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Chapter 1
Voronoi-diagrams



In this first chapter you will encounter a certain way of partitioning an area, which has many appli-
cations. 
We will start with simple cases, but make sure you keep an eye on the figure on the front page. That
is also an example of one of the partitions in this chapter!

You will have to sketch quite a lot. You can do that in this book. For some exercises special work-
sheets are included. 
Often you will need a protractor, ruler and compass.
You may also have to make sketches and graphs in your notebook while working out the solutions.
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1: In the desert

Below you see part of a map of a desert. There are five wells in this area. Imagine you
and your herd of sheep are standing at J. You are very thirsty and you only brought this
map with you.

1 a. To which well would you go for water?

That choice was not difficult. Of course you would go to the nearest well. 

b. Point out two other places from where you would also go to well 2. Choose them
far apart from each other.

c. Now sketch a division of the desert in five parts; each part belongs to one well. It
is the domain around that particular well. Anywhere in this domain that special
well must be the nearest.

d. What can you do when you are standing exactly on the edge of two different do-
mains?

e. Do the domains of wells 1 and 5 adjoin? Or: try to find a point which has equal
distances to wells 1 and 5 and has larger distances to all the other wells.

f. In reality the desert is much larger than is shown on this map. If there are no other
wells throughout the desert than the five on this map, do the domains of wells 3
and 4 adjoin?

g. The edge between the domains of wells 2 and 3 crosses the line segment between
wells 2 and 3 exactly in the middle. Does something similar apply to the other
edges?

h. What kind of lines are the edges? Straight? Curved? 

In this exercise you just partitioned an area according to the nearest-neighbour-princi-
ple. Nowadays, similar partitions are used in several sciences, for instance in geology,
forestry, marketing, astronomy, robotics, linguistics, crystallography, meteorology, to
name but a few. We will revisit those now and then. 
Next we will investigate the simple case of two wells, or actually two points, since we
might not be dealing with wells in other applications.

Legend

= scattered
dry grass

= well

= 4 km

Black Rocks

J

1

5

4

3

2

= rock formation
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2: The edges between two domains

folding A simple case with two wells is
shown here. We neglect the dimen-
sions of the wells themselves, i.e.: we
pretend they have no size at all. In the
figure: the points A and B.
On paper the edge between the do-
mains of A and B is easy to find,
namely by folding the paper so that A
lies on top of B. This folding line is the edge between the areas belonging to A and B.

protractor There is also another method to find
this edge easily and fast: with the pro-
tractor. See the figure on the right. A
and B are both at the same distance
from the middle of the protractor. 

In this figure the areas round A and
B have different colors.
To the A-domain applies: 

distance to A < distance to B.
To the B-domain applies: 

distance to A > distance to B.
Only on the edge applies: 

distance to A = distance to B.

halfplane Actually, you should imagine that there is more than just the sketched part: everything
continues unlimited in all directions. The two domains, determined in such a way, are
infinitely large and are bounded by a straight line. The name for such an domain is half-
plane. Include the edge as part of both halfplanes. 
In the figure the domains of A and B are therefore both halfplanes. These halfplanes
overlap each other on the edge.

2 The edge is often called conflict line. A good name? Why?
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3: More points, more edges

Through folding, we will now investigate a situation with four points.
Also take worksheet A; that is page 121 of this book.

3 For each pair of points we determine the edge by folding.
a. First compute how many folds are necessary and then proceed with the actual

folding. Try to do this as precise as possible; for instance hold the piece of paper
up to the light. Use the folded lines to sketch the partition of the area. 

b. While folding, a lot of intersections of the folding lines arise. Nevertheless there
are different kinds of intersections. What differences do you notice?

c. One fold turns out to be redundant. What causes that?
excluding
technique

Here a situation with five points where
the edges for all pairs of points are
shown.

4 a. How many edges are there?
b. Of the cross x near the edge BD

you know for certain: it certainly
does not belong to B. How can
you tell?

c. Use other lines to exclude other
possible owners of x. In the end
one remains. Which one?

d. Try to find out for the other areas
to what center they belong and
with this excluding technique finish the partition using five colors. 

with the pro-
tractor

5 Now sketch, using the protractor method, the exact edges round the wells on the
desert map. 
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I II
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4: Voronoi-diagrams: centers, edges, cells

4: Voronoi-diagrams: centers, edges, cells

nearest-
neighbor- 
principle

In the preceding we made partitions of an area according to the ‘nearest-neighbour-prin-
ciple’. 
We now discuss some more terminology.

centers The points around which everything evolves (in this example the wells) will now be
called centers. Throughout this book we will always assume we have a finite number of
centers.

Voronoi-dia-
gram

The figure of edges is called the Voronoi-diagram belonging to the centers
Another name is edge diagram.

Voronoi-cell The area that belongs to a center, is called a Voronoi-cell, or, in short, cell of that center.
vertices A Voronoi-cell is bounded by straight lines or by segments of straight lines. The points

where several lines converge, are called the vertices of the Voronoi-diagram. (Singular:
vertex).

history Voronoi-diagrams are named after the mathematician Voronoi. He (in 1908) and Di-
richlet (in 1850) used these diagrams in a pure mathematical problem, the investigation
of positive definite square forms. In 1911, Thiessen used the same sort of diagrams while
determining quantities of precipitation in an area, while only measuring at a small num-
ber of points. In meteorology, geography and archaeology the term Thiessen-polytope
instead of Voronoi-cell became established.

6 a. On the previous page you can see six situations. Each dot represents a center.
Sketch the edge diagrams for these situations. 

b. In situation I you find one point in the middle where three edges converge. What
can you say about the distances of that point to the centers? 

c. Does situation II also have such a point?
d. In the situations III and IV only one center is not in the same place. However, the

Voronoi-diagrams differ considerably. Try to indicate the cause of that difference.
e. In situation V the centers lie on one line and thus the diagram is fairly easy to

draw. What can you say about the mutual position of the edges and the shape of
the Voronoi-cells?

f. Situation VI has lots of centers. But thanks to the regularity, sketching of the edge
diagram is again a simple affair. Once one cell is known, the rest follows automat-
ically. 
Do you know anything in nature which has this pattern as a partition?

infinitely 
large cells

7 Nowhere is it said that a Voronoi-cell is enclosed on all sides by (segments of) lines.
In fact, some cells are infinitely large, even though that is not visible in the picture.
a. How many infinite cells are there in the well example on page 5?
b. In situations with two or three wells there are only infinite cells. Now sketch two

situations with four centers. In one situation all cells must be infinitely large, in
the other situation not all cells are infinitely large. 

c. Describe a situation with twenty centers and twenty infinite cells. 
d. Where do you expect the infinite cells to occur in a Voronoi-diagram?
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5: Three countries meeting; empty circles

Below you see a redivision of the Netherlands as a Voronoi-diagram*. The centers are
the province capitals. 

three-coun-
tries-point

On each of the vertices of the Voronoi-diagram three cells converge. In such cases we
talk about a three-countries-point, even if the context does not talk about countries.

8 a. What do you know of the distances of the ‘three-countries-point’ between the cit-
ies of Middelburg, Den Haag and Den Bosch to those three cities?

b. Put you compass point in that three-countries-point. Now draw a circle through
those three cities with this three-countries-point as its center.

c. Now put your compass point somewhere on the edge between Zwolle and Arn-
hem, but not in a vertex of the diagram. Sketch a circle with this point as center,
which passes through Arnhem. 

largest emp-
ty circles

What you just sketched, are examples of largest empty circles.
A largest empty circle in a Voronoi-diagram is a circle in which no centers lie and on
which lies at least one center. 

The name largest empty circle is chosen well: if you enlarge such a circle around its cen-
ter just a tiny bit, the interior of the circle would not be empty anymore: for sure there
will be one or more centers inside. 

* There is a map on page 123 which shows the official division in provinces in dotted lines.

Assen

Groningen
Leeuwarden

Zwolle

Arnhem
Utrecht

Den Bosch

Maastricht

Den Haag

Middelburg

Haarlem Lelystad
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5: Three countries meeting; empty circles

9 a. In this Voronoi-diagram
two largest empty circles
are already sketched. Mark
their centers.

b. Sketch several largest emp-
ty circles:
– one with four centers on

the circle,
– one with two centers on

the circle,
– one with one center on

the circle.
c. What can you say in gener-

al about the number of cen-
ters on a largest empty cir-
cle round a three-countries-
point?

10 a. On the right you see a situation with four
centers. The centers are the black dots. The
little star at M is the center of the circle
through the centers A, B and C. Can M rep-
resent the three-countries-point of the cells
around A, B and C? Why? Or why not?

b. Here you see the same figure, only the cen-
ter D is left out. Sketch the Voronoi-dia-
gram. Be careful: M is not a center itself, but
you can make good use of M in some way.

c. Now add center D yourself and expand the
Voronoi-diagram, but do it in such a way
that M becomes a four-countries-point. 

d. Three-countries-points are very normal,
four-countries-points are special. Explain
why.

11 On the next page you will find a Voronoi-dia-
gram of which the centers lie on the coast of four islands. 
Parts of the Voronoi-diagram have actually become edges between domains around
those islands. 
a. Mark those edges with a color. A partition in four domains arises. 
b. You could also talk about three-countries-points in the last partition. Now sketch

a couple of largest empty circles, which just touch three of the islands. Where
should you place their centers? 

D

A
B

C

A

B

C

D

M

A

B

C

M
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four islands

true four-
countries-
point 

True four-countries-points
between countries occur
very rarely in real life. On
the right one is shown, be-
tween de states Utah, Colo-
rado, Arizona and New
Mexico in the USA.
If you know another one,
speak up!

12 Of course there is no
Voronoi-diagram for
this map of the United
States.
Sketch a situation of centers and a Voronoi-diagram yourself, for which,

– only four-countries-points occur and no three-countries-points
– and for which there is a square cell 
– and for which the edges lie in each other’s extension, are parallels, or are per-

pendicular.
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6: Chambered tombs in Drenthe

A partition of the eastern part of the Drents plateau in imaginary territories. Centers here
represent groups of chambered tombs. Some chambered tombs were used as a storeroom
for bones and skulls over a period of 600 years. The Voronoi-diagram shows a possible
partitioning of the area. Archeologists often research whether such partitions correspond
to the distribution of pottery in an area. This could provide indications about the social
and economical structure in former days. 

13 a. Observe: the cell in which Assen lies and the one north of it have centers which
lie symmetrical in relation to the edge. Why that symmetry? 

b. Do the centers lie symmetrical everywhere in relation to the borders? Is this nec-
essarily so for a Voronoi-diagram?

c. The cell southwest of As-
sen contains several dots.
Which dot is used for mak-
ing the Voronoi-diagram? 

14 Reasoning with symmetry
could also help to fill up an in-
complete map of centers and
edges. On the right an incom-
plete Voronoi-diagram is
shown.
Complete the diagram.

Steenwijk

Assen
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reflection Voronoi-centers of adjacent cells are always each other’s mirror image in relation to
their Voronoi-edge. So you can recover missing centers by reflecting in an edge!
We will illustrate this technique with the following two examples. 

15 This figure shows only one cen-
ter. Since two edges are (partial-
ly) indicated, there have to be
two other centers and a third
edge. Finish the sketch accu-
rately.

16 Below, the edges of a Voronoi-diagram with three centers are given.
In cell a lies point P. 
Try to work as precise as possible in this exercise, or else you will get into trouble.
You can do the reflection exactly using your protractor. See page 6.

a. P is certainly not the center which belongs to cell a! 
You can verify this by reflecting P in edge I; name the reflection P1.
Then reflect P1 in edge II. Name the reflection P2. 
Finally, reflect P2 in edge III. Name the reflection Q. 
Why is it not possible that P is the center of cell a?

b. Sketch the middle of the line PQ and name it R. Now also reflect R successively
in the three edges; in this way point S arises. What do you notice about this ulti-
mate point S?

c. The found point R (or S) could be the center of cell a, but that is not necessarily
true. Another option, for example, is a point that lies in the middle of R and the
indicated three-countries-point M. Verify this by repeated reflection.

reconstruc-
tion-problem

The final result of exercise 16 is surprising. Using the method given above, you are ap-
parently able to reconstruct possible centers, without knowing one of them. 

Of course the question is: Why does this work so well? Several clues are given in explo-
ration exercise A, on page 16, so you can get to the bottom of this.

P edge I
ed

ge
 II

edge III

cell a

cell c cell b

M
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Summary of chapter 1

This chapter was a provisional exploration of Voronoi-diagrams. 
Furthermore several concepts were discussed. 

nearest-neighbour-principle
A Voronoi-diagram arises when a number of points are given and the plane is partitioned
so you can determine everywhere what the nearest point is. In this fashion a partition in
subregions arises. This is called partitioning according to the nearest-neighbour-princi-
ple. 

You will find definitions of the concepts center, Voronoi-diagram, edge diagram,
Voronoi-cell, cell and vertex on page 9.

The Voronoi-cells can be infinitely large. These infinite cells belong to centers which lie
close to the side; we shall have to specify this later. 

three-countries-points
In general three cells meet in a vertex. Such vertices are called three-countries-points.
To have more than three cells converging in a vertex is possible, but rare. 

largest empty circle
A circle in which no centers lie, but on which does lie a center, is called a largest empty
circle. Such a circle cannot be enlarged from its center. 

reflection, reconstructing problem
If only edges are given the centers can sometimes be recovered by reflection. For this,
the fact that the centers lie symmetrically with respect to their edge is used. 
To find the centers for a given Voronoi-diagram is called solving the reconstruction
problem.

preview
In the next chapters we will first go deeper into the mathematics, which until now we
used incidentally. Doing that we will argue more independently and draw less conclu-
sions from measuring figures only. 
Nevertheless one of the results will be very practical, namely that we will find a fast way
to determine whether a center D is inside of the circle through A, B, C or not, without
determining the actual circle itself. This will make the construction of a Voronoi-dia-
gram a lot easier. 
There is a chapter in which you will learn more about Voronoi-diagrams using a com-
puter program. For this you will need the knowledge in this chapter as well as the next. 
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Exploration exercise A: Recovering the centers

This exercise combines with exercise 16.
First of all, make sure that you understand the method used to construct possible centers
of a Voronoi-diagram of three cells with a three-countries-point. 

Exercise ONE
Find and describe a argumentation which proves that the method of exer-
cise 16 always works.

Several hints:
a. The figure on the right already shows

P1 and P2. The next reflected point
would be Q, but for now call this point
P3 and do three more reflections. You
will discover something very special
about P6 if you have drawn carefully
enough. 

b. If you were sure that indeed P6 is al-
ways the same as P is always true,
then you can conclude that the middle
R of PP3 will end up on top of itself
after three reflections. Find out why
by reflecting the line segment PP3
three times.

c. But why is P6 equal to P? That’s the main question now.
The figure shows several angles. You could also think about reflection as the rotation
of the bar MP around the center of rotation M. Compare the intersection angle of MP
to MP2 with the angle of cell b.

Exercise TWO
Once you found one possible position for the center of cell a, you also know
all the other possibilities. Work this out.

Exercise THREE
Find a method to recover the four centers that are not given in the same
type of Voronoi-diagrams as shown below. 
Hint: Divide and rule. 

Complete your investigation as follows:
– Make a report of a half to at most one page in which you write down your argumen-

tations for the exercises above. 
– Add clear figures. Refer to the figures in your report. 

P area a

area barea c

P1

P2

α

α

β



Chapter 2
Reasoning with distances



In this chapter the reasoning will be a lot more exact than in the previous chapter.
In principle we deduct things from scarcely any given data. We will also think about how that kind
of reasoning works and how you can write it down. 

The illustration with the text in gothic letters on the front page becomes a reality: 

UNTERWEYSUNG DER MESSUNG MIT DEM ZIRCKEL UND RICHTSCHEYT.

This is a geometry book, published in 1525 for painters and artists, by Albrecht Dürer. The figure is
an illustration for what in this chapter will be theorem 5. That theorem says that for any triangle there
is exactly one circle which passes through the three vertices of the triangle. Dürer uses in his figure
the triangle abc; there it is indicated how the center of the circle and the circle itself can be determined
by ruler and compass only.
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7: Introduction: reasoning in geometry

In the last chapter we investigated several things concerning Voronoi-diagrams. We used
what was seen in figures and sketches. However, we might have assumed things of
which we do not know for sure if they are true. 

problem A:
Why does the Voronoi-diagram of three points always looks like this: 

and never like this?

problem B
The Voronoi-edge of two points always appears to be a straight line. The folding
technique backs up this idea. But why are folding lines always straight? We have
seen this in many cases. We do not really know why. 

In this chapter we will look further into those two questions. 
reasoning in-
stead of 
looking 

Now we want to get certainty about these questions by reasoning, and not by looking at
some sketched figures.
This is why this chapter will have a more theoretical character, especially at the end, be-
cause at the beginning we will discuss concrete diagrams, but in the latter part theorems
and proofs are discussed. 
You might feel as if you are walking on egg shells. This is true, but you will get used to
it; moreover, you will start complaining if something is stated without a proof.

1 a. In the section ‘The edges between two domains’ (page 6) more non-founded prop-
erties of the edge between two areas are stated. Which for example?

b. And how do we use those in the section ‘Chambered tombs in Drenthe’ (page
13)?
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8: An argumentation with three-countries-points and circles

First we tackle problem A of the previous page: 
Why do the edges of a Voronoi-diagram with three centers intersect in one
point?

You need to look at such questions with a critical eye. Hence: 

2 a. Sketch a few three-centers situations, which don’t even have three edges. Thumb
through the examples of the previous chapter, if need be, to get some ideas. 

b. What characterizes these situations?

In the remainder of this section we
will not reckon with this special
case. In the summary we will in-
clude the warning!

In the previous chapter the Voronoi-
edge played the leading role. The
figure shows its characteristics 
Just the points on the edge have
equal distance to A and B. Phrased
differently:

property Voronoi-edge

We will use this clear form while reasoning with three edges. Below you see a figure in
which it is not known if the three edges converge into one point. 

3 This exercise will help you find an argumentation for: the three edges converge in
one point.
a. Indicate the point of intersection of the Voronoi-edge AB and the Voronoi-edge

BC and call it M.
b. Write down, using the property of Voronoi-edges, the two accompanying equali-

ties and derive the third equality. Write that one down also.
c. What does that equality say about the point M? (Remember the property once

more.)
d. Did you reach the goal of the argumentation? 

4 The circle, which has M as center and passes through A, also passes through B and C.

A

B

A-area:

than to B

ed
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Only to the points P on the Voronoi-edge between A and B applies: 
(distance from P to A) = (distance from P to B) 
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a. How do you know that for certain? 
b. In the previous chapter this circle played an important role. What role was that? 

critical remarks
While working on exercises 3 and 4 we solved the problem on page 19, and more, so it
seems. 

5 Try to answer the following questions:
a. Whereupon is the assumption based that such an intersection point M exists ?
b. Don’t we also (maybe carefully hidden, but nevertheless) use the fact that the ed-

ges are straight lines? 

This is not as easy as it looks! 
However, the argumentation of exercise 3 is beautiful, and we will hold on to it. 
From here on, though, we choose to look for more certainty. 

We will follow this strategy:
a. Show unimpeachably that the Voronoi-edge of two centers is a straight line. 
b. Show that under the condition that the three centers are not on one line, both edges

do intersect. 

In this fashion we will look for a solid foundation in our argumentation. That has to be
found in the properties of the concept of distance, because that is where it all began. 

In the following paragraph we will work our way towards this solid foundation, starting
with a possibly unexpected problem. 
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9: Shortest paths and triangle inequality 

shortest-
path-princi-
ple

The shortest path from point A to point B is the straight line, which connects A and B.

6 But what is the shortest path from A to B if in the mean time we also need to go via
line l like below? We will get to the bottom of this now.

a. Measure which of the three paths from A to B is the shortest. 
b. We don’t know whether there might be an even shorter path! Here is a pretty trick:

Reflect A in line l, name the reflection A’. 
Also connect A’ to the points P.

Why does the following now apply: 
from A to B via P1 is as long as from A’ to B via P1?

c. Now determine, using point A’, point Q on l, such that the path via Q leads to the
shortest path.

d. Think of a situation where it is of importance to find a shortest path of this kind. 

There is much more to discover on finding shortest paths in more complex situations.
We will do so in chapter 6.
Now we only establish that the shortest-path-principle is the basis of the solution. We
will rephrase this principle more precisely. 
Since we are talk about distance all the time, we first introduce a notation for the dis-
tance between two points. 

distance no-
tation

From here on we will denote the distance between two points A and B as d(A, B). 
Because we are thinking in terms of comparing distances, it does not matter whether you
think of centimeters on paper or of kilometers in the landscape. d(A, B) is always a non-
negative number and you can use it in expressions such as equalities and inequalities.
Also expressions like d(A, B) + d(C, D) have meaning. 
The d originates from the word distance.

simple prop-
erties

7 a. Translate in common English what is asserted here:
for points P and Q always holds: d(Q, P) = d(P, Q)

b. What can you say about points A and B if d(A, B) = 0?

A

B

l

P1

P2
P3



I – 23

9: Shortest paths and triangle inequality

The figure shows three points and their connections:

Next we will describe, using the d-notation, that going from A to C via B is a detour when
B is not on the line segment AC. This has a name: the triangle inequality. 

Triangle ine-
quality

The name triangle inequality originates from the fact that the inequality holds if A, B and
C form a triangle.

8 In the figure on the previous page, expanded with A’ and Q, you can apply the trian-
gle inequality to show that A-Q-B is the shortest path. 
a. To which triangle would you apply it?
b. Q is on A’B; this is drawn. What can you say about the triangle inequality in this

situation?

9 On closer inspection the triangle inequality is somewhat more modest than the short-
est-path-principle.
a. Sketch a situation in which two paths are compared, and where the shortest-path-

principle has some meaning, but the triangle equation has not. 
b. The argumentation of exercise 6 runs impeccably and yet only the triangle ine-

quality is used? What causes that? 

Of course we choose the simplest starting-point. 

starting-
point

We therefore assume the triangle inequality as an established fact. 
From now on, you can refer to it in your argumentations. 
Thus our reasonings about distances are no longer up in the air; you now
know what you can build on. 

10 You could legitimately ask yourself: What is the triangle inequality itself based on?
If you asked yourself that question, the following exercise is for you, otherwise not. 
a. Good question, difficult answer. Try to think of something yourself on which you

would base the triangle inequality. 
b. In that case, what would be the next question? 

A different 
notation

Often the notation |AB| is used for the length of a line segment with end points A and B. 
In this chapter, where everything breathes the air of distances, we use d(A, B).
When we encounter figures with line segments and their lengths, you will also see |AB|.

extra exer-
cise

11 Show that for every set of four
points A, B, C and D holds:

.

B

A
C

Triangle Inequality

For each set of three points A, B and C holds: d(A,C) ≤ d(A, B) + d(B, C). 
The equality occurs only if B is on the line segment between A and C .
In every other case there is a true inequality.

A

B
C D

AD AB BC CD+ +≤
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10: The concept of distance, Pythagorean Theorem

Another very important property of the concept of distance can be expressed as the well-
known Pythagorean Theorem for right-angled triangles. 

12 Phrase that theorem using the d-notation of the previous section. Your phrasing
should deal with a triangle ABC, of which one angle is right. 

We will now use this theorem in order to determine the shortest distance from a point to
a line and also to ensure the correctness of the method. 

shortest dis-
tance to a 
line

In this figure A is a point outside the line l. You are probably convinced of the following: 

Of all possible connection line segments the line segment, which is perpen-
dicular to l is the shortest. 

13 a. Write down– in d-notation – what holds for triangle APQ according to the
Pythagorean Theorem.

b. How does d(A, P) < d(A, Q) result from that?

The Pythagorean Theorem is also one of the fundamentals you can use. You could also
prove the Pythagorean Theorem based on more elementary things, but we will also not
do this exhaustively. One possibility is outlined below as an ‘extra’. 

extra, 
Multatuli

This is the beginning of nr. 116 from the Ideas of Multatuli.

I recently found a new proof for the Pythagore-
an theorem. Here it is. By, as shown in the adjacent
figure, constructing six triangles – each equal to
the given right-angled triangle – one acquires two
equal squares, AB and CD. If one subtracts four tri-
angles of each of these figures, one proves the
equality of the remainder on both sides, which was
to be shown. 

It cannot be done any simpler, or so it seems
to me. After finding this proof, I heard of the ex-
istence of an article, which discusses this topic.
I purchased this little book, but it did not contain my demonstration. Furthermore I deem
that none of the therein assimilated proofs is as illustrative and clear as mine. 

l

A

P
Q

A

B

C

D
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extra; alter-
native for ex-
ercise 13 a/b. 

Up to here the proud writer of the Max Havelaar.

The proof of Multatuli leans heavily on the concept area. We did not exactly establish
what its properties are. Moreover, it is rather easily assumed that certain parts of the fig-
ure are squares. But ok, for now we will join Multatuli.

14 a. Put some more letters in the figure and write down an argumentation which even-
tually leads to the equality part of the Pythagorean Theorem, expressed in areas
of certain squares. 

b. What would you have to show in order to conclude that the oblique ‘square’ is in
fact a square. 

15 Also without the Pythagorean Theorem you are able to prove that the perpendicular
line from A to l provides the shortest distance. Use the following hint and your own
inventiveness.

Hint: How do you get from A to A the fastest if you have to go via line l? 

The illustration shown below comes from a medieval manuscript.
It was made in the monastery of Mont Saint Michel in Bretagne, when Robert de Torigni
was the abbot, during the years 1154 through 1186.
The manuscript contains figures and texts about astronomy; the abacus, bells, and of
course mathematics are used in each of those. Presumably a lot is copied from Arabic
manuscripts; in the Arabic world of those days a lot more attention was paid to mathe-
matics and science than in Christian Europe. 
This picture is of an application of the Pythagorean theorem in archery. You can see the
arch, and the word ‘sagitta’ (arrow) is written at the hypotenuse and the base. You can
also see close to the sides: ‘filum V pedii’, ‘filum IIII pedii’ and ‘altitudo III pedii’.
Translated: threads of 5 and 4 foot, a height of 3 foot. It is the well-known 3-4-5 triangle.
Would the medieval monk who made the illustration have understood that it was about
the meaning of the picture and not about reading the numbers? The proportions of the
sides do not match those in the picture! 

Les Manuscrits de Mont st. Michel, pag 26
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11: Properties of the perpendicular bisector

Next we will use the triangle inequality to prove that the
Voronoi-edge of the centers A and B 

is equal to the 
perpendicular bisector of A and B.

important This section is definitely the hardest of this chapter. Even if you do not catch on to all
the details, you will be able to continue with the next section, but make a good effort to
try to follow the reasoning. The more argumentations like this you can follow, the easier
it will get later on, simply because you have had some training. 

First a definition, which should be familiar. With definitions in mathematics we establish
exactly what is meant. 

definition 
Voronoi-edge

In chapter I you got the big impression that Voronoi-edge of A and B is exactly the per-
pendicular bisector of the line segment AB. We will now prove this. Since we want to
start only from definitions and familiar things, we also have to define ‘perpendicular bi-
sector’. 

definition per-
pendicular bi-
sector

pbs(A, B) We will agree upon a notation for the ‘per-
pendicular bisector of line segment AB’:
pbs(A, B).
The figure displays two characteristics of
the perpendicular bisector:

– it is perpendicular to the line segment
– it divides the line segment in two.

What we would love to pose:

statement: 
equality

This means quite a lot: not only that all of the points of the perpendicular bisector lie on
the Voronoi-edge, but also that the Voronoi-edge does not consist of more points. And
vice versa. 

That is why two things need to be proven separately:
a. Every point which lies on the perpendicular bisector, is also on the Voronoi-edge.
b. Every point which does not lie on the perpendicular bisector, is also not on the

Voronoi-edge.

We discuss both parts separately.

The Voronoi-edge between two points A and B is the set of points P for which
hold: d(P, A) = d(P, B).

The perpendicular bisector of line segment AB is the line which is passing
through the midpoint of AB and is perpendicular to AB.

A
B

pbs( A, B)

perpendicular →

equal lengths

The Voronoi-edge of two points A and B and the perpendicular bisector of the
line segment AB coincide.
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16 Proof of part a: 
Every point, which lies on the perpen-
dicular bisector is also on the Voronoi-
edge
The figure shows line segment AB and
also the pbs(A, B). Q is the middle of
AB. P is a point that lies on the perpen-
dicular bisector.
a. Indicate in the figure, in green, the

two things, which you can use now
according to the definition of pbs(A,
B). 

b. Color the line segments of which you have to prove that they have the same length
red. 

c. Write down what Pythagoras says about d(P, A) and d(P, B) and derive from that: 
d(P, A) = d(P, B).

d. Did you use both of the characteristics of the perpendicular bisector? Where in the
argumentation?

17 We are halfway there, but we still have
to do the proof of b: 
Every point, which does not lie on the
perpendicular bisector, is also not on
the Voronoi-edge.

The situation is represented adjacent.
Q is not ón pbs(A, B), but on the side of
A. BQ will then certainly intersect with
the perpendicular bisector, call the
point of intersection R. R is certainly
not on line segment AQ. This is what
you know and what you can use in your
proof. 
a. Write down in d-notation what you need to prove. 
b. Since we have already proven part a, you do know something about point R. Note

that as an equality. 
c. Also formulate an inequality, which contains Q, R and A.
d. Combine these to obtain the wanted conclusion.

18 Doesn’t the figure of the triangle inequality remind you of a problem we encountered
earlier?

As a matter of fact, we also need to research the possibility that d(A, Q) > d(B, Q). Of
course Q is on the other side of B, and this boils down the whole thing to consistently
switching the letters A and B. This is no longer interesting.

A
B

pb
s(

A,
 B

)

P

Q

A

B

Q

R

pbs(A,B)
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12: From exploration to logical structure

Introduction to this section
research In the preceding we explored why the three Voronoi-edges of three points (in general)

meet in one point. 
We started off with the problem of partitioning an area and then found out that a funda-
mental property of the concept of distance was of importance. 
The exploration developed as follows:

Up to here the exploration phase. 
logical struc-
ture

Since we are reasoning, the logical structure will be the other way around when we look
at it afterwards: first the triangle inequality, and deduct from there that the Voronoi-edge
and the perpendicular bisector coincide and then finally derive from there the statement
about the concurrency of the three edges. 

In this section we will repeat the whole in that last form. We will abandon the terminol-
ogy of Voronoi-diagram; we will now make our proof mathematically pure.
In survey like this:

We will formulate the most important statements, which will be proven concisely as the-
orems. We wil number the theorems, as this will make future reference easier. That is
exactly what happens in a logical structure: what is proven before, you can use later. 

B

A

C

From the question: 

Why do three edges 

To the question:

A

B

Why is the Voronoi-edge 
the straight perpendicular

To: Because eventually

a
b

c
c < a + b

the triangle inequality
always holds

Exploration path

converge
in one point? bisector?

And then to: 

Three perpendicular

To:

A

B

A

B

Properties of
the perpendicula 

From starting-point:

a
b

c
c < a + b

 The triangle inequality.

B

A

C

through one point.

Logical structure

bisector.
bisectors of a triangle
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Starting-points: triangle inequality and Pythagoras
The triangle inequality can be proven from other, more primitive starting-points. How-
ever, we will not do this. It will be our first theorem.

Theorem 1 (Triangle inequality)
For each set of three points A, B and C holds: d(A,C) ≤ d(A, B) + d(B, C). 
The equal sign occurs only if B lies on the line segment AC.
In all other cases a real inequality occurs.

Next an exercise in practicing the use of the triangle inequality.

Four points are given: A, B, C and D. P is the point of intersection of the line segments
AC and BD. Q is a different point than P.
You need to show that

the four distances from Q to A, B, C and D together are bigger than
the four distances from P to A, B, C and D together.

19 a. Write down the to be proven statement us-
ing the d-notation as follows:
To show: d(P, A) + ...... ≤ ....... 

b. Then start the proof with:
Proof: ...
and use (one or more times) the triangle in-
equality.

For the sake of completeness the Pythagorean the-
orem is stated below. You saw a proof of it when you did the extra exercises on page 25. 

Theorem 2 (Pythagoras)
If in a triangle ABC angle B is right, then this equality holds:
d(A, C)2 = d(A, B)2 + d(B, C)2.

The perpendicular bisector
We gave a definition of a perpendicular bisector. We will copy it here. 

definition per-
pendicular bi-
sector

The properties of the perpendicular bisector are mentioned in this theorem:

Theorem 3 The perpendicular bisector of line segment AB is the set of points P for which hold
d(P, A) = d(P, B). 
For points P outside of the perpendicular bisector holds:
If d(P, A) < d(P, B), then P lies on the A-side of pbs(A, B).
If d(P, A) > d(P, B), then P lies on the B-side of pbs(A, B).

A B

Q

D
C

P

The perpendicular bisector of line segment AB is the line which passes
through the midpoint of AB and is perpendicular to AB.
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You can apply the theorem in the following problem. Think about
this: if two points of a Voronoi-edge are known, you know the en-
tire edge.

20 In this delta wing AB and BC have equal length
and also AD and DC are of the same length.
Show that BD is perpendicular to AC.

Perpendicular bisectors in the triangle

Theorem 4 In each triangle ABC the perpendicular bisectors of the sides meet in one point.

21 a. In the section ‘An argumentation with three-countries-points and circles’ there
was a problem: the three centers were not allowed to lie on one line. How did we
get around that here? If the three points do lie on one line, what would happen to
the three perpendicular bisectors? Sketch a (complete) figure.

b. How is the three points on one line situation excluded by the wording of the the-
orem?

Adjacent you see a figure, which illustrates the
theorem. M is the point of intersection of the per-
pendicular bisectors AB and BC. At the bottom
you see a scheme, which represents the proof. 

22 In fact, this is the proof as it was given in ex-
ercise 3, page 20.
a. Point out exactly how the different parts

of the exercise correspond to the ones of
the scheme. 

b. Step 1 and 1-bis differ from the conclu-
sion step. In which way?

A

B

CD

A

B

C

pbs(A, B)

M
pb

s(B
, C

)

?

pbs(A , C
) 

step 1

connection step

M on pbs(A, B) 

Thus

Thus 
d(M, A) = d(M, B)

step 1bis

M on pbs(B, C)
Thus 

d(M, B) = d(M, C)

 d(M, A) = d(M, C)

conclusion step

M on pbs(A, C)
Thus 

d(M, A) = d(M, C)
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The circumscribed circle
First the definition.

circumcircle

The theorem about the circumcircle is easy to formulate. 

Theorem 5 Each triangle ABC has one and only one circumcircle. The center of the circum-
circle, i.e. the circumcenter, is the intersection of perpendicular bisectors of the
triangle. 

The proof is simple: the point M, where the three perpendicular bisectors intersect, has
equal distance to each of the three vertices and is the only point with that property. 

We will now do some exercises with circles and perpendicular bisectors. 

23 This figure shows two circles with equal radii.
Their centers are A and B. Based on which the-
orem do the intersections P and Q lie on the
perpendicular bisector of line segment AB?

This is a recipe to construct the perpendicular bi-
sector with compass and ruler. Do not use a pro-
tractor or the numbers on the ruler. 

24 Examine how Dürer used this technique for
the front page of this chapter, when finding the circumcircle about the three points a,
b and c. 

25 On the next page you will see some triangles. 
Pick out a few and determine the intersection of the perpendicular bisectors and
sketch the circumcircle. In at least one case, use the construction with compass and
ruler. 
Choose these in such a manner that one center lies inside, one center lies on and one
center lies outside the involved triangle. How does this inside-on-outside link to the
shape of the triangle?

26 Here a part of a circle is given. Determine, using only compass and ruler, the center
of the circle. (Hint: to start, place some points on the circle)

Summary of chapter 2

This section as a whole is actually the summary of this chapter! 

The circumcircle of a triangle ABC is the triangle's circumscribed circle, i.e. the
circle that passes through each of the triangles’ three vertices A, B and C.

A

B

Q

P
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a

b

c

d

e

f

g



Chapter 3
Computer practical Voronoi-diagrams



Introduction, software availibility
In this chapter we will construct Voronoi-diagrams using the computer. The chapter is of a practical
nature: you will try a lot, but prove little to nothing. 
Since we will be working with more than 5 or 6 centers rather fast and easily, we can also look at
other properties than the ones in chapter 2.
The closing exercises are a preview of what comes later, when we will no longer work with pointlike
centers, but with areas as centers. 

Voronoi-program
The illustration on the first page of this chapter shows the program used in this chapter. 

You can download it for free from
http://www.fi.uu.nl/wisweb/welcome_en.html

Look for ‘Voronoi’ in the list. 
Download, unzip to a folder of your choice by clicking on voronoiengels.exe.
Start the program in your folder by clicking ‘voronoi’.
It is an old program, but it will still work under most Windows-versions.

VoroGlide
If the indicated program is not available or does not work correctly, you can try VoroGlide on the in-
ternet.
It is a Java-applet, with which most (but not all) things in this chapter can be tried. 
It is available at: 
http://wwwpi6.fernuni-hagen.de/GeomLab/VoroGlide/index.html.en

Just start VoroGlide, by clicking on the screen you create vertices, which can be dragged.
There are no ready made figures to load with VoroGlide, there are no tools to draw circles and lines.
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You know that constructing a Voronoi-diagram is based on drawing perpendicular bisec-
tors, but finding the right line segments can be very time-consuming if there are a lot of
centers. In applications of Voronoi-diagram we usually have situations with a lot of cen-
ters. It is obvious that there is a need for computer programs that can do the time-inten-
sive sketching. We will be working with such a program now. 

It depends on the local situation how the program is started. Follow the directions of the
experts on the spot. See also the introduction on the opposite page

operation Once the program is running, the screen will look like this:

You operate the program mainly with your mouse; you only need to click with the left
button. In the left part of the screen you click points on or off. In the right part you click
on the task for the program. That is it! For some assignments you will be given directions
on how to use the report-part of the screen. 

1 a. Make the screen shown above. Indicate some points and then click on the button
voronoi.

b. Let’s test whether the diagram was drawn correctly by sketching some largest
empty circles. There are two ways to do this:
– circle(mid,rand). Use this option to sketch a circle with given center. 

Let the center be a vertex of the Voronoi-diagram and let the edge-point be a
suitable center. Choose in such a fashion that you will get a largest empty cir-
cle. 

– circle(A,B,C). Use this option for sketching a circle through three giv-
en points. The program will construct the front page of chapter 2 in a second
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for you. 
Choose the points A, B and C in such a way that you get a largest empty circle.
Now the center of the circle is also indicated. Is that a Voronoi-vertex? Does it
have to be? 

c. The buttons clean and new don’t need any explanation!

Now you know enough to get busy with certain problems. 

2 a. Let the computer sketch the Voronoi-diagrams according to the following posi-
tioning of the centers.

b. If you construct situation b very precisely, a number of edges will be straight be-
hind one another. They form a line. What is that line actually? 

c. In situation c you cannot see whether there is a three-country-point or not. Use the
option reduce to get a good overview of the whole diagram. If necessary, repeat
it a number of times. You could also use the option line  first to get a refined
placing of the points. 

PS. Use normal to return, or choose new directly.

3 Construct by clever choosing the centers of the Voronoi-diagrams in the figures
shown below. Remember that you can also sketch circles and lines first to find out
where the centers must be placed. Then indicate in the figures where the centers need
to be approximately. 

a b c
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14: The influence of the fourth point

There are only four clearly distinctive diagrams possible for four points, namely these
four:

4 Choose approximately three points like the black points A, B and C shown in the fig-
ure below. In this exercise we will add a fourth point (D) every time and see what the

effect of that point is. (The points 1 through 10 don’t play a part until the next exer-
cise.)
a. Indicate a fourth point in such a way that you get a type III diagram. If you move

the point a little, the diagram will remain a type III. 
b. Show on the screen all possible places for D for which the Voronoi-diagram is of

type II.
c. Do the same for type IV.
d. What type arises if D lies close to x? Use, if necessary, the option reduce  if it

does not become clear. 

I II III IV

A

C

B

x

1
2

3
4

5
6

7
8

9
10
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5 If the fourth point consecutively takes the positions 1, 2, 3, . . . . . , 10, the Voronoi-
diagram changes gradually. The beginning and ending of that process are given.
Sketch the intermediate stages and determine the type for each state.

6 From the preceding you can see that the transitions from one type to another type take
place when point D passes through the circumscribed circle or through one of the
three lines (through A and B, through B and C, through C and A).
a. A type belongs to each intermediate stage. Indicate that in the figure with I, II, III

or IV.
b. If you pick a point D ‘at random’, the chance for two of the four types is very

large, but the chance forthe other two of the four types is very small. Why? 

1 2 3 4 5

6 7 8 9 10
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15: Infinitely large cells

Meanwhile you have seen that cells exist which are enclosed on all sides by edges and
that there are cells for which this is not the case. Now we will look especially at that last
kind of cells. 

7 a. For starters: make the Voronoi-diagram for the sit-
uation on the right. There are two finite cells. 

b. Now use the option reduce several times. What
does the diagram start to look like more and more?

hull c. Now first choose the option normal and second the option hull. A red closed
line is added now. Imagine that the centers are nails in a board, which still stick
out a bit. With what small domestic object could you easily show this line? 

d. Add a couple of points within the hull, ask for the voronoi diagram and again
decrease considerably. Does the result differ from exercise b? Did you get any
new infinite cells?

e. Go back to normal and add one point, but do that in such a fashion that you do
add an infinite large cell and that the other infinite large cells stay infinitely large. 

In this last question you try to add a center to the hull, while the centers already belong-
ing to the old hull also belong to the new one. 
If you answered a rubber band to question c above then this is what you need to do: make
sure that the rubber band does not come off the other nails the band touches. 

f. Here we have the situation of question 7 a again, with some more space around.
Indicate with a color the areas in which you can choose a new center in such a way
that all the centers which are on the hull do not come loose from the hull. 

Temporarily conclusion from the preceding:
conclusion 1 The centers which are on the hull have infinitely large cells. 
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8 Here you see a situation
where the computer cannot
help you to sketch the
Voronoi-diagram. 
This would take too long.
However, you can predict
how the diagram will look, if
you decrease scale a lot.
Sketch that in the figure next
to it, where the little gray cloud in the middle represents the group of centers. 

9 a. Construct this situation, with Voronoi-diagram and hull. Verify, possibly by re-
duction, whether the cells of A and B adjoin. 

b. Sketch the circle through A, D and B and also the circle through A, C and B. Find
their centers, if necessary use the option reduce. Why do they need to lie on the
Voronoi-edge of A and B or on its extension?

c. Add within the hull of A, B, C and D a new center E, but in such a way that the
line segment AB still belongs to the hull. Again sketch the circle through A, E and
B. Do the cells of A and B still adjoin? Why (or why not)?

We draw another temporary conclusion:
conclusion 2

10 Test with several examples whether this conclusion holds. 

11 Construct an example with seven centers for which the Voronoi cells of the two fur-
thest apart centers adjoin. 

The two conclusions we drew in this paragraph look solid and reliable, but they are
based only on your observations. You could prove them using the method of the last
chapter. Since it would be a lot of work and would not lead to new insights, and also
since we will not build further on these conclusions, we will leave it at this. 

A

B

D

C

Two centers which are connected with a line segment of the hull, have adjoin-
ing infinitely large cells.
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The problems in this paragraph are not connected. You can choose out of one or more of: 
– improved provinces for the Netherlands
– river, sea, delta, island
– special situations

instructions for loading and saving
In this paragraph we work with a couple of larger examples. 

The names of the figures, which are available through LOAD, often appear in two forms
on the screen: with and without a number in the filename.
If your computer is not very fast, choose the version without the number. 
The number represents the number of centers used. 

Loading
You open the examples we use by clicking the button LOAD . The computer will give
you a list of possibilities. You click on the name of your choice. 

Saving
If you want to save your diagrams and want to use the button SAVE, you will need your
own floppy. Let the new name then start with A: (or another drive-letter); then your di-
agram will be saved on the A:-station. 

improved provinces for theNetherlands
12 This assignment deals with the province capitals of the Netherlands. You can get

them on the screen in two ways: 
a: with worksheet B, page 123. Loosen and hold it in front of the computer screen.
Copy the twelve province capitals as precisely as possible. The best way to do this is
to copy the worksheet onto transparent paper.
b: Click on the button LOAD and click on nedkaart.
Construct the Voronoi-diagram in any way you like.
a. Would the Voronoi-cells round Maastricht and Assen adjoin? Investigate this us-

ing the buttons reduce  and hull . You could find the answer to this question
directly on the map using a ruler. How?
Choose normal to get the map back to its original size. 

improve the province division

13 a. As you have seen, the edges of the Voronoi-cells do not coincide everywhere with
the actual province borders. Now, the inhabitants of Amsterdam of course think
than Amsterdam should be the capital of Noord-Holland. Remove Haarlem and
add Amsterdam. Does the division improve?
Try to relocate more centers so that the Voronoi-diagram starts to look more and
more like the real province division. 

b. Another possibility is: build the provinces with more than one cell. You get too
many edges, but some province borders will be approximated easier. 
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improve the railways

14 a. Now choose the button Delaunay. 
You see blue lines appear between centers. 
Which centers are being connected and which not?
Verify that Utrecht is connected to all the province capitals of adjacent provinces. 

b. Is the Delaunay-triangulation a good proposition for improving the railroads? In-
clude in your comments what are good improvements and which would be a
waste of money. 

continuation Delaunay-triangulation
The Delaunay-triangulation gives all the connections between the centers of adjoining
cells. Another name for it is: the neighbor diagram. 

15 Why does the following apply:
a. There are precisely as many line segments in the Delaunay-triangulation as there

are edges in the Voronoi-diagram.
b. An edge of the Voronoi-diagram belongs to each connection in the Delaunay-tri-

angulation. These two are perpendicular to each other, but do not have to intersect. 
c. In a Voronoi-diagram with only a three-countries-point (not four-or-more) the

number of three-countries-points is equal to the number of triangles in the De-
launay-triangulation. 

d. The convex hull is part of the Delaunay-triangulation?

16 Add to the ten small figures of exercise 5 a sketch of the Delaunay-triangulation. Ob-
serve: if the Voronoi-diagram changes type, so will the Delaunay-triangulation.

river, sea, delta, island
17 Load the example river171 . First make the Voronoi-diagram. You could think

of a river of which you see two banks and an island in the middle. The idea is to find
a route, which lies on a greatest possible distance from the banks. 
a. You now see a clearly curved whole line. Why was making a Voronoi-diagram a

very good approach here? 
b. Sketch a few circles, which just touch both banks. How would you describe the

channel in terms of distances?

18 Load the example ndzee199 . With some good will you recognize the North Sea
with Great Britain on the left and the Netherlands, Germany, Denmark and Norway
on the right. 
a. For oil exploitation purposes, the North Sea has been partitioned according to the

nearest-neighbor-principle, so it should be divided carefully. Make the Voronoi-
diagram.

b. Between England and the Netherlands and between England and Norway you can
easily find the edge, which divides the continental plane. For the oil exploitation
this edge is actually used. 

c. On the group of islands to the northeast of Great Britain, the Shetland-islands, an
important British oil harbor is located. Several years ago a mammoth tanker got
stranded on the rocks. Check how the North Sea would be partitioned:
– if this group of islands belonged to a Scandinavian country. Before 1472 this

was the case, but back then people did not drill for oil. 
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– if this group of islands did not exist. Also look what the influence is further to
the north. (use the button reduce ). 

d. Between Germany and the Netherlands the edge in the sea is hard to find. Still it
can be done. Look which cells belong to the Dutch shore centers and which to the
German ones. Make a sketch of all edges. 

19 You have seen the example archi176  earlier, in chapter 1. 
a. Load it and draw with circle(mid, rand)  several largest empty cir-

cles, which touch three islands. 
b. Suppose, you have to navigate through these islands from north to south, but you

would like to be as invisible as possible. What route would you choose?

In one of the next chapters we will go further into such lines, which lie at an equal dis-
tance from several areas (here the banks and the islands).

special locations
20 Load the example recht98 . The Voronoi-cells will be long strips, you know that

by now. 
a. Put an extra center a few centimeters from the cell-line. In the remainder of the

exercise this center will be referred to as F and the line on which all the other cen-
ters lie will be called l. Show l on the screen.

b. Later on you will make the Voronoi-diagram. What will the cell round F look
like? Test your assumption with the computer.

c. What happens to the cell round F if F is chosen closer to l?
d. You have seen a similar form before. How do we call that form?
e. On each of the edge segments of the cell round F lies a point which has the same

distance to F and l. How do you determine such a point?
f. Let such a point be the center of a circle and take F as an edge-point. Can you ex-

plain that the circle touches l?

If you put the points on the straight line really close together, the cell round F will attain
a more fluent form. The small, straight, pieces of edge, of which that form is built, indi-
cate the direction of the ‘tangent line’ of the fluent form. 

g. Look at such a piece of edge. Two centers belong to it: F itself and another one.
How is the position of the tangent line linked to the position of those two centers?
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21 Load the example cirkel90 . The Voronoi-diagram here is easy to predict. 
a. But add a center F, inside or outside of the circle (both at the same time is of

course also possible).
b. Investigate elaborately how the position of F is linked to the form of the cell round

F. Write down your findings.

other figures with symmetry 
22 The examples honey182 , pent , vlinder  and vier  give nice symmet-

rical figures. 
a. If you add to honey182  the vertices of the Voronoi-diagram as centers to the

original position and again ask for the Voronoi-diagram, what would you see?
You need to able to think this one out before the computer is done! 

b. Try to do something similar to pent . This figure has a quinary symmetry. 

23 You can also load and look at the examples orion , beren  and wild . Orion,
Ursa Major and Ursa Minor are constellations.

Summary of chapter 3

In this computer practical you were able to try several things you have seen before, like
the existence of largest empty circles. 
While exploring the influence of a fourth point on a diagram with three centers, it ap-
peared that the circumscribed circle of the triangle of the three centers plays a dominant
role. Furthermore, the sides of the triangle were also important.

You also took a more precise look at infinite cells. Their centers turned out to lie on the
hull. 

If you work with large numbers of points, you could form figures like rivers and islands.
The Voronoi-diagram shows the edges between those figures. 
One example was a single point against a series of points on a line. It looked like we
found a figure which bore an uncanny resemblance to a parabola. 



Chapter 4
A special quadrilateral



In this chapter we will continue reasoning. 

In general we will deduct several things concerning distances and angles from very few given data.
We will also think about the process of reasoning itself and how to write down proofs. 
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In chapter I, dealing with
Voronoi-diagrams, you en-
countered this example, in
where point D lies just out-
side the circumcircle of tri-
angle ABC. This circle is
empty and thus the cells
round A, B and C converge
into a three-countries-
point, which of course is
the center of the circumcir-
cle of triangle ABC. Thus D
does not disturb the three-
countries-point. 

For the position of the
fourth point D, compared to the circle through the three points A, B and C, there are three
options:

(In case III it is possible that D lies so close to B that the cell round D is closed.)

1 a. In case II the Voronoi-diagram is very special: there is a four-countries-point. 
Why?

b. Which vertex of the Voronoi-diagram is the center of the triangle ABC in case I?
c. And how about case III?

Since the sides of the quadrilateral in the special case are all chords of the circle, we call
quadrilateral ABCD a cyclic quadrilateral. The definition is:

definition of
cyclic-
quadrilateral

In this section we shall prove a relation between the sizes of the angles for these special
quadrilaterals. Later on we shall use this relation for other purposes than Voronoi-dia-
grams. 

D

A
B

C

A

B
C

A

B
C

A

B
C

D
D

D

D outside the circle through ABC D on the circle through ABC D in the circle through ABC

I II III

A quadrilateral is called a cyclic quadrilateral if its vertices lie on one circle.
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2 On the right you see a sketch of a cyclic quad-
rilateral ABCD. In the figure we didn’t actu-
ally portray the main property of the circle:
that there is a center M and that the line seg-
ments MA, MB, etcetera, have equal length. 
a. Therefore, sketch the center and the line

segments MA, MB, MC and MD.
b. The quadrilateral is now divided in four

triangles. The eight angles to the vertices
of the quadrilateral are equal two by two.
Why?

c. Indicate equal angles with the same sym-
bol; for example, use the symbols ∗, °, ×,
•. Ιn each vertex you see a different combination of signs. But what do you notice
when you compare the sum of the signs of A and C to the sum of B and D? 

First a short footnote.
The only correct answer to question 2b is: because triangle ABM is isosceles. 

The isoscelesty is given, namely d(A, M) = d(B, M). That you can conclude the equian-
gularity from that is based on an at the moment non-formulated theorem about isosceles
triangles. We will not prove this theorem here. We will assimilate it in the summary. Lat-
er on, you will draw up a list of these kinds of theorems, which have already been famil-
iar to you for some time. 

What you have just proven is the following temporary theorem:

It seems that we reached a fine result by smart reasoning. However, there are some an-
noying issues left.

Problem A The first question you need to ask yourself is:
Is the theorem proven for every cyclic quadrilateral
one can think of?
For example, think about a cyclic quadrilateral as
shown on the right. 
We again looked at just one special figure, which is
not representative for all cases. For in this one, the
proof above does not hold....

Problem B The temporary theorem only deals with equality of ∠A + ∠C and ∠B + ∠D. This is a
bit meager. Maybe something can be said about the size of ∠A + ∠C and ∠B + ∠D.

Problem C Just like in the complete theorem about the perpendicular bisector, theorem 3, page 29,
we need to know what happens if D lies inside or outside of the circle, since this is the
most frequently occurring case! 

B

A

D

C

Temporary theorem of the cyclic quadrilateral 

In each cyclic quadrilateral ABCD holds: ∠A + ∠C = ∠B + ∠D.

A

D

C

B

M
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Problem A

3 a. What is the essential difference between this
cyclic quadrilateral and the one from exercise
2?

b. Again go over the steps of exercise 2. Where do
you need to deviate from exercise 2 for this
case?

It is not very difficult to find a proof for this situation.
We will draw up this proof in a clearly noted form as
an exercise in notation. 

This is the accompanying sketch. 

Now we can talk easily about all kinds of angles
and parts of angles in the situation without refer-
ring to them with strange symbols. 

4 In the theorem we are proving ∠A plays a role.
We mean by ∠A the vertex angle ∠DAB .
The sketch also shows ∠DAB = ∠A1 + ∠A2.
Here we are not reasoning based on a sketch,
but merely showing what we mean with all
those letter notations.
a. What does ∠D mean in the theorem? Write

down the relation with ∠D1 and ∠D2. 
Look carefully at how the little arches are
indicated. 

The complete proof could start as follows: 

This is actually
a statement

with a motivation.

In the remainder of the proof we will use the data from the sketch and these four equal-
ities to rewrite the sum of angles ∠A + ∠C step by step to ∠B + ∠D. Between the brack-
ets is stated why an equality holds, thus those are again motivations. 

A

D

C

B

M

A

D

C

B

M
1

1
2

1 2
1

2

2 =

=
=

=

∠D1 = ∠A1, ∠A2 = ∠B1, ∠B2 = ∠C1, ∠C2 = ∠D2 
(since the triangles DMA, AMB, BMC and CMD 
are isosceles)

∠A + ∠C = ∠BAD + ∠DCB
= (dividing angles)
(∠A1 + ∠A2) + (∠C1 – ∠C2)
= (using equal angles)
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b. Complete this story. 
The last line of this story will be 

= ∠B + ∠D
(You could - if you get stuck - search by starting at ∠B +∠D and splitting up the
angles)

For the first case (where M lies inside of the cyclic quadrilateral ABCD) you could have
written down the proof in the same fashion. 

5 The sketch would be different, but in the proof you would need to change some de-
tails. Which?

case distinc-
tion

We are still working on the temporary theorem of the cyclic quadrilateral. We have made
a careful distinction between the cases where the center of the circumcircle lies inside
or outside the quadrilateral. 

6 a. Is the temporary theorem of the cyclic quadrilateral now proven for áll possible
cyclic quadrilaterals? In other words: are there other situations than those where
M lies inside respectively outside of the quadrilateral? 

b. If you find another case, which of the two proofs holds? 

Conclusion from this part for Problem A: 
The temporary theorem of the cyclic quadrilateral was put under some pressure, but is
eventually saved by adjusting the proof for the other case. 
While doing that we also practiced how to write down a proof clearly. We distinguished
statements and motivations. 
Noting angles with indices was handy for keeping the relation between proof and sketch. 
On to problem B.

Problem B
That was:
The temporary theorem only talks about the equality of ∠A + ∠C and ∠B + ∠D. This
is a bit meager. Maybe something can be said about the size of ∠A + ∠C and ∠B + ∠D.

7 a. Find out for exercises 2 and 4 what ∠A + ∠C and ∠B + ∠D are, using a protractor.
The four results are not very different! 

b. What is your statement (still to prove!!) about the sum of opposite angles in a cy-
clic quadrilateral?

If your statement is right, you can also say something about the total sum of ∠A + ∠C
+ ∠B + ∠D in such a quadrilateral. Before we will prove that the sum of the four vertex
angles in a cyclic quadrilateral is 360°, we check whether we need to restrict ourselves
to cyclic quadrilaterals. 
Namely, we switched from ∠A + ∠C = ∠B + ∠D = 180° to ∠A + ∠C + ∠B + ∠D =
360°, but the last thing also holds if we have for instance ∠A + ∠C = 140° and ∠B + ∠
D = 220°. In other words: for the total sum of angles of 360° we maybe should not re-
strict ourselves to cyclic quadrilaterals. 
We will first try to find out how general ∠A + ∠C + ∠B + ∠D = 360° can be true.
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8 Determine the total internal sum of angles for these examples. These are a few special
cases for which it is easy to compute and determine angles. 

(Note that in d the angle of 120° is not an inside-angle of the quadrilateral.)

Let’s formulate the statement first as a theorem, the proof will follow. 

Theorem 6 In each quadrilateral the sum of angles is equal to 360°.

You will give the proof in the form which just has been shown. For the kernel of the
proof you of course will need to know where you need to look, but you do already know
that the sum of angles in a triangle is 180°. 
This is something you learnt earlier which you can use now. In the summary we will as-
similate this fact as a theorem. 
In short: split the quadrilateral into two triangles!

9 a. This is a sketch, which belongs to it. However, sometimes it is possible that the

connection AC does not lie in the quadrilateral. Sketch such a case and divide that
quadrilateral in two internal triangles with a connection line. As long as we do not
use anything, but the properties of triangles, everything will work out just fine af-
ter this case distinction. 

b. Now add the necessary numbers and arches in the figure and write down the proof
using the format of exercise 4.

The proof of theorem 6 is now complete. It is now safe to use the theorem to improve
the temporary theorem of the cyclic quadrilateral to:

a: rectangle. b: rhombus with angles
of 60° and 120°.

c: Trapezium with base angles of 90° and 45°.

d: indentation, 

120° 90°

symmetrical 
with given 
angles.

A

D

C

B

temporary theorem of the cyclic quadrilateral, improved version

For each cyclic quadrilateral ABCD holds ∠A + ∠C = ∠B + ∠D = 180°
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Problem C
Now we will look at the situation where D lies
within the circle through A, B and C. 
The next assumption almost goes without saying:
∠B + ∠D > 180°. Imagine that you are standing
somewhere on the circle, opposite B. If you start-
ing walking forwards, you need to widen your
view to left and right to be able to still see A and C. 
The proof of ∠B + ∠D > 180° shall be based on
this idea: we will compare the situation in point D
to one with a point on the circle. 

10 For that point we do not choose a completely
new point, but a point, which has a relation to the other points. 
a. Choose a point on the extension of AD and call it E. Make sure that the quadrilat-

eral ABCE is fully drawn. 
b. Now show, using a familiar property of triangles that 

∠ADC = ∠DCE + ∠CED.
c. Which inequality does now apply to ∠ADC and ∠CED?
d. Complete the proof of ∠B + ∠D > 180° by applying the temporary theorem of

the cyclic quadrilateral to ABCE and combining that with the result of c.

The proof has not been put in a strictly organized form, but this is not always necessary. 

Now the following has been proven:

I. If in a quadrilateral ABCD point D lies INSIDE the circumcircle of triangle ABC,
then ∠B + ∠D > 180° applies.

We already knew:

II. If in a quadrilateral ABCD point D lies ON the circumcircle of triangle ABC, then
∠B + ∠D = 180° applies.

And of course we also expect that:

III. If in a quadrilateral ABCD point D lies OUTSIDE the circumcircle of triangle ABC
then ∠B + ∠D < 180° applies.

You could prove III almost similar to exercise 10, and surely you would be able to. With-
out doing this, you may also assume the correctness of III; it is no fun doing the same
over and over again. But .......

On the other hand: it is better using the proven cases I and II in a smart way and deduct-
ing case III from there. We will do this in this extra-exercise.

A

B

C

D
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extra 11 First of all the sketch. D lies
outside the circle through A, B
and C.
The dotted circle goes through
A, B and D. It looks like the
complete arch from A via D to B
lies outside the circle through A,
B and C. 
a. Argue that using theorem 5,

page 31.
Actually, you need to show
that both circles cannot have
a third point X in common,
because what would then be
the circumcircle of AXB?

b. Thus C lies within the circle
through A, B and D. The
proven part I of above now leads to an equality in where ∠C occurs. Write it
down.

c. Now deduct, using theorem 6, the desired statement ∠B + ∠D < 180°.

Problem C is solved and we will summarize the results of this section in one theorem. 

Theorem 7 If ABCD is a cyclic quadrilateral, then ∠A + ∠C = ∠B + ∠D = 180°.
If D lies inside the circumcircle of A, B and C, then ∠B + ∠D > 180°.
If D lies outside the circumcircle of A, B and C, then ∠B + ∠D < 180.

This deserves a survey illustration.

B

C

A
D

C

D
D

D

B

D cannot lie in
the white area,
since if it did
ABCD would
not be a quad-
rilateral.

inside the circle: 
∠B + ∠D > 180×°.

On the circle: 
∠B + ∠D = 180×°.

Outside the circle: 
∠B + ∠D < 180×°.

A
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Remark: Since the three cases of the theorem exclude each other, you can immediately
draw conclusions like:

If in a quadrilateral ∠B + ∠D = 180°, then that quadrilateral is a cyclic quadrilateral.

After all, if this equality holds, then the last two statements of the theorem ensure the
fact that D neither lies inside nor outside the circle. Remains: on the circle. 

extra,
finding a 
good defini-
tion

12 It is said that D cannot lie in the white area, since then ABCD would not be a quad-
rilateral. 
This is rather vague as long as we not have agreed upon what a quadrilateral is.
Find out what is going on, and give a definition of ‘quadrilateral’, which exactly ex-
cludes these cases. 

extra Warning!
In mathematics it can, and will, happen that you find a proof which looked right, but later
on somebody remarks on a small error in it. It does not always mean that the proof is
totally wrong; it can be fixed in most cases. You are now in such a situation.

13 Check again the position of point E in 10a above. It could be on arc BC! In that case
you cannot work with ABCE as a quadrilateral.
a. How to fix this hole in the proof?
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In this section we return to constructing Voronoi-diagrams. We use what we know of cy-
clic quadrilaterals, so mostly theorem 7. Since that theorem talks about angles, you need
to measure angles very precisely several times. 

14 Given are four centers.
a. Find out whether in this Voronoi-

diagram of these four points the
cells round A and C, or the cells
round B and D adjoin. 

b. Sketch all connection lines of cen-
ters which have adjoining cells
with a color. 

c. Finish the Voronoi-diagram by
sketching perpendicular bisectors. 

d. Unlike exercise 4 a, page 7, now
you did not sketch too many per-
pendicular bisectors. How come ? 

15 a. Is this also true?

If a Voronoi-cell is a quadrilateral, then that quadrilateral is a cyclic quadrilat-
eral. 

If necessary, give a counterexample.

16 Sketch a situation with six centers, where you have two four-countries-points in the
Voronoi-diagram. (Here avoid the flat example that the centers which have a four-
countries-point, form a square or a rectangle.) 

A

B

D

C
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Summary of chapter 4

reasoning 
In this chapter we got results through reasoning. 
The direction of concluding things was from former knowledge to new all the time. 

Writing down proofs
You have learned that you can write down proofs in a neat way. Two aids were:

a. Indicating angles with indices: A1, B2, etcetera. In the sketch you can also indicate
angles with symbols like ∗, °, ×, and •. However, it looks kind of weird if you start
your proof with: * = *. A good compromise is: indicate in the sketch equal angles
with the same color or symbols and use unambiguous denominations. 

b. Note the statement and motivation in this format:
a statement 

with a motivation.

motivations 
As motivations the following are allowed:
– references to definitions
– basic unproven known facts we agreed about (like the triangle inequality)
– statements that have been proven earlier.

theorems 
Important things which we know to be true and which we will use again, are laid down
in the form of a theorem. 
Several theorems mentioned below have not been proven in this book. Those are the first
two of the following survey.

survey of theorems of this chapter

Theorem 1 (Isosceles triangle)
If in triangle ABC d(A, C) is equal to d(B, C), then ∠CAB is also equal to ∠CBA. 
Also the reverse is true:
If in triangle ABC ∠CAB is equal to ∠CBA, then d(A, C) is equal to d(B, C). 

Theorem 2 (Sum of angles in a triangle)
In each triangle the sum of angles is equal to 180°. 

Theorem 3 (Sum of angles in a quadrilateral)
In each quadrilateral the sum of angles is equal to 360°.

Theorem 4 (Properties of cyclic quadrilaterals)
If ABCD is a cyclic quadrilateral, then ∠A + ∠C = ∠B + ∠D = 180°.
If D lies inside the circumcircle of A, B and C, 
then ∠B + ∠D > 180°.
If D lies outside the circumcircle of A, B and C, 
then ∠B + ∠D > 180°.
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Chapter 5
Exploring isodistance lines



When dividing fishing grounds between different countries the concept of the isodistance line
plays an important role. This is a line which lies at sea at a fixed distance from the different
shores. 
Studying these lines puts us on the track of several geometric relations, where tangent circles
and bisectors play a big role. 
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The small island Mururoa in the South Pacific was frequently in the news in 1995. An
international fleet, lead by two Greenpeace ships, wanted to protest on the spot against
nuclear activities which would take place on the island. When rubber boats and the he-
licopter from the Rainbow Warrior operated within the 12-mile-zone round Mururoa,
the French government saw this as an occasion to board this ship. On the one hand this
lead to dramatic TV, but on the other it was a sensitive blow to Greenpeace’s further
plans.

The 12-mile-zone is seen as part of a country’s territory. Unauthorized trespassing of the
imaginary edge of this zone means a violation of international rights. 

isodistance 
line

The edge of this 12-mile-zone is an example of an isodistance line: each point of this
line has a distance of 12 miles to the coast. More exact: it is the iso-12 mile-line.
But how do you know where this imaginary line lies? To what point on the shore is the
distance 12 miles? What determines the shape of such a line? We will deal with these
questions in this chapter. 

1 Mururoa is an atoll. The diameter of this small island is a couple of hundred meters,
very little compared to 12 mile (1 mile = 1,61 km).
a. First consider Mururoa as a pointlike area. 

Which shape does the edge of the 12-mile-zone have?
b. Consider Mururoa as a circular area with a radius of 680 meter. What then is the

iso-12-mile-line?

2 On the right a square – reduced – with a side of 4 cm
is sketched. That is the area G which we look at.
Around the square a second square with a side of 
8 cm is sketched. 
The edge of this square is not the iso-2 cm-line of G. 
You can also find a full-size sketch on the worksheet
at page 125.
a. Indicate on the edge of the larger square five

points that do belong to the iso-2 cm-line of G
and also five that do not. 

b. Now sketch the iso-2 cm-line of G. 
Also sketch the iso-1 cm-line, the iso-3 cm-line
and the iso-4 cm-line of G.

c. Is the iso-300 cm-line of G a circle? 
Explain your answer.

Before we start sketching isodistance lines for more complicated areas, we will first de-
scribe what we mean by the distance from a point P to an area G.
The description uses the familiar distance concept for two points. 

G
2 cm
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description 

 

In the description a lot of words are used which are not defined: area, edge. Also, without
further introduction it is simply assumed that such a smallest distance exists. 
In this chapter we will use the terms area and edge, just as if they have a solid mathe-
matical meaning, and we will accept also that the minimum distance exists. We will
agree on one other thing: the edge belongs to the area.
Furthermore: if misunderstandings are not possible, from now on we will leave out the
unit for distances. 

simple areas
In some cases it is easy to determine footpoint and distance. We are also able to give a
full proof in those cases. We will do so in the following exercises. 

3 Here the area G is a half-plane; the edge
of A is a line, say l. 
a. How can you determine the foot-

point R of P and the distance d(P, G)
immediately? 

b. In what way(s) has been proven that
this is true?

4 A circular island E with center M and
radius r. Again a point P outside of E is
indicated. 
a. Of course you expect the footpoint

of P on E to be on the connection line
PM. Sketch the line and name the
point R.

b. Take a point Q on the edge of E, not
equal to R, and prove that 
d(P, Q) > d(P, R) applies.
Aside from the triangle inequality,
you also need to use your knowledge
of circles. 

c. Express, using the d-notation, the
distance from P to E in the distance from P to M and the radius r.

Determine for all points on the edge of an area
G the distance to P. 
For one (or more) of these points, 
say R, is d(P, R) the smallest. 

We then call:
– d(P, R) de distance from P to G
– R a footpoint of P 
We denote the distance from P to G by d(P, G).

R G

P

P

G

l

P

r

M

E
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5 Here the area F is the outside
area of a circle. M again is the
center of the circle. We need
to find the footpoint R for the
given point P.
a. Again sketch the points R

and a point Q on the cir-
cle, (almost) like in the
previous exercise. 

b. Also here the triangle ine-
quality helps while prov-
ing that d(P, Q) > d(P, R).
Now you definitely need
d(M, Q) = d(M, R).

c. Again express, using the
d-notation, the distance
from P to F in the distance from P to M and the radius r.

Now we know how to find footpoints of given points for line-shaped and circular edges
of areas, it is also clear that footpoints can be found for areas which are restricted by sev-
eral pieces of lines and circles. With that, for these types of areas, the existence of a min-
imum distance, which is assumed in the description on page 60, is made secure.

Now the concept distance to an area is known, you can also define what an isodistance
line is.

definition iso 
distance line

6 a. Sketch for exercises 3, 4 and 5 the isodistance line at the distances 1, 2 and 3 and
also sketch the isodistance line which crosses point P. 

b. From what does it follow immediately that these are indeed circles in exercises 4
and 5 ?

7 On the next page a triangular area G is sketched.
a. Sketch for each of the points Pi the accompanying footpoint Ri on the edge of G.
b. The vertices A, B and C of the area play an important role. 

Sketch in the figure the ‘zone’ for which point A is the closest point for points in
the area G. For instance P1 is in this zone. 
Also sketch these zones for the points B and C.

c. The outside area of G is now divided into six zones. 
Describe for each zone the shape of the isodistance lines. 

d. Sketch the isodistance lines for d=2 cm, d = 4 cm and d = 6 cm. What stands out?
e. The isodistance lines are longer than the circumference of area G. How much

longer?

M
P

F

r

For a given positive distance a, the isodistance line at distance a from an area
G is the set of all point to which apply: d(G,P) = a. 
The isodistance line at distance a is indicated by iso-a-line. 
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cape The points A, B and C are a kind of cape. According to the dictionary a cape is a strip of
land projecting into a body of water. Such a projecting point is the footpoint for a large
number of points: all points, which lie in a certain sector. 

8 a. Explain why all the isodistance lines in the neighborhood of a cape are parts of
concentric circles. 

b. How do you find the lines which confine the sector of such a cape?

9 Up here you see an L-shaped area G with iso-1-line. A, B, C, and D are capes.
a. Now sketch the northeast part of the isodistance lines for the distances 0.5, 2, 3

and 4 very exact.

Near the capes the arcs of the circle smoothly run into the straight pieces, but this is
somewhat different for E. There, the isodistance lines show a kink. 

G

A

B

C

P1
P2

P3

P4

P5P6

P7

P8

this figure is taken up 
(enlarged) in worksheet C

G

AB

C

D
E

2.5

5

1

5

2.5

1

N
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b. On which line do these kinks lie?
c. The iso-1-line makes a kink of 90o. How large is the kink for the other four iso-

distance lines?
d. Up to which value of d does the de iso-d-line make a kink of 90o? Explain.
e. As the distance increases, the angle between the two arcs decreases. Will the kink

completely disappear at a great distance?
Give a clear reasoning.

Areas with bays
For the simple areas which have come up till now, the isodistance lines were built of arcs
of circles and straight line segments and could be sketched precisely. 
You can say from the L-shaped area of exercise 9 that the northeast has a bay. Near this
bay the isodistance lines showed kinks. In the next section we will go further into bays
with straight-lined shores. 
The next two exercises deal with bays with a small passage to the open sea. 

10 The bay above has a passage to the open sea with a minimal width of 
2 kilometer. The scale of the map is therefore determined by: 
1 cm on the map is in reality 1 kilometer.
a. Successively sketch in different colors the iso-0.2-, iso-0.5-, iso-1-, iso-1.50- and

iso-2-lines. You do not need to measure very precisely, but the important charac-
teristics of the isodistance lines should clearly come out. 

b. What, according to you, is the most important difference between the shapes of
the iso-0.2-line and the iso-1.5-line?

c. Indicate all points on the iso-1-line, which have two footpoints. 
d. Indicate with an extra color on the iso-2-line those pieces of which the footpoints

lie on the coast of offshoot B.

G

of
fs

ho
ot

 A

offshoot B

sea

bay
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11 Below, an iso-1-line is shown, as well as two short pieces of the edge of the involved
area. The isodistance line consists entirely of quarter circles, half circles and straight
line segments. Finish the edge of the area exactly. You can use the grid lines. 

You can see from this example that the name isodistance line is not perfect: a line does
not split up in two pieces halfway through. No problems occur if you know what you
mean by the total concept isodistance line, namely the set of points with ... etcetera. 

extra 12 In the proofs at the beginning of this section
(the half plane and the circular island) the
triangle inequality played an important role. 
The triangle inequality applies to three arbi-
trary points. Now the concept of distance is
extended with distances to areas. Would the
triangle inequality still be true if you were to
replace one or more points by areas? In
short:
a. Does d(A,B) ≤ d(A,G) + d(B,G) apply to

the sketched situation? 
b. Move B in such a way that this ‘triangle

inequality’ is no longer true. 
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21: Angle bisectors

In this section we investigate isodistance lines in bays which are bounded by straight-
lined shores. In here bisectors play an important role. 

13 You only see a part of the area G. Suppose that the straight edges of the bay continue
indefinitely. The arrows should represent this. 
a. Sketch accurately in the

bay
 the iso-1-line
 the iso-2-line 
 the iso-3-line 
 the iso-4-line.

b. All these lines have a kink.
Which figure do these
kinks form? 

c. How many footpoints
does the ‘kink point’ of an
isodistance line have?

d. Sketch the footpoints of
the ‘kink point’ of the iso-
3-line.

14 Here you also see part of an area. The white triangle does not belong to the area and
the isodistance lines lie inside the triangle. 

a. The iso-0.5-line is sketched. Also sketch the distance lines at the distances 1, 1.5,
2, 2.5, etcetera. 

G

G
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b. Describe what you notice.

15 This area has a bay with two kinks. Also the iso-0.5-line shows two kinks. 
a. Do all isodistance lines

have two kinks?
b. Find a point P in this bay

that has three footpoints on
the area G. Demonstrate
how you found P
Also sketch the circle with
center P, which runs
through the three foot-
points. 

In a bay which is bounded by straight line segments the isodistance lines show kinks.
Those kinks lie on a straight line. Each kink has a footpoint on both edges of the bay, in
contrast to all the other points on an isodistance line. 

For the two lines which bound the bay, a ‘kink line’ plays a similar role as the Voronoi-
edge for two points. 
To the points on the Voronoi-edge of centers A and B applies: d(P, A) = d(P,B)
To the points on the ‘kink line’ for l and m applies: d(P, l) = d(P,m).
In the next section this analogy will be looked into further. 

G

A

R1

P

R2

R

Q

l

m
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extra 16 Also, for the bay on the right
we have a lot of isodistance
lines with two kinks, but not
all. 
Sketch an area which has
bay(s) with straight-lined
shores and for which all iso-
distance lines have two kinks. 

A
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22: Theorems about angle bisectors 

Here is a definition of bisector of an angle.
definition an-
gle bisector

To a point P on the bisector applies ∠PAC = ∠PAB. 
In the previous section we found that to points on the ‘kink line’ of a bay which is bound-
ed by straight line segments, applies: d(P, C) = d(P, B). 
There, B and C are the footpoints of P on the legs of the angle.
The figure strengthens the impression that the ‘kink line’ and the angle bisector coin-
cide. 

It all looks a lot like the equality of the Voronoi-edge and the perpendicular bisector. 

In section 11 of chapter 2 (page 26) we have proven this equality. The proof consisted
of two parts. 

17 Now prove only that each point on the ‘kink line’ also lies on the bisector. 

On page 26 we have formulated the following theorem about the properties of the per-
pendicular bisector. 

The angle bisector of an angle CAB is the line which makes equal angles with
the legs CA and BA of that angle.

A

B

P

C

angle bisector:
∠PAC = ∠PAB

‘kink line’: d(P,C)=d(P,B)

A

B

P

C

*
*

A
B

P

perpendicular bisector:
through the middle of AB
and perpendicular to AB

Voronoi-edge: d(P, A) = d(P, B)

A
B

P
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Theorem 3 The perpendicular bisector of line segment AB is the set of points P for which
holds d(P, A) = d(P, B). 
For points P outside of the perpendicular bisector the following holds:
If d(P, A) < d(P, B), then P lies on the A-side of pbs(A, B).
If d(P, A) > d(P, B), then P lies on the B-side of pbs(A, B).

18 Formulate an analogue theorem about the angle bisector.

Theorem 8 Angle bisector theorem
..............
..............

This theorem can be proven just as fundamentally as theorem 6; we will not do this in
detail. In exercise 17 you have already done a part. 

There also is an analogue for theorem 4, page 30. 
The figure below already suggests it. 

Theorem 9 The three angle bisectors of triangle ABC meet in one point.

In the proof of the theorem of the perpendicular bisector we used the concept of distance.
Since theorem 8 associates bisectors with distances, we can do the same here. 

19 Give a proof of theorem 9; use the structure of page 30. 

We will carry on with the analogy in a minute.The circumscribed circle of the triangle
belongs to the intersection of the perpendicular bisectors. Here we have an inscribed cir-
cle.

definition 
inscribed cir-
cle

This could be the theorem that looks like theorem 5.

Theorem 10 Each triangle has an inscribed circle (=incircle). The center (=incenter) of the in-
circle is the point of concurrence of the triangle’s angle bisectors.

A

B

C

?

**

××

 °
 °

An inscribed circle of a triangle is a circle which lies in the triangle and which
has one, and only one, point in common with each of the three sides. 
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glance for-
ward

The figure on the right shows a
triangle with its incircle. 
It is tempting to say that the sides
are tangents to the circle. This is
not wrong, but then we need to
underpin the word ‘tangent’. We
will elaborate on this later. 

As the theorem was formulated
here, everything is fine; the circle
lies completely on the right side
of all three lines, so within the tri-
angle. 

For preparation purposes on a theorem about angle bisectors, which does ‘not’ have an
analogue in perpendicular bisectors, we investigate converging angles and their bisec-
tors. 
Here two line shaped areas G and H are indicated. (Therefore, the intersection of the
lines belongs to both areas, but this is not very important). The two areas enclose four
bays. For each of the bays the bisector is sketched. Equal angles are indicated with the
same symbol. 

According to the definition on page 68 we should talk about four angle bisectors. Up to
now we only had half angle bisectors. We will rectify this in a moment. 
Of course you know that these four half bisectors complete each other into two lines.
You can also prove this. 

20 Prove that l2 and l4 indeed form a straight line.
First prove that l1 is perpendicular to l4 and also to l2.
Use the facts that H and G are ‘whole’ lines and that a straight angle is 180°.

agreement From now on we mean by bisector a whole line, which passes through the intersection
of two lines and makes equal angles with those lines. 
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C
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The result of exercise 20 can now be formulated as the following theorem. 

Theorem 11 The two angle bisectors of two crossing lines are perpendicular to each other. 

internal and 
external an-
gle bisectors

In a triangle ABC we now have six bisectors:
– three, which coincide in one point inside the triangle; these are called the internal an-

gle bisectors;
– three others, which, besides a vertex they cross, lie outside the triangle; they are

called the external angle bisectors.

21 In this triangle the internal angle bisector through A and the external angle bisector
through B and C are sketched. 

Prove that these three bisectors also coincide in one point and that this point is the
center of a circle, which only has one point in common with each of the three lines. 

escribed cir-
cle

Such a circle is called an escribed circle or excircle of triangle ABC. Each triangle has
three excircles. 

22 The following figure shows a triangle ABC and all its internal and external angle bi-
sectors. Sketch the incircle and the three excircles. Also indicate equal and right an-
gles in the figure. 

**

+
+

•
•

A

B

C

A

B

C
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The following theorem does not state anything new, it is a summary of the preceding. It
even repeats the previous theorem. There is nothing against that in such a summary. We
will leave the undefined concept of ‘tangent’ in there. For now you can think about ‘tan-
gent’ as just having one point in common and for the other points as lying on one side
of the lines. 

Theorem 12 In a triangle the three internal angle bisectors coincide in one point. That point is
the incenter of the incircle. 
If one chooses the external angle bisector at two vertices and the internal angle
bisector at the third vertex, then those three lines also concur in one point. This
point is the excenter of an excircle of the triangle. 

23 In exercise 15 you have sketched a point P in a bay, which has a footpoint on each of
the three shores. You can now think of that point as the center of an excircle of some
triangle. 
But then P needs to be the intersection of two external angle bisectors and one inter-
nal angle bisector of this triangle. 
Sketch those three angle bisectors of the triangle. 

extra 24 Do the incircle and excircle have the same point in common with a side in a triangle? 
Find out for which triangles this is true. 
You do not have to prove your statement.

G



I – 73

23: Tangent circles

23: Tangent circles

In this section we discuss a relatively easy way to find isodistance lines of capricious
areas. 

bumping cir-
cle

We call a circle round a point P outside G a bumping circle for G if there is one (or more)
point of G on the circle and there are no points of G inside the circle.

25 a. Here an area G and a number
of circles with radius 1 with
centers P1, ... , P7 is sketched.
Indicate which points Pi be-
long to the iso-1-line.

b. If a point Q lies on the iso-1-
line, is it certain that there is a
bumping circle with radius 1
and center Q?

With one bumping circle, moving
around the area, and little hole in the middle, you could quickly sketch an isodistance
line. Let’s try!

26 Below you see part of a map of Corsica; the coast of Corsica is very varied. Make a
cardboard circle with radius 2 and a hole in the middle. With a pencil, which sticks
through the hole, you can very quickly sketch the iso-2-line. The scale of the map is
1 : 600000; so you are actually sketching the iso-12 km-line.

G

P4

P1

P7

P2

P6
P5

P3
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27 Consider a turning cycle wheel as a moving bumping circle. In the following three
figures you see different obstacles. 
a. For each case sketch the path that the middle of the wheel follows. 

1. round bump

2. speed ramp

3. low pavement

If the path of the middle of the wheel makes a kink, the cyclist will feel a blow. The
blow is heavier when the angle between the directions before and after the kink is
larger. 

b. How many blows does the cyclist feel at the speed ramp? 
c. In which case does the cyclist feel the severest blow: at the ramp or at the low

pavement? 
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The theorem of the bumping circle

Theorem 13 The centers of all bumping circles with radius a of an area A form the iso-a-line of
that area.

28 The statement has two directions:
– each center of a tangent circle with radius a lies on the iso-a-line
– each point of the iso-a-line is the center of a tangent circle with radius a.

Did we prove this theorem? Where and how?

29 The next statement is not true in general: 
If a bumping circle with radius a touches two or points of an area, then the
iso-a-line has a kink.

Find in section 20 an example and counterexample for this statement. 
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Summary of chapter 5

area, edge
We did not say what an area and an edge are in general. We could do this, but it would
go too far. 
No difficulties occur if we stick to the following:
– An area in the plane is nothing else but a piece of the plane we work in. It could be

bounded or unbounded. A piece of straight line is also an area. 
– The edge of an area always belongs to the area. 

distance from a point to an area, footpoint
The concept distance between points has in this
chapter been expanded to distances from points to
areas. The distance from a point P to an area is the
smallest possible distance from P to the edge points
of the area. Such an edge point is a footpoint of P.
P can have more footpoints. 
When we deal with areas, bounded by several arcs
and line segments, we can be sure of the fact that
each point outside the area has one or more well de-
fined footpoints on the edge of the area. 

isodistance line
The iso-a-line of an area G consists of all points
which have distance a to the area G.
In the sector which belongs to cape A, the isodis-
tance lines are pieces of concentric circles with cen-
ter A.
If the footpoints lie on a straight line, then the isodis-
tance lines will also be straight-lined. 
For bays, which are bounded by straight line seg-
ments, the isodistance lines consist of parallel line
segments, which are connected with a kink. The
‘kink points’ have two footpoints. They lie on the bi-
sector of the angle the two straight edge segments
make. 

angle bisector
An angle bisector is a line which makes equal angles with the legs of the angle. 

similarities between angle bisectors and perpendicular bisectors
Angle bisectors divide angles in half, perpendicular bisectors divide line segments in
half. We have found several theorems about angle bisectors, partly analogous to the the-
orems of the perpendicular bisector. 
Each triangle has three perpendicular bisectors, their intersection is the center of the cir-
cumcircle. Each triangle has three internal angle bisectors and three external angle bi-
sectors. There are four points where three of those lines intersect. Those are the centers
of the incircle and the three excircles. 

R G

P

G

A
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theorems about angle bisectors
Since we state here the complete formulations of 8 and 12, theorems 9 and 10 do not
have to be repeated here. 

Theorem 8 (Properties of the angle bisector)
The two angle bisectors of an intersecting pair of lines l and m form the set of points P
to which applies d(P, l) = d(P, m). 
To points P within triangle ASB applies: (Here A and B are points on a and b respectively,
not equal to S)
If d(P, a) < d(P, b), then ∠ASP < ∠BSP
If d(P, a) = d(P, b), then ∠ASP = ∠BSP
If d(P, a) > d(P, b), then ∠ASP > ∠BSP.

Theorem 11 (Perpendicular position of two angle bisectors)
The two angle bisectors of two intersecting lines are perpendicular to each other. 

Theorem 12 (Angle bisectors inside and outside of the triangle)
In a triangle the three internal angle bisectors intersect in one point. That point is the
center of the incircle of the triangle. 
If one chooses two external angle bisectors at two vertices and the internal angle bisec-
tor at the third vertex, then those three lines also intersect in one point. That point is the
center of an excircle of the triangle. 

bumping circles
A bumping circle to an area G has one or more points of G on the circle and no points
of G inside the circle. 
Two theorems describe the role of these circles. 
When sketching isodistance lines of complicated areas you can use bumping circles. 

Theorem 13 (Theorem of the tangent circles)
The centers of all bumping circles with radius a of an area G form the iso-a-line of that
area.
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Chapter 6
Shortest paths



In this chapter a different type of geometry problems comes up: finding shortest paths. 
We start off with finding economic ways to tie your shoelaces.
Reflection and working with angles will be used many times. 
Thus you will often need your protractor. 

The character of this chapter is mostly very practical. In many exercises sketching is required. 



I – 81

24: From shoelaces to shortest paths

24: From shoelaces to shortest paths

The pictures on the first page of this chapter show two different ways to tie your shoe-
laces. The dressy shoes are tied European style, the cowboy-boots American style. 
We will compare the styles on efficiency of use of shoelace and work with a method
which gives rise to an interesting geometrical investigation: optimizing through reflec-
tion in mirrors.

1 The two methods are here applied to the same training shoe. Alongside you see the
schemes. Which method uses, according to you, the shortest length of shoelace be-
tween A and P? (Base your answer on the schemes and restrict yourself to a first es-
timate.)

2 Below the start and finish of the shoelace patterns are represented transformed; re-
flections were used, so that the crossings no longer appear See the shoelace going
from A to O, to C: the American style.

a. First finish both patterns in this fold-out representation.
b. lengths are not changed in this new representation, compared to the earlier

scheme. Why is that so?
c. Now decide again which pattern uses the shortest length of shoelace. Explain your

choice. 

illustration from SA july 1996
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shortest road length 
In the shoelace-problem you saw that it is sometimes easier to determine a shortest path
by reflection if the path needs to meet certain conditions of reflection. 
We have seen an earlier situation in which this method was applicable. 

old problem The straight line below represents a railroad line; A and B are cities, which lie at some
distance from the railroad. One station needs to be built and of course roads from both
cities to the station need to be constructed. 

The separate city councils of the cities A and B suggested S1 and S2. The roads necessary
for both propositions are indicated with dotted lines. 

3 After deliberation the cities decide in favor of the overall cheapest solution:

position S of the station needs to be located in such a way that the total
length of constructed roads |AS| + |SB| is minimal.*)

a. Determine the exact point S, which meets this condition. 
(You have done this before! But again a hint: if the cities lie on different sides of
the railway, it would not be difficult to decide where S needs to be located.)

b. Now also show that for the point S holds: ∠S1SA = ∠S2SB.
think ahead 
for a moment

Strictly speaking, you have not learned why that last thing is true in this book! You need
some knowledge of angles, but not all that much. In the next geometry book you will
work more with angles and then proving something like this would be a piece of cake.
In this chapter you will gain some experience in using angles. 
Simply use what you already know:
– opposite angles of intersecting lines (as was used here) 
– F- and Z-angles
– the total sum of angles in a triangle is 180 degrees.

We summarize what we found in the form of a theorem. 

* Here the notation |XY| is used for the length of the line segment XY. See, if necessary, page 23.

railroad 

A

B

S2

S1
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Stelling 14 If a line l is given and two points A and B on the same side of the line, then there
is exactly one point S on the line l for which |AS| + |SB| is minimal. For that point
S holds:
- S is on the connection line of B and the reflection of A in l,
- AS and BS make equal angles with l.

extra

plain, but 
subtle

If you were to move a point X from S1 to S2, then the total length 

|XA| + |XB| 

would vary.

You only know that this quantity would be minimal if X = S.
It is also true that the length decreases continuously if you move from X to S1 to S and
after that increases continuously. Said plainly: if you make a bigger detour, it will be
longer. However, the mathematical proof is very subtle. 
Thus you could add to the theorem: 

Furthermore: if P is point which moves away from S along l, 
then |AP| + |PB| constantly increases.

The proof of this statement does fit within the framework of the proving with the trian-
gle inequality. But it is not easy! 
With this figure you should show that:

|A’Y| +|YB| > |A’X| + |XB|.

Unpleasant as it is, it does seem that:

|A’Y| > |A’X| 

but also:

|YB| < |XB|.

4 You still need to find a proof!

Hint :
Bring a third route from A’ to B into the game! First, walk partof the way from A’ to X
and go straight on until you hit line YB. Then follow the rest of the Y-route to B. Compare
that route with both other routes.

A

B

S

A’
X

Y
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more lines 
5 Here you see two lines l and m and two points A and B. 

a. Determine the shortest path from A via l and m to B, in this order; first make a
sketch and then think about how you can make use of reflection(s). 

b. Also construct the road from A via m and then via l to B.
c. Finally: the shortest path from A via l and m back to A.

6 In this next situation the lines l and m are perpendicular.

a. Again construct the minimal route APQB with P on l and Q on m.
b. What do you notice about the directions of AP and QB? 

l

m

A

B

A

B

l

m
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7 In the situation below l and m are parallel.
A route has been sketched from A to l, to m, again to l and only then to B. The con-
secutive contact points with l and m are P, Q and R, but this is not the shortest route.

a. Suppose Q has already been found. How to find R to make Q-R-B as short as pos-
sible?

b. What about the angles of PQ and QR with the line m?
c. Think harder, and think back to the shoelaces; now construct the shortest path pre-

cisely. 
d. Also indicate why, in the ultimate solution, AP and QR run parallel and so do PQ

and BR.

shortest route on a shoebox
8 An ant is sitting on the back of this (shoe)box of 12 by 20 by 36 cm at point A.

Determine the fastest route from A to B for this ant along the outside of the box. 

First try to find a way yourself, before you use the following hint. 
hint On worksheet E (page 129) you find a possible net for part of the box. Now

it looks like earlier problems. It is just an idea, but this net might not help
you to find the shortest path...

l

m

A

B

R

Q

P

36 cm
20

 cm

12
 c

m

A

B
8 cm12

 cm

18
 cm 6 

cm
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The principle of Fermat
The reflection principle applied to shortest paths via a straight line, and then you found
equal angles. 
There are also situations where you know that there are equal angle,s and thus you could
work in the opposite direction. 

You know that for the reflec-
tion of a ray of light the prin-
ciple of 

angle of incidence
is angle of reflection

holds.
See the illustration. 
The normal n is the line per-
pendicular to the mirror. 

Our figures looked a lot
more like the figure on the
right, where it is also indicat-
ed how you can find the re-
flection line from A to B. 
We looked at the angles
which AS and SB make with
the mirror, not at the ones
with the normal on the mir-
ror.

You see that also that 

the lightray chooses the
shortest path to go from B to
A via the mirror. 

This is the so-called princi-
ple of Fermat.

billiards problems
In billiards the balls bump against the so-called cushions (the edges round the green
cloth) and go on from there. 
In this part we assume that this happens according to the reflection principle. This is not
true, say experienced billiards players, especially if some effect (spinning of the ball) is
added to the shot or effect arises when touching the cushion. 
If you think this is becoming a bit theoretical, you could also think of a room with mirror
walls instead of billiards, and then you’d change from ball routes to light paths.

B

A

S

ir

i = angle of incidence
r = angle of reflection
n = the normal in S.

n

*
*

B

A

S

B’
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9 Here a billiard table is
sketched in top view. Your
cue-ball is A. It is a three-cush-
ions billiards game, i.e. the
shooter's cue ball must contact
the cushions of the table at
least three times before first
touching the third object ball
of his shot. You can also hit the
same cushion twice, as long as
the cue-ball touches a cushion
three times. When you hit the
second ball is irrelevant; in this case ball two and three lie so close together that it is
very likely you will hit the three cushions first before touching the other balls prac-
tically at the same time. 
Now construct two different possible routes for ball A.

10 Play billiards with one ball!
Show that you can shoot
the ball in such a way that
after contacting all four
cushions, it returns to the
same spot and continues in
the same direction. 

Hint: reflect the billiard ta-
ble repeatedly to all sides.
Set A, B, C, D on the verti-
ces and reflect these letters at the same time. Then it is easier to indicate the reflected
X-positions.

extra 11 We want to draw the exact six-cushion path in this triangular billiards. On the right,
part of a solution is suggested. Complete it, if necessary use worksheet F (page 131).

A

X

ab

c

d

e
f

A B

C A’’

ab

b’
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summary of chapter 6

shortest connection
In this chapter you used the fact that the shortest connection between two points is a
straight line. 

principle of Fermat
You noticed that you could find the shortest path via one or more lines by applying the
reflection principle. This principle is known as the principle of Fermat.

reasoning with angles
Therefore you needed to reason with angles in various situations.
It is time we pick up the how and why of that reasoning. 
This will happen in part two of Advanced Geometry: Thinking in circles ans lines.
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Example Solutions

General remarks

• Different solutions are possible for many exercises. Thus your answer will often differ from the so-
lution given here, without it being wrong. In most cases, the example solutions will be sufficient to
determine whether you answer is acceptable. 

• Some comments with these solutions will give a deeper explanation. You will see this when you en-
counter them. 

• The original drawings from the books were used in these solutions. That is why the solutions look
prettier than is expected of you. You yourself will have to copy figures and then only sketch the nec-
essary things. Do maintain clarity in your sketches. 

• A few times you will not find an answer here, for example, when you were asked to make a figure
with the computer. Sometimes you will find a printed screen. It will help you to check whether you
are heading in the right direction, but of course you do not need to reproduce such pictures in your
notebook, unlessabsolutely necessary. 
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Chapter 1: Voronoi-diagrams

1: In the desert
1 a. 2

b.
c. See figure.

(It does not need to be exact, that is for
later.)

d. Choose to which well you go.
e. Yes. See point X. The arrows are of equal

length and the distances to well 2,3 and 4
are larger.

f. Yes. Very far to the southeast.
g. No. Not for 3 and 4. (It does hold for the extensions of the edge.)
h. Straight. (This will be investigated thoroughly later.) 

2: The edge between two areas
2 That is a good name. If we were dealing with the partitioning of for example oil fields, you definitely

would get conflicts on the edges, because the points on the edges belong to both fields. 
By the way: Geologist can partly explain why most of the oil under the Nord Sea is in the middle, at
equal distances from the coasts.

3: More points, more edges
3

a. 6. For every pair one. Thus 3 + 2 + 1 = 6.
b. Sometimes 3 folding lines intersect. For the other intersections 2.
c. The one between B and C.

4 a. 4 + 3 + 2 + 1 = 10.
b. It is closer to D; you can tell by the edge BD. 
c. It does not belong to A (edge AC).

Also not to D (edge AD) and not to E (edge AE). Remains C.
Be careful: Not belonging to B because of edge BD only means: the dis-
tance to D is smaller than to B. It does not mean that the distance to D is
the smallest.

Black Rocks

J

1

5

4

3

2

X

D

C

B

A
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d.

5

4: Voronoi-diagrams, centers, edges
6 a.

b. That point lies on equal distances from the centers.
c. Yes, but that lies outside the figure.
d. For IV point A is further away. Therefore the cells

round B and C adjoin instead of those round A and
D.

e. The edges are parallel. Ribbon villages in Noord-
Holland have such fields. 

f. The honeycomb. 
Basalt (solidified lava) often shows these hexa-
gons. Famous examples are the Giants Causeway
in Northern Ireland and the island Staffa in Scot-
land.

7
a. 4.
b.

c. 20 points on a circle or on a straight line. Or on a different figure, which does not have bays, for
example an oval. It does not matter how they lie on that circle, line or curved figure. 

d. On the edges. (We will investigate this later on.) 

D
B

E

C

A

edge AD
x

Black Rocks

J

1

5

4

3

2

I II

III IV

V VI

etce
tera

A
A

D DB

C

B

C

with a finite cell no finite cell
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5: Three-countries-points, empty circles
8 a. It has equal distances to the three cities. 

b.
c.

9 a. See

b. See figure.
c. There are always three. 

10 a. D lies closer to M. Thus the circle through A, B and C is not a largest
empty circle.

b.
c.
d. If there are three centers, there always is a three-countries-point (ex-

cept if the centers lie on one line). 
If a four-countries-point needs to occur, the fourth center needs to lie
on the circle through the three other points. This happens by coinci-
dence. Thus it is something special. 

11
a.
b. Where the three colored edges converge. 

12

Assen

Groningen
Leeuwarden

Zwolle

Arnhem
Utrecht

Den Bosch

Maastricht

Den Haag

Middelburg

Haarlem Lelystad

D

A
B

C

4

A

B

C

M
D



I – 94 

Example Solutions

6: Chambered tombs in Drente; reflecting
13 a. The centers all lie at the same distance from the edge and the edge is perpendicular to the connec-

tion line.
b. It is not completely accurate, but it should be so. 
c. The round dot closest to the east edge.

14 .

15

16

a. P and Q are different. If P was the center of cell a, then P2 should be the center of cell c. This is
not possible.

b. S is equal to R. 
c. See R1.

P edge I

ed
ge

 II

edge III

cell a

cell c cell b

M
P1

P2

Q

R

R1
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Chapter 2: Reasoning with distances and angles

7: Introduction: reasoning in geometry
1 a. That it is a line and not part of an area, that it is a straight line, that the points lie symmetrical in

relation to the line (There probably is more!)
b. The symmetry was used to find the missing centers.

8: An argumentation with three-countries-points and circles
2 a.

b. The three centers lie
on one line.

3
a.
b. (distance M to A) = (distance M to B)

(distance M to B) = (distance M to C) 
From this directly follows: 
(distance M to A) = (distance M to C).

c. Thus M lies on the Voronoi-edge of A
and C.

d. Yes, all of the three edges pass through
M.

4
a. The distances from M to A, B and C are all three equal. Thus the circle with center M, which passes

through A, also passes through B and C.
b. That was the largest empty circle round the three-countries-point M.

5
a. That the two edges indeed have a point of intersection. 
b. No, apparently not. If the intersection of the AB-edge and the BC-edge exists, then it also lies on

the AC-edge. The shape of the edge is irrelevant for the argumentation, only the distance equalities
matter. (That the intersection exists, follows from rectilinearity and non-parallelism.)

B

A

CM
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9: Shortest paths and triangle inequality
6

a. Via P2. But it differs very little. 
b. Since d(A, P1) = d(A’, P1).
c. Draw the straight line A’B. The

intersection with l is Q.
d. Example one: Getting water from

river l and bringing it to village
B.
Example two: l is a railroad line:
the cities A and B get one station
together.

7
a. From P to Q is as far as from Q to P.

8
a. For example on A’P1B.
b. d(A’, Q) + d(Q, B) = d(A’, B). 

9
a. Something with a route that does

not consist of straight pieces.
b. It only deals with distances.

10
a. You could think of the Pythagore-

an theorem.
b. What is this Pythagorean theorem based on?

But also: how does the triangle inequality follow from the Pythagorean theorem?

11 Draw AC and apply the triangle inequality twice: to
AD with a detour via C and to AC with a detour via B:

10: The concept of distance, Pythagorean theorem
12 If in triangle ABC angle B is right, then:

d(A, C)2 = d(A, B)2 + d(B, C)2.

13 a. d(A, Q)2 = d(A, P)2 + d(P, Q)2.
b. Since d(P, Q)2 > 0, d(A, Q)2 > d(A, P)2 and since distances are non-negative: d(A, Q) > d(A, P).

A

B

l

P1
P2

P3A’’

Q

A

B

Q

A

B
C D

AD AC CD+ AB BC CD+ +≤ ≤
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14 a. There are many ways to do this. Also put letters in the ar-
eas of the squares and the triangular areas.

Area(AEBF) = Area(CHDG) 
Thus:

X + Y + 4 × W = Z + 4 × W 
Thus 

X + Y = Z
b. That the sides are equal and perpendicular to each other. 

15 You do the same as in exercise 6, for the case that A and B
coincide.

11: Properties of the perpendicular bisector
16

a.  = green. Equal line segments and an-
gles of 90°.

b.  = red. Equality of the two line seg-
ments needs to be proven.

c. Since ∠PQA = 90°:
d(P, A)2 = d(P, Q)2 + d(Q, A)2 

Since ∠PQB = 90°:
d(P, B)2 = d(P, Q)2 + d(Q, B)2 

Since we can use that d(Q, A) = d(Q, B), we conclude: 
d(P, A) = d(P, B).

d. Yes, perpendicularity is used in Pythagoras, and the equality of the lengths AQ and BQ is used in
the deduction.

17
a. To prove: 

d(Q, A) ≠ d(Q, B). 
But we actually prove: 

d(Q, A) < d(Q, B).
b. R is on the perpendicular bisector, thus:

d(R, A) = d(R, B).
c. Triangle inequality for Q, R, A. R is not on QA, thus we have a true inequality:

d(Q, A) < d(Q, R) + d(R, A).
d. d(Q, A) < d(Q, R) + d(R, A) =

 d(Q, R) + d(R, B) = d(Q, B).
the last equality holds, since R does lie on QB.

18 Finding the shortest route via a line. Here you could go from A to Q via the perpendicular bisector of
AB.

12: From research to logical structure
19

a. To prove 
d(P, A) + d(P, B) + d(P, C) + d(P, D) < d(Q, A) + d(Q, B) + d(Q, C) + d(Q, D)

b. Proof: 
Use the triangle inequality in triangles ACQ and DBQ. 

A

B

C

D

X

Z

Y

E

F

G

H

W

W

W

W

W

W
W

A
B

pb
s(

A,
 B

)

P

Q
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d(P, A) + d(P, C) = d(A, C) ≤ d(Q, A) + d(Q, C).
and

d(P, B) + d(P, D) = d(B, D) ≤ d(Q, B) + d(Q, D).
In at least one of the cases we have an inequality, because else Q would be equal to P. 
By adding, what needed to be proven follows immediately. 

20 Idea: Use that B and D lie on the ‘Voronoi-edge’ of A and C.
Proof:

d(A, B) = d(B, C) (this is given). Thus B lies on pbs(A, C) according to theorem 3.
d(A, D) = d(D, C) (this is given). Thus D lies on pbs(A, C) according to theorem 3.
Combine: the line through B and D is the pbs(A, C). Thus BD is perpendicular to AC.

21 a. By demanding that A, B and C form a triangle.
b. The perpendicular

bisectors are per-
pendicular to that
line and are thus
parallel. Re-using an
old figure.

c. Then the perpendic-
ular bisectors are not
parallel and thus do
intersect.

22
a. 3b, writing down the equalities in distance <> step 1 and step 1bis

3b, conclude third equality <> connection step
3c conclusion that M lies on the third Voronoi-edge<> conclusion step.

b. step 1 and 1bis: from on perpendicular bisector to equality of distances,
The conclusion step is the other way around: from equality of distances to on perpendicular bi-
sector.

23 P and Q lie at equal distances from A and B and thus on the perpendicular bisector of A and B. The-
orem 3.

24 With the techniques of the two circles, Dürer constructs the perpendicular bisectors of a and b, and
also those of b and c. He calls the intersection d. That intersection is the center of the circle through
a, b and c.
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25 Three examples of the construction: (circles with equal letters have the same size.)

26 Choose three points on the circle. Construct the cir-
cumcircle of that triangle. You already have the cir-
cle, but the construction also gives the center!

Chapter 3: Computer practical Voronoi-diagrams

13: Introduction
1 a.

b.

2 a.
b. the angle bisector of the angle of the

two lines through the points.
c.

3

14: The influence of the fourth point
4

a. For example point E shown above on the right.
b. The button circle(A, B, C) does exactly that.
c. Then there are two perpendicular edges. Thus three points need to lie on one line. Thus the three

lines AB, CB and AC. All of them!
d. Type III.

a a

b
b

e
e f

f

c c

d
d

Acute triangle:
center circumcircle lies
inside the triangle. 

Right triangle: center
circumcircle lies 
on the triangle

Obtuse triangle: 
center circumcircle lies
outside the triangle

A

C

B1
2

3
4

5
6

7
8

9
10

E

III

III

III

III

IV

IV

IV
I

II

I

I

I II

II

II
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5 a.

b. When D passes through the circle.

6
a. See above.
b. Type II and IV only occur when D lies on certain lines lies. This is rare.

15: Infinitely large cells 
7 a.

b. Five rays from one point.
c. A rubber band.
d. No new infinitely large cells.
e. For example:
f.

8

9 a. They adjoin.
b. Those centers lie at equal distances from A

and of B.
c. Those cells still adjoin. The perpendicular

bisector of AB continues past the center of the circle through A, B and E. There it is the Voronoi-
edge of A and B. If you take more points in the half-plane of the line AB on the side of C and D, it
still holds that far on the perpendicular bisector of AB lie points for which the closest centers are
A and B.

10

11

16: Extra assignments Voronoi-diagrams
12 No, the computing time increases faster.

13
a. The Voronoi-cells round Maastricht and Assen adjoin.

They lie next to each other on the hull. You can also see this by drawing the line through those two
centers.

14 a.

1 2 3 4 5 6 7 8 9 10

I I I I I I I IV III III

Voronoi:

Type:



I – 101

Chapter 3: Computer practical Voronoi-diagrams

b.

15 a.
b. In certain places new railroad tracks are built which do not give much improvement. For example

Assen-Maastricht. Leeuwarden-Haarlem via Alkmaar is not such a bad idea; it must be possible
to go over the Afsluitdijk. Assen-Leeuwarden: do not do it, it is a nice quiet area and it does not
yield a lot of profit from the detour via Groningen. Voronoi diagrams also do not ask for a high
speed train through the Green Heart of Holland!

16
a. A connection line between two centers in the Delaunay-triangulation says per definition: these

centers have adjoining cells. Thus there is a Voronoi-edge. Also the other way around. 
b. The Voronoi-edge is a segment of the perpendicular bisector of the connection line of centers,

which is exactly the connecting line segment in the Delaunay-triangulation. Since the edge can be
more like a segment of the perpendicular bisector, the intersection does not have to exist. In the
example of the map: Arnhem-Maastricht, Den Bosch-Den Haag.

c. Round a vertex you find three cells which are neighbors. Thus there you have a triangle of De-
launay-connections, and the other way around. Thus there are as many triangles as vertices.

d. Adjoining centers on the hull have adjoining cells around them. This has been established before.
Thus the line segments of the hull are certainly part of the Delaunay-triangulation.

17

18 a.
b. You see the line which approximately runs the same distance from both banks. This is a smart way

to find it. 
c. The points, which lie at equal distance to both banks.

19
a.
b.

– This matters a whole lot. You could deduct from this that such small islands play a much too
important role. One abandoned rock changes the whole partitioning. Furthermore, those re-
mote islands are of great military significance. 

– This will differ less, but still quite a lot in the far north. 

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I I I I I I I IV III III

Voronoi:

Delaunay:

Type:
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20
a.
b. Along the lines which lie as far as possible from the islands:

follow the edges of cells that belong to two islands. You have
a choice, but you choose west for the middle island, since east
puts you along the elongated island for a long period of time. 

21
a.
b. infinitely large. Bend on the left side.
c. the cell gets smaller.
d. It looks like a parabola.
e. Till the middle of those line segments. Since the line is then

perpendicular to the connection of such a middle with the center left on the line.
f. This results from e. Because the tangent line is perpendicular to the radius. 

(We will return to this later!)
g. It is perpendicular to the connection line of centers.

22
a. An oval form arises, or something that looks like a parabola, but much wider. (the correct names

are ellipse and hyperbola; we will return to this later).
b. If F comes close to the circle, the figures are narrow.

23
a. You get a more delicate honeycomb.
b.

24

Chapter 4: A special quadrilateral

17: cyclic quadrilaterals
1 a. The center of the circle lies on equal

distances from A, B, C and D. That
point belongs to all four cells.

b.
c. D lies inside the circle through A, B

and C; therefore the center of that cir-
cle lies in the cell of D.

A

B
C

A

B
C

D

D

D outside the circle through ABCD inside the circle through ABC

I III
centers:
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2
a.
b. the four triangles are isosceles.
c. The same symbols can be found at A and C together as at

B and D together. Thus ∠A + ∠C = ∠B + ∠D.

18: Scrutinize proving
3 a. Here M does not lie inside the quadrilateral.

b. When comparing the symbols in the angles. This is simply
impossible.

4
a. ∠ADC. For the size of the

angles holds:
∠ADC = 
∠D1 – ∠D2.

(Such motivations as in
the last two steps need not
to be indicated all the
time!)

5 Replacing the minus signs by
plus signs is enough.

6 a. M can still be on the quad-
rilateral. 

b. Take as example M on
DC. 
In that case both proofs
work. 
(That is actually because
then ∠C2 and ∠D2 are equal to 0. Then is does not matter whether it has plus or minus signs.)

7
a. Results are 180° or lie real close to that.
b. A reasonable statement is: the sum of two opposite angles in a quadrilateral is 180°.

8 All four 360°:
a. 4 × 90° = 360°
b. 60° + 120° + 60° + 120° = 360°
c. 2 × 90° + 45° + 135° = 360°
d. the acute angles are (see figure) 90° – 30° – 45° = 15°. 

90° + 2 × 15° + (360° – 120°) = 360°

B

A

D

C

∗

∗

•
•

×

°

° ×

M

∠D1 = ∠A1, ∠A2 = ∠B1, ∠B2 = ∠C1, ∠C2 = ∠D2 
(since the triangles DMA, AMB, BMC 
and CMD are isosceles

∠A + ∠C 
= (refinement angles)
∠BAD + ∠DCB
= (subdividing angles)
(∠A1 + ∠A2) + (∠C1 – ∠C2)
= (use equal angles, working towards either 

A and C or B and D)
(∠D1 + ∠B1) + (∠B2 – ∠D2)
= (rearrange to lead to B and D)
(∠D1 – ∠D2) + (∠B2 + ∠B1)
= (use subdivision)
∠ADC + ∠ABC
= (back to the needed angles)
∠D + ∠B 
= (calculation step: x+y = y+x)

∠B + ∠D. 

120° 90°
30°

45°
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9 a.
b.
c.

10
a.
b. ∠DCE + ∠CED + ∠EDC = 180°.

But also: ∠ADC + ∠EDC = 180°.
Thus: ∠ADC = ∠DCE + ∠CED

c. ∠ADC > ∠CED.
d. Since ∠B + ∠E = 180° according to the temporary theo-

rem of the cyclic quadrilateral, follows from the inequal-
ity in b:
∠B + ∠D > 180°.

11
a. No other points but A and B can lie on the dotted circle as well

as on the sketched circle, since then the circles would coincide
according to theorem 5. Thus if D lies outside circle ABC, the
whole arch BAD lies outside circle ABC and C lies inside circle
ABD.

b. ∠A + ∠C > 180°.
c. Since the four angles together are 360°, this needs to be true: ∠

B + ∠D < 180°.

A

D

C

B

A

C

B
D

1
2 2

1

1

12

2

for 9 a and b

∠A + ∠B + ∠C + ∠D 
= (subdivision of the angles)

∠A1 + ∠A2 + ∠B + ∠C1 + ∠C2 + ∠D
= (rearranging to triangles)

∠A1 + ∠B + ∠C2 + ∠C1 + ∠D + ∠A2
= (sum of angles in triangle is 180×, 

 twice)
180° + 180°

= 360°

Proof ONE

∠A1 + ∠B + ∠C2 = 180°(sum of angles in triangle ABC is 180°)
∠C1 + ∠D + ∠A2 = 180°(sum of angles in triangle ADC is 180°)
∠A1 + ∠B + ∠C2 + ∠C1 + ∠D + ∠A2 = 180° + 180° (combine)
∠A + ∠B + ∠C + ∠D = 360°(rearrange)

Proof TWO

A

B

C

D E

B

C

A D
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12 CD then passes through AB; for example like this:
A definition of a useful kind of quadrilateral here could be:
A quadrilateral ABCD consists of four points, and the four line segments AB,
BC, CD and DA, for which 

no three points lie on one line, 
the line segments AB and CD do not intersect 
and the line segments AD and BC do not intersect.

13 a. In this case the angle at ∠ΑDC on its own is already over 180°.

19: Using cyclic quadrilaterals
14

a. according to the protractor is ∠B + ∠D = 183°. Thus D lies in-
side the circle through A, B and C. Cells B and D adjoin.

b.
c.
d. You already knew which cells adjoined.

15 That is a mistake and here is a counter-exam-
ple.

16

17

Chapter 5: Exploring isodistance lines

20: isodistance lines, distance to areas
1

a. A circle with a radius of 12 miles.
b. A circle with a radius of 12 miles + 680 meter.

A

B

C

D

A

B

D

C
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Example Solutions

2

a. does:  does not: 
b. iso-1 cm-line ; iso-2 cm-line ; iso-3 cm-line ; iso-4 cm-line .
c. the iso-300-line is not a circle since it has four straight segments, each of 4 cm.

3
a. Sketch the line through P perpendicular to l. In intersects l in R. d(P, G) = d(P, R).
b. With the triangle inequality and with Pythagoras.

4
a. on the intersection of MP with the circle.
b. d(P, Q) + d(M, Q) > d(P, M). 

Since Q and R lie on the circle, holds:
d(R, M) = d(M, Q). 
d(P, M) = d(P, R) + d(M, R) since R lies on PM.
Filling out gives d(P, Q) + d(M, R) > d(P, R) + d(M, R). 
Thus: d(P, Q) > d(P, R).

c. Since d(P, I) = d(P, R), holds:
d(P, I) = d(P, M) − r.

G

2 cm

P

I

r
M

Q

R
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5
a.
b. the triangle inequality in triangle MPQ

says:
d(M, R) = d(M, Q) < d(M, P) + d(P, Q).
Since also holds:
d(M, R) = d(M, P) + d(P, R) 
needs to hold:
d(P, Q) > d(P, R).

c. d(P, F) =r − d(P, M).

6 a. Reduced,
scale 1 : 2. 

b. From the ex-
pressions for
the distance
in the c-ques-
tions. 
From those
formulas, it
follows that
the points lie
on a fixed distance to the circle and also lie on a fixed distance to the center M.
Elaborating on, for example, exercise 4:

(1) d(P, E) = d(P, M) − r (exercise 4 c)
(2) If P lies on the iso-a-line:

d(P, E) = a (definition iso-a-line)
(3) d(P, E) = d(P, R) (according to exercise 4a)
From 1, 2 and 3 follow:

d(P, M) = d(P, R) + d(R, M) = a + r
a + r is constant, Thus:

then P lies on a circle with radius a + r and center M.

Now we also need to show: each point on the circle with radius a + r and center M, lies on the
iso-a-line of E. 
That goes like this (written down in shorter form than the first half of the proof):
If d(P, M) = = a + r,
and R is the point on the circle on the line segment PM, then also:

d(P, E) = d(P, R) = d(P, M) – d(R, M) = a + r – r = a,
Thus P on the iso-a-line of E.

M
P

F

r

Q

R

P

G

l

P

E
rM

M P

F

r
Q

R
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7 Scale 1 : 2.
a.
b. The dotted lines are the edges of the

zones in this drwaing.
c. Zone I, III and V (the zones at the

vertices): segments of the circle
around the vertex.
Zone II, IV and IV (the zones of the
line segments): pieces of straight
line parallel to the sides.

d. That the straight pieces have the
same length. That the circles run
smoothly into the straight pieces.

e. Only the arcs are extra compared to
the triangle itself. These three arcs
of each isodistance line can be put
together as a circle. Thus the extra
lengths are: 4π, 8π, 16π.

8 a. The points on the isodistance lines
in the neighborhood of a cape all lie at the same distance from the cape. Thus the cape is the center
of the circle on which that piece of isodistance line lies.

b. These lines are perpendicular to the pieces of edge, which lie next to the cape. 

9
a.
b. On the angle bisector of angle AED
c. The iso-0.5-line and the iso-2-line show a

kink of 90o. The iso-3 and iso-4-line show
kinks of approximately 108o and 128o.

d. Till 2.5. Because up to there the kink is
formed by two straight line segments,
which are perpendicular. 

e. Since the kink is formed by the intersec-
tion of two circles and the isodistance line
switches from one circle to the other in the
kink, there always will be a kink. 

G

A = R1 

B = R3 = R4

C = R7

P1 P2

P3

P4

P5P6

P7

P8

R2

R5

R6
R8

I
II

III

IV

V

VI

G

AB

C

D
E

2.5

5

1

5

2.5

1

N
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10
a. Something like the figure.
b. the iso-1.5-line falls apart into

two pieces; the iso-0.2-line does
not

c.
d.

11

12

a. Yes.
b.

21: Angle bisectors
13  (scale 1:2)

a.
b. the angle bisector of the angle.
c. In this case 2.
d.

G

of
fs
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offshoot B

sea

G
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lin
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14
a.
b. They all are triangles with the same shape. The

last triangle becomes one point.

15

a. No. For larger distances there is only one kink. 
b. Sketch the angle bisectors from both angles. If a point lies on one angle bisector, it has footpoints

on two sides. If the point lies on both angle bisectors, it has footpoints on all three of the sides.

16  

22: Theorems about angle 
bisectors 

17 Given: P lies on the kink line of ∠CAB.
To prove: the line AP cuts ∠CAB in half.
Proof: Since P lies on the kink line, like in the left figure,
where C and B are footpoints of P, the triangles APC and APB are
right. Since the hypotenuses are equal, and PC and PB also have
the same length, the triangles are completely equal. Thus ∠CAP =
∠BAP.

18 If two half lines a and b converge in an end point S and make an
angle of less than 180°, the set of points for which holds:

d(P, a) = d(P, b) 
is a half line c from S, which makes equal angles with a and b. 
For points P inside the angle ASB hold: (Here A and B are points
on a and b respectively, not equal to S)

if d(P, a) < d(P, b), then ∠ASP < ∠BSP
if d(P, a) = d(P, b), then ∠ASP = ∠BSP
if d(P, a) > d(P, b), then ∠ASP > ∠BSP.

G

G

P

A

B

P

C

‘kink line’: d(P, C) = d(P, B)
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19 Let N be the intersection of the angle bisectors from A and B. 

The proof that N also lies on the angle bisector from C, fits exactly into a scheme.

20 the angle between l4 and l1 is ♣ + ∗. Since ♣ + ♣ + ∗+ ∗ = 180°, that angle is 90°. Likewise, the angle

between l1 and l2 is 90°. Thus in total is the angle between l4 and l2 180°. Thus the two halve l4 and
l2 lines form one straight line.

A

B

C

N
**

××

 °
 °

step 1

connecting step

N on angle bisector of ∠CAB 

Thus

Thus 
d(N, CA) = d(N, BA)

step 1bis

N on angle bisector of ∠CBA 
Thus 

d(N, CB) = d(N, AB)

 d(N, CA)= d(N, CB)

conclusion step

N on angle bisector of ∠ACB
Thus 

d(N, CA)= d(N, CB)

G

H

×
∗ ∗

×
♠♣

♣ ♠

l1

l4

l3

l2
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21 Let N be the intersection of the external angle bisectors from C and the internal angle bisector from A.

Then again applies:
d(N, line AC) = d(N, line BC) 

and also:
d(N, line AC) = d(N, line AB) 

Thus:
d(N, line BC) = d(N, line AB).

Thus N also lies on the external angle bisector from B. (After all N lies outside the triangle). 

22

**

+
+

•
•

A

B

C

N

A
B

C

##

* *
$
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++
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23

24 Mostly not. 
For isosceles triangles the angle bisector between the equal sides does go through the tangent point
on the third side. Thus for equilateral triangles it happens three times.

23: Bumping circles
25 a.

b. yes.

26

27
a.

1. bump

2. speed ramp

G

P

G

P

P

A

P
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3. low pavement

b. Two. At the beginning and at the end.
c. It does not matter very much when you look at the kink angles. If the pavement was a little lower,

the blow on the speed ramp would be bigger.

28 Yes, in exercise 25. But not very formal.

29 It does not apply to the two bays with narrow entrances. Exercise 10 and 11.

Chapter 6: shortest paths

24: From shoelaces to shortest paths
1

2
a.

b. The lengths stay equal when reflecting.
c. The American. Since it uses the shortest path from A to the lowest point I and also back up from

H to P.

3

original

first reflection

second reflection

A
B
C

E
F

D

G
H

P
O
N

L
K

M

J
I

A
B
C

E
F

D

G
H

P
O
N

L
K

M

J
I

A

B

S2

S1

A’’

S 
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a.
b. ∠A’SS1 = ∠S2SB (Opposite angles are equal for intersecting lines).

∠A’SS1 = ∠ASS1 (Since the triangles are equal, due to the reflecting).
Thus ∠ASS1 = ∠S2SB. 

4 All that is needed is mentioned in the figure and A’ is renamed as C.

Given: X lies inside the triangle CBY.
To proof: d(C, X) + d(X, B) < d(C, Y) + d(Y, B)
Proof:
Compare the X- route with the route via Z:

d(C, X) + d(X, B) < d(C, X) + d(X, Z) + d(Z, B) = d(C, Z) + d(Z, B)
Compare the Z- route with the route via Y:

d(C, Z) + d(Z, B) < d(C, Y) + d(Y, Z) + d(Z, B) < d(C, Y) + d(Y, B)
Done!

5
a. route I - I - I.
b. route II - II - II
c. route III - III - III.

B

S

C

X

Y
Z

l

m

A

B

A’

B’

A’

I

I

I

B’

II

II

II

III

IIIIII
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6
a.
b. AP and QB are parallel.

In the figure all angles
with * are equal.

7  
a. On the reflection of B in l. Call that B’.
b. On the reflection of B’ in m. Call that B’’.
c. A’ is the reflection of A in l. A’B’’ is sketched. You find

P and Q. 
Then draw QB’. You find R.

d. Since all angles with a* are equal. There are many Z-an-
gles!

8 On the net shortest routes can be sketched as straight lines.
However, there are many ways to make a net. 
In the figure connecting the square with ant B to the long side yields minor profit. 

|AB] = |AB’| = 

A

B m

A’

B’

P

Q

*
*

*
*
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* *

* *
*

*
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B’

462 62+ 46,389= 422 142+ 44,271=
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9 The figure shows the billiards reflected, re-
flected, reflected, reflected.
Each line from A to a reflection of the goal,
which is reached via three cushions is cor-
rect. One example is shown.

10 The solution to this question is practically
the same as the last one. 
Of course there are other possibilities, which you
can find by making a different mirror-mirror-mir-
ror-mirror-image of X. 

11 When using worksheet F it is not so hard. Putting letters on the angles of the reflections of the triangle
will help you in the right direction. The reflections are numbered I, II, III etcetera.
From the long line to the broken line: measure piece-wise along the cushions of this billiards. 

X

X X

X X
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worksheet A: Folding to Voronoi (chapter 1, exercise 3)

D

C

B

A
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worksheet B: Netherlands (chapter 3, exercise 12)

Kaar t van Nederland met provincies.
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worksheet C: isodistance lines round a square. (chapter 5, exercise 2)

G

2 
cm
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worksheet D: triangle, feet, sectors (chapter 5, exercise 7)

G

A

B

C

P 1
P 2

P 3

P 4

P 5
P 6

P 7

P 8
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worksheet E: ant on shoebox (chapter 6, exercise 8)

scale 1 to 4
each square is 2 by 2 cm

A

B

A





I – 131

worksheet F: triangles (chapter 6, exercise 11)




