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These notes are based on a talk given the Intercity seminar of Winter 2022 on “Condensed Math-
ematics”, which follow [Schb]. The aim of the talk it to motivate the use of solid abelian groups in
developing a six-functor formalism for quasicoherent sheaves.
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1 Introduction

Cohomologies want to be sheaf theories
Sheaf theories want to be six-functor formalisms

Algebraic geometry is famous for having (too?) many cohomology theories. Let us list a few:

• Coherent cohomology H∗coh(−,O) (with the simplest coherent coefficient sheaf possible O ini-
tially),

• Singular (or Betti) cohomology H∗B(−,Z) := H∗sing((−)an,Z),

• `-adic cohomology H∗` (−,Z`),

• Algebraic de Rham cohomology, H∗dR(−/k)

• Rigid cohomology H∗rig(−/K).

These cohomology theories only make sense (or are well-behaved) in certain contexts:
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• Coherent cohomology makes sense for arbitrary schemes over an arbitrary ring R, and produces
R-modules. For simplicity in this talk I will always consider finite type R-schemes over a Noethe-
rian ring R.

• Betti cohomology is defined for finite type C-schemes, and produces abelian groups.

• `-adic cohomology works best over an algebraically closed field k of characteristic different from
the fixed prime `, and produces Z`-modules.

• Algebraic de Rham cohomology works best for finite type k-schemes with k a field of characteristic
0, and produces k-vector spaces.

• Rigid cohomology is defined for k-varieties where k is the characteristic p residue field of a
characteristic 0 non-archimedean valued field K, and produces K-vector spaces.

Grothendieck, who contributed in important ways to the development of all these theories, famously
observed that Betti, `-adic, de Rham and rigid1 cohomology have very similar properties such as
Künneth formulas and Poincaré duality. In the Betti case, these properties are inherited from algebraic
topology, but for the others they have to be established in completely different ways.

Grothendieck collectively named them Weil cohomologies2, because of Weil’s original insight that
such cohomology theories should exist in positive characteristic and that they could help tackle his
conjectures on zeta functions over finite fields. Grothendieck conjectured further that the similarities
between all Weil cohomologies, and their relationship with algebraic cycles, should be ultimately ex-
plained by the existence of universal cohomological objects called motives. Due to this deep similarity,
we will concentrate in this talk on the Betti case (which is the most geometrically intuitive and techni-
cally the simplest) except for a few remarks; however, almost all results hold with small modifications
for all Weil cohomologies.

At first sight, coherent cohomology behaves very differently from Weil cohomologies.

Example 1.1. We have

H∗B(A1
C,Z) = H∗sing(C,Z) = H0

sing(C,Z) = Z[0]

because C is contractible, whilst we have

H∗coh(A1
R,O) = H0

coh(A1
R) = O(A1

R) = R[t][0]

The affine line thus “appears contractible” for Weil cohomologies but not for coherent cohomology.
This also illustrates another important difference: Weil cohomology groups of finite type k-schemes
are always finitely generated, while coherent cohomology groups are often not finitely generated over
R even for finite type R-schemes.

Example 1.2. We have

H∗B(P1
C,Z) = H∗sing(S2,Z) = Z[0]⊕ Z(−1)[−2]

where Z(−1) := H2
B(P1

C) is a free rank 1 abelian group. The object Z(−1) is called a Tate twist.
Tate twists are defined similarly as H2(P1) in all Weil cohomologies and play a central role in their
study; because Z(−1) is invertible for the tensor product, we can define for any n ∈ Z an object
Z(n) := Z(−1)⊗−n. On the other hand we have H∗coh(P1

R,O) = R[0], so coherent cohomology has no
Tate twists.

1For Grothendieck, this meant crystalline cohomology and was essentially restricted to smooth projective varieties,
since rigid cohomology was defined after Grothendieck distanced himself from the mainstream mathematical community.

2The name “Weil cohomology” is often used for the restriction of these cohomology theories to smooth projective
varieties, but for this talk we are really interested in all varieties.
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Example 1.3. LetR be a non-reduced finite type C-algebra, such asR = C[x]/(x2). Since Spec(R)an =
Spec(Ran

red), we have
H∗B(Spec(R),Z) ' H∗B(Spec(Rred),Z)

whist
H∗coh(Spec(R),O) = R[0] 6= Rred[0] = H∗coh(Spec(Rred),O).

In general, Weil cohomologies do not see the difference between X and Xred, and in fact between X
and Y where f : X → Y is a universal homeomorphism, while coherent cohomology very much does.

The main message of this talk is that despite these profound differences, with the right perspective,
Weil cohomologies and coherent cohomology actually have a lot in common: they share a very rich
functoriality, the six-functor formalism. This formalism encodes the fundamental properties common
to all these cohomology theories. In particular, it unifies and generalises Poincaré duality (on the Weil
side) and Serre duality (on the coherent side), and also makes the proof of these duality theorems
easier and conceptual. The name “six-functor” refers to the six operations

f∗, f∗, f!, f
!,⊗,Hom

on derived categories of sheaves; we will explain this notation in detail later.
The Weil/coherent parallel has been understood in some form since the beginnings of the subject:

Grothendieck developed parallel duality formalisms first in coherent cohomology [Har66], then (in
collaboration with many others) in étale/`-adic cohomology in SGA4 and SGA5, and Verdier developed
the Betti case in [Ver95]. However the classical theory of derived categories of quasicoherent sheaves
of [Har66] does not admit a six-functor formalism, but only a five-functor formalism! The basic issue,
as we will explain below, is that “coherent cohomology with compact supports” does not make sense
classically and there is no coherent f! functor. This means that the proofs in [Har66] and in subsequent
developments of the coherent theory were technical and less natural than in the Betti and `-adic case.

Clausen and Scholze discovered that condensed mathematics can be used to build theories of
quasicoherent sheaves and six-functor formalisms for “analytic geometry” in a new, very general sense,
including complex analytic geometry, rigid analytic geometry and much more besides [Scha; CS].
However, their ideas already bring something new to quasicoherent sheaves in algebraic geometry.
In particular, their theory of solid abelian groups and solid modules can be used to construct a full
quasicoherent six-functor formalism and to complete the analogy between the Weil and coherent six-
functor formalisms. This is precisely the goal of the rest of this seminar.

Six-functor formalisms have many applications all over algebraic and arithmetic geometry, which
we will not discuss at all. On the coherent side, interesting functors and equivalences between derived
categories of schemes are almost always Fourier-Mukai transforms whose very definition and basic
properties are based on the six-functor formalism [Huy06]. On the Weil side, the original and perhaps
still most spectacular application is the proof of the Weil conjectures using `-adic cohomology [SGA5;
Del74; Del80].

The Betti six-functor formalism is discussed in depth in [KS90, Chapters 2-3]. Here are other
general introductions to six-functor formalisms: [Schc; Gal21].

2 From cohomologies to sheaf theories

Let X be a finite type R-scheme with structure morphism πX : X → Spec(R)and let F ∈ QCoh(X)
be a quasicoherent sheaf. We have

Hi
coh(X,F) ' RiπX∗F

where
RiπX∗ : QCoh(X) −→ QCoh(R) ' R−Mod
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is the i-th derived functor of the pushforward functor

πX∗ : QCoh(X)→ QCoh(R).

It is convenient to package all cohomology degrees together by introducing the derived category
Dqcoh(X) of complexes of Zariski sheaves onX with quasicoherent cohomology up to quasi-isomorphism.
Then, for any morphism of schemes f : X → Y , we can consider the derived pushforward functor

Rf∗ : Dqcoh(X) −→ Dqcoh(Y ),

which provides a “relative version” of cohomology. This functor has a left adjoint, the derived pullback
functor

Lf∗ : Dqcoh(Y ) −→ Dqcoh(X),

which is a relative version of the constant sheaf functor. Besides these two functors, basic sheaf theory
also provides a derived tensor product functor

−⊗L − : Dqcoh(X)×Dqcoh(X) −→ Dqcoh(X)

which makes Dqcoh(X) into a symmetric monoidal category and a derived internal Hom

RHom(−,−) : Dqcoh(X)×Dqcoh(X) −→ Dqcoh(X)

which is related to ⊗L by the adjunction

Hom(F⊗L G,H) ' Hom(F,RHom(G,H))

The same pattern, restricted to finite type schemes over C, holds for Betti cohomology. Indeed,
complex algebraic varieties are nice3 topological spaces, which implies that Betti cohomology H∗B(X,Z)
is isomorphic to the cohomology of the constant sheaf ZX on Xan := X(C), see [Pet22]. We thus have

Hi
B(X,Z) = HiRπX∗ZX [0]

where
RπX∗ : D(Xan,Z) −→ D(Spec(C)an,Z) ' D(Ab)

is the derived pushforward and D(Xan,Z) the derived category of sheaves of abelian groups on Xan.
We also have derived pullbacks, derived tensor products and derived internal Homs in this setting.

Let’s abstract the common structure obtained so far.

Definition 2.1. Let S be a base scheme and SchS be the category of finite type schemes over S. A
sheaf theory (or four functor formalism)4 is a functor

D(−) : Schop
S −→ TriCat⊗

to the category TriCat⊗ of symmetric monoidal triangulated categories (and symmetric monoidal
functors), such that

• for any f : X → Y in SchS , the functor

f∗ := D(f) : D(Y ) −→ D(X)

admits a right adjoint
f∗ : D(X) −→ D(Y ).

3cohomologically locally connected in the sense of [Pet22, §1.1], which is the case in particular for any CW-complex
4Neither name is quite standard terminology, but they are convenient for this talk.
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• The symmetric monoidal structure on each D(X) is closed, i.e., there are internal Hom bifunctors
Hom such that

Hom(F⊗G,H) ' Hom(F,Hom(G,H)).

Remark 2.2.

(i) Implicit in the definition is the fact that f∗ is symmetric monoidal for any f , i.e., we have natural
isomorphisms

f∗(F⊗G) ' f∗(F)⊗ f∗(G).

This holds in the general context of sheaves on a locally ringed space (by simple properties of
tensor products of modules), so in particular in our coherent and Betti examples.

(ii) We have dropped the left/right derived functor decorations from the notation (e.g. writing f∗
for Rf∗) and will do so consistently in the rest of the talk. All the structure and results that
matter fo us happen at the level of derived/triangulated categories, and in some examples of sheaf
theories we do not even necessarily have underlying abelian categories. Consequently, the word
“sheaf” in what follows should be interpreted as “complex of sheaves”, or even better “object in
some derived category of sheaves”.

(iii) Definition 2.1 is not quite right as it stands: neither of our coherent or Betti examples satisfy it!
The problem is that pullbacks of (complexes of) sheaves are not strictly speaking functorial, but
only functorial up to a natural isomorphism. This can be fixed by interpreting TriCat⊗ as a 2-
category and D(−) as a 2-functor. However, this issue is only the first of increasingly complicated
categorical “coherence” issues in the study of six-functor formalisms, and triangulated categories
quickly prove unfit to the task. For instance, one would like to make sense of gluing statements
of the form:

“Given an open cover {Ui} of X, the category D(X) is the (higher-categorical) limit of the
categories D(Ui1 ∩ . . . Uin) along the Čech nerve of the cover.”

Given a group G acting on X, one also wants to define the category DG(X) of G-equivariant
sheaves directly in terms of “the induced action of G on D(X)”. None of this cannot be made
to work in the 2-category TriCat⊗.

A very effective way to deal with all those issues in one fell swoop is to work with ∞-categories,
and to define a sheaf theory as an (∞-)functor D(−) : Schop

S → Catst,⊗
∞ to the ∞-category of

symmetric monoidal stable ∞-categories satisfying the conditions above.

Since these coherence issues are quite orthogonal to the main point of this talk, we will mostly
pretend they do not exist and work with triangulated categories without further comments.

At this point we have two sheaf theories: Dcoh(−) on SchR and DB(−) := D((−)an,Z) on SchC.
In fact, each Weil cohomology mentioned in the introduction can be promoted (with considerable
technical difficulties) to a sheaf theory:

(i) `-adic cohomology to the theory of `-adic sheaves [SGA4],

(ii) Algebraic de Rham cohomology to the theory of holonomic D-modules [HTT08],

(iii) Rigid cohomology to the theory of arithmetic D-modules [AL22].

Remark 2.3. • The sheaf theories described so far have the special property that when k is an
algebraically closed field, we have D(k) ' A−Mod for some coefficient ring A, reflecting the fact
that the corresponding cohomology groups are just graded A-modules. Weil cohomology theories
carry interesting additional structures, like the mixed Hodge structure on Betti cohomology and
the Galois actions on `-adic cohomology, and it would be good to integrate them as well.

5



For Galois actions on `-adic cohomology, this is actually already part of the theory of `-adic
sheaves (since D(két,Z`) is roughly speaking a derived category of Gal(k̄/k)-representations on
Zl-modules when k is not algebraically closed). For mixed Hodge structures, this requires a lot
more work and the theory of mixed Hodge modules of Saito [Sai86; Sai17].

• Another very interesting source of sheaf theories in the sense above is motivic homotopy theory
after Morel–Voevodsky. This leads in particular to sheaf theories SH(−) of stable motivic ho-
motopy types and DM(−) of motivic sheaves which are our best current candidates to realise
Grothendieck’s motivic project [Ayo07a; Ayo07b; CD19]. The categories SH(k) and DM(k) are
very complicated even when k is a field; for instance, morphism groups in DM(k) encode the
intersection theory of Chow groups and higher Chow groups of smooth k-varieties.

• Variants of Definition 2.1 (and of the discussion of six-functor formalisms that follows) make
sense in other geometric contexts, for example complex analytic geometry and rigid analytic
geometry [AGV22; Man22a; Man22b]. The Betti sheaf theory DB(−) can clearly extended to
arbitrary topological spaces, and the associated six-functor formalism has good properties for
locally compact spaces [KS90].

3 Six-functor formalisms: motivation

Why are sheaf theories, as defined above, not enough? Why do we need to go from four to six functors?
Here are two important motivations.

First, given a sheaf theory D(−) as above, we want to use it to “compute” cohomology in interesting
ways. For this, we can use natural transformations which are defined completely canonically from D(−)
using the various adjunctions. Here are the most important ones:

• (Base change) For a cartesian commutative square in SchS ,

Y ′ Y

X ′ X

g̃

f̃ f

g

the corresponding base change map is defined the composition

g∗f∗ → f̃∗f̃
∗g∗f∗ ' f̃∗(gf̃)∗f∗ ' f̃∗g̃∗f∗f∗ → f̃∗g̃

∗

where we have used the (co)units of the pullback/pushforward adjunctions and the functoriality
of pullbacks5. In particular, when f is the inclusion of a closed point x ∈ X, this gives a natural
transformation

(g∗(−))x −→ (gx)∗(−).

which compares “the fibre of the cohomology with the cohomology of the fibre”.

• (Projection) By a similar game with adjunctions starting from the fact that f∗ is monoidal, we
get a natural transformation

f∗F⊗G −→ f∗(F⊗ f∗G).

• (Künneth) Given two morphisms f : Y → X and h : Z → X, there is a natural transformation

f∗F⊗ h∗G −→ (f ×X h)∗(F �X G)

where �X : D(Y )×D(Z)→ D(Y ×X Z) is the exterior product

F �X G := p∗1F⊗ p∗2G.
5The definition of the map does not use that the square is cartesian, but usually this is necessary for it to have good

properties.
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Exercise 3.1. Construct the projection and Künneth maps using adjunctions and monoidality.

In the coherent setting, the projection and Künneth maps are always isomorphisms, w (with Tor-
independence assumptions for base change) [Stacks, Tags 08ET, 0FLN].

In the Weil setting, these natural transformations are however far from isomorphisms in general.
Such natural transformations are only useful for computations if we can understand when they are
isomorphisms. There are two basic facts of the matter: base change along open immersions and the
proper base change theorem.

Proposition 3.2. (Open base change) Let D(−) be any one of the above examples of sheaf theories
(quasicoherent, Betti, other Weil type, motivic...). Let j be an open immersion and g be any morphism.
Then the corresponding base change map is an isomorphism:

j∗g∗F
∼−→ g̃∗j̃

∗F.

This is already very useful because of the following.

Proposition 3.3. (Zariski separation) Let D(−) be any one of the examples of sheaf theories above
(quasicoherent, Betti, other Weil type, motivic...). Let {ji : Ui → X}i∈I be an open covering of a
scheme X. Then the functors {j∗i }i∈I are jointly conservative: a morphism α : F→ G in D(X) is an
isomorphism if and only if j∗i (α) is an isomorphism for all i ∈ I.

Theorem 3.4. (Proper base change) Let D(−) be a Weil or motivic sheaf theory. With the nota-
tions above, assume that f and h are proper. Then the base change, projection and Künneth natural
transformations are all isomorphisms:

f∗g∗F
∼−→ g̃∗f̃

∗F

f∗F⊗G
∼−→ f∗(F⊗ f∗G)

f∗F⊗ h∗G
∼−→ (f ×X h)∗(F �X G).

Exercise 3.5. Prove the third isomorphism “formally”, using only the first two (Easy version: prove
that there is one such isomorphism; hard version: prove that the isomorphism constructed in the
previous exercise is an isomorphism)

From this perspective, six-functor formalisms give us control over when these canonical maps are
isomorphisms beyond the proper case.

The second motivation is that, as mentioned in the introduction, we want the formalism to encode
duality theorems: Serre duality in the coherent case, Poincaré duality in the Betti - and more generally
Weil - case.

Let X/C be a smooth, non-necessarily proper d-dimensional variety and L be a local system of
Q-vector spaces (for simplicity). Then Poincaré duality takes the form

Hi
B,c(X,L)∨ ' H2d−i

B (X,L∨ ⊗Q(d))

where H∗B,c denotes cohomology with compact supports and Q(d) is a Tate twist. So to integrate
Poincaré duality into the formalism, we need to treat cohomology and cohomology with compact
supports on the same footing, that is, sheaf-theoretically.

Serre duality seems of a quite different nature, since it is classically only defined for a proper smooth
scheme X of relative dimension d over R and a vector bundle E over X:

Hd−i
coh (X,E)∨ ' Hi

coh(X,E∨ ⊗ Ωn
X/R)

and there is no cohomology with compact supports in sight. As we will see, the work of Clausen-Scholze
removes this restriction to proper schemes and makes the parallels between Poincaré and Serre duality
much stronger.
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4 Six-functor formalism: Betti

The above discusion of Poincaré duality suggests that, in the same way that we have “relativized”
cohomology with (derived) pushforwards, we should have for every morphism f : X → Y of finite type
C-schemes an exceptional pushforward functor

f! : DB(X,Z) −→ DB(Y,Z)

(pronounced “f lower shriek”) such that

Hi
B,c(X,Z) ' HiπX!ZX .

In this Betti setting, it is possible to write such a functor very explicitly. Let F be a sheaf of abelian
groups on Xan. We define f!F ∈ Shv(Y an,Z) as

(f!F)(U) = {s ∈ F(f−1(U))|f : Supp(s)→ U is proper}.

This yields a left-exact functor between abelian categories

f! : Shv(Xan,Z) −→ Shv(Y an,Z)

and we define
f! : DB(X,Z) −→ DB(Y,Z)

as its right derived functor.
By construction, there is a natural transformation

f! −→ f∗

which is an isomorphism when f is proper. We also have functoriality isomorphisms

(f ◦ g)! ' f! ◦ g!.

Lemma 4.1. Let j : U → X be an open immersion.

(i) j! : Shv(Uan,Z) −→ Shv(Xan,Z) is the “extension by zero” functor, i.e. j!F is the subsheaf of
j∗F with

(j!F )x '
{
Fx, x ∈ U,
0, x /∈ U.

In particular j! is exact.

(ii) We have that
j! : DB(U,Z) −→ DB(X,Z)

is the left adjoint of j∗.

Proof. Let us prove (i). By definition, j!F is a subsheaf of j∗F and so it suffices to compute the stalks
at x /∈ U . Let x ∈ V ⊂ X be an open neighbourhood and s ∈ (j!F )(V ). Then by definition, the map
supp(s) → X is proper, so supp(s) is closed in X. Let W = X \ supp(s). Then V ∩W is an open
neighbourhood of x in X and s|W∩V = 0. This shows that (j!F )x = 0 and concludes the proof. The
exactness of j! can then be checked on stalks.

To prove (ii), since j∗ and j!, it suffices to show the adjunction at the level of abelian categories
of sheaves (and then trivially derive). This adjunction is then standard [Stacks, Tag 03DH]. Here is a
sketch of proof.

The inclusion j! → j∗ induces by adjunction a morphism j∗j! → id, which is an isomorphism
because it is so on stalks. Let η : id ' j∗j! be its inverse. To finish the proof, it then suffices to show
that any morphism F → j∗G factors through η : F → j∗j!F for a unique morphism j!F → G, which
is not difficult.
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The explicit definition of f! in the Betti case is unfortunately not available for other Weil cohomolo-
gies. In [SGA4], Grothendieck and Deligne figured out an alternative construction in the étale and
`-adic case, which works in many other contexts. Let f : X → Y be a separated finite type morphism
of quasicompact quasiseparated (e.g Noetherian) schemes. Then the Nagata compactification theorem
states that f can be factored as f = f̄ ◦ j with f̄ a proper morphism and j an open immersion [Con07].
If we want to define f! with the properties above in any given sheaf theory, we should have

f! ' f̄! ◦ j! ' f̄∗ ◦ j!

where j! is the uniquely determined left adjoint of j∗ (if it exists).

Remark 4.2.

• One also needs to show (in a given context) that this definition is independent of the choice of
compactification, and that it is suitably functorial in f . The necessary properties of D(−) can
be axiomatised, but since this is orthogonal to our point we omit it.

• When j∗ is fully faithful (which happens in all our examples), then we have j∗j∗ ' id and
by adjunction we get a natural transformation j! → j∗, which in general provides a natural
transformation

f! → f∗

which is an isomorphism if f is proper.

The exceptional pushforward gives us generalisations of the isomorphisms of Theorem 3.4:

• (Base change isomorphism) For a cartesian square in SchS

Y ′ Y

X ′ X,

f̃

g̃ g

f

there is a natural isomorphism
f∗g!

∼−→ g̃!f̃
∗.

In particular, when f is the inclusion of a closed point x ∈ X, this gives a natural isomorphism

(g!(−))x
∼−→ (gx)!(−).

• (Projection formula) There is a natural isomorphism

f!F⊗G
∼−→ f!(F⊗ f∗G).

• (Künneth isomorphism) Given two morphisms f : Y → X and g : Z → X, there is a natural
isomorphism

f!F⊗ g!G −→ (f ×X g)!(F �X G).

Now let’s see how Poincaré duality fits into the picture.

Lemma 4.3. Let f : Y → X be a proper morphism. Then the functor f∗ : DB(Y,Z) → DB(X,Z)
preserves direct sums.
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Proof. By proper base change, this reduces to the case where X is a point, so it suffices to show this
property for sheaf cohomology on a compact Hausdorff topological space Y . A priori we have to prove
this for arbitrary complexes of sheaves, but it is possible to reduce to the case of a single sheaf, so let’s
only treat that case for simplicity.

This is then a classical property of sheaf cohomology on compact Hausdorff spaces. Here is a
sketch of proof. Since sheaf cohomology commutes with finite sums, it suffices to show that H∗(Y,−)
commutes with filtered colimits. For H0(Y,−), that commutation follows directly from the fact that
the support of global sections are closed in Y hence compact. It then follows from the case of H0 that
filtered colimits of soft sheaves on Y are soft. Then the general case follow from the case of H0 and
the existence of resolutions by soft sheaves.

Corollary 4.4. Let f : Y → X be any finite type separated morphism.

(i) The functor f! : DB(Y )→ DB(X) commutes with direct sums.

(ii) The functor f! admits a right adjoint

f ! : DB(X,Z)→ DB(Y,Z)

(pronounced “f upper shriek”).

Proof. We have f! = f̄∗j! for a Nagata compactification f = f̄ j. The functor f̄∗ commutes with direct
sums by Lemma 4.3 while the functor j! commutes with direct sums as it is a left adjoint by Lemma
4.1.

The triangulated categories DB(X,Z) and DB(Y,Z) admit arbitrary direct sums; this is an ad-
vantage of working with unbounded derived categories and arbitrary sheaves. Moreover, a functor
between nice enough such “large” triangulated categories which commutes with direct sums admits a
right adjoint: this is the adjoint functor theorem of [Nee01, Theorem 8.4.4], which also holds at the
level of stable∞-categories by [Lur09, Corollary 5.5.2.9 (1)] combined with [Lur17, Proposition 1.4.4.1
(2)]. So (i) implies (ii).

The adjunction defining f ! can be upgraded formally to a sheaf isomorphism as follows.

Proposition 4.5. (Formal local Poincaré-Verdier duality) Let f : Y → X be a separated finite type
morphism. There is a canonical isomorphism

Hom(f!F,G) ' f∗Hom(F, f !G).

In particular, when G = ZX is constant, we get

(f!F)∨ := Hom(f!F,ZX) ' f∗Hom(F, f !ZX).

and when furthermore F = ZY is constant, we get

(f!ZY )∨ ' f∗f !ZX .

Proof. Using the various adjunctions and the projection formula, we have natural isomorphisms

Hom(E,Hom(f!F,G)) ' Hom(E⊗ f!F,G)

' Hom(f!(f
∗E⊗ F),G)

' Hom(f∗E⊗ F, f !G)

' Hom(f∗E,Hom(F, f !G))

' Hom(E, f∗Hom(F, f !G))

which imply the result by the Yoneda lemma.
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If f = πX is the structure morphism of a separated finite type C-scheme X, we get the following
formula (say with Q-coefficients for simplicity):

H∗c (X,Q)∨ ' H∗(X,π!
XQ).

Thus to recover Poincaré duality, and generalise it to a family of smooth varieties and other coefficient
sheaves, it suffices to compute the functor f ! for a smooth morphism.

We have already seen in Lemma 4.1 that j! ' j∗ when j is an open immersion. More generally,
one can show that f ! ' f∗ when f is étale (in the Betti setting, this can be deduced from the fact that
étale morphisms are local isomorphisms for the analytic topology). This is generalised substantially
in the following:

Theorem 4.6. (Local Poincaré–Verdier duality for smooth morphisms) Let f : Y → X be a separated
finite type morphism. We work in the Betti sheaf theory DB(−).

(i) There is a canonical natural transformation

f !ZX ⊗ f∗(−)→ f !(−).

(ii) If f is smooth of relative dimension d, then this is a natural isomorphism

f !ZX ⊗ f∗(−) ' f !(−)

and we have
f !ZX ' ZY (d)[2d].

Proof. We only provide a sketch. The construction of the morphism in (i) is, as in previous cases of
such constructions, entirely formal. Let us now assume that f is smooth of relative dimension d and
write

αf : f !ZX ⊗ f∗(−)→ f !(−)

Using Zariski separation (Lemma 3.3), it is enough to show that α is an isomorphism after applying
j∗α for open immersions j : U → Y in an open covering of Y . Because the natural transformation α
is so canonical and we have j∗ ' j! for open immersions, one can check that j∗α is isomorphic to αg

with g : U → f(U) the induced morphism. Using the local structure theorem for smooth morphisms
[Stacks, p. 054L], we can assume that g = π ◦ e with e : Y → Ad

X étale and π : Ad
X → X the standard

projection. After some more formal diagram chases, this reduces the proof to the case where f = e is
étale and f = π is the projection.

The reduction above works for “any sheaf theory” satisfying some axioms, in particular for all Weil
and motivic sheaf theories. Now we use some arguments specific to the Betti case, which have to be
replaced by other arguments in other cases.

First, Étale morphisms are local isomorphisms in the analytic topology, and in the Betti setting the
separation argument above works in the analytic topology, so we almost immediately get e!ZX ' ZY

and αe : e∗ ' e!.
In the case of the projection π, there is still some work to do, but it boils down at the end to the

Künneth formula and one single computation, namely

H∗c (C,Z) ' Z(−1)[−2].

See [KS90, §3.1-3] for details. For other Weil/motivic sheaf theories, there is still quite a lot of work
to do at this point...

As usual the Tate twist ZY (d) is inconsequential in the Betti setting, but it matters when in other
sheaf theories when keeping track of additional structures (Hodge structure, Galois representations,
etc.).
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Remark 4.7. If we extend the Betti six-functor formalism to all locally compact topological spaces,
then for f : Y → X topological submersion of real fibre dimension d, we have instead

f !ZX ' orY/X [d]

with orY/X the relative orientation sheaf [KS90, pp. 3.3.2–3]. This thus recovers and generalises
Poincaré duality for non-orientable manifolds.

The six-functor formalism also encodes a lot of classical algebraic topology.

Proposition 4.8. Let X/C be a finite type C-scheme with structure morphism π : X → Spec(C).
Then we have natural isomorphisms

H∗(Xan,Z) ' H∗(π∗π∗Z)

H∗c (Xan,Z) ' H∗(π!π
∗Z)

H∗(X
an,Z) ' H−∗(π!π

!Z)

HBM
∗ (Xan,Z) ' H−∗(π∗π!Z)

where H∗ (resp. HBM
∗ (Xan,Z)) denotes singular homology (resp. Borel-Moore homology).

All the usual structures and relations between these various (co)homology groups (functoriality,
cap and cup products, Künneth isomorphisms...) can then be deduced formally from properties of the
six functors.

This formulation of Poincaré duality also shows that the object π!
XZ is important even when X is

not smooth. It is called the dualizing complex on X, and the functor

DX := Hom(−, π!
XZ) : D(X)op −→ D(X)

is called Verdier duality. It turns out that, in the subcategory Dc(X) ⊂ D(X) of constructible sheaves,
which contains in particular all sheaves “obtained from geometry by finitely many operations”, Verdier
duality is a duality, i.e. an autoequivalence with DX◦DX ' idD(X). Moreover, on constructible sheaves,
it exchanges the left and right adjoints: for f : Y → X, we have

f∗ ◦ DY ' DX ◦ f ! and f! ◦ DX ' DY ◦ f∗.

Verdier duality thus reveals a deep symmetry of all Weil (and motivic) sheaf theories, and is very
important in further developments, for instance in the study of nearby cycles and perverse sheaves
[SGA7; BBD82].

Remark 4.9. Another application of exceptional functors is the localisation property. Let D(−) be
a Weil or motivic sheaf theory. Let i : Z → X be a closed immersion and j : U → X be the
complementary open immersion. Then there are distinguished triangles of functors:

j!j
! −→ idD(X) −→ i∗i

∗ +−→

i!i
! −→ idD(X) −→ j∗j

∗ +−→
This implies that (i∗, j∗) is jointly conservative, and also (exercise) that for any X the restriction
functor D(X)→ D(Xred) is an equivalence. Example 1.3 shows that this last property does not hold
for Dqcoh(−) and thus that localisation also does not hold.

At this point, we know quite a bit about the Betti six-functor formalism, but we have not defined
formally what a six-functor formalism is! Until recently, no such definition was available, and the name
“six-functor formalism” was used informally. The situation has changed with the advent of∞-category
theory and a crucial idea of Jacob Lurie of using higher categories of correspondences to encode all
the relationships between the six functors. This idea has been developed by Gaitsgory-Rozenblyum
[GR17], Liu-Zheng [LZ12] and Mann [Man22a]. Since this is not the main object of the talk, we refer
to [Schc] for a fuller discussion.
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5 Six-functor formalism: coherent pathologies

Can we imitate the constructions from the Betti setting for the (quasi-)coherent sheaf theory? There
is a simple but fatal obstruction: when j : U → X is an open immersion, the pullback functor

j∗ : Dqcoh(X)→ Dqcoh(U)

does not admit a left adjoint. Indeed, it does not even commute with arbitrary limits.

Example 5.1. Let X = A1
k = Spec(k[T ]) and U = G1

m,k = Spec(k[T ](T )). Then j∗ is the trivially
derived functor of the localisation functor:

QCoh(X) = k[T ]−Mod→ k[T ](T ) −Mod = QCoh(U), M 7→M ⊗k[T ] k[T ](T ).

Localisation commutes with finite limits, but not with infinite products(∏
I

k[T ]

)
⊗ k[T ](T ) =

(∏
I

k[T ]

)
(T )

6=

(∏
I

k[T ](T )

)

or with cofiltered limits

(lim
n
k[T ]/(Tn))⊗ k[T ](T ) = k[[T ]]⊗ k[T ](T ) = k((T )) 6= 0 = lim

n
((k[T ]/(Tn)⊗ k[T ](T )).

This means that there is no hope of defining a functor f! with the same formal properties as in the
Betti case.

This is however not at all the end of the story, even before involving condensed mathematics.
It turns out that the analogue of the functor f ! in Dqcoh(−) does exists for a finite type separated
morphism between (reasonable) Noetherian schemes, even though f! does not! Moreover, when f :
Y → X is a smooth morphism of relative dimension d, it satisfies

f !(−) ' Ωd
Y/X [d]⊗ f∗(−)

which is closely analoguous to Theorem 4.6. This then implies a vast generalisation of Serre duality.
These results were established by Grothendieck in [Har66] with some important restrictions (only

for coherent sheaves), building on the previous work of Serre on coherent duality for projective varieties
over a field. However the proofs there were very complicated, the basic issue being that the definition
of f ! was ad hoc and not local.

Then work of Deligne, Verdier, Lipman, Neeman, Iyengar, Nayak, Sastry and others steadily im-
proved the situation and made the results stronger and the proofs clearer, but still less transparent
than in the Betti case. See [Nee21] for an overview of the state of the art pre-Clausen-Scholze.

6 Six-functor formalism with solid modules

We can now sketch how condensed mathematics and solid abelian groups solve the issues in the previous
section, and brings the coherent situation much more in line with the Betti case.

Given what we have done so far in the seminar, we can first try to upgrade quasicoherent sheaves
to condensed quasicoherent sheaves, as follows. The category Cond(Ab) of condensed abelian groups
is a symmetric monoidal category, and the fully faithful functor − : Ab → Cond(Ab) which takes an
abelian group and returns the corresponding discrete condensed abelian group is symmetric monoidal.
This induces a functor Ring → Cond(Ring). Given an ordinary ring R, we define Cond(R) to be
the (abelian) category of condended abelian groups equipped with an R-module structure. As with
usual R-modules over a commutative ring, Cond(R) gets a symmetric monoidal structure ⊗R from the
symmetric monoidal structure on Cond(Ab).
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Let R be a ring and X = Spec(R). Since QCoh(X) ' R−Mod, it is tempting to define

QCoh(X) := Cond(R)

and
Dcond

qcoh(X) := D(Cond(R))

and to extend this to other schemes by gluing. This can be done; for this it is very useful to consider
Dcond

qcoh(X) as an ∞-category, so that the ∞-categorical formalism handles the gluing gracefully.

However this does not solve our basic issue: the resulting functor j∗ : Dcond
qcoh(X) → Dcond

qcoh(U)
for an open immersion j : U → X still does not commute with colimits. The problem is that the
tensor products on Cond(Ab) and on Cond(R) are essentially algebraic, obtained from the naive
tensor product on presheaves of abelian groups/R-modules on CHaus by sheaffification, and so do
not commute with limits.

This is where solid abelian groups enter the picture. Since this is the topic of the next few talks, I
will be very brief here. The idea is that there is a miraculous abelian subcategory Solid ⊂ Cond(Ab)
with many good properties such that the inclusion Solid ⊂ Cond(Ab) has a left adjoint

(−)� : Cond(Ab)→ Solid.

The objects
∏

I Z for any set I are in Solid, are compact projective in Solid and form a system of
compact projective generators of Solid. There is then a symmetric monoidal structure ⊗�, the solid
tensor product, on Solid defined simply as

A⊗� B := (A⊗B)�.

As in the condensed case above, given a (discrete) ring R, we can define a category Solid(R) of solid
R-modules, which is projectively generated by the objects

∏
I R for all sets I, and admits a solid

tensor product ⊗�
R, which is again obtained from the tensor product on Cond(R) by applying the

R-solidification functor
(−)�R : Cond(R)→ Solid(R)

which is left adjoint to the inclusion.

Warning 6.1. The category Solid(R) is not the same as the subcategory ModR(Solid) of R-modules
in Solid! Rather, they are both full subcategories of Cond(R), but

Solid(R) ( ModR(Solid).

The category ModR(Solid) is generated by the objects (
∏

I Z)⊗� R, which are not in Solid(R) if I is
infinite.

Once again these constructions can be derived and globalized, leading to ∞-categories D(OX,�)
of solid quasicoherent sheaves on schemes. It is for these categories, which contain Dqcoh(X) as full
subcategories of “discrete” objects, that Clausen-Scholze develop a six operation formalism.

The key observation is now this. Let j : U → X be an open immersion, say X = Spec(R) and
U = Spec(R[1/f ]). The corresponding functor

j∗ : D(OX,�)→ D(OU,�)

corresponds at the level of abelian categories of solid modules to the functor

(−⊗�
R R[1/f ])�Rf : Solid(R)→ Solid(R[1/f ]).

Note that, as suggested by the warning above, it is necessary to Rf -solidify this tensor product, and
this is essential to make this work! Because R[1/f ] is flat over R, the tensor product is still exact.

14



In this situation (starting from a solid R-module, the functor (−)�Rf also turns out to be exact.
Moreover, at the level of compact projective generators, we have((∏

I

R

)
⊗�

R R[1/f ]

)�Rf

'
∏
I

R[1/f ].

This is claimed (but not proven) on p.73 of [Schb]. So j∗ commutes with at least some infinite products!
Clausen-Scholze show that in fact j∗ commutes with limits (with j any open immersion)

One could then apply the adjoint functor theorem for presentable∞-categories (which would require
additionally to check that j∗ is also an accessible functor) to prove that j∗ has a left-adjoint

j! : D(OU,�)→ D(OX,�).

Note that this functor is something really new to the solid context; unlike j∗ it does not preserve the
subcategories Dqcoh(−) of discrete quasicoherent sheaves.

Using j!, one can then proceed à la Deligne and define

f! = f̄∗ ◦ j! : D(OY,�)→ D(OX,�)

for any Nagata compactification of a separated finite type morphism f : Y → X, and develop the basic
theory as in the Betti case above, in particular showing that f! commutes with direct sums, so has a
right adjoint f !, etc.

Clausen-Scholze do something even more impressive, which I cannot do justice to here: given a
separated finite type morphism f : Y → X, they construct a canonical compactification of f . Of
course such a thing does not exist in the category of schemes, and they have to go to the world of
adic spaces (and develop the whole solid theory there as well). But once this is done, the definition
f! = f̄∗ ◦ j! becomes canonical. This is in some way parallel to the Betti case where we had a definition
of f! in terms of sections with compact support, without choosing a compactification.

Finally, once the formalism of f! and f ! is well in place, one can run through the proofs of Poincaré
duality in the Betti case above, adapt them directly to solid quasicoherent sheaves, and reduce the proof
of Grothendieck-Serre duality to a local computation on A1. This is precisely what Clausen-Scholze
do in [Schb, Theorem 11.6].

Moreover, the same reductions to local computations on A1 can be used to show that the functor
f! always preserves compact objects (in the usual triangulated sense). On the other hand, the functor
f∗ preserves discrete objects (where it restricts to the usual derived pushforward of quasicoherent
sheaves). But then an object in D(OX,�) which is both compact and discrete is bounded and has
discrete coherent cohomology sheaves! So this reproves the coherence theorem for derived pushforward
by proper morphisms.
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dans le monde motivique. I”. In: Astérisque 314 (2007), x+466 pp. (2008).

[Ayo07b] Joseph Ayoub. “Les six opérations de Grothendieck et le formalisme des cycles évanescents
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par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B.
Saint-Donat. Berlin: Springer-Verlag, 1973, pp. vi+640.

[SGA5] Cohomologie l-adique et fonctions L. Lecture Notes in Mathematics, Vol. 589. Séminaire
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[SGA7] Groupes de monodromie en géométrie algébrique. II. Lecture Notes in Mathematics, Vol.
340. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II), Dirigé par
P. Deligne et N. Katz. Springer-Verlag, Berlin-New York, 1973, pp. x+438.

[Stacks] The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu. 2015.
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