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0. Introduction

Let My n be the nonsingular moduli stack of gergisn-pointed, Deligne-
Mumford stable curves. For each markinghere is an associated cotangent
line bundle L — Vg,n with fiber T o over the moduli point
[C, p1,..., pnl-Lety; =i (L)) € H*(Vg,n,Q).Theintegralsofproducts
of the y classes oveM, are determined by Witten's conjecture (Kont-
sevich’s theorem): their natural generating function satisfies the Virasoro
constraints [W], [K]. Letwc denote the dualizing sheaf of a cur@e The
Hodge bundlé€ — My, is the rankg vector bundle with fibeH%(C, wc)
over[C, pi,..., pnl. Leti; = c;(E). A Hodge integral oveﬁg,n is de-
fined to be an integral of products of thfeand classes. It is the Hodge
integrals that are studied here.

Hodge integrals arise naturally in Gromov-Witten theory. There are two
specific occurrences which motivated this work. First,Xet= G/P be
a compact algebraic homogeneous space. The virtual localization formula
established in [GrP] reduces all Gromov-Witten invariants (and their de-
scendents) oK to explicit graph sums involving only Hodge integrals over
Mg n. For example, the classical Severi degrees — the numbers of degree
genusg algebraic plane curves passing through-3g — 1 points — are
Gromov-Witten invariants oP? and may be expressed in terms of Hodge
integrals. Formulas for Hodge integrals therefore play a role in Gromov-
Witten theory.

Second, letX be an arbitrary nonsingular projective variety of dimen-
sionr. Consider the stackly (X, 0) of stableconstant maps from genug,
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n-pointed curves tX. There is a natural isomorphism:
(1) Mgn(X,0) = Mgn x X.

The virtual clas§Mg n(X, 0)]V" is equal tocy(E* X Tx) N [Mgn(X, 0)] via

the identification (1). Hence, the degree 0 Gromov-Witten invariants of
involve only the classical cohomology rirtg* (X, Q) and Hodge integrals
over Mgn. In [GeP], this observation is combined with the conjectural
Virasoro constraints of Eguchi, Hori, and Xiong [EHX] to yield simple
formulas for certain Hodge integrals. For example, the following relation is
derived in [GeP] as a consequence of the Virasoro constraints appfd to

29g+n—3
@) i wil...wﬁ“kg,:(k ) )bg,
Mgn 1, -+ > Kn
wherek; > 0 and
1, g=0,
®3) by = 9% g>0.
Mg.1

The methods of [GeP] also yield conjectural relations for Hodge integrals
with a singleiy_; factor. The simplest of these predictions is: fpr 1,

2g-1

(4) Cog= [ Wl )\g—l
Mg,1
2g—-1
= (20, — 1)!(2g; — 1!
= (X E)bg‘z 2 g1 b
k=1 01+02=9
g1, 92>0

Remarkably, the integral; seem to be unconstrained by the degree 0O
Virasoro conjecture.

More generally, it is natural to consider Hodge integrals over stacks of
stable map®/4 n(X, B) for nonsingular projective varieties:

n

g
(5) f[ [Tvd e o]
1 j=1

Mgn(X,BIr |

The classeg; here are the cotangent line classeeh_mj}](x, B), the map®

are the evaluation maps ¥corresponding to the markings, and the classes
y; satisfyy; € H*(X, Q). The gravitational descendents are the integrals
(5) for which allb; = 0 (noA classes appear). The first result proven in this
paper is the following Reconstruction Theorem.

Theorem 1. The set of Hodge integrals over moduli stacks of maps to X
may be uniquely reconstructed from the set of descendent integrals.
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The method of proof is to utilize Mumford’s Grothendieck-Riemann-
Roch calculations in [Mu]. Mumford’s results may be interpreted in Gromov-
Witten theory to yield differential equations for suitably defined generating
functions of Hodge integrals. A consequence of these equations is a direct
geometric construction of thg = 0 relation; which plays an important
role in the proof of theg = 0 Virasoro constraints (see [EHX], [DZ], [Ge],
[LiuT]). As the required generating function involves the Chern character of
the Hodge bundle, it seems quite difficult to obtain closed formulas for the
Hodge integrals (5) via Theorem 1. The reconstruction result was obtained
in caseX is a point in [F2].

In order to find closed solutions in certain cases, we introduce here a new
method of obtaining relations among Hodge integrals. The idea is to use
the localization formula of [GrP] in reverse: localization computations of
known equivariant integrals again$ 4 ,(G/P, 8)]'" yield relations among
Hodge integrals oveMg . A variant of this technique is to compute an
equivariant integral against the virtual class via two different linearizations
of the torus action. A relation among Hodge integrals is then obtained by the
two results of the localization formula. A simpler case of these ideas provides
motivation: application of the Bott residue formula to integrals over the
Grassmannian yields nontrivial combinatorial identities when linearizations
are altered.

Hodge integrals oveM g , also arise naturally in the study of tautological
degeneracy loci of the Hodge bundle. Formulas for these degeneracy loci
are used here to find new relations among Hodge integrals. The geometry
involved is closely related to classical curve theory: special linear series,
Weierstrass points, and hyperelliptic curves.

The main result of this paper is the following formula proven by the
localization method together with a degeneracy calculation. Définé) <

QIKIL[t]] by

g .
Ft ko =1+ Y %% | 9% g

g>1i=0 Mg1
Theorem 2.
t/2  \k+i
F(t, k) = (= .
Y <S|n(t/2))
In particular, the integralby andcy are determined by:
t/2
29 _ —
(©) Dbt = Ft.0) = (sin(t/2)>’

g>0

oF t/2 ve
D Gt = —(1.0) = (sin(t/Z)) ‘log <sin(t/2))'

g=1
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D. Zagier has provided us with a proof of the Virasoro prediction (4) from
(6) and identities among Bernoulli numbers. M. Shapiro and A. Vainshtein
informed us of another approach to Theorem 2 which will be pursued in
[ELSV], see also [SSV].

Theorem 2 has adirect application in Gromov-Witten theory to a multiple
cover formula for Calabi-Yau 3-folds. Under suitable conditions, the integral

(7) C(g.d = / B ' Ciop(R',*N)
[Mg‘o(Pl,d)]“”

is the contribution to the genusGromov-Witten invariant of a Calabi-Yau
3-fold of multiple covers of a fixed rational curve (with normal bundle
N = 0@(-1) ® O(—1)). The genus 0 case is determined by the Aspinwall-
Morrison formula

C(0,d) = 1/d°,

[AM], [Ma], [V]. The genus 1 case was computed in physics [BCOV] and
mathematics [GrP] to yield

C(1,d) = 1/12d.

Virtual localization and Theorem 2 determine this multiple cover contribu-
tion in the general case.

Theorem 3. For g > 2,

|BZQ| . d2973 B d2973
2g- (29— 2)! x(Mg)[ - (2g -3

where By is the 2g™ Bernoulli number and x(Mg) = Byg/20(29 — 2) is
the Harer-Zagier formula for the orbifold Euler characteristic of My.

C(g, d) =

Theorem 3 was conjectured in [GrP] from data obtained from the Hodge
integral algorithm of [F2].

Another consequence of Theorem 2 is the determination of the following
Hodge integral.

Theorem 4. For g > 2,
f 3 _ |BZQ| |82g—2| 1
M, © 1 29 29—2(29—2!

The genug > 2, degree 0 Gromov-Witten invariant of a Calabi-Yau 3-fold
X is simply

X 3
<1X =(—1)9—f A3
9,0 2 M, g-1

wherey is the topological Euler characteristic ¥f(see [GeP]). Theorem 4
was conjectured previously in [F1]. It implies Conjecture 1 in [F2].
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Theorems 3 and 4 were very recently derived in string theory by physi-
cists [MM], [GoV]. The method of [GoV] is to consider limits of type
[IA string theory which may be conjecturally analyzed in M-theory. The
degree 0 invariant of Theorem 4 is the leading order term in this limit. In
M-theory, this leading term is evaluated via an explicit sum over states (the
Bernoulli numbers arise via values of thefunction). The multiple cover
formula is also derived in the M-theoretic framework.

We mention finally an interesting connection between Gromov-Witten
theory and the intrinsic geometry M, via the Hodge integrals. The ring
R*(My) of tautological Chow classes Mgy has been conjectured in [F1]
to be a Gorenstein ring with socle in deggee 2. The Hodge integrals

(8) i Y g
g.n

determine the top intersection pairingsRt(Mg). The study ofR*(My)
in [F1] led to a simple combinatorial conjecture for the integrals (8):

)
29+n—3)!(2g — Hi! i
kl... kr1)\)\'7:( f g)\')\‘i’
Vg,n wj_ wn 9to-t (29_ 1)'1_[:1:1(2k| - 1)” mg,l l//l g/g—-1

whereg > 2 andk; > 0. This prediction was shown in [GeP] to be implied
by the degree 0 Virasoro conjecture applied®to
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1. Reconstruction equations

1.1. Mumford’s calculation. We start by interpreting Mumford’s beauti-

ful Grothendieck-Riemann-Roch calculation [Mu] in Gromov-Witten the-
ory. Let M be a nonsingular variety (or Deligne-Mumford stack). Let
w:C — M be a flat family of genug pre-stable curves (the fibers of

7 are complete, connected, and reduced, with only nodal singularities).
Assume the variation of this family is maximal in the following sense: the
Kodaira-Spencer map

(10) T My — Ext'(Qe,,, Oc,,)

is surjective for every poinin € M. In this case, the following facts are
well-known from the deformation theory of nodal curves:
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(i) ¢ is anonsingular variety (or Deligne-Mumford stack).

(i) Thesingularlocus of (the locus of nodes of the fibers) is a nonsingular
variety Z of pure codimension 2. The imag&€Z) = d.M is a divisor
with normal crossings ioW(.

(iii) There is a naturaktale double covet : Z — Z obtained from the
2-fold choice of branches incident at the nodes corresponding to points
of Z.

(iv) There are natural line bundl&sLL on Z corresponding to the cotangent
directions along the branches.

(v) There is a canonical isomorphisst(Norz,e) = L* @ L.

Let:: Z — M denote the natural composition. Lty € Al(Z) denote
the first Chern classes @f, L respectively (Chow groups will always be
taken withQ-coefficients). The morphismis generically 2— 1 onto the
divisor 9 M. Letk = m,(ci(w,)' ) € A(M).

The Hodge bundle is defined ovt by E = 7,»,. Mumford calculates
ch(E) in A* (Vg) via the Grothendieck-Riemann-Roch formula. As he uses
only properties (i-v) above for the family : Mg — Mg, his argument
applies verbatim to the more general setting considered here.

Theorem (Mumford).
=g — 2! 2-1 ot 2
in A*(M).

The discrepancies between the above formula and [Mu] are due to a differing
Bernoulli number convention and a typographic error irktierm of [Mu].
In our formulas, the Bernoulli numbers are defined by:

1.2. Gromov-Witten theory. Let X be a nonsingular projective variety
over C. Let M = Mg n(X, B) be the moduli stack of stable maps Xo
representing the clas8 € Hy(X,Z). Let [M]Y" e A.(M) denote the
virtual class in the expected dimension [BF], [B], [LiT].

A direct analogue of Mumford’s result will be proven for the universal
family over M (with respect to the virtual fundamental class). The method
essentially is to consider the morphism

M — My
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to the Artin stack of pre-stable curves. However, this is done explicitly by
finding an embedding

Mc M

where M is a nonsingular base of a family of pre-stable curves satisfy-
ing (10). Such embeddings are not strictly necessary for those familiar with
properties of the Artin stacki, (smoothness, representability of the univer-
sal curve), but are included here to make the presentation more accessible.
Mumford’s relations onM may then be pulled-back tel and intersected
with the virtual class. The main technical tools involved are the splitting
axioms of the virtual class. In casg2 2 +n > 0, the spaceM also
admits a morphism t®/g », the Deligne-Mumford moduli space of stable
curves. The latter morphism does not respect the cotangent lines (as there
is contraction involved). Moreover, we do not restrict ourselves to the case
2g— 2+ n > 0. For these reasons, the latter morphism is not pursued here.
Virtual divisors inM are of two types. First, stable splittings

(11) E=(01+ =0 AvA =[n], B+ B2=P)

index virtual divisors inM corresponding to maps with reducible domain
curves. Define

(12) AS = mgl,Aﬁ»*(xv /31) XX mgz,A2+o(Xv ﬁZ)_)m

to be the virtual divisor corresponding to the datd he fibered product in
(12) is taken with respect to the evaluation meps, corresponding to the
markingsx, e. The virtual class ofA¢ is determined by:

[A:]"" = [Mg, a4« (X, BT X [Mgy apre (X, B2)]"" 1 (8, X €)72(8)

wheres C X x X is the diagonal (this is Axiom 4 of [BM]).
For g > 1, there is an additional virtual divisaky corresponding to
irreducible nodal domain curves:

Ao = Mg_1nj+(ne) (X, B) 0 (& x €)M
wheres ¢ X x X is the diagonal. By Axiom 4,
[Ao]"" = [Mg_1 (.00 (X, B 1 (8 x &) 71(S).

Let A be the set of albrdered splittings (11) indexing reducible divisors
(with repetition) unior{0} for the irreducible divisor. There is a natural map

L:UA§—>V

where the domain is the disjoint union.
Consider the morphism:

M — My
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where the right side is the Artin stack of pre-stable gegusirves. For
0<j<uog,let

Bj = i).’ftj,* X mg_j,..
Let Birr = Mg_1(+.;- These Artin stacks admit natural mags. .. , vy,
virr t0Mg. Let A C A be the subset with (ordered) genus splittjag= |,
02=9— j.Let A" = {0}. Certainly,

U Ag = Bj Xgﬁg M
EeAl
for j € {O,...,g,irr} (see [B]). The Isogeny Axiom of [BM] implies for
each such,
N

(used here in the form of Lemma 10 of [B]). This is one of the mostimportant
properties of the virtual class.

The analogue of Mumford’s result required for Theorem 1 is the follow-
ing Proposition.

Proposition 1. _ _
Ch(E) A [M]vlr — g[M]vlr

%) B — 1 21-2 . N )
+§(2—|2)" . <K2|—1m [M]Y" + ét*gg(_b W*lﬁfl 2-i [A] r>

in A.(M).

Proof. We will find a nonsingular Deligne-Mumford staoi with a family
of curvesr : € — M satisfying assumption (10) and an embedding

M — M
such thatC restricts to the universal family ovéM:

u —— ¢

|

Following the notation of Sect. 1.1, we see

Z= U Bj xmy M,

Zxy M= U Bj X, M.
j€firr,0,...,0}
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We may then apply Mumford’s Theorem to the map ¢ — M. Inter-
secting Mumford’s formula withM]"" yields:
ch(E) n [M]"" = g[M]*"
_{_iﬁ(K m[ﬂ]vil‘_{_}t Z ZZZ(—].)IWI l)[/2|—2—imvl_[m:lvir)
@y \"At 2" : e j
=1 jelirr,0,...,9} i=0
in A,(M). The proposition then follows immediately from (13).

The construction of the required famity: ¢ — M starts with a general
observation. Let

(14) ScPPxB—>B

be a projective flat family of genug, degreed pre-stable curves over
a quasi-projective base schei®eWe show how to embed (14) in a family
of curves over a nonsingular base satisfying assumption (10).
Let £ = Op(1). By standard boundedness arguments, there exists an
integera satisfying

(15) HY(S,, £5) =0
for all b € B. Consider the Veronese embedding
P p(e)-1
Then, there is a canonical map
¢1: B—> H,

where J¢ is the Hilbert scheme of genug degreexd curves inP(&)-1,
The vanishing (15) easily implie® is nonsingular of expected dimension
in a Zariski open set#® C # containing In¢;). Assumption (10) for
the universal familyu® — #° also is a direct consequence of (15). Let
¢> : B — X be a closed embedding in a nonsingular schemginally,
the diagram

S ——» U'x X

l l

B 2% 30 % X.

is the required construction for the given fam#y— B.

In [FP], M is constructed as a Deligne-Mumford quotient stack Hib
of a reductive group action on a Hilbert scheme of pointed graphs. The uni-
versal familyU — M is simply the stack quotient of the universal family
U — Hilb. The above construction appli€a-equivariantly tol — Hilb
directly yields the required construction for the Proposition (see also [GrP]
where embeddings d¥ in nonsingular Deligne-Mumford stacks are con-
structed). O
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1.3. Theorem 1. Let X be a nonsingular projective variety of dimension
Let yo, ..., yn be a graded)-basis of H*(X, Q). We takey, to be the
identity element. LeQes = f veu v¢, and letg®’ be the inverse matrix.
The descendent Gromov- Wltten invariantsXof

i X
<E T (Va;))g’ﬂ = f[Mgn(x . 1:[ Yl e (va)
may be organized in a generating function
X _ Z RI-LEX,
9=0
where

2 qﬁZ Dt 8 () - i (g

BeH2(X,Z) n>0 a1 an

We introduce here an analogous generating fundéigrfor the Hodge
integrals over moduli stacks of maps X For each odd positive integer,
let the variables correspond to gliE). By Mumford's relations [Mu], the
even components of ¢B) vanish (for all genera). Lét s denote the sets of

variables{t'}, {s} respectively. The Hodge integrals

(T e [Tty (E)>X _
i=1 i=1 9.8

m

U o) U (E
f[Mgn(xmv.rD‘”' & (va) v ][] chy, (B)

j=1

define formal functions

Foets) =
SEED D 3§ (x nsbmwncm ®),,
BeH2(X,Z) n,m>0 kl knl 1 =1 i=
bl bm

As before, we defin&g = »°_, 9 'F ;. This function is related to the

descendent generating function by restrictiégt|s_o = F*. Finally, let
Z¥ = exp(FY).

Formulas involving the cotangent line classes and the Chern character
of the Hodge bundle yield the following consequence of Proposition 1. For
| > 1, define a formal differential operator:
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Da_1 =

0 B
e <2I>'<at° ZZJ

i=0 j=0 |+2|1

2|2

i ~ef
T2 Z( ) ateatZI 2— |>’

as usual the sum over the indicg$ is suppressed.
Proposition 2. For all | > 1, Dy_1Z% = 0.

Proof. Let M = Vg,n(x, B) as in Sect. 1.1. Three formulas are needed to
deduce this vanishing from Proposition 1.

Letd be the virtual dimension df1. The Chow class,_1 n [M]"" has
dimensiond — 2| + 1. The first formula is:

(16) [Tv o8 (a) nka_sn [MI"T) =

i=1

<T2|()/0) l_[ Tk (Va)>:ﬂ - Z<Tk. +2-1(Va) l_[ T (Vay) )Xﬂ
i=1 ’ i=1

j#i

where the cohomology product on the left side has codimerkio@l + 1.

It follows from viewing the universal family oveM as Mg n.1(X, B) and
applying the standard comparison results for cotangent lines (see [W]). The
only virtual class property needed is the equality

[Mgn1(X, B)I'" = 7*[M]"

which is an Axiom in [BM].

The second and third required formulas address the behavior of the
Chern character of the Hodge bundle when restricted to the virtual boundary
divisors. Leté € A correspond to a virtual boundary divisor with genus
splitting g1 + g2 = g. Let E4 denote the Hodge bundle d. Let Ey,, Eq,
denote the Hodge bundles obtained from the two factors in (12). The natural
restriction sequence of;:

0— Eg - 'Eq - Eg, = 0
implies the formula
(17) ch(Eg,) + ch(Eg,) = *ch(Eg) € A*(Ag).
Similarly, for the irreducible virtual divison\q, the residue sequence
0— Eg1— 'Eg— Ox,— 0
implies the formula

(18) ch(Bq_1) = t*ch(Eg) € A*(Ao).
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Proposition 2 is a formal consequence of Proposition 1 and equations
(16-18). O

The generating functioR, is determined by the initiad = 0 conditions
(specified byF*) and the differential equations from Proposition 2. Thus,
Theorem 1 is proven.

We end this section with some remarks following from Proposition 2.
All the Chern classes of the Hodge bundle vanish in genus 0. Hence,
aFng/asg_l = 0. The vanishingD,_;Z* = 0 analyzed at ordei ! then
yields universal relations among genus 0 descendent invariarXs Die
relation obtained fof = 1 coincides precisely witlL; (defined in [EHX]
and used in the proof of the genus 0 Virasoro constraints). Proposition 2
also yields geometric interpretations of several related equations in the latter
proof (see [Ge]).

In fact, Proposition 2 yields many more new universal relations among
pure descendent invariants. For example, the classgs @B vanish in
A*(My) for | > g. Hence, generalizations of the abaye- 0 equations to
higher genus are obtained from

0 Fg;f]E

011

and the vanishing at ord&f— in D2|,1Z]?E< = 0. The resulting relation is an
efficient topological recursion relation (TRR) fes in genusg < |. Note
the Bernoulli number drops out of these relations.

A more sophisticated method of obtaining pure descendent equations
from Proposition 2 is to construct combinations of the operalys; that
serve to introduce the Chern classe&ofrhe Chern classes &f certainly
vanish in degrees greater thgron M. One obtains from Proposition 2
relations in degree greater than(for eachg). It would be interesting
to understand these equations and their relation to TRR and the Virasoro
constraints even in the point case.

Finally, while the Hodge integrals

=0 (>0,

n

g
f[ [Tvdoeom uj]:[lx?j

Mg,n(xyﬁ)]“ir i=1
are determined by Proposition 2 aRd, the relations satisfied by the natural
generating functions of these integrals do not appear easy to write.
2. Relations via virtual localization
2.1. The localization formula. We review here the virtual localization

formula in Gromov-Witten theory [GrP] in the special case of degree 1 maps
to P1. While our strategy for obtaining relations among Hodge integrals may
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be pursued in much greater generality, only this special case is required for
Theorem 2.
Let P! = P(V) whereV = C @ C. Let C* act diagonally orV:

(19) £ (v, v2) = (v1, & - v2).

Let ps1, po be the fixed points of the corresponding action R{V). An
equivariant lifting ofC* to a line bundlde. overP(V) is uniquely determined
by the weightdl,, I5] of the fiber representations at the fixed points

Ll: Llpl, L2: L|p2

The canonical lifting ofC* to the tangent bundle, Tan, has weigits—1].
There is a scaling lifting ofC* to Op(y, for each integerr with weights
[«, «]. For each integeg, there is aC*-lifting to Op(v,(—1) with weights
6.8 +11. _

Letg > 1. Let Mag = Mgo(P(V), 1) be the moduli stack of stable,
genusg, unpointed maps tB(V) of degree 1. Let

(20) m:U— Mapy, wu:U— PV

be the universal curve and universal map over the moduli stack. The repre-
sentation (19) canonically inducé&s-actions onJ and Mag compatible
with the mapsr and .

The virtual dimension of Magpis 2g. There are two natural rargbun-
dles on Map: Rz, (11* Opyy)) and R, (1 Opy (—1)). Letx, y denote the
respective top Chern classes of these bundleaSiMapy). The follow-
ing two integrals against the virtual cIaEi‘dapg]”ir € Ayy(Mapy) will be
considered:

(21) [ xew [ gy
[Mapg]“” [Mapg]“i'

The virtual localization formula will be used to compute these integrals with
respect to various linearizations 6, andOp)(—1).

The fixed locusX of the C*-action on Mag is a disjoint union of
irreducible components

X = U Xg1.6e-
g

01+02=
g1, 92>0

The componenkg, 4, corresponds to the loci of maps where subcurves of
genusg; andg, are contracted to the fixed poings and p, respectively.
The fixed locus is naturally isomorphic g, 1 x Mg, 1 (Where Mg is
defined to be a point). Moreover, the induced fixed stack structub&;og

is simply the reduced nonsingular structure [GrP]. The cotangent ling and
classes of the two factors yield cohomology classeXgn, via pull-back.
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Let ¥4, ¥, denote the cotangent line classes from the facﬁ@l and
Mg, 1 respectively. Fok € Z, let

g1
A1) = Khg i € A"(Mg,1),

i=0
92 _ o
Ao(K) =) Kigi € A"(Mg,1).
i=0
We note Mumford’s formula(E) - c(E*) = 1 implies
(22) Ai(=DAi(D = (=D,
Ai(0)Ai (0) = dgo.

These sumg\; (k) will be convenient for the formulas below.
Let: : X — Mapy be the inclusion. The virtual localization formula is:

[Xgl 92] vir *
(23) —L_— — [Mapy]"" € H*. (Mapy)[1/1].
91;92;9 Cop(NOT/ g,)

The virtual normal bundle Ng‘fg2 is isomorphic in equivariank -theory
on Xg, g, to the sum:

[Y1 ® Tan] + [V ® Tarp] + [7.u*Tan — [Rz,u*Tan] — [Aut]

(see [GrP]). Lety € H49(Mapg). After an expansion of the virtual normal
contribution, equation (23) yields an explicit integration formulajfor

A 1) Ax(1
e [ S G
[Mapg“' X

01+02=9 Y Xor.% 1=y 1492
2.2. Relations. Application of formula (24) to the integrals (21) yields the
following linearization dependent equations. We find

/ xuy=(=1%4(e, B)
[Mapg]vi"

with respect to the linearizatiofis, o] on Ve and[B, S+ 1] onOppy(—1)
where

(25)
B A (=D A1(—a) A1 (=B) Aa(=1)Ax(a)A2(B + 1)
ol ) = Z /xgl,g2 1-vyn 1-v '
Similarly,

f Cyuy=(=1%y(a, )
[Mapg]“”
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with respect to the linearizationa, o + 1], [8, 8 + 1] on the two copies of
Opv(—1) where
(26) Jg(a, :B) =

Z/ A1 (=D A1(=a)A1(=p) Ap(=DAx(e + DA(B+ 1)

Xglvgz 1- Wl 1- wZ
Hence, we have obtained the relations
(27) Ig(a» 13) = Ig(a/» 13/)7 \]g(O[, /3) = Jg(O[/, /3/)

for all integerse, o, B, B'.
For& € Z, define the serie$; (t) € Q[[t]] by:

A(§) 2 i 29— 2+i
_ 29 _ 29 i g—2+ )
fg(t)—l—f— E t / 1 . =1+ E E o€ /Mg;% Ag—i-

g=1  “Ma1 g=1 i=0

Proposition 3. For & € Z, f:(t) = fo(t)* .

Proof. By the integration formulas (25-26) together with Mumford’s rela-
tions (22), we find:

14+ t%914(0,0) = fo(it),
g>1

14+ 19350, —1) = f&(it).
g>1
We will consider the relations:
1+ 1945 0) = folit),

g>1
1+ thng(O, £) = f&(it).
g>1
Define a new series fdr € Z:
g:(h) =1+ Zﬂgf A(—l)A(O)A(_g).

g>1 VQJ 1- Wl

The integration formulas imply:

14> t904(£.0) = ge(d) feit),

g>1

14+ 19350, 8) = ge(t) fepa(it).

g=1
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We then deduce the equations:

9: () fe(it) = fo(it), Qe(b) fera(it) = FE(G).

Hence, fz1(it) = f:(it) fo(it) for all £ € Z. The proposition now follows
easily by induction (as it is true fdr = 0). O

In order to determine the functionf (1), it suffices to compute only
f_,(t) = fo(t)~L. This calculation too may be accomplished via localization
relations, but a shorter and more elegant derivation by classical curve theory
will be given in Proposition 4.

To show the flavor of Hodge relations obtained from localization, we
mention two further examples. The formula:

28 1 t9 / 30-2 — exp(t/24
(28) +y mglw exp(t/24)

g=1

is a well known consequence of Witten’s conjecture (Kontsevich’s theorem).
Itis a nice exercise to prove this formula via Hodge relations obtained from
localization on the stack of maps R}. A geometric proof of (28) will be
given in the next section.

Lety e H?(PY) be the point class. The integral

(29) / xuyue(y?
[mg,l(Plad)]Uir

clearly vanishes fod > 2 (as beforex andy are the top Chern classes
of the vector bundles obtained from the higher direct imaggs*6®p)
andp*(Opy)(—1)) respectivelyg; is the evaluation map corresponding to
the marking). When (29) is computed by localization with an appropriate
choice of linearization, the following Hodge relation is found:

(_1)d+|(m) Hi mimi )\’g B
i [t o T O

mePar(d) Mg im)+1

wherem = {my, ..., mm} is a partition ofd. We have checked alge-
braically that the Virasoro prediction (2) of [GeP] satisfies these relations.
As yet, we are unable to prove (2) via Hodge relations of this type.

3. Relations via classical curve theory

3.1. Relations via the canonical systemIn this section, we derive several
relations among Hodge integrals from classical curve theory. The starting
point is [Mu]. The base-point-freeness of the canonical system on a smooth
curve can be formulated as the surjectivity of the natural mdp — 1L,

onCy = My ;. This gives rise to an exact sequence

O F—-7nE—-L;—0
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with F locally free of rankg — 1. Hence one finds oM ; the relations

c(E) _ .
(£2) =0 =0

If we want to extend these relations Eg,l, we must take into account
the stable pointed curves for whiéh is not generated by global sections.
As Mumford observes, the global sections generate the subsheattudt
is zero at all disconnecting nodes and on all smooth rational curves all
of whose nodes are disconnecting. Let us denote fer 2 < g by X;
the locus of stable one-pointed curves of gegusonsisting of a stable
(i + 1)-pointed rational curve with tails (stable one-pointed curves of
positive genus; thegenera sum tg) attached to the lastmarked points.
It follows that the relations above hold dvly ; modulo a class supported
on the lociXy, ..., Xg. (Note thatX; is the locus of disconnecting nodes
in the universal curve.)

Since the moduli stack @f 4+ 1)-pointed rational curves has dimension

i — 2 we have thaty) ™! is 0 on X;. Hencel//f_l is 0 on all these loci; we

find the relations
(C(E)) —0  (j225-1)
j

1+

on Mg ;. For j = 3g — 2, we find
Al
(30) / SR
MQ,l 1+ Wl

(in the notation of Sect. 2). This identity impliefs 1(t) = 1 which is also
a consequence of Proposition 3.

If instead we intersect the relation fgpr= g with wf‘z, we find

(31) ( o) ) — w992 [Xglo.
29-2

1+

Here[ ]q denotes th&-class or fundamental class in the sense of stacks as
in [Mu]. The coefficientx can be determined by intersecting with the locus
Y parametrizing one-pointed irreducible curves wgtmodes (hence with
rational normalization) and their degenerations. Zet XyN'Y; this is the
locus of one-pointed curves consisting of a stalgle- 1)-pointed rational
curve withg singular elliptic tails attached. The intersection is transverse in
the universal deformation space, so thé§lo - [Ylo = [Z]g; itis easy to

1
972 . .
see thaty; “ times this class equaLzsga .
As the restriction off to Y is trivial, the intersection oflthe left side
. . 209—2 .
of (31) with [Y]q is 1/119 [Ylg. This product evaluates t?g_gg as well,
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since the natural maplo 241 — Y has degree®)!. We conclude that the
coefficientx in (31) is equal to 1:

(32)
E
(C( )> =91 WY =9 Dk (<D = v [Xglo.
2g-2

1+

Intersecting this relation with? + 1//%71)»1+- --4Xg gives justzpfg*2 onthe

left side, sincec(EE) - c(E*) = 1. On the right side we obtaixbwf_z[xg]Q
which easily evaluates to/124%g!). We find another proof of the identity
(28),
g2 _ 1
Mgy 249g!

3.2. Relations via Weierstrass loci.Above, our starting point was the
base-point-freeness of the canonical system on a smooth curve. We then
extended some of the relations so obtained to the moduli stack of stable
curves. Below, we study hyperelliptic Weierstrass points; this may be viewed
as a first step in analyzing the very-ampleness of the canonical system. We
obtain the following result.

Proposition 4.
sin(t/2)
t/2

o =103 07 [y G 2hng 1t (20009 =
Mg,]_

g=1

Proof. In [Mu] Mumford computed the class i€4 of the locusWH of
hyperelliptic Weierstrass points:

1-y11-2y,
=@ —Dyd - YT+
+(=D9 2 - Drg1.

1 1
[WHglo = (C(E*) )
g-1

Hence,
V1[WHglo = ((Zlﬁl)g — QYT+ (_1)9)\9)
— (WD = MWDI 4+ (~1)%).

Let us suppose this identity continues to holdy= Mg ; modulo classes

on Whichl//fg*2 is zero. Then, by the vanishing (30), the formula fap(t)
is equivalent to

1

29-1vg 1 —
(33) o WHgl = 2207129+ 1!
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Note the usual fundamental class appears on the left in (33), as this is more
convenient in the sequel. We will first prove identity (33) and then verify
the required assumption.

The spaceMo 2412 May be viewed as the moduli space of stable hyper-
elliptic curves of genug with an ordering of the §+ 2 Weierstrass points.
(The hyperelliptic automorphism is lost in this identification, however.) The
universal (ordered) hyperelliptic curve is a double coveMaf,g, 3 (the
universal curve oveMy »4:2). The ramification locus iSWH4 (ordered);

the branch locu8 is
29+2

Z Dj2g+3,
=1

where Dj 243 is the boundary divisor corresponding to the partition
{J, 29+ 3} U{j, 2g + 3}° (note that the g + 2 divisors are disjoint). The
reason we can compuhﬁfg_l[mg] is that ¢, on the double cover is

a pullback fromMj 24, 3. Denote the double cover map By theny; =
f*(Yr2g+3 — B/2). This follows from the Riemann-Hurwitz formula; note
that vo4,3 has degree-2 + (29 4+ 2) = 2g on the fibers of the map to

Mo.2g12- Hence

29 UWH ] = f, (v ' [WH,))

= (¢2g+3 - EB) B= (—§> B2,

The last equality holds becaugg, . ; is zero on every component Bf Now

B consists of 8 + 2 disjoint components, each isomorphicM 24 2; the
restriction of B to itself is then—v, if * is the marked point corresponding
to the node. Hence

__ 1\%? 29+ 2
29-1 _ 29-1 _
97WH,] = 29+ 2) (5) Y29t = o

This is the answer in the ordered case; the formula for the unordered case
follows immediately.

It remains to verify the assumption made: that Mumford’s formula for
[WHg]q valid onCq4 holds onCy after multiplying byl//fg*l. One may prove
Mumford’s formula by observing that the locus of hyperelliptic Weierstrass
points is the degeneracy locirk ¢, < 1}, whereg, : E — F,is the natural
evaluation map from the Hodge bundle to the jet buritlevhose fiber at
[C, p] is the vector spackl®(C, K/K(—2p)) of dimension 2. The class of
the locus is then given by Porteous’s formula.

In order to verify the assumption, we must analyze the irreducible loci
{L;} of singular stable pointed curves included in the degeneracy locus
{rk¢o < 1} and shovvwfgfl[Li] = 0. If [C, p] lies in the degeneracy locus,
it is easy to see one of the following two possibilities must be satisfied:
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(&) plies on a nonsingular rational componefit

(b) pis ahyperelliptic Weierstrass point: the compon&rtontainingp is
a possibly nodal hyperelliptic curve (of arithmetic gefug- 1), and
the pointp is a Weierstrass point oX.

LetL; be anirreducible boundary component of the degeneracy locus. If (a)
holds generically orj, naive estimates show the moduli of the component
X (with marked nodes and poim is bounded by3g — 4)/2 parameters.
Hence,wfgfl[Li] is certainly 0 in this case. Suppose (b) holds generically
on Lj. We may assume the generic total cué/é not hyperelliptic, other-
wiseL; lies in the closure o¥WHy and is of dimension less thag2- 1. In
particular,C must be reducible. We will show the marked componéhias
fewer than 8 — 1 moduli. We may assumX is nonsingular and meets the
rest of the curve im points. We have to show thah2- 1+ m < 2g — 1.
Sinceh < g this is clear whemm = 1. Whenm = 2, h = g — 1 doesn't
result in a stable curve of gengsso we are done. Fon > 3, the maximal

h is obtained when rational curves are attached. But attachiaganted
rational curve lowersi2— 1+ mbyk —2, so 2 — 1+ mis always smaller
than 2y — 1. This finishes the proof of Proposition 4. O

3.3. Proof of Theorem 2. Define the serie&(t, k) € Q[K][[t]] by

g .
Ft ko =1+ Y %% | 9%y

g>1i=0 Mg.1
By Propositions 3 and 4
t/2 \&+1
F(t, 5) = fé(t) = (m)

for all £ € Z. The equality of formal series

/2 \k+l
F(t. k) = (sin(t/Z))
then follows immediately. Theorem 2 is proven. O

4. Bernoulli identities and Theorems 3-4

4.1. Proof of Theorem 3. Let My o(P?, d) be the moduli stack of genwgs
degreed maps toP'. Consider theC* action onP(V) = P! as defined in
Sect. 2. As before, there are canonical maps

7:U— mg,o(Pl, d, u:U—= PNV
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whereU is the universal curve over the moduli stack. [tdenote the
bundleO@pi(—1) & Op1(—1). Let

Cg.d) = f_ Cop(Rim*N).
[Mg,o(PL,d)]vr

For each pair of linearizatiofs, o + 1], [8, 8 + 11, the virtual localization
formula yields an explicit computation @f(g, d).

For general choices of linearizatiof,(g, d) is expressed as a com-
plicated sum over connected graphgsee [GrP]) indexing th&€*-fixed
loci of Mgo(PY, d). The vertices of these graphs lie over the fixed points
p1, p2 € P! and are labelled with genera (which sum over the graph to
g — h’(I"). The edges of the graphs lie ovet and are labelled with de-
grees (which sum over the graphdp However, for the natural linearization
[0, 1], [0, 1], a vanishing result holds: if a graghcontains a vertex lying
over p; of genus greater than O or valence greater than 1, then the contri-
bution of " to C(g, d) vanishes. As a result, the sum over graphs reduces to
a more manageable sum over partitiongloT his linearization was found
by Manin and used to compu@(0, d) = 1/d® in [Ma]. In [GrP], the same
choice was used to compu®1, d) = 1/12d.

A dramatic improvement occurs if the linearizatip, 1], [—1, O] is
chosen. In this case, a stronger vanishing holds: if a giagiontains
any vertex of valence greater than 1, then the contributioft td C(g, d)
vanishes. Hence, contributing graphs have exactly 1 edge. The graph sum
then reduces simply to a sum over partiti@ast g, = g of the genus. The
localization formula yields the following result fg > O:

(34) C(g.d) =d®2 > byby,

01+02=9
g1, 92>0

whereby is defined by (3). In particular, the computations@D, d) and
C(1, d) now require no series manipulations of the type pursued in [Ma],
[GrP]. Note equation (34) implies

(35) Y Cg, D = fot)® = fa(h).
g=0
In Sect. 4.2, the formula (fag > 1)
Byl 1
> byt =
g1+02=9 Zg (29 - 2)!

g1, 92>0

will be proven from Theorem 2 and Bernoulli identities to complete the
proof of Theorem 3.
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4.2. Identities. Recall, the Bernoulli numberB,, are defined by the series
expansion

t 2. m
(36) B(t) = To1= n; Bmﬁ.

We start by computingg explicitly in terms of Bernoulli numbers.

Lemma 1.
t/2 1 2%t — 1 |Byg| £29

sin(t/2) +g>l 220-1 (Zg)'

Proof. This is well-known. We include a proof only for the reader’s conve-

nience.
2 it oy, it it

sint/2) @t —1  dvz—1 dt—

o, L. 1 IBagliog [, Liy 5 [Baglizg
=2 it 2229*1(29)!t 1- it Z(Zg)!t

g9=1 g=1

- = 26(it/2) — piv

22071 — 1| Byl 20

=1+>

o1 2201 (29)’
O
By Theorem 2, we see (fay > 1)
b — / Y o 2271 1Byl
T 2 (29
The seriesf(t) = foz(t) is determined by the following lemma.
Lemma 2. :
_ |BZQ| 1
;bhbg*h ~ 29 29-2!°
Proof. Setfy = (2 — 229) @ )' . The identity to be proved (fog > 1) is
then
g-1 2
(37) %+;m@wf5@;ﬁ.

. & % 229 B,
Since NG e —— and 9
gZ::Oﬂg sinh(x) gzo (29)!

is an immediate consequence(obthx)’ = — sinh 2 x. O

——9x%9-1 = coth(x), equation (37)
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Lemma 2 yields the equality

|Bogl %
) =1+) —=>
= 29 9-2)

This result together with equations (34-35) completes the proof of The-
orem 3. O

4.3. Proof of Theorem 4. The equality (forg > 2)

f)‘g _|BZQ||82972| 1

M, ° - 29 29—2(29—2)!

now may be established by manipulating Mumford’s Grothendieck-Riemann-
Roch formulas and using Lemma 2.

Proof. The formula}",_,(—D*(k — D! ch(W)th = log(}y.o (W)
gives forV = E B

g g
Z(—l)k‘lk! ch(E)t“ 1 = (Z k/\ktk‘l> (Z )\k(—t)k)
k=1 k=0

k>1

sincec(E)~! = c(E*). (Note that both sides are even polynomials.)rin
particular(2g — 3)! chyg_3(E) = (—1)91(3hgrg-3 — Ag-11g—2) SO that

hghg-1rg-2 = (—1)9(2g — 3)! AqChpg_3(E).

Mumford’s formula [Mu] for cHE) gives

[/qg s+ > Zlh*(gfw( Y2)? )}

Sincerq = 0 onAg while iiAg = priinprsig—n for h > 0, this implies

1

|BZgZ| .
/\3_=/2,\/\x2_ 2b+§bhbh
fmggl T 2g—2|7° ’

(where the first equality follows fro[E)c(E*) = 1). Hence, it remains to
prove

(29—3)! chyg_3(E) =

|BZQ| 1
Zb“bg“ 29 (29—2)!

But, this is Lemma 2. O
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4.4. The Virasoro prediction for cg. We include here D. Zagier's proof
of the prediction (forg > 1):

2g—-1
1 1 (201 — D!(2g2 — D)!
i )he=cts Y bg, by,
<k=l k> 2 9=01+02.Gi >0 (29— D!

From Theorem 2, we obtain

t/2 t/2
>t = (grez) ' (Gniz)

g=1

Lemma 3 below (together with Lemma 1) expressgs terms of Bernoulli
numbers. Then, the Virasoro prediction @y is equivalent to an identity
among Bernoulli numbers proven in Lemma 4.

Lemma 3.

/2 \ [Bak| o
log (sin(t/Z)) = k; Aot

t/2 ,
Proof. Let f(t) = — . It suffices to prove
sin(t/2)

f'() | Baul , o«
38 t = —
(38) f(t) g (2k)!

1

By definition (36), the right side of (38) equals—léit —ai 1 The left
: t tet41
side equals + > cot(t/2) = 1— |§eit —3 O

Lemma 4.

29— _

gi:l} % |Bogl _ 923 221 — 1] |Bxd | Bog—2«l

—1 | 22g—l (Zg)' - v 22k—l (Zk)' (Zg _ 2k) (Zg — Zk)'
Ly 1 212 iBy| B

+ = .
— 201—1 202—1
2 ooy (2g—1)! 240 229 201 20
g1, 92>0
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Proof (Zagier). Setgy = (2 — 229)
a(g) + b(g) = c(g), where

( . The identity to be proved is

1 1
a(g) = <1+§+"‘+—),3g7

29-1
22n BZn
b(g) := Z oy P
1 (201 — D! (20 — D!
(g9 = Z By By, -
01+02=9 (29— D! o
g1, 92>0

. . L e 1 .
Using the generating function identify’ g x?9~* = s Ve find

g=0
& X2g—1 _ tZg—l
A(X) = Z a(g) x9* Zﬂg/ Tdt
g=1

_/X L S S W
~ Jo | x=t \sinhx sinht xt

1 & 22B 1 sinhx
_ x29-1 _ 2n  on _
B := Z b(g) X ~ sinhx ; 2n (2n)! TS Iog< ) ’

sinhx X
g=1

0 =3 e X =3 3 fubs f 297 (x — o

g=1 91+92
g1, 92>0
B 1[* 1 1 1 1 at
2 Jo \t sinht/\x—t sinh(x —t)
and hence

(/11 1 1
2C(x) —2A(X) :fo {(f_sinht)(x—t _sinh(X—t))

1 +1 1 +1 N 1 1 +1 1 at
Xx—t t/\sinhx = x X —t sinht ~ t sinh(x —1)

_ X( 1 X 1 dt
B /0 sinh(t) sinh(x —t) ~ sinhx t (x — t))

X

1 o sinht X—t
= sinhx O\ % sinh(x —t) / |,

= 2B(X).
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Note added in proof:

We have recently proved the Virasoro prediction (2) using generalizations of
the Hodge relations given at the end of Sect. 2 (“Hodge integrals, partition
matrices, and thgq conjecture”, in preparation).



