
ICS on Condensed Mathematics—Notes for talk 4

Ben Moonen

These notes are based on Section 3 of [3], but I give somewhat different proofs for the main results.
The main theorems in these notes are entirely due to Clausen and Scholze. All mistakes are due to
me.

1 Cohomology in a topos

1.1 Notation. If C is a site, we write

PSh(C) = category of presheaves of sets (also called Ĉ)

Sh(C) = category of sheaves of sets (also called C̃)

PAb(C) = category of presheaves of abelian groups

Ab(C) = category of sheaves of abelian groups

1.2 The left adjoint of the inclusion Sh(C)→ PSh(C) is the sheafification functor, which we denote by
F 7→F ♯. IfF is a presheaf of abelian groups thenF ♯ (meaning: the sheafification of the underlying
presheaf of sets) is a sheaf of abelian groups, and the functor PAb(C)→ Ab(C) given by F 7→ F ♯ is
again the left adjoint of the inclusion functor.

The inclusion PAb(C)→ PSh(C) has a left adjoint, which we denote by F 7→ ZF . Concretely, ZF
sends an object T to the free abelian group on the set F (T ). The left adjoint of Ab(C)→ PSh(C) is
then F 7→ Z♯F , where the latter denotes the sheafification of ZF . Note that even F is a sheaf, ZF
is usually not a sheaf. For instance, if U and V are disjoint open subsets of a topological space X
then F (U ⊔ V ) =F (U)×F (V ), and therefore ZF (U ⊔ V ) = ZF (U)⊗ZF (V ); but we want to have
Z♯F (U ⊔ V ) = Z♯F (U)×Z

♯
F (V ).

Scholze uses the notation Z[F ] instead of Z♯F . We shall follow this.

1.3 If X ∈ C̃= Sh(C) andF ∈ Ab(C), the cohomology groups of X with coefficients inF are defined
by

H i(X ,F ) := Exti
�

Z[X ],F
�

,

where the Ext-groups are calculated in the abelian category Ab(C) (which has enough injectives).
If X = hX for some object X of C then

MorAb(C)(Z[X ],F ) =MorC̃(X ,F ) =MorC̃(hX ,F ) =F (X )

by Yoneda. Hence the H i(X ,−) are the right derived functors of F 7→F (X ).
The Ext-groups can be calculated in either variable, i.e., using an injective resolution of F or a

projective resolution of Z[X ].
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2 Hypercoverings
Reference: Deligne [1] or the Stacks Project [4], especially Chapters 0162 and 01FX.

2.1 Let ∆ be the category whose objects are the sets [n] = {0, . . . , n} for n ∈ N, and in which the
morphisms [m]→ [n] are the nondecreasing maps.

For n≥ 1, we have the morphisms δn
j : [n−1]→ [n] (0≤ j ≤ n) that are characterised by the fact

that δn
j is injective and j /∈ Im(δn

j ). For n≥ 0 and 0≤ j ≤ n we also have the maps σn
j : [n+1]→ [n]

that are surjective and have (σn
j )
−1{ j} = { j, j + 1}. Every morphism in ∆ can be obtained as a

composition of maps of the form δn
j and σn

j , for varying indices n and j. The maps δn
j and σn

j satisfy
a number of commutation relations that we will not spell out here.

If there is no risk of confusion, we often omit the indices n in the notation δn
j and σn

j .

2.2 If C is a category, a simplicial object in C is a functor X• : ∆
op → C. One writes Xn for X•

�

[n]
�

.
Further, we write dn

j : Xn → Xn−1 for δ j,∗
n and sn

j : Xn → Xn+1 for σn,∗
j . Concretely, a simplicial object

is then given by a diagram

X• : · · · X3 X2 X1 X0

in which the various arrows dn
j and sn

j (not labeled in the diagram) satisfy the required commutation
relations.

We write Simp(C) for the category of simplicial objects in C.

2.3 An object S of C can be viewed as a constant simplicial object S•: take Sn = S for all n, and let
all arrows di and si be the identity.

An augmentation a : X•→ S of a simplicial object X• to an object S in C is a morphism a0 : X0→ S
such that a0◦d1

0 = a0◦d1
1 . For a morphismϕ : [0]→ [n] in∆, we obtain a morphism a0◦X•(ϕ): Xn→

S. This morphism is independent of the choice of ϕ, and we denote it by an : Xn→ S.
To give such an augmentation is the same as giving a morphism X•→ S• in Simp(C).

2.4 For n ≥ 0, let ∆≤n be the full subcategory of ∆ whose objects are the [m] with m ≤ n. An n-
truncated simplicial object in C is a functor∆op

≤n→ C. Write Simpn(C) for the category of n-truncated
simplicial object in C.

2.5 The inclusion ∆≤n→∆ induces functors

skn : Simp(C)→ Simpn(C) ,

called skeleton functors.
Assume that finite limits exist in C. Then the skeleton functors skn have right adjoints

coskn : Simpn(C)→ Simp(C) ,
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called coskeleton functors. If Y• is an n-truncated simplicial object, one may think of coskn(Y•) as
the minimal way to extend Y• to a simplicial object. The canonical morphism skncoskn(Y•)→ Y• (the
counit of the adjunction) is an isomorphism.

Given an n-truncated simplicial object Y•, the terms of coskn(Y•) are constructed as limits of
certain (finite) diagrams. In general this seems of limited use because the combinatorics of these
diagrams is somewhat involved. However, the term skncoskn(Y•)n+1 can be made explicit, and this
will be important for us. We return to this in Section 5.

2.6 Examples. (1) A 0-truncated simplicial object in C is simply an object Y0 of C. We have

cosk0(Y0)n = Y0 × Y0 × · · · × Y0 (n+ 1 factors).

(2) A 1-truncated simplicial object in C is a diagram

Y1 Y0

←→
d0

←→
d1

←→s1

with d1 ◦ s1 = idY0
= d0 ◦ s1. Then

cosk1(Y≤1)2 = Eq
�

Y1 × Y1 × Y1 Y0 × Y0 × Y0

�←→←→

where the two maps are given by

(x0, x1, x2) 7→
�

(d0(x0), d1(x0), d1(x1)
�

, resp. (x0, x1, x2) 7→
�

(d0(x1), d0(x2), d1(x2)
�

.

In other words, we have the “equations”

d0(x0) = d0(x1) , d1(x0) = d0(x2) , and d1(x1) = d1(x2) .

The three maps di : cosk1(Y≤1)2→ cosk1(Y≤1)1 = Y1 are given by

(x0, x1, x2) 7→











d0(x0) = d0(x1) for i = 0,

d1(x0) = d0(x2) for i = 1,

d1(x1) = d1(x2) for i = 2.

The two maps si : Y1→ cosk1(Y≤1)2 are given by sending w ∈ Y1 to (s1d0(w), w, w), respectively
(w, w, s1d1(w)). (We use “pointwise” notation to describe this example, as otherwise the nota-
tion becomes too involved.) Already in this example, the terms cosk1(Y≤1)n with n≥ 3 become
somewhat complicated.

2.7 Let C be a site and let X• be a simplicial object in C̃ = Sh(C). We obtain a chain complex Z[X•]
in Ab(C) by

Z[X•] : · · ·
d
−→ Z[X2]

d
−→ Z[X1]

d
−→ Z[X0]

where the differentials d : Z[Xn]→ Z[Xn−1] are given by d =
∑n

i=0 (−1)idi .
An augmentation a : X•→ S induces a morphism of chain complexes Z[X•]→ Z[S], where Z[S]

is viewed as a chain complex whose only nonzero term is in degree 0.
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2.8 Definition. Let C be a site that has finite limits. Let S be an object of C. A hypercovering of S is
a simplicial object X• in Simp(C) together with an augmentation a : X•→ S such that:

(a) a0 : X0→ S is a covering in C;
(b) the morphism (d0, d1): X1→ X0 ×S X0 is a covering in C;
(c) for every n≥ 1 the natural morphism Xn+1→ (cosknsknX•)n+1 (the unit of the adjunction) is a

covering in C.

2.9 Remarks. (1) The second condition is not the special case n = 0 of the third condition. A
simplicial object with an augmentation to S may be considered as a simplicial object in the
category C/S . For n ≥ 1 the coskeleton functors coskn in C/S can be calculated in C; see [4],
Lemma 08NJ. For n = 0 this is not true: if Y0 → S is a morphism in C, the terms of cosk0(Y0)
are given by Y0 × · · · × Y0 (see 2.5), whereas the terms of cosk0(Y0) when working in C/S are
given by the fibre products Y0 ×S · · · ×S Y0.

(2) We can generalise this definition, working with the category SR(C, S) = SR(C/S) of semirepre-
sentable objects over S; see [4], Section 0DBB. We shall not need this.

2.10 Proposition. Let C be a site in which finite limits exist. Let a : X• → S be a hypercovering in C.
Then a : Z[X•]→ Z[S] is a resolution of Z[S] in Ab(C).

For the proof, see [4], Lemma 01GF.

2.11 Corollary. In the situation of the proposition, if F is a sheaf of abelian groups on C, we have a
spectral sequence

(2.11.1) Epq
1 = Hq(X p,F ) ⇒ H p+q(S,F ) .

3 Proper hypercoverings of topological spaces
Reference: The Stacks Project [4], Section 09XA.

3.1 A continuous map of topological spaces f : X → Y is said to be proper if f is separated (meaning
that the diagonal in X ×Y X is closed) and universally closed (meaning that for every topological
space Z the map f × idZ : X × Z → Y × Z is closed).

Every continuous map from a compact Hausdorff space to a Hausdorff space is proper.

3.2 Definition. Let S be a topological space. Then a proper hypercovering of S is an augmented
simplicial topological space a : X•→ S such that

(a) a0 : X0→ S is proper surjective;
(b) the map (d0, d1): X1→ X0 ×S X0 is proper surjective;
(c) for every n≥ 1 the map Xn+1→ coskn(sknX•)n+1 is proper surjective.
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The main use of such proper hypercoverings is that sheaf cohomology can be computed on the
simplicial covering:

3.3 Theorem. Let a : X• → S be a proper hypercovering of a topological S. Then for every sheaf of
abelian groups F on S we have a spectral sequence

(3.3.1) Epq
1 = Hq(X p, a−1

p F ) ⇒ H p+q(S,F ) .

3.4 Remark. Suppose all spaces S and Xn are compact Hausdorff. In this case the proper hypercov-
ering a : X•→ S is a hypercovering in CHaus. However, even in that case, (3.3.1) is not the same as
(2.11.1). The Epq

1 -terms in (3.3.1) are sheaf cohomology groups on the spaces X p, whereas the terms
in (2.11.1) are cohomology groups in the topos Ab(C). A priori this is something different.

A proof of Theorem 3.3 is given by Deligne in [1], Section 5.3. He uses that a proper surjective
map of topological spaces is a universal cohomological descent morphism; this is proven in SGA IV,
Exp. Vbis by Saint-Donat.

For locally compact spaces S (which is the only case we need), another proof of Theorem 3.3 can be
found in the Stacks Project, [4], Section 09XA. The argument there is based on the study of a site called
LCqc, whose objects are the locally compact Hausdorff spaces. (The Grothendieck topology that is
considered is a very nontrivial one.) There is a morphism of topoi αS : Sh(LC/S)→ Sh(S); the functor
α−1

S sends a sheaf F on S to the sheaf on LC/S whose value at an object f : Y → S is Γ (Y, f −1F ).
The key point ([4], Lemmas 0D91 and 09X4) is that the adjunction morphism Id→ RαS,∗α

−1
S on the

derived category D+(S) is an isomorphism; this just expresses that the sheaf cohomology of a sheafF
on S is the same as the cohomology of α−1

S F in the topos Sh(LC/S). This gives what we want because
a proper hypercovering a : X•→ S of S is a hypercovering in LC/S , so now Corollary 2.11 applies.

3.5 Lemma. If X is a profinite space and F is a sheaf of abelian groups on X , we have H i(X ,F ) = 0
for all i ≥ 1.

For a proof, see [4], Lemma OA3F. The key point is that every open covering of a profinite space X
has a refinement of the form X = U1 ⊔ · · · ⊔ UN , where U1, . . . , UN are open and closed subsets of X .

3.6 Corollary. Let a : X• → S be a proper hypercovering of a topological S such that all spaces Xn are
profinite. Then for every sheaf of abelian groups F on S we have

H i(S,F )
∼
−→H i
�

Γ (X0, a−1
0 F )

d
−→ Γ (X1, a−1

1 F )
d
−→ · · ·
�

where the differentials d : Γ (Xn, a−1
n F )→ Γ (Xn+1, a−1

n+1F ) are given by d =
∑n+1

i=0 (−1)id∗i .

4 Condensed cohomology with discrete coefficients

4.1 Notation. Write

CHaus= category of compact Hausdorff spaces

ProFin= category of profinite spaces (= ∗proét)
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As topology on either of these we take the one for which the coverings of a space X are the jointly
surjective finite collections of maps {Yi → X }i=1,...,n (with all Yi in the given category).

The inclusion functor ProFin→ CHaus is continuous and defines a morphism of topoi

(4.1.1) Sh(CHaus)→ Sh(ProFin) .

4.2 Proposition. The morphisms of topoi (4.1.1) is an equivalence.

Reference: [3], Lecture II. (This result was discussed in Noah Olander’s talk.)

4.3 Notation.

Cond(Set) := Sh(ProFin) the category of condensed sets;

Cond(Ab) := Ab(ProFin) the category of condensed abelian groups.

By the proposition, we may (and will) instead work in Sh(CHaus) and Ab(CHaus).
If S is any topological space, the functor X 7→MorTop(X , S) defines a condensed set S.

4.4 If S is any compact Hausdorff space and F is a condensed abelian group, we define the con-
densed cohomology groups H i

cond(S,F ) as in Section 1.1, working in the category Ab(CHaus). For
i = 0 we get H0

cond(S,F ) =F (S).

4.5 A topological space X is said to be extremally disconnected if the closure of every open subset
U ⊂ X is again open. If in addition X is compact Hausdorff then X is profinite. We write EDCH
for the category of extremely disconnected compact Hausdorff spaces. The extremally disconnected
compact Hausdorff spaces are the projective objects in CHaus. We shall repeatedly make use of the
fact that whenever we have a solid diagram

X

E Y

←↠ π← →s

←→
f

in CHaus with E extremally disconnected, there exists a continuous s : E→ X with π◦s = f . In partic-
ular, every continuous surjection X ↠ Y in CHaus with Y extremally disconnected has a continuous
section.

The Stone–Čech compactification of any discrete space is an object of EDCH. It follows that for
every compact Hausdorff space S there exists an extremally disconnected Hausdorff space T and a
continuous surjection T → S. (Consider id: Sdiscr→ S and take T = β(Sdiscr).)

4.6 Lemma. Let S be an object in EDCH (i.e., an extremally disconnected compact Hausdorff space).
Then Z[S ] is a projective object in Cond(Ab).

Reference: [3], Lecture II. (This result was discussed in Francesca Leonardi’s talk.)
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4.7 Proposition. Let S be a compact Hausdorff space. Let a : X•→ S be a hypercovering in CHaus such
that all Xn are extremally disconnected. Then for every condensed abelian group F we have

H i
cond(S,F )∼=H i

�

F (X0)→F (X1)→F (X2) · · ·
�

.

Proof. Immediate from Corollary 2.11 and Lemma 4.6.

4.8 Proposition. Let S be a compact Hausdorff space. Then there exists a hypercovering X• of S in CHaus
such that all terms Xn are extremally disconnected.

For the proof we refer to [4], Lemma 094A, in which we take C = CHaus and B ⊂ Ob(C ) the
extremally disconnected spaces. Replacing each Kn = {Un,i}i∈In

(with In finite) that is produced in
the proof of that lemma by the disjoint union of the spaces Un,i gives us a hypercovering in which
each Xn is a single extremally disconnected compact Hausdorff space.

4.9 Theorem. If S is a compact Hausdorff space and A is a discrete abelian topological group,

H i(S, AS)∼= H i
cond(S, A)

for all i ≥ 0.

Here AS denotes the constant sheaf on S given by A, and A is the condensed abelian group defined
by A.

Proof. Choose a hypercovering a : X•→ S as before. By Corollary 3.6 and Proposition 4.7 we have

H i(S, AS)∼=H i
�

A(X0)→ A(X1)→ A(X2) · · ·
�∼= H i

cond(S, A)

for all i.

4.10 Remark. On any paracompact Hausdorff space, sheaf cohomology agrees with Čech cohomol-
ogy. See Godement’s book [2], Section II.5.10.

4.11 The formulation of Theorem 4.9 is not optimal, in that it does not say whether there is a
functorial isomorphism. Here are some comments about this.

Functoriality in the group A is clear from the construction. Given a hyperresolution X• as above,
the isomorphism H i

cond(S, A)
∼
−→ H i[A(X0) → A(X1) → A(X2) → ·· · ] is essentially a definition, as

Z[X•] is a projective resolution of Z[S]. On the other hand, it follows from the method outlined in
Remark 3.4 that the isomorphism H i(S, AS)

∼
−→H i[A(X0)→ A(X1)→ A(X2)→ ·· · ] is also functorial

in A.
It can be shown that the isomorphism H i(S, AS) ∼= H i

cond(S, A) is also functorial in the space S.
The main point here is that, given a continuous map S → T of compact Hausdorff spaces, we can
construct a commutative diagram

X• Y•

S T

←→

←→a ←→ b

←→
such that a : X• → S and b : Y• → T are hypercoverings with all terms Xn and Yn extremally discon-
nected Hausdorff spaces. We omit the details.
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5 A result on hypercoverings of a point

5.1 For [n] ∈ ∆ the presheaf h[n] = Mor(−, [n]): ∆op → Set is a simplicial set, which is called
∆[n] ∈ Simp(Set). By Yoneda, if X is any simplicial set then

MorSimp(Set)

�

∆[n], X
�

= Xn .

In what follows we shall denote ∆[0] by ∗; it is the constant simplicial set which is the 1-point
set ∗ in each degree.

A pointed simplicial set is a simplicial set X• together with a morphism ∗ → X•. By the above, to
give such a morphism is the same as giving a 0-simplex ∗ ∈ X0.

Similarly, by a pointed simplicial space we mean a simplicial topological space X• together with
a morphism ∗ → X•. (The latter is of course automatically continuous in each degree.)

5.2 Let n be a natural number. Consider the category (∆/[n+1])≤n, whose objects are the morphisms
ϕ : [k]→ [n+ 1] in ∆ with k ≤ n, and whose morphisms are commutative diagrams

[k]

[n+ 1]

[k′]

←

→
ϕ

←

→α

←→
ϕ′

Let Y• be an object of Simpn(Top), i.e., an n-truncated simplicial space. Then Y• defines a functor
(∆/[n+1])op

≤n→ Top by sendingϕ : [k]→ [n+1] to Yk andα as above to the induced map Y (α): Yk′ →
Yk. The term in degree n+ 1 of coskn(Y•) is given by

(5.2.1) (cosknY•)n+1 = lim
(∆/[n+1])op

≤n

Yk .

Every ϕ : [k] → [n + 1] with k ≤ n factors through one of the morphisms dn+1
i : [n] → [n + 1]

(i = 0, . . . , n+1), and among all maps ϕ, the dn+1
i are the only maps whose image has cardinality n.

If the image of ϕ : [k]→ [n+1] has cardinality at most n−1 then it factors through one of the maps
dn+1

j ◦ dn
i : [n− 1]→ [n+ 1] for some 0 ≤ j ≤ n+ 1 and 0 ≤ i ≤ n. These compositions satisfy the

identities
dn+1

j ◦ dn
i = dn+1

i ◦ dn
j−1 for 0≤ i < j ≤ n+ 1

and no other relations.

5.3 Proposition. In the above situation,

(cosknY•)n+1 =
�

(y0, . . . , yn+1) ∈ Y n+2
n

�

� dn
i (y j) = dn

j−1(yi) for all 0≤ i < j ≤ n+ 1
	

.

For n= 1 we have seen this in Example 2.6(2). For a proof, see [4], Lemma 0186 or Section 7.
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5.4 Consider a pointed simplicial topological space (X•,∗). We are interested in the existence of
continuous maps

tn : Xn→ Xn+1

for all n≥ 0, such that

(5.4.1)











dn+1
0 ◦ tn = id ;

dn+1
i ◦ tn = tn−1 ◦ dn

i−1 if n≥ 1 and i ∈ {1, . . . , n+ 1};

d1
1 ◦ t0 = ∗ .

(The last condition may be viewed as the special case n = 0 of the second condition. For this, set
X−1 = ∗ and let t−1 : ∗ → X0 be the map given by the chosen 0-simplex.)

5.5 Proposition. Let X• ∈ Simp(CHaus) be a hypercovering of the 1-point space ∗ such that all Xn are
extremally disconnected. Then for every base point ∗ ∈ X0, there exist continuous maps tn : Xn → Xn+1

for n≥ 0 that satisfy the conditions (5.4.1).

Proof. We construct the maps tn : Xn→ Xn+1 by induction. By assumption, the map

(d1
0 , d1

1 ): X1→ X0 × X0

is surjective, and since X0 is an object of EDCH there exists a continuous map t0 : X0→ X1 such that
d1

0 ◦ t0 = id and d1
1 ◦ t0 = ∗.

Assume, then, that n ≥ 1 and that t0, . . . , tn−1 have been constructed. Consider the continuous
map

γ: Xn→ Xn × Xn × · · · × Xn (n+ 2 factors)

given by
x 7→
�

x , tn−1dn
0 (x), . . . , tn−1dn

n (x)
�

.

To prove the existence of a map tn with the desired properties follows, it suffices to show that
γ factors through (cosknsknX•)n+1 ⊂ (Xn)n+2. Indeed, because Xn+1 → (cosknsknX•)n+1 is surjective
and Xn is extremally disconnected, we then obtain a continuous map tn : Xn → Xn+1 such that the
composition

Xn
tn−−→ Xn+1 −→ (cosknsknX•)n+1

is the map γ, which means precisely that tn satisfies all required relations.
Using the description of (cosknsknX•)n+1 given in Proposition 5.3, all that remains is to verify the

following relations:

dn
0

�

tn−1dn
j−1(x)
�

= dn
j−1(x) for 1≤ j ≤ n+ 1;(5.5.1)

dn
i

�

tn−1dn
j−1(x)
�

= dn
j−1

�

tn−1dn
i−1(x)
�

for 1≤ i < j ≤ n+ 1.(5.5.2)

The first is immediate from the identity dn
0 ◦ tn−1 = id. For (5.5.2) we use the identity dn−1

i−1 ◦ dn
j−1 =

dn−1
j−2 ◦ dn

i ; together with the relations (5.4.1) for tn−1 this gives

dn
i

�

tn−1dn
j−1(x)
�

= tn−2dn−1
i−1 dn

j−1(x) = tn−2dn−1
j−2 dn

i (x) = dn
j−1

�

tn−1dn
i−1(x)
�

,

as desired.
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6 Condensed cohomology with real coefficients

6.1 If X is a topogical space, write C(X ,R) = {continuous functions X → R}. For X compact Haus-
dorff this is a Banach space with respect to the sup-norm.

We denote by R the condensed abelian group given by R with its Euclidean topology. The main
result of this section is that for a compact Hausdorff space S we have

H i
cond(S,R) = 0

for all i > 0. Clausen and Scholze in fact prove something more precise. To state this, we take
a hypercovering a : X• → S as in 4.8, with all Xn extremally disconnected Hausdorff spaces. By
Proposition 4.7,

H i
cond(S,R)

∼
−→H i[C(X0,R)

d
−→ C(X1,R)

d
−→ · · · ]

6.2 Theorem. Let assumptions and notation be as above. If ϵ > 0 and f ∈ C(X i ,R) (for i ≥ 1) is a
function with d f = 0, there exists a function g ∈ C(X i−1,R) with d g = f and ∥g∥ ≤ (1+ ϵ) · ∥ f ∥.

6.3 Remark. The theorem implies that condensed cohomology with coefficients in R on a compact
Hausdorff space again agrees with sheaf cohomology. For this, recall that on a paracompact Hausdorff
space S the sheaf CS of continuous R-valued functions is soft; hence its cohomology in degrees i ≥ 1
vanishes.

However, the proof of the theorem is not based on a comparison between condensed cohomology
and sheaf cohomology, as in the case of discrete coefficients. The main problem here is that if we
try to apply Corollary 3.6 with F = CS , the sheaves a−1

p CS that appear are not the same as the
sheaves CX p

of continuous R-valued functions on X p.

Theorem 6.2 will be deduced from the following claim.

6.4 Claim. Fix i ≥ 1 and c > 0. For any ϕ ∈ C(X i ,R) with dϕ = 0, there exists a function h ∈
C(X i−1,R) such that

∥h∥ ≤ (1+ c) · ∥ϕ∥ and ∥ϕ − dh∥ ≤ c · ∥ϕ∥ .

6.5 We first explain how the claim gives the theorem. For this, let ϵ > 0, and let f ∈ C(X i ,R) be a
function with d f = 0. Choose c ∈ (0, 1) such that (1+ c)/(1− c)< 1+ ϵ. We proceed inductively:

• Take ϕ0 = f . The claim gives a function h0 with ∥h0∥ ≤ (1+ c) · ∥ f ∥ and ∥ϕ0 − dh0∥ ≤ c · ∥ f ∥.
• Next take ϕ1 = ϕ0−dh0. The claim gives a function h1 with ∥h1∥ ≤ (1+c)·∥ϕ1∥ ≤ c(1+c)·∥ f ∥

and ∥ϕ1 − dh1∥ ≤ c · ∥ϕ1∥ ≤ c2 · ∥ f ∥.
• Next takeϕ2 = ϕ1−dh1. The claim gives a function h2 with ∥h2∥ ≤ (1+c)·∥ϕ2∥ ≤ c2(1+c)·∥ f ∥

and ∥ϕ2 − dh2∥ ≤ c · ∥ϕ2∥ ≤ c3 · ∥ f ∥.
• Continue inductively.
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Because C(Xn−1,R) is complete, we can take

g = lim
n→∞

(h0 + h1 + · · ·+ hn) .

By construction,

∥g∥ ≤ (1+ c)(1+ c + c2 + · · · ) · ∥ f ∥=
1+ c
1− c

· ∥ f ∥ ≤ (1+ ϵ) · ∥ f ∥ ,

and ∥ f − d g∥= 0, which means that f = d g.

6.6 Reduction to the case S = {pt}. Assume Theorem 6.2 is true if S is a point. We deduce from this
the general case.

Let S be compact Hausdorff, a : X• → S a hypercovering by extremally disconnected compact
Hausdorff spaces. For s ∈ S, write X•(s) = a−1{s}, which is a hypercovering of {s} by extremally
disconnected compact Hausdorff spaces.

Our goal is to prove Claim 6.4. Fix i ≥ 1 and c > 0, and let ϕ ∈ C(X i ,R) be a nonzero function
with dϕ = 0. For s ∈ S, let ϕs be the restriction of ϕ to X i(s) ⊂ X i . The theorem (for S = {s}) then
gives the existence of a continuous functionψs : X i−1(s)→ Rwith dψs = ϕs and ∥ψs∥ ≤ (1+c)·∥ϕs∥.
By Tietze’s extension theorem, there exists a continuous function Ψs : X i−1 → R that extends ψs and
such that ∥Ψs∥= ∥ψs∥.

We can choose an open neighbourhood Us of s in S such that

∥ϕ − dΨs∥a−1
i (Us) < c · ∥ϕ∥ .

(Note that W =
�

x ∈ X i

�

� |(ϕ − dΨs)(x)| ≥ c · ∥ϕ∥
	

is closed in X i by continuity of ϕ − dΨs. Because
ai : X i → S is proper, ai(W ) ⊂ S is closed, and s /∈ ai(W ). Now take Us = S \ ai(W ).)

Because S is compact, finitely many of the sets Us, say Us1
, . . . , Usm

, cover S. Now choose a partition
of unity, 1 =
∑m

i=1 ρi with Supp(ρi) ⊂ Usi
and such that the ρi take values in R≥0. Then h =

∑

ρiΨsi
: X i−1 → R is a continuous function with ∥h∥ ≤ (1+ c) · ∥ϕ∥ and ∥ϕ − dh∥ ≤ c · ∥ϕ∥. This

proves Claim 6.4.

6.7 It remains to prove Theorem 6.2 in case S = {s} is a point. Note that H i
cond({s},R) = 0 for all

i > 0 (because {s} is extremally disconnected); but we need the quantative version of this result.
This follows from Proposition 5.5. Indeed, choosing any base point ∗ ∈ X0, that proposition gives the
existence of continuous maps tn : Xn → Xn+1 satisfying the conditions given in Section 5.4. Now let
f : Xn → R, with n ≥ 1, be a continuous function such that d f = 0. This just means that for every
x ∈ Xn+1 we have the relation

(6.7.1)
n+1
∑

i=0

(−1)i · f (dn+1
i x) = 0 .

11



Now define g = f ◦ tn−1 : Xn−1→ R. For y ∈ Xn we then have

d g(y) =
n
∑

j=0

(−1) j · g(dn
j y)

=
n
∑

j=0

(−1) j · f (tn−1dn
j y)

=
n
∑

j=0

(−1) j · f (dn+1
j+1 tn y)

=
n+1
∑

i=1

(−1)i+1 · f (dn+1
i tn y)

= f (dn+1
0 tn y) by (6.7.1)

= f (y) .

This shows that d g = f , and it is clear from the definition of g that ∥g∥ ≤ ∥ f ∥.
This completes the proof of Theorem 6.2.

7 Appendix: details for Proposition 5.3

7.1 We place ourselves in the situation considered in Section 5.2: n is a natural number, and Y• is
an n-truncated simplicial space. Define

C =
�

(y0, . . . , yn+1) ∈ Y n+2
n

�

� dn
i (y j) = dn

j−1(yi) for all 0≤ i < j ≤ n+ 1
	

.

It is clear from (5.2.1) that there is a canonical continuous map

θ : (cosknY•)n+1→ C .

Our claim is that this map is an isomorphism. To prove this, we construct an inverse.

7.2 Every morphism [k]→ [n+ 1] in ∆ has a unique factorisation

[k]↠ [m] ,→ [n+ 1]

as a surjective map followed by an injective map. Moreover, every commutative diagram

(7.2.1)

[k]

[n]

[k′]

←

→α

←

→
ϕ

←→
ϕ′

can be uniquely extended to a commutative diagram

[k] [m]

[n]

[k′] [m′]

←

→α

←↠

←
-

→β
←- →

←↠
←- →
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7.3 To construct an inverse of θ we have to assign to every element (y0, . . . , yn+1) ∈ C a collection
of elements

(yϕ ∈ Yk)ϕ : [k]→[n+1]
with k ≤ n

in such a manner that for every diagram (7.2.1) we have the relation α∗(yϕ′) = yϕ. By the above
remarks, it suffices to define yϕ for all injective maps ϕ and to check the desired relation for all
injective maps α.

If ϕ : [k]→ [n+ 1] is injective with k ≤ n, choose a factorisation of ϕ as a composition

[k]
ρ
,−→ [n]

dn+1
i−−−→ [n+ 1]

and define yϕ = ρ∗(yi). We have to show that this is independent of choices. If k = n this is clear. If
k ≤ n− 1, suppose

[k]
σ
,−→ [n]

dn+1
j
−−−→ [n+ 1]

is another factorisation of ϕ. Withour loss of generality we have 0 ≤ i < j ≤ n + 1. (If i = j then
ρ = σ and there is nothing to prove.) Then there exists a commutative diagram

[n]

[k] [n− 1] [n+ 1]

[n]

←

→
dn+1

j

←- →τ

←→
dn

i

←

→dn
j−1

←→
dn+1

i

such that dn
i ◦ τ = σ and dn

j−1 ◦ τ = ρ. Because we have imposed the relation dn
i (y j) = dn

j−1(yi), it

follows that ρ∗(yi) = τ∗
�

dn
j−1(yi)
�

= τ∗
�

dn
i (y j)
�

= σ∗(y j), as desired.
It is clear now that for any diagram (7.2.1) with α, ϕ and ϕ′ injective, we have yϕ = α∗(yϕ′):

if ϕ′ = dn+1
i ◦ ρ with ρ : [k′] ,→ [n] then ϕ = dn+1

i ◦ (ρ ◦ α) is a factorisation of ϕ, and therefore
yϕ = (ρ ◦α)∗(yi) = α∗

�

ρ∗(yi)
�

= α∗(yϕ′).
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