝑠

𝑖=1 𝑓
𝑚𝑖

𝑖
. Since all eigenvalues of 𝐴 are in 𝑘, we see that

𝑓𝑖 = 𝑡 − 𝜆𝑖 for some 𝜆𝑖 ∈ 𝑘 . The 𝑚𝑖 -dimensional vector space 𝑘 [𝑡]/(𝑡 − 𝜆𝑖)𝑚𝑖 has a basis
(𝑡 − 𝜆𝑖)𝑚𝑖−1, . . . , (𝑡 − 𝜆𝑖), 1, on which multiplication by 𝑡 acts by

𝑡 · (𝑡 − 𝜆𝑖) 𝑗 = (𝑡 − 𝜆𝑖) 𝑗+1 + 𝜆𝑖 (𝑡 − 𝜆𝑖) 𝑗 ,

so the matrix for 𝐴 with respect to this basis is exactly the Jordan block (3.1). □

Definition 3.2. —- Let 𝑉 be a finite-dimensional vector space over a field 𝑘 and let
𝐴 ∈ GL(𝑉). Then 𝐴 is semisimple if it becomes diagonalisable over 𝑘 . It is nilpotent if
𝐴𝑛 = 0 for some 𝑛 > 0, and unipotent if 𝐼 − 𝐴 is nilpotent. Equivalently, 𝐴 is nilpotent
(resp. unipotent) if its characteristic polynomial is 𝑡𝑛 (resp. (𝑡 − 1)𝑛).

Exercise 3.3. —- Show that every element in U𝑛 is unipotent.

A basis-independent reformulation of the Jordan normal form:

Lemma 3.4 ( Jordan decomposition). —- Let 𝑘 be a perfect field, let 𝑉 be a finite-dimensional
𝑘 -vector space, and let 𝐴 ∈ GL(𝑉).

(1) There exists a unique decomposition 𝐴 = 𝐴𝑠 + 𝐴𝑛 where 𝐴𝑠 is semisimple and 𝐴𝑛 is
nilpotent and 𝐴𝑠𝐴𝑛 = 𝐴𝑛𝐴𝑠 .

(2) Suppose 𝐴 is invertible. There exists a unique decomposition 𝐴 = 𝐴𝑠 · 𝐴𝑢 where 𝐴𝑠 is
semisimple and 𝐴𝑢 is unipotent and 𝐴𝑠𝐴𝑢 = 𝐴𝑢𝐴𝑠 .

Proof. First assume that all eigenvalues of 𝐴 are in 𝑘 . Then there exists a basis of 𝑉 for
which 𝐴 has a Jordan normal form. Let 𝐴𝑠 be the diagonal matrix with the same diagonal
entries as 𝐴, and let 𝐴𝑛 = 𝐴 − 𝐴𝑛 be the upper triangular part. Clearly 𝐴𝑠 is semisimple
and 𝐴𝑛 is nilpotent. To check that they commute, we may work one block at a time,
where the result is clear since 𝐴𝑠 is a scalar matrix.

For uniqueness, assume 𝐴 = 𝐵+𝐶 with 𝐵 semisimple and 𝐶 nilpotent and 𝐵𝐶 = 𝐶𝐵. Then
𝐵 commutes with 𝐴, hence with (𝐴 − 𝜆𝑖 𝐼) 𝑗 for each 𝑖, 𝑗 , so 𝐵 preserves the generalised
eigenspaces 𝐸𝜆𝑖 of 𝐴. Since (𝐴 − 𝐵) |𝐸𝜆𝑖

is nilpotent, the eigenvalues of 𝐴 and 𝐵 agree on
𝐸𝜆𝑖 . Since 𝐴|𝐸𝜆𝑖

has only eigenvalue 𝜆𝑖 and 𝐵 is semisimple, we must have 𝐵|𝐸𝜆𝑖
= 𝜆𝑖 𝐼.

This shows (i). For (ii), note that 𝐴𝑠 is invertible if and only if 𝐴 is, as its eigenvalues are
nonzero. Take 𝐴𝑢 = 𝐼 + 𝐴𝑛 · 𝐴−1

𝑠 = 𝐼 + 𝐴−1
𝑠 · 𝐴𝑛, which is unipotent and clearly satisfies

𝐴 = 𝐴𝑠𝐴𝑢 = 𝐴𝑢𝐴𝑠. Conversely, from 𝐴 = 𝐴𝑠𝐴𝑢 = 𝐴𝑢𝐴𝑠, taking 𝐴𝑛 = 𝐴𝑠 (𝐴𝑢 − 𝐼) gives the
additive Jordan decomposition, so uniqueness in (ii) follows from uniqueness in (i).

Finally, if 𝑘 is perfect, then the eigenvalues are defined over some finite Galois extension
𝑘 → ℓ. For all 𝜎 ∈ Gal(ℓ/𝑘), the additive and multiplicative Jordan decompositions of
𝐴 = 𝜎(𝐴) are given by 𝜎(𝐴𝑠) +𝜎(𝐴𝑛) and 𝜎(𝐴𝑠)𝜎(𝐴𝑢), which by uniqueness means that
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𝐴𝑠, 𝐴𝑛, and 𝐴𝑢 are fixed by Gal(ℓ/𝑘), hence defined over 𝑘 . □

Example 3.5. —- Let 𝐴 =
(

5 2
−2 1

)
. Find the additive and multiplicative Jordan decomposi-

tion of 𝐴.

Solution. We have 𝑃𝐴(𝑡) = det(𝑡 𝐼−𝐴) = det
(
𝑡−5 −2
2 𝑡−1

)
= (𝑡−5) (𝑡−1)+4 = 𝑡2−6𝑡+9 = (𝑡−3)2.

Thus the only eigenvalue is 𝜆 = 3. Since 𝐴 ≠ 3𝐼, we get 𝑆𝐴𝑆−1 =
(

3 1
0 3

)
(no need to

compute 𝑆!), which splits as 3𝐼 +
(

0 1
0 0

)
. Thus, 𝐴 splits as 3𝑆−1𝐼𝑆 + 𝑆−1 (

0 1
0 0

)
𝑆. The first

part is just 3𝐼, so 𝐴𝑠 = 3𝐼, hence 𝐴𝑛 = 𝐴 − 3𝐼 =
(

2 2
−2 −2

)
(which is indeed nilpotent).

Finally, 𝐴𝑢 = 𝐼 + 𝐴𝑛/3 = 1
3

(
5 2
−2 1

)
= 𝐴/𝐴𝑠. □

Theorem 3.6 ( Jordan decomposition for algebraic groups). —- Let 𝐺 be a linear algebraic
group over a perfect field 𝑘 , and let 𝑔 ∈ 𝐺 (𝑘). Then there exist unique elements 𝑔𝑠, 𝑔𝑢 ∈ 𝐺 (𝑘)
such that 𝑔 = 𝑔𝑠𝑔𝑢 = 𝑔𝑢𝑔𝑠 and for every finite-dimensional representation 𝜌 : 𝐺 → GL(𝑉),
the multiplicative Jordan decomposition of 𝜌(𝑔) is 𝜌(𝑔𝑠) · 𝜌(𝑔𝑢). Moreover, if 𝜙 : 𝐺 → 𝐻 is a
homomorphism of linear algebraic groups and 𝑔 ∈ 𝐺 (𝑘), then 𝜙(𝑔)𝑠 = 𝜙(𝑔𝑠) and 𝜙(𝑔)𝑢 = 𝜙(𝑔𝑢).

This is proven using Tannaka duality:

Theorem 3.7 (Tannaka duality). —- Let 𝐺 be a linear algebraic group over a field 𝑘 . Let
𝑈 : Rep𝑘 (𝐺) → Vec𝑘 be the forgetful functor, and let Aut⊗

𝑘
(𝑈) be the group of tensor-product

preserving 𝑘 -linear natural isomorphisms 𝑈 → 𝑈. Then 𝐺 (𝑘) ∼→ Aut⊗
𝑘
(𝑈), where 𝑔 ∈ 𝐺 (𝑘)

maps to the natural transformation 𝑈 → 𝑈 given on 𝜌 : 𝐺 → GL(𝑉) by 𝜌(𝑔) : 𝑉 → 𝑉 .

This is applied to the semisimple and unipotent parts 𝜌(𝑔)𝑠, 𝜌(𝑔)𝑢 for all 𝜌 : 𝐺 → GL(𝑉).
(It is not hard to check that these are 𝑘 -linear tensor automorphisms of 𝑈.)

Corollary 3.8. —- If 𝐺 ⊆ GL𝑛 (𝑘) is a linear algebraic group and 𝑔 ∈ 𝐺 (𝑘) is semisimple (resp.
unipotent) when viewed as element of GL𝑛 (𝑘), then 𝜌(𝑔) is semisimple (resp. unipotent) for every
representation 𝜌 : 𝐺 → GL(𝑉).

This can also be proven directly (without Tannaka duality).

Warning 3.9. —- We have really used that the representations are algebraic: the above
corollary is very much false for continuous representations 𝐺 (R) → GL𝑛 (R) (and likewise
for 𝐺 (C) → GL𝑛 (C)), even when 𝐺 is an algebraic group.

For instance, the group R = G𝑎 (R) � U2(R) has a 1-dimensional representation

R → GL1(R) = R×

𝑡 ↦→ 𝑒𝑡 .

Although every element in R is unipotent, the image in GL1(R) is semisimple.

Likewise, the 1-parameter subgroup 𝜌 : R ↩→ GL2(R) given by 𝑡 ↦→
(

2𝑡 2𝑡−1𝑡
0 2𝑡

)
does not

contain the semisimple and unipotent parts of 𝜌(1) =
(

2 1
0 2

)
, contrary to the situation of

Theorem 3.6. Of course, this homomorphism is not given by polynomials.

The exercise below is an approximation of the situation described in this last example.
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Exercise 3.10. —- Suppose char 𝑘 = 0.

(1) Prove that the map

𝜌 : G𝑎 → GL𝑛 (𝑘)

𝑥 ↦→

©­­­­­­­«

1 𝑥
(𝑥
2

)
· · ·

( 𝑥
𝑛−1

)
0 1 𝑥 · · ·

( 𝑥
𝑛−2

)
0 0 1 · · ·

( 𝑥
𝑛−3

)
...

...
...

. . .
...

0 0 0 · · · 1

ª®®®®®®®¬
.

is a group homomorphism. (It might help notationally to write 𝐽 = 𝜌(1) − 𝐼 and
express everything as polynomial in 𝐽.)

(2) Suppose 𝑘 is moreover algebraically closed, and let 𝐴 ∈ GL𝑛 (𝑘). Show that there
is an injective homomorphism G𝑟

𝑚 × G𝑎 ↩→ GL𝑛 (𝑘) whose image contains 𝐴.
(Hint: write 𝐴 = 𝐴𝑠 · 𝐴𝑢. Use G𝑟

𝑚 to cover 𝐴𝑠 and G𝑎 to cover 𝐴𝑢.)
(3) If none of the eigenvalues of 𝐴 is a root of unity (meaning 𝜆𝑛 = 1 for some 𝑛),

show that the subgroup constructed in (2) is the smallest algebraic subgroup of
GL𝑛 containing 𝐴. What happens if one of the eigenvalues is a root of unity?

4. Representations versus elements

From now on, 𝑘 will be algebraically closed.

We saw that every representation 𝜌 : 𝐺 → GL(𝑉) preserves the (multiplicative) Jordan
decomposition.

Corollary 4.1. —- If 𝜌 is a representation of D𝑛 (resp. U𝑛), then 𝜌(𝑔) is semisimple (resp.
unipotent) for all 𝑔 ∈ 𝐺 (𝑘).

Proof. Every element of D𝑛 (resp. U𝑛) is semisimple (resp. unipotent). □

We will see that every representation of D𝑛 (resp. U𝑛 or T𝑛) in GL𝑚 lands in D𝑚 (resp.
U𝑚 or T𝑚) (for a suitable choice of basis!). We will then translate these properties to
categorical properties of Rep𝑘 (𝐺).

4.1 Diagonal groups

Lemma 4.2. —- Let 𝑇 ⊆ GL𝑛 (𝑘) be a set of commuting diagonalisable matrices. Then there
exist 𝑆 ∈ GL𝑛 (𝑘) such that 𝑆𝐴𝑆−1 is diagonal for all 𝐴 ∈ 𝑇 .

Proof. We first prove the result when 𝑇 = {𝐴1, . . . , 𝐴𝑟 } is finite by induction on the number
of elements. If 𝑟 ≤ 1, there is nothing to prove. Assume the result is proven for 𝑟 − 1
commuting matrices, and consider the eigenspace decomposition 𝑉 =

⊕
𝑖 𝐸𝜆𝑖 of 𝐴𝑟 .
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Then each 𝐸𝜆𝑖 is preserved by each 𝐴 𝑗 : if 𝑣 ∈ 𝐸𝜆𝑖 , then 𝐴𝑟𝑣 = 𝜆𝑖𝑣, so

𝐴𝑟 (𝐴 𝑗𝑣) = 𝐴 𝑗 (𝐴𝑟𝑣) = 𝐴 𝑗 (𝜆𝑖𝑣) = 𝜆𝑖𝐴 𝑗𝑣,

so 𝐴 𝑗𝑣 is again in 𝐸𝜆𝑖 . Thus, we may apply the induction hypothesis to 𝐴1, . . . , 𝐴𝑟−1

acting on 𝐸𝜆𝑖 to get a further decomposition into subspaces on which 𝐴1, . . . , 𝐴𝑟−1 act
via scalars. But 𝐴𝑟 also acts as a scalar on 𝐸𝜆𝑖 . Putting together these decompositions
for all 𝑖 gives 𝑉 =

⊕
𝑗 𝑉 𝑗 where each 𝑉 𝑗 is preserved by 𝐴1, . . . , 𝐴𝑟 and each 𝐴𝑖 acts by a

scalar on 𝑉 𝑗 .

This proves the result when 𝑇 is finite. For infinite 𝑇 , use that this process terminates as
decompositions cannot infinitely shrink. Alternatively, note that the span of 𝑇 in End(𝑉)
is finite-dimensional, so we may pick a finite subset 𝑇 ′ ⊆ 𝑇 such that all other matrices
are linear combinations of 𝑇 ′. If each 𝐴 ∈ 𝑇 ′ acts by a scalar on 𝑉 𝑗 , then so do linear
combinations. □

Theorem 4.3. —- Let 𝐺 be a linear algebraic group. Then the following are equivalent:

(1) 𝐺 ⊆ D𝑛 for some 𝑛.
(2) Every representation 𝜌 : 𝐺 → GL(𝑉) lands in D𝑛 for a suitable choice of basis of 𝑉 .
(3) Every representation 𝑉 of 𝐺 is a direct sum of 1-dimensional representations.

A group satisfying the equivalent properties of the theorem is called diagonalisable.

Proof. If 𝐺 ⊆ D𝑛 and 𝜌 : 𝐺 → GL(𝑉), we saw that each 𝜌(𝑔) is diagonalisable. But
D𝑛 is commutative, so 𝜌(𝐺) consists of commuting diagonalisable matrices, hence they
are simultaneously diagonalisable. This proves (1) ⇒ (2), and the converse follows by
choosing a faithful representation 𝐺 ↩→ GL(𝑉).

If 𝜌 : 𝐺 → D𝑛 ⊆ GL𝑛 is a representation, then 𝑘𝑛 =
⊕𝑛

𝑖=1 span(𝑒𝑖) is a direct sum
decomposition into 1-dimensional subrepresentations. Conversely, if 𝑉 =

⊕𝑛

𝑖=1𝑉𝑖 where
all 𝑉𝑖 are 1-dimensional, then choosing a basis (𝑣1, . . . , 𝑣𝑛) with 𝑣𝑖 ∈ 𝑉𝑖 makes all matrices
diagonal since it is a direct sum of representations. □

Exercise 4.4. —- Show that a direct sum 𝑉 =
⊕

𝑖 𝑉𝑖 of representations 𝜌𝑖 : 𝐺 → GL(𝑉𝑖)
is given by

𝐺 → GL(𝑉)

𝑔 ↦→
©­­­­­«
𝜌1(𝑔) 0 · · · 0

0 𝜌2(𝑔) · · · 0
...

...
. . .

...

0 0 · · · 𝜌𝑟 (𝑔)

ª®®®®®¬
.

Likewise, if 𝑊 ⊆ 𝑉 is a subspace and (𝑤1, . . . , 𝑤𝑟 , 𝑣𝑟+1, . . . , 𝑣𝑛) is a basis of 𝑉 obtained
by extending a basis (𝑤1, . . . , 𝑤𝑟 ) of 𝑊 , then 𝑊 is a subrepresentation if and only if 𝜌 is
given by

𝜌(𝑔) =
(
𝜌𝑊 (𝑔) ∗

0 𝜌𝑉/𝑊 (𝑔)

)
.
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If 𝑉 and 𝑊 are 𝐺-representations, can you describe the matrix for 𝑉 ⊗𝑊?

4.2 Unipotent groups

Recall Schur’s lemma:

Lemma 4.5. —- Assume 𝑘 is algebraically closed, and let 𝜌 : 𝐺 → GL(𝑉) be a simple represen-
tation of 𝐺. Then End𝐺 (𝑉) = 𝑘 𝐼 .

Here, End𝐺 (𝑉) means all matrices 𝐴 ∈ End(𝑉) such that 𝜌(𝑔)𝐴 = 𝐴𝜌(𝑔) for all 𝑔 ∈ 𝐺,
and 𝑉 is simple if it has no nontrivial subrepresentations. The proof is the same as for
finite groups.

Exercise 4.6. —- Let 𝑉1, . . . , 𝑉𝑟 be 𝐺-representations, and set 𝑉 =
⊕

𝑖 𝑉𝑖. Show that

End𝐺 (𝑉) =
©­­­­­«

Hom𝐺 (𝑉1, 𝑉1) Hom𝐺 (𝑉2, 𝑉1) · · · Hom𝐺 (𝑉𝑟 , 𝑉1)
Hom𝐺 (𝑉1, 𝑉2) Hom𝐺 (𝑉2, 𝑉2) · · · Hom𝐺 (𝑉𝑟 , 𝑉2)

...
...

. . .
...

Hom𝐺 (𝑉1, 𝑉𝑟 ) Hom𝐺 (𝑉2, 𝑉𝑟 ) · · · Hom𝐺 (𝑉𝑟 , 𝑉𝑟 )

ª®®®®®¬
.

In other words, a block matrix

©­­«
𝐴11 · · · 𝐴1𝑟
...

. . .
...

𝐴𝑟1 · · · 𝐴𝑟𝑟

ª®®¬
commutes with the 𝐺-action on 𝑉 if and only if 𝐴𝑖 𝑗𝜌𝑖 (𝑔) = 𝜌 𝑗 (𝑔)𝐴𝑖 𝑗 for all 𝑖, 𝑗 ∈ {1, . . . , 𝑟}
and all 𝑔 ∈ 𝐺 (𝑘). In particular, if 𝑉 is simple, then End𝐺 (𝑉𝑛) � 𝑀𝑛 (𝑘), the algebra of
𝑛 × 𝑛 matrices, acting by blockwise scalar matrices.

Lemma 4.7. —- Let 𝑉1, . . . , 𝑉𝑛 be simple representations of a group 𝐺, let 𝑉 =
⊕

𝑖 𝑉𝑖 , and let
𝑈 ⊆ 𝑉 be a subrepresentation. Then there exists a complementary subrepresentation 𝑊 ⊆ 𝑉 , i.e.
𝑉 = 𝑈 ⊕𝑊 .

Proof. Let 𝐼 = {1, . . . , 𝑛}, and for each 𝐽 ⊆ 𝐼 write 𝑉𝐽 =
⊕

𝑗∈𝐽 𝑉 𝑗 . Choose 𝐽 ⊆ 𝐼

inclusionwise maximal such that 𝑉𝐽 ∩ 𝑈 = 0. Then we claim that 𝑉 = 𝑈 ⊕ 𝑉𝐽 . By
definition, we have 𝑉𝐽 ∩𝑈 = 0, so we only need to prove 𝑉𝐽 +𝑈 = 𝑉 . If not, there exists
𝑘 ∈ 𝐼 with 𝑉𝑘 ⊈ 𝑉𝐽 +𝑈. Note that 𝑘 ∉ 𝐽 as 𝑉 𝑗 ⊆ 𝑉𝐽 for all 𝑗 ∈ 𝐽. Since 𝑉𝑘 is simple, we
must have 𝑉𝑘 ∩ (𝑉𝐽 +𝑈) = 0. Then 𝑉𝐽∪{𝑘} ∩𝑈 = (𝑉𝐽 +𝑉𝑘) ∩𝑈 = 0 as well, contradicting
maximality of 𝐽. □

Proposition 4.8 (Density theorem). —- If 𝐺 ⊆ GL(𝑉) is a subgroup acting irreducibly on 𝑉 ,
then 𝐺 spans the matrix algebra End(𝑉).

Proof. Let (𝑣1, . . . , 𝑣𝑛) be a basis of 𝑉 , and let 𝐴 ∈ End(𝑉) be any matrix. If 𝑊 = 𝑉𝑛, we
can identify the matrix 𝐴 with the vector (𝐴𝑣1, . . . , 𝐴𝑣𝑛) ∈ 𝑊 . Let 𝑤 = (𝑣1, . . . , 𝑣𝑛) ∈ 𝑊 ,
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and consider the linear map 𝐵 : 𝑊 → 𝑊 given by

©­­«
𝐴 · · · 0
...

. . .
...

0 · · · 𝐴

ª®®¬ ,
so that (𝐴𝑣1, . . . , 𝐴𝑣𝑛) = 𝐵𝑤. Let 𝑈 ⊆ 𝑊 be the submodule generated by 𝑤 (i.e. the
subspace generated by 𝜌𝑊 (𝑔)𝑤 for all 𝑔 ∈ 𝐺). By Lemma 4.7, there exists a complement
𝑋 ⊆ 𝑊 with 𝑊 � 𝑈 ⊕ 𝑋 as 𝐺-representations. Let 𝐶 : 𝑊 → 𝑊 be the projection to 𝑈,
which by Exercise 4.6 is a blockwise scalar matrix (for the decomposition 𝑊 = 𝑉𝑛). In
particular, 𝐶 commutes with 𝐵, so 𝐵𝑤 = 𝐵𝐶𝑤 = 𝐶𝐵𝑤 ∈ 𝑈 since im𝐶 ⊆ 𝑈. □

Definition 4.9. —- If 𝜌 : 𝐺 → GL(𝑉) is a representation, the 𝐺-invariant subspace is
𝑉𝐺 = {𝑣 ∈ 𝑉 | 𝜌(𝑔)𝑣 = 𝑣 for all 𝑔 ∈ 𝐺 (𝑘)}. It is the maximal subrepresentation of 𝑉 on
which 𝐺 acts trivially.

Theorem 4.10. —- Let 𝐺 be a linear algebraic group. Then the following are equivalent:

(1) 𝐺 is a subgroup of U𝑛 for some 𝑛.
(2) All elements of 𝐺 (𝑘) are unipotent.
(3) If 𝑉 is a simple 𝐺-representation, then 𝑉 = 𝑘 with the trivial action.
(4) If 𝑉 is a nonzero 𝐺-representation, then 𝑉𝐺 ≠ 0.
(5) If 𝜌 : 𝐺 → GL(𝑉) is a representation, then 𝜌 lands in U𝑛 for a suitable choice of basis.

A group satisfying the equivalent properties of the theorem is called unipotent.

Exercise 4.11. —- Let 𝐴 ∈ 𝑀𝑛 (𝑘) be a nonzero matrix. Then

span
{
𝐵𝐴𝐶

�� 𝐵,𝐶 ∈ 𝑀𝑛 (𝑘)
}
= 𝑀𝑛 (𝑘).

Exercise 4.12. —- If all elements of a linear algebraic group 𝐺 are conjugate to an element
in T𝑛, is it true that 𝐺 is a subgroup of T𝑛 for a suitable choice of basis?

Proof of Theorem. All elements of U𝑛 are unipotent, proving (1) ⇒ (2).

If all elements 𝑔 ∈ 𝐺 (𝑘) are unipotent, then 𝜌(𝑔) is unipotent for any representation 𝜌

by Theorem 3.6. Thus, we may replace 𝐺 by its image in GL(𝑉). Assume 𝑉 is simple,
so 𝐺 (𝑘) spans End(𝑉) by Proposition 4.8. Suppose there exists 𝑔 ≠ 1 in 𝐺 (𝑘), and
set 𝑥 = 𝑔𝑛 = 𝐼 − 𝑔 (since 𝑔 is unipotent). Since 𝑥 is nonzero, Exercise 4.11 shows that
{𝐵𝑥𝐶 | 𝐵,𝐶 ∈ End(𝑉)} spans End(𝑉). Since End(𝑉) is spanned by 𝐺 (𝑘), it in fact
suffices to take {ℎ𝑥ℎ′ | ℎ, ℎ′ ∈ 𝐺 (𝑘)}. But ℎ𝑥ℎ′ = ℎ(𝐼 − 𝑔)ℎ′ = ℎℎ′ − ℎ𝑔ℎ′ is a difference of
unipotent matrices, so has trace 0. We can never get all of 𝑀𝑛 (𝑘) this way, so we conclude
that 𝐺 is the trivial group, proving (2) ⇒ (3).

Suppose every simple representation is 𝑘 with the trivial action, and let 𝑉 be a nonzero
representation. Take a simple subrepresentation 𝑊 ⊆ 𝑉 , which is trival by assumption,
hence lives inside 𝑉𝐺 . This proves (3) ⇒ (4).

If 𝑉𝐺 ≠ 0 for any nonzero representation 𝑉 , we prove by induction on 𝑛 = dim𝑉 that 𝜌
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lands in U𝑛 for a suitable choice of basis. The result is clear for 𝑛 ≤ 1 as then 𝑉 is the
trivial representation. In general, pick a nonzero element 𝑣1 ∈ 𝑉𝐺, so 𝑊 = span(𝑣1) is a
subrepresentation. By Exercise 4.4, the elements in 𝐺 look like

𝑔 =

(
𝜌𝑊 (𝑔) ∗

0 𝜌𝑉/𝑊 (𝑔)

)
.

By induction, there exists a basis of 𝑉/𝑊 for which 𝜌𝑉/𝑊 (𝑔) is upper triangular unipotent
for all 𝑔 ∈ 𝐺 (𝑘), proving the statement for 𝑉 as well. This proves (4) ⇒ (5). The final
implication (5) ⇒ (1) follows by taking a faithful representation 𝜌 : 𝐺 ↩→ GL𝑛. □

4.3 Triangular groups

Combining the results for D𝑛 and U𝑛 gives a statement for T𝑛. Recall from Exercise 2.8
that there is a surjection T𝑛 → D𝑛 with kernel U𝑛.

Lemma 4.13. —- Let 𝑁 ⊆ 𝐺 be a normal algebraic subgroup, and let 𝑉 be a 𝐺-representation.
Then 𝑉𝑁 is a sub-𝐺-representation.

Proof. Suppose 𝜌(𝑛)𝑣 = 𝑣 for all 𝑛 ∈ 𝑁 (𝑘), and let 𝑔 ∈ 𝐺 (𝑘). Since 𝑁 is normal, the
element 𝑛′ = 𝑔−1𝑛𝑔 is in 𝑁 , so

𝜌(𝑛)𝜌(𝑔)𝑣 = 𝜌(𝑔)𝜌(𝑛′)𝑣 = 𝜌(𝑔)𝑣

since 𝑣 ∈ 𝑉𝑁 and 𝑛′ ∈ 𝑁 . Thus, 𝜌(𝑔)𝑣 ∈ 𝑉𝑁 as well. □

Theorem 4.14. —- Let 𝐺 be a linear algebraic group. Then the following are equivalent:

(1) 𝐺 is a subgroup of T𝑛 for some 𝑛.
(2) There exists a normal unipotent subgroup 𝑈 ⊆ 𝐺 such that 𝐷 = 𝐺/𝑈 is diagonalisable.
(3) Every nonzero 𝐺-representation contains a 1-dimensional subrepresentation.
(4) If 𝜌 : 𝐺 → GL(𝑉) is a representation, then 𝜌 lands in T𝑛 for a suitable choice of basis.

A group satisfying the equivalent properties of the theorem is called trigonisable.

Proof. If 𝐺 ⊆ T𝑛, then 𝑈 = 𝐺 ∩U𝑛 is unipotent and 𝐺/𝑈 ↩→ T𝑛/U𝑛 � D𝑛 is diagonalis-
able, proving (1) ⇒ (2).

Suppose 𝑈 ⊆ 𝐺 is normal and 𝐺/𝑈 is diagonalisable, and let 𝑉 be a nonzero 𝐺-
representation. By Theorem 4.10, we have 𝑉𝑈 ≠ 0, and this is a subrepresentation
by Lemma 4.13. The action of 𝐺 on 𝑉𝑈 is trivial on 𝑈, hence factors via 𝐷 = 𝐺/𝑈.
By Theorem 4.3, every representation of 𝐷 is a direct sum of 1-dimensional repres-
entations, so it has a 1-dimensional sub-𝐷-representation 𝑊 ⊆ 𝑉𝑈 . Then 𝑊 is also a
sub-𝐺-representation, proving (2) ⇒ (3).

Suppose every nonzero representation has a 1-dimensional subrepresentation, and let
𝜌 : 𝐺 → GL(𝑉) be a representation. We will prove by induction on 𝑛 = dim𝑉 that 𝜌

lands in T𝑛 for a suitable choice of basis. The result is clear if 𝑛 ≤ 1 as T𝑛 = GL𝑛 in
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that case. For arbitrary 𝑉 , there exists a 1-dimensional subrepresentation 𝑊 ⊆ 𝑉 . By
Exercise 4.4, the action of 𝐺 is given by

𝜌(𝑔) =
(
𝜌𝑊 (𝑔) ∗

0 𝜌𝑉/𝑊 (𝑔)

)
.

By induction, there exists a basis of 𝑉/𝑊 for which 𝜌𝑉/𝑊 (𝑔) is upper triangular for all
𝑔 ∈ 𝐺 (𝑘), proving the statement for 𝑉 as well. This proves (3) ⇒ (4), and (4) ⇒ (1)
follows by taking a faithful representation 𝜌 : 𝐺 ↩→ GL(𝑉). □

5. Reductive groups

To summarise the situation so far:

• Diagonalisable groups: all representations are direct sums of 1-dimensional rep-
resentations.

• Unipotent groups: the only simple representation is the trivial representation.
• Trigonisable groups: all simple representations are 1-dimensional.

What about representations of GL𝑛, SL𝑛, or parabolic subgroups?

Example 5.1. —- The defining representation of GL(𝑉) on 𝑉 is clearly irreducible. The
same does not hold for parabolic subgroups 𝑃 ⊆ GL𝑛: the block upper triangular form
means certain subspaces are 𝑃-invariant.

Definition 5.2. —- A linear algebraic group 𝐺 is connected if it does not have algebraic
subgroups 𝐻 ⊊ 𝐺 of the same dimension.

Example 5.3. —- Everything we’ve seen is connected. But finite groups are also allowed.

Example 5.4. —- The group G𝑚 is connected, but it doesn’t look connected over R since
G𝑚(R) = R× � {±1} × R>0. However, R>0 ⊆ R× is not algebraic. On the other hand,
a linear algebraic group 𝐺 over C is connected if and only if 𝐺 (C) is connected in the
complex topology.

Proposition 5.5. —- Let 𝐺 be a linear algebraic group. There is a unique maximal connected
normal unipotent subgroup 𝑈 ⊆ 𝐺.

The group 𝑈 is called the unipotent radical of 𝐺, and denoted 𝑅𝑢 (𝐺).

Proof (idea). Take a connected normal unipotent subgroup 𝑈 ⊆ 𝐺 of maximal dimension.
If 𝐻 is any other connected normal unipotent subgroup, then 𝑈𝐻 is again normal. Show
that it is also connected and unipotent. By maximality, this forces 𝑈𝐻 = 𝑈, so 𝐻 ⊆ 𝑈. □

Example 5.6. —- The unipotent radical of a subgroup 𝐺 ⊆ T𝑛 is the group 𝐺 ∩U𝑛 that
came up in the proof of Theorem 4.14.

13



Example 5.7. —- The unipotent radical of the parabolic subgroup

𝑃 =

©­­­­­«
∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...

0 0 · · · ∗

ª®®®®®¬
.

is the group

𝑅𝑢 (𝑃) =
©­­­­­«
𝐼 ∗ · · · ∗
0 𝐼 · · · ∗
...

...
. . .

...

0 0 · · · 𝐼

ª®®®®®¬
.

If the blocks have size 𝑚1, . . . , 𝑚𝑠, then 𝑃/𝑅𝑢 (𝑃) � GL𝑚1 × . . .×GL𝑚𝑠
, as block diagonal

matrices

𝑃/𝑅𝑢 (𝑃) �
©­­­­­«
∗ 0 · · · 0
0 ∗ · · · 0
...

...
. . .

...

0 0 · · · ∗

ª®®®®®¬
.

Definition 5.8. —- A linear algebraic group 𝐺 is reductive if 𝐺 is connected and 𝑅𝑢 (𝐺) = 1.

Example 5.9. —- Connected diagonalisable groups are reductive. They are all isomorphic
to G𝑛

𝑚.

Lemma 5.10. —- If 𝐺 is connected and 𝐺 has a faithful and semisimple 𝐺-representation 𝑉 ,
then 𝐺 is reductive.

Proof. Write 𝑈 = 𝑅𝑢 (𝐺), and write 𝑉 =
⊕

𝑖 𝑉𝑖 as a sum of simple 𝐺-representations.
Then each 𝑉𝑈

𝑖
is a subrepresentation of 𝑉𝑖 since 𝑈 is normal (Lemma 4.13). Since 𝑈 is

unipotent, we have 𝑉𝑈
𝑖

≠ 0, which by simplicity means 𝑉𝑈
𝑖

= 𝑉𝑖 . Thus, 𝑈 acts trivially on
𝑉 , hence 𝑈 = 1 since 𝜌 : 𝐺 → GL(𝑉) is injective. □

Example 5.11. —- Since GL(𝑉) acts irreducibly on 𝑉 , we see that GL(𝑉) is reductive.

Fact 5.12. —- If 𝐺 is connected, then 𝐺/𝑅𝑢 (𝐺) is the maximal reductive quotient of 𝐺.

Example 5.13. —- For a parabolic subgroup 𝑃 ⊆ GL𝑛, the quotient 𝑃/𝑅𝑢 (𝑃) �
∏

𝑖 GL𝑚𝑖

is reductive by Lemma 5.10 and Example 5.11

Theorem 5.14. —- If char 𝑘 = 0, then a connected linear algebraic group 𝐺 is reductive if and
only if every 𝐺-representation splits as a direct sum of simple representations.

The proof (the one I know, anyway) is quite involved, going pretty far into Lie algebras.
We did see one implication in Lemma 5.10, but the other implication is more useful.

There is also a quite good understanding of what reductive groups look like:

• Classify all simple algebraic groups: they come in four families plus six exceptional
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types. (This is a very beautiful theory.)
• Then take finite products of these, and quotient out by a finite subgroup to get all

semisimple algebraic groups.
• Finally, 𝐺 is reductive if and only if it has a diagonalisable normal subgroup 𝐷 ⊆ 𝐺

such that 𝐺/𝐷 is semisimple. For instance, PGL𝑛 = GL𝑛/G𝑚 (quotient by the
diagonal matrices) is simple.

The representation theory of GL𝑛 and SL𝑛 is very well understood (especially in char-
acteristic 0), and can be expressed purely combinatorially. There is also a beautiful
connection between representations of SL𝑛 and representations of the symmetric groups
𝑆𝑚.
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