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0. Introduction

Let Mg,n be the nonsingular moduli stack of genusg, n-pointed, Deligne-
Mumford stable curves. For each markingi, there is an associated cotangent
line bundle Li → Mg,n with fiber T ∗

C,pi
over the moduli point

[C, p1, . . . , pn]. Letψi = c1(Li) ∈ H∗(Mg,n,Q). The integrals of products
of theψ classes overMg,n are determined by Witten’s conjecture (Kont-
sevich’s theorem): their natural generating function satisfies the Virasoro
constraints [W], [K]. LetωC denote the dualizing sheaf of a curveC. The
Hodge bundleE→ Mg,n is the rankg vector bundle with fiberH0(C, ωC)

over [C, p1, . . . , pn]. Let λ j = c j(E). A Hodge integral overMg,n is de-
fined to be an integral of products of theψ andλ classes. It is the Hodge
integrals that are studied here.

Hodge integrals arise naturally in Gromov-Witten theory. There are two
specific occurrences which motivated this work. First, letX = G/P be
a compact algebraic homogeneous space. The virtual localization formula
established in [GrP] reduces all Gromov-Witten invariants (and their de-
scendents) ofX to explicit graph sums involving only Hodge integrals over
Mg,n. For example, the classical Severi degrees – the numbers of degreed,
genusg algebraic plane curves passing through 3d + g − 1 points – are
Gromov-Witten invariants ofP2 and may be expressed in terms of Hodge
integrals. Formulas for Hodge integrals therefore play a role in Gromov-
Witten theory.

Second, letX be an arbitrary nonsingular projective variety of dimen-
sionr. Consider the stackMg,n(X,0) of stableconstant maps from genusg,



C. Faber, R. Pandharipande

n-pointed curves toX. There is a natural isomorphism:

Mg,n(X,0)
∼
= Mg,n × X.(1)

The virtual class[Mg,n(X,0)]vir is equal tocrg(E
∗
⊠TX)∩[Mg,n(X,0)] via

the identification (1). Hence, the degree 0 Gromov-Witten invariants ofX
involve only the classical cohomology ringH∗(X,Q) and Hodge integrals
over Mg,n. In [GeP], this observation is combined with the conjectural
Virasoro constraints of Eguchi, Hori, and Xiong [EHX] to yield simple
formulas for certain Hodge integrals. For example, the following relation is
derived in [GeP] as a consequence of the Virasoro constraints applied toP1:

∫

Mg,n

ψ
k1
1 . . . ψ

kn
n λg =

(

2g + n − 3

k1, . . . , kn

)

bg,(2)

whereki ≥ 0 and

bg =







1, g = 0,
∫

Mg,1

ψ
2g−2
1 λg, g > 0.(3)

The methods of [GeP] also yield conjectural relations for Hodge integrals
with a singleλg−1 factor. The simplest of these predictions is: forg ≥ 1,

cg =

∫

Mg,1

ψ
2g−1
1 λg−1(4)

=
(

2g−1
∑

k=1

1

k

)

bg −
1

2

∑

g1+g2=g
g1, g2>0

(2g1 − 1)!(2g2 − 1)!

(2g − 1)!
bg1bg2.

Remarkably, the integralsbg seem to be unconstrained by the degree 0
Virasoro conjecture.

More generally, it is natural to consider Hodge integrals over stacks of
stable mapsMg,n(X, β) for nonsingular projective varietiesX:

∫

[Mg,n(X,β)]vir

n
∏

i=1

ψ
ai
i ∪ e∗

i (γi) ∪

g
∏

j=1

λ
b j

j .(5)

The classesψi here are the cotangent line classes onMg,n(X, β), the mapsei
are the evaluation maps toX corresponding to the markings, and the classes
γi satisfyγi ∈ H∗(X,Q). The gravitational descendents are the integrals
(5) for which allb j = 0 (noλ classes appear). The first result proven in this
paper is the following Reconstruction Theorem.

Theorem 1. The set of Hodge integrals over moduli stacks of maps to X
may be uniquely reconstructed from the set of descendent integrals.
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The method of proof is to utilize Mumford’s Grothendieck-Riemann-
Roch calculations in [Mu]. Mumford’s results may be interpreted in Gromov-
Witten theory to yield differential equations for suitably defined generating
functions of Hodge integrals. A consequence of these equations is a direct
geometric construction of theg = 0 relation L̃1 which plays an important
role in the proof of theg = 0 Virasoro constraints (see [EHX], [DZ], [Ge],
[LiuT]). As the required generating function involves the Chern character of
the Hodge bundle, it seems quite difficult to obtain closed formulas for the
Hodge integrals (5) via Theorem 1. The reconstruction result was obtained
in caseX is a point in [F2].

In order to find closed solutions in certain cases, we introduce here a new
method of obtaining relations among Hodge integrals. The idea is to use
the localization formula of [GrP] in reverse: localization computations of
known equivariant integrals against[Mg,n(G/P, β)]vir yield relations among
Hodge integrals overMg,n. A variant of this technique is to compute an
equivariant integral against the virtual class via two different linearizations
of the torus action. A relation among Hodge integrals is then obtained by the
two results of the localization formula. A simpler case of these ideas provides
motivation: application of the Bott residue formula to integrals over the
Grassmannian yields nontrivial combinatorial identities when linearizations
are altered.

Hodge integrals overMg,n also arise naturally in the study of tautological
degeneracy loci of the Hodge bundle. Formulas for these degeneracy loci
are used here to find new relations among Hodge integrals. The geometry
involved is closely related to classical curve theory: special linear series,
Weierstrass points, and hyperelliptic curves.

The main result of this paper is the following formula proven by the
localization method together with a degeneracy calculation. DefineF(t, k) ∈
Q[k][[t]] by

F(t, k) = 1 +
∑

g≥1

g
∑

i=0

t2gki
∫

Mg,1

ψ
2g−2+i
1 λg−i.

Theorem 2.

F(t, k) =
( t/2

sin(t/2)

)k+1
.

In particular, the integralsbg andcg are determined by:

∑

g≥0

bgt2g = F(t,0) =
( t/2

sin(t/2)

)

,(6)

∑

g≥1

cgt2g =
∂F

∂k
(t,0) =

( t/2

sin(t/2)

)

· log
( t/2

sin(t/2)

)

.
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D. Zagier has provided us with a proof of the Virasoro prediction (4) from
(6) and identities among Bernoulli numbers. M. Shapiro and A. Vainshtein
informed us of another approach to Theorem 2 which will be pursued in
[ELSV], see also [SSV].

Theorem 2 has a direct application in Gromov-Witten theory to a multiple
cover formula for Calabi-Yau 3-folds. Under suitable conditions, the integral

C(g, d) =

∫

[Mg,0(P1,d)]vir
ctop(R

1π∗µ
∗N)(7)

is the contribution to the genusg Gromov-Witten invariant of a Calabi-Yau
3-fold of multiple covers of a fixed rational curve (with normal bundle
N = O(−1)⊕ O(−1)). The genus 0 case is determined by the Aspinwall-
Morrison formula

C(0, d) = 1/d3,

[AM], [Ma], [V]. The genus 1 case was computed in physics [BCOV] and
mathematics [GrP] to yield

C(1, d) = 1/12d.

Virtual localization and Theorem 2 determine this multiple cover contribu-
tion in the general case.

Theorem 3. For g ≥ 2,

C(g, d) =
|B2g| · d2g−3

2g · (2g − 2)!
= |χ(Mg)| ·

d2g−3

(2g − 3)!
,

where B2g is the 2gth Bernoulli number and χ(Mg) = B2g/2g(2g − 2) is
the Harer-Zagier formula for the orbifold Euler characteristic of Mg.

Theorem 3 was conjectured in [GrP] from data obtained from the Hodge
integral algorithm of [F2].

Another consequence of Theorem 2 is the determination of the following
Hodge integral.

Theorem 4. For g ≥ 2,
∫

Mg

λ3
g−1 =

|B2g|

2g

|B2g−2|

2g − 2

1

(2g − 2)!
.

The genusg ≥ 2, degree 0 Gromov-Witten invariant of a Calabi-Yau 3-fold
X is simply

< 1>X
g,0= (−1)g

χ

2

∫

Mg

λ3
g−1,

whereχ is the topological Euler characteristic ofX (see [GeP]). Theorem 4
was conjectured previously in [F1]. It implies Conjecture 1 in [F2].
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Theorems 3 and 4 were very recently derived in string theory by physi-
cists [MM], [GoV]. The method of [GoV] is to consider limits of type
IIA string theory which may be conjecturally analyzed in M-theory. The
degree 0 invariant of Theorem 4 is the leading order term in this limit. In
M-theory, this leading term is evaluated via an explicit sum over states (the
Bernoulli numbers arise via values of theζ-function). The multiple cover
formula is also derived in the M-theoretic framework.

We mention finally an interesting connection between Gromov-Witten
theory and the intrinsic geometry ofMg via the Hodge integrals. The ring
R

∗(Mg) of tautological Chow classes inMg has been conjectured in [F1]
to be a Gorenstein ring with socle in degreeg − 2. The Hodge integrals

∫

Mg,n

ψ
k1
1 . . . ψ

kn
n λgλg−1(8)

determine the top intersection pairings inR
∗(Mg). The study ofR∗(Mg)

in [F1] led to a simple combinatorial conjecture for the integrals (8):

∫

Mg,n

ψ
k1
1 . . . ψ

kn
n λgλg−1 =

(2g + n − 3)!(2g − 1)!!

(2g − 1)!
∏n

i=1(2ki − 1)!!

∫

Mg,1

ψ
g−1
1 λgλg−1,

(9)

whereg ≥ 2 andki > 0. This prediction was shown in [GeP] to be implied
by the degree 0 Virasoro conjecture applied toP2.

Acknowledgements. We thank D. Zagier for his proof of the Bernoulli identity required
for (4) which resisted our best efforts. His argument appears in Sect. 4.4. Conversations
with E. Getzler, T. Graber, and E. Looijenga played an important role in our work. This
research was partly pursued at the Scuola Normale Superiore di Pisa and Mathematisches
Forschungsinstitut Oberwolfach in the summer of 1998. The authors were partially supported
by National Science Foundation grants DMS-9801257 and DMS-9801574.

1. Reconstruction equations

1.1. Mumford’s calculation. We start by interpreting Mumford’s beauti-
ful Grothendieck-Riemann-Roch calculation [Mu] in Gromov-Witten the-
ory. Let M be a nonsingular variety (or Deligne-Mumford stack). Let
π : C → M be a flat family of genusg pre-stable curves (the fibers of
π are complete, connected, and reduced, with only nodal singularities).
Assume the variation of this family is maximal in the following sense: the
Kodaira-Spencer map

TMm → Ext1(ΩCm ,OCm )(10)

is surjective for every pointm ∈ M. In this case, the following facts are
well-known from the deformation theory of nodal curves:
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(i) C is a nonsingular variety (or Deligne-Mumford stack).
(ii) The singular locus ofπ (the locus of nodes of the fibers) is a nonsingular

variety Z of pure codimension 2. The imageπ(Z) = ∂M is a divisor
with normal crossings inM.

(iii) There is a naturaĺetale double coverǫ : Z̃ → Z obtained from the
2-fold choice of branches incident at the nodes corresponding to points
of Z.

(iv) There are natural line bundlesL,Lon Z̃ corresponding to the cotangent
directions along the branches.

(v) There is a canonical isomorphismǫ∗(NorZ/C) = L∗ ⊕ L
∗
.

Let ι : Z̃ → M denote the natural composition. Letψ,ψ ∈ A1(Z̃) denote
the first Chern classes ofL,L respectively (Chow groups will always be
taken withQ-coefficients). The morphismι is generically 2− 1 onto the
divisor ∂M. Let κl = π∗(c1(ωπ)

l+1) ∈ Al(M).
The Hodge bundle is defined onM by E = π∗ωπ . Mumford calculates

ch(E) in A∗(Mg) via the Grothendieck-Riemann-Roch formula. As he uses
only properties (i-v) above for the familyπ : Mg,1 → Mg, his argument
applies verbatim to the more general setting considered here.

Theorem (Mumford).

ch(E) = g +

∞
∑

l=1

B2l

(2l)!
·
(

κ2l−1 +
1

2
ι∗

2l−2
∑

i=0

(−1)iψiψ
2l−2−i

)

in A∗(M).

The discrepancies between the above formula and [Mu] are due to a differing
Bernoulli number convention and a typographic error in theκ term of [Mu].
In our formulas, the Bernoulli numbers are defined by:

t

et − 1
=

∞
∑

m=0

Bm
tm

m!
.

1.2. Gromov-Witten theory. Let X be a nonsingular projective variety
over C. Let M = Mg,n(X, β) be the moduli stack of stable maps toX
representing the classβ ∈ H2(X,Z). Let [M]vir ∈ A∗(M) denote the
virtual class in the expected dimension [BF], [B], [LiT].

A direct analogue of Mumford’s result will be proven for the universal
family over M (with respect to the virtual fundamental class). The method
essentially is to consider the morphism

M →Mg
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to the Artin stack of pre-stable curves. However, this is done explicitly by
finding an embedding

M ⊂ M

whereM is a nonsingular base of a family of pre-stable curves satisfy-
ing (10). Such embeddings are not strictly necessary for those familiar with
properties of the Artin stackMg (smoothness, representability of the univer-
sal curve), but are included here to make the presentation more accessible.
Mumford’s relations onM may then be pulled-back toM and intersected
with the virtual class. The main technical tools involved are the splitting
axioms of the virtual class. In case 2g − 2 + n > 0, the spaceM also
admits a morphism toMg,n, the Deligne-Mumford moduli space of stable
curves. The latter morphism does not respect the cotangent lines (as there
is contraction involved). Moreover, we do not restrict ourselves to the case
2g − 2+ n > 0. For these reasons, the latter morphism is not pursued here.

Virtual divisors inM are of two types. First, stable splittings

ξ = (g1 + g2 = g, A1 ∪ A2 = [n], β1 + β2 = β)(11)

index virtual divisors inM corresponding to maps with reducible domain
curves. Define

∆ξ = Mg1,A1+∗(X, β1)×X Mg2,A2+•(X, β2)→M(12)

to be the virtual divisor corresponding to the dataξ. The fibered product in
(12) is taken with respect to the evaluation mapse∗, e• corresponding to the
markings∗, •. The virtual class of∆ξ is determined by:

[∆ξ]
vir = [Mg1,A1+∗(X, β1)]

vir × [Mg2,A2+•(X, β2)]
vir

∩ (e∗ × e•)
−1(δ)

whereδ ⊂ X × X is the diagonal (this is Axiom 4 of [BM]).
For g ≥ 1, there is an additional virtual divisor∆0 corresponding to

irreducible nodal domain curves:

∆0 = Mg−1,[n]+{∗,•}(X, β) ∩ (e∗ × e•)
−1(δ)→M

whereδ ⊂ X × X is the diagonal. By Axiom 4,

[∆0]
vir = [Mg−1,[n]+{∗,•}(X, β)]

vir
∩ (e∗ × e•)

−1(δ).

Let∆ be the set of allordered splittings (11) indexing reducible divisors
(with repetition) union{0} for the irreducible divisor. There is a natural map

ι :
⋃

ξ∈∆

∆ξ → M

where the domain is the disjoint union.
Consider the morphism:

M →Mg
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where the right side is the Artin stack of pre-stable genusg curves. For
0 ≤ j ≤ g, let

B j =M j,∗ ×Mg− j,•.

Let Birr = Mg−1,{∗,•}. These Artin stacks admit natural mapsν0, . . . , νg,
νirr toMg. Let∆ j ⊂ ∆ be the subset with (ordered) genus splittingg1 = j,
g2 = g − j. Let ∆irr = {0}. Certainly,

⋃

ξ∈∆ j

∆ξ
∼
= B j ×Mg M

for j ∈ {0, . . . , g, irr} (see [B]). The Isogeny Axiom of [BM] implies for
each suchj,

ν!
j[M]vir =

∑

ξ∈∆ j

[∆ξ]
vir(13)

(used here in the form of Lemma 10 of [B]). This is one of the most important
properties of the virtual class.

The analogue of Mumford’s result required for Theorem 1 is the follow-
ing Proposition.

Proposition 1.
ch(E) ∩ [M]vir = g[M]vir

+

∞
∑

l=1

B2l

(2l)!
·
(

κ2l−1 ∩ [M]vir +
1

2
ι∗
∑

ξ∈∆

2l−2
∑

i=0

(−1)iψi
∗ψ

2l−2−i
• ∩ [∆ξ ]

vir
)

in A∗(M).

Proof. We will find a nonsingular Deligne-Mumford stackM with a family
of curvesπ : C → M satisfying assumption (10) and an embedding

M → M

such thatC restricts to the universal family overM:

U −−−→ C

π





y

π





y

M −−−→ M.

Following the notation of Sect. 1.1, we see

Z̃ =
⋃

j∈{irr,0,... ,g}

B j ×Mg M,

Z̃ ×M M =
⋃

j∈{irr,0,... ,g}

B j ×Mg M.
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We may then apply Mumford’s Theorem to the mapπ : C → M. Inter-
secting Mumford’s formula with[M]vir yields:

ch(E) ∩ [M]vir = g[M]vir

+

∞
∑

l=1

B2l

(2l)!
·
(

κ2l−1∩[M]vir +
1

2
ι∗

∑

j∈{irr,0,... ,g}

2l−2
∑

i=0

(−1)iψi
∗ψ

2l−2−i
• ∩ν!

j[M]vir
)

in A∗(M). The proposition then follows immediately from (13).
The construction of the required familyπ : C → M starts with a general

observation. Let

S ⊂ Pr × B → B(14)

be a projective flat family of genusg, degreed pre-stable curves over
a quasi-projective base schemeB. We show how to embed (14) in a family
of curves over a nonsingular base satisfying assumption (10).

Let L = OPr (1). By standard boundedness arguments, there exists an
integerα satisfying

H1(Sb,L
α
b) = 0(15)

for all b ∈ B. Consider the Veronese embedding

Pr → P(
r+α
α )−1

Then, there is a canonical map

φ1 : B → H,

whereH is the Hilbert scheme of genusg, degreeαd curves inP(
r+α
α )−1.

The vanishing (15) easily impliesH is nonsingular of expected dimension
in a Zariski open setH0 ⊂ H containing Im(φ1). Assumption (10) for
the universal familyU0 → H

0 also is a direct consequence of (15). Let
φ2 : B → X be a closed embedding in a nonsingular schemeX. Finally,
the diagram

S −−−→ U
0 × X





y





y

B
φ1×φ2

−−−→ H
0 × X.

is the required construction for the given familyS → B.
In [FP], M is constructed as a Deligne-Mumford quotient stack Hilb/G

of a reductive group action on a Hilbert scheme of pointed graphs. The uni-
versal familyU → M is simply the stack quotient of the universal family
U → Hilb. The above construction appliedG-equivariantly toU → Hilb
directly yields the required construction for the Proposition (see also [GrP]
where embeddings ofM in nonsingular Deligne-Mumford stacks are con-
structed). ⊓⊔
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1.3. Theorem 1. Let X be a nonsingular projective variety of dimensionr.
Let γ0, . . . , γN be a gradedQ-basis ofH∗(X,Q). We takeγ0 to be the
identity element. Letge f =

∫

X γe ∪ γ f , and letge f be the inverse matrix.
The descendent Gromov-Witten invariants ofX

〈

n
∏

i=1

τki (γai)
〉X

g,β
=

∫

[Mg,n(X,β)]vir

n
∏

i=1

ψ
ki
i ∪ e∗

i (γai )

may be organized in a generating function

F X =
∑

g≥0

~g−1F X
g ,

where

F X
g =

∑

β∈H2(X,Z)

qβ
∑

n≥0

1

n!

∑

a1...an
k1...kn

tan
kn
. . . ta1

k1

〈

τk1(γa1) . . . τkn (γan)
〉X

g,β
.

We introduce here an analogous generating functionF X
E

for the Hodge
integrals over moduli stacks of maps toX. For each odd positive integer,
let the variablesi correspond to chi(E). By Mumford’s relations [Mu], the
even components of ch(E) vanish (for all genera). Lett, s denote the sets of
variables{t j

i }, {si} respectively. The Hodge integrals

〈

n
∏

i=1

τki (γαi )

m
∏

j=1

chb j (E)
〉X

g,β
=

∫

[Mg,n(X,β)]vir

n
∏

i=1

ψ
ki
i ∪ e∗

i (γαi ) ∪

m
∏

j=1

chb j (E)

define formal functions
F X

g,E (t, s) =

∑

β∈H2(X,Z)

qβ
∑

n,m≥0

1

n!m!

∑

k1...kn
a1...an
b1...bm

n
∏

i=1

tai
ki

m
∏

j=1

sb j

〈

n
∏

i=1

τki (γai)

m
∏

j=1

chb j (E)
〉X

g,β
.

As before, we defineF X
E

=
∑

g≥0~
g−1F X

g,E . This function is related to the
descendent generating function by restriction:F X

E
|s=0 = F X . Finally, let

Z X
E

= exp(F X
E
).

Formulas involving the cotangent line classes and the Chern character
of the Hodge bundle yield the following consequence of Proposition 1. For
l ≥ 1, define a formal differential operator:
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D2l−1 =

−
∂

∂s2l−1
+

B2l

(2l)!

( ∂

∂t0
2l

−

∞
∑

i=0

N
∑

j=0

t j
i

∂

∂t j
i+2l−1

+
~

2

2l−2
∑

i=0

(−1)i ge f ∂

∂te
i

∂

∂t f
2l−2−i

)

,

as usual the sum over the indicese, f is suppressed.

Proposition 2. For all l ≥ 1, D2l−1Z X
E

= 0.

Proof. Let M = Mg,n(X, β) as in Sect. 1.1. Three formulas are needed to
deduce this vanishing from Proposition 1.

Let d be the virtual dimension ofM. The Chow classκ2l−1 ∩ [M]vir has
dimensiond − 2l + 1. The first formula is:

n
∏

i=1

ψ
ki
i ∪ e∗

i (γai) ∩ (κ2l−1 ∩ [M]vir) =(16)

〈

τ2l(γ0)

n
∏

i=1

τki (γai)
〉X

g,β
−

n
∑

i=1

〈

τki +2l−1(γai )
∏

j 6=i

τk j (γa j )
〉X

g,β
,

where the cohomology product on the left side has codimensiond − 2l + 1.
It follows from viewing the universal family overM as Mg,n+1(X, β) and
applying the standard comparison results for cotangent lines (see [W]). The
only virtual class property needed is the equality

[Mg,n+1(X, β)]
vir = π∗[M]vir

which is an Axiom in [BM].
The second and third required formulas address the behavior of the

Chern character of the Hodge bundle when restricted to the virtual boundary
divisors. Letξ ∈ ∆ correspond to a virtual boundary divisor with genus
splitting g1 + g2 = g. LetEg denote the Hodge bundle onM. LetEg1, Eg2

denote the Hodge bundles obtained from the two factors in (12). The natural
restriction sequence on∆ξ :

0 → Eg1 → ι∗Eg → Eg2 → 0

implies the formula

ch(Eg1)+ ch(Eg2) = ι∗ch(Eg) ∈ A∗(∆ξ).(17)

Similarly, for the irreducible virtual divisor∆0, the residue sequence

0 → Eg−1 → ι∗Eg → O∆0 → 0

implies the formula

ch(Eg−1) = ι∗ch(Eg) ∈ A∗(∆0).(18)
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Proposition 2 is a formal consequence of Proposition 1 and equations
(16-18). ⊓⊔

The generating functionF X
E

is determined by the initials = 0 conditions
(specified byF X ) and the differential equations from Proposition 2. Thus,
Theorem 1 is proven.

We end this section with some remarks following from Proposition 2.
All the Chern classes of the Hodge bundle vanish in genus 0. Hence,
∂F X

0,E /∂s2l−1 = 0. The vanishingD2l−1Z X
E

= 0 analyzed at order~−1 then
yields universal relations among genus 0 descendent invariants ofX. The
relation obtained forl = 1 coincides precisely with̃L1 (defined in [EHX]
and used in the proof of the genus 0 Virasoro constraints). Proposition 2
also yields geometric interpretations of several related equations in the latter
proof (see [Ge]).

In fact, Proposition 2 yields many more new universal relations among
pure descendent invariants. For example, the classes ch2l−1(E) vanish in
A∗(Mg) for l > g. Hence, generalizations of the aboveg = 0 equations to
higher genus are obtained from

∂F X
g,E

∂s2l−1
= 0 (l > g),

and the vanishing at order~g−1 in D2l−1Z X
E

= 0. The resulting relation is an
efficient topological recursion relation (TRR) forτ2l in genusg < l. Note
the Bernoulli number drops out of these relations.

A more sophisticated method of obtaining pure descendent equations
from Proposition 2 is to construct combinations of the operatorsD2l−1 that
serve to introduce the Chern classes ofE. The Chern classes ofE certainly
vanish in degrees greater thang on Mg. One obtains from Proposition 2
relations in degree greater thang (for eachg). It would be interesting
to understand these equations and their relation to TRR and the Virasoro
constraints even in the point case.

Finally, while the Hodge integrals

∫

[Mg,n(X,β)]vir

n
∏

i=1

ψ
ai
i ∪ e∗

i (γi) ∪

g
∏

j=1

λ
b j

j

are determined by Proposition 2 andF X , the relations satisfied by the natural
generating functions of these integrals do not appear easy to write.

2. Relations via virtual localization

2.1. The localization formula. We review here the virtual localization
formula in Gromov-Witten theory [GrP] in the special case of degree 1 maps
toP1. While our strategy for obtaining relations among Hodge integrals may
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be pursued in much greater generality, only this special case is required for
Theorem 2.

Let P1 = P(V) whereV = C⊕ C. LetC∗ act diagonally onV :

ξ · (v1, v2) = (v1, ξ · v2).(19)

Let p1, p2 be the fixed points of the corresponding action onP(V). An
equivariant lifting ofC∗ to a line bundleL overP(V) is uniquely determined
by the weights[l1, l2] of the fiber representations at the fixed points

L1 = L|p1, L2 = L|p2.

The canonical lifting ofC∗ to the tangent bundle, Tan, has weights[1,−1].
There is a scaling lifting ofC∗ to OP(V) for each integerα with weights
[α, α]. For each integerβ, there is aC∗-lifting to OP(V)(−1) with weights
[β, β + 1].

Let g ≥ 1. Let Mapg = Mg,0(P(V),1) be the moduli stack of stable,
genusg, unpointed maps toP(V) of degree 1. Let

π : U → Mapg, µ : U → P(V)(20)

be the universal curve and universal map over the moduli stack. The repre-
sentation (19) canonically inducesC∗-actions onU and Mapg compatible
with the mapsπ andµ.

The virtual dimension of Mapg is 2g. There are two natural rankg bun-
dles on Mapg: R1π∗(µ

∗
OP(V)) andR1π∗(µ

∗
OP(V)(−1)). Let x, y denote the

respective top Chern classes of these bundles inAg(Mapg). The follow-
ing two integrals against the virtual class[Mapg]

vir ∈ A2g(Mapg) will be
considered:

∫

[Mapg]vir
x ∪ y,

∫

[Mapg]vir
y ∪ y.(21)

The virtual localization formula will be used to compute these integrals with
respect to various linearizations onOP(V) andOP(V)(−1).

The fixed locusX of the C∗-action on Mapg is a disjoint union of
irreducible components

X =
⋃

g1+g2=g
g1, g2≥0

Xg1,g2.

The componentXg1,g2 corresponds to the loci of maps where subcurves of
genusg1 andg2 are contracted to the fixed pointsp1 and p2 respectively.
The fixed locus is naturally isomorphic toMg1,1 × Mg2,1 (where M0,1 is
defined to be a point). Moreover, the induced fixed stack structure onXg1,g2

is simply the reduced nonsingular structure [GrP]. The cotangent line andλ
classes of the two factors yield cohomology classes onXg1,g2 via pull-back.
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Let ψ1, ψ2 denote the cotangent line classes from the factorsMg1,1 and
Mg2,1 respectively. Fork ∈ Z, let

Λ1(k) =

g1
∑

i=0

kiλg1−i ∈ A∗(Mg1,1),

Λ2(k) =

g2
∑

i=0

kiλg2−i ∈ A∗(Mg2,1).

We note Mumford’s formulac(E) · c(E∗) = 1 implies

Λi(−1)Λi(1) = (−1)gi ,(22)

Λi(0)Λi(0) = δgi0.

These sumsΛi(k) will be convenient for the formulas below.
Let ι : X → Mapg be the inclusion. The virtual localization formula is:

ι∗
∑

g1+g2=g

[Xg1,g2]

ctop(Norvir
g1,g2

)
= [Mapg]

vir ∈ H∗
C∗
(Mapg)[1/t].(23)

The virtual normal bundle Norvir
g1,g2

is isomorphic in equivariantK -theory
on Xg1,g2 to the sum:

[ψ1 ⊗ Tan1] + [ψ2 ⊗ Tan2] + [π∗µ
∗Tan] − [R1π∗µ

∗Tan] − [Aut]

(see [GrP]). Letγ ∈ H4g
C∗
(Mapg). After an expansion of the virtual normal

contribution, equation (23) yields an explicit integration formula forγ :
∫

[Mapg]vir
γ =

∑

g1+g2=g

∫

Xg1,g2

(−1)g ι∗(γ)
Λ1(−1)

1 − ψ1

Λ2(1)

1 + ψ2
.(24)

2.2. Relations. Application of formula (24) to the integrals (21) yields the
following linearization dependent equations. We find

∫

[Mapg]vir
x ∪ y = (−1)g Ig(α, β)

with respect to the linearizations[α, α] onOP(V) and[β, β+1] onOP(V)(−1)
where

Ig(α, β) =
∑

∫

Xg1,g2

Λ1(−1)Λ1(−α)Λ1(−β)

1 − ψ1

Λ2(−1)Λ2(α)Λ2(β + 1)

1 − ψ2
.

(25)

Similarly,
∫

[Mapg]vir
y ∪ y = (−1)g Jg(α, β)
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with respect to the linearizations[α, α+ 1], [β, β + 1] on the two copies of
OP(V)(−1) where

Jg(α, β) =(26)
∑

∫

Xg1,g2

Λ1(−1)Λ1(−α)Λ1(−β)

1 − ψ1

Λ2(−1)Λ2(α+ 1)Λ2(β + 1)

1 − ψ2
.

Hence, we have obtained the relations

Ig(α, β) = Ig(α
′, β′), Jg(α, β) = Jg(α

′, β′)(27)

for all integersα, α′, β, β′.
Forξ ∈ Z, define the seriesfξ(t) ∈ Q[[t]] by:

fξ(t) = 1 +
∑

g≥1

t2g
∫

Mg,1

Λ(ξ)

1 − ψ1
= 1 +

∑

g≥1

g
∑

i=0

t2gξ i
∫

Mg,1

ψ
2g−2+i
1 λg−i.

Proposition 3. For ξ ∈ Z, fξ(t) = f0(t)ξ+1.

Proof. By the integration formulas (25-26) together with Mumford’s rela-
tions (22), we find:

1 +
∑

g≥1

t2g Ig(0,0) = f0(it),

1 +
∑

g≥1

t2g Jg(0,−1) = f 2
0 (it).

We will consider the relations:

1 +
∑

g≥1

t2g Ig(ξ,0) = f0(it),

1 +
∑

g≥1

t2g Jg(0, ξ) = f 2
0 (it).

Define a new series forξ ∈ Z:

gξ(t) = 1 +
∑

g≥1

t2g
∫

Mg,1

Λ(−1)Λ(0)Λ(−ξ)

1 − ψ1
.

The integration formulas imply:

1 +
∑

g≥1

t2g Ig(ξ,0) = gξ(t) fξ(it),

1 +
∑

g≥1

t2g Jg(0, ξ) = gξ(t) fξ+1(it).
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We then deduce the equations:

gξ(t) fξ(it) = f0(it), gξ(t) fξ+1(it) = f 2
0 (it).

Hence, fξ+1(it) = fξ(it) f0(it) for all ξ ∈ Z. The proposition now follows
easily by induction (as it is true forξ = 0). ⊓⊔

In order to determine the functionsfξ(t), it suffices to compute only
f−2(t) = f0(t)−1. This calculation too may be accomplished via localization
relations, but a shorter and more elegant derivation by classical curve theory
will be given in Proposition 4.

To show the flavor of Hodge relations obtained from localization, we
mention two further examples. The formula:

1 +
∑

g≥1

tg
∫

Mg,1

ψ3g−2 = exp(t/24)(28)

is a well known consequence of Witten’s conjecture (Kontsevich’s theorem).
It is a nice exercise to prove this formula via Hodge relations obtained from
localization on the stack of maps toP1. A geometric proof of (28) will be
given in the next section.

Let γ ∈ H2(P1) be the point class. The integral
∫

[Mg,1(P1,d)]vir
x ∪ y ∪ e∗

1(γ
d)(29)

clearly vanishes ford ≥ 2 (as beforex and y are the top Chern classes
of the vector bundles obtained from the higher direct images ofµ∗(OP(V))
andµ∗(OP(V)(−1)) respectively,e1 is the evaluation map corresponding to
the marking). When (29) is computed by localization with an appropriate
choice of linearization, the following Hodge relation is found:

∑

m∈Part(d)

(−1)d+l(m)
∏

i mmi
i

Aut(m)
∏

i mi
∏

i mi !

∫

Mg,l(m)+1

λg
∏

i(1 − miψi)
= 0

wherem = {m1, . . . ,ml(m)} is a partition ofd. We have checked alge-
braically that the Virasoro prediction (2) of [GeP] satisfies these relations.
As yet, we are unable to prove (2) via Hodge relations of this type.

3. Relations via classical curve theory

3.1. Relations via the canonical system.In this section, we derive several
relations among Hodge integrals from classical curve theory. The starting
point is [Mu]. The base-point-freeness of the canonical system on a smooth
curve can be formulated as the surjectivity of the natural mapπ∗E → L1
on Cg = Mg,1. This gives rise to an exact sequence

0 → F → π∗E→ L1 → 0
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with F locally free of rankg − 1. Hence one finds onMg,1 the relations
(

c(E)

1 + ψ1

)

j

= 0 ( j ≥ g).

If we want to extend these relations toMg,1, we must take into account
the stable pointed curves for whichL1 is not generated by global sections.
As Mumford observes, the global sections generate the subsheaf ofL1 that
is zero at all disconnecting nodes and on all smooth rational curves all
of whose nodes are disconnecting. Let us denote for 2≤ i ≤ g by X i
the locus of stable one-pointed curves of genusg consisting of a stable
(i + 1)-pointed rational curve withi tails (stable one-pointed curves of
positive genus; thei genera sum tog) attached to the lasti marked points.
It follows that the relations above hold onMg,1 modulo a class supported
on the lociX2, . . . , Xg. (Note thatX2 is the locus of disconnecting nodes
in the universal curve.)

Since the moduli stack of(i + 1)-pointed rational curves has dimension
i − 2 we have thatψi−1

1 is 0 on X i . Henceψg−1
1 is 0 on all these loci; we

find the relations
(

c(E)

1 + ψ1

)

j

= 0 ( j ≥ 2g − 1)

on Mg,1. For j = 3g − 2, we find
∫

Mg,1

Λ(1)

1 + ψ1
= 0(30)

(in the notation of Sect. 2). This identity impliesf−1(t) = 1 which is also
a consequence of Proposition 3.

If instead we intersect the relation forj = g with ψg−2
1 , we find

(

c(E)

1 + ψ1

)

2g−2

= ∗ψ
g−2
1 [Xg]Q .(31)

Here[ ]Q denotes theQ-class or fundamental class in the sense of stacks as
in [Mu]. The coefficient∗ can be determined by intersecting with the locus
Y parametrizing one-pointed irreducible curves withg nodes (hence with
rational normalization) and their degenerations. LetZ = Xg ∩ Y ; this is the
locus of one-pointed curves consisting of a stable(g + 1)-pointed rational
curve withg singular elliptic tails attached. The intersection is transverse in
the universal deformation space, so that[Xg]Q · [Y ]Q = [Z]Q ; it is easy to

see thatψg−2
1 times this class equals

1

2gg!
.

As the restriction ofE to Y is trivial, the intersection of the left side

of (31) with [Y ]Q is ψ2g−2
1 [Y ]Q . This product evaluates to

1

2gg!
as well,
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since the natural mapM0,2g+1 → Y has degree 2gg!. We conclude that the
coefficient∗ in (31) is equal to 1:

(

c(E)

1 + ψ1

)

2g−2

= ψ
g−2
1 (ψ

g
1 − ψ

g−1
1 λ1 + · · · + (−1)gλg) = ψ

g−2
1 [Xg]Q .

(32)

Intersecting this relation withψg
1 +ψ

g−1
1 λ1+· · ·+λg gives justψ3g−2

1 on the
left side, sincec(E) · c(E∗) = 1. On the right side we obtainλgψ

g−2
1 [Xg]Q

which easily evaluates to 1/(24gg!). We find another proof of the identity
(28),

∫

Mg,1

ψ
3g−2
1 =

1

24gg!
.

3.2. Relations via Weierstrass loci.Above, our starting point was the
base-point-freeness of the canonical system on a smooth curve. We then
extended some of the relations so obtained to the moduli stack of stable
curves. Below, we study hyperelliptic Weierstrass points; this may be viewed
as a first step in analyzing the very-ampleness of the canonical system. We
obtain the following result.

Proposition 4.

f−2(t) = 1+
∑

g≥1

t2g
∫

Mg,1

ψ
2g−2
1 (λg−2ψ1λg−1+· · ·+(−2ψ1)

g) =
sin(t/2)

t/2
.

Proof. In [Mu] Mumford computed the class inCg of the locusWHg of
hyperelliptic Weierstrass points:

[WHg]Q =

(

c(E∗)
1

1 − ψ1

1

1 − 2ψ1

)

g−1

= (2g − 1)ψg−1
1 − (2g−1 − 1)ψg−2

1 λ1 + . . .

+(−1)g−1(21 − 1)λg−1.

Hence,

ψ1[WHg]Q =
(

(2ψ1)
g − λ1(2ψ1)

g−1 + · · · + (−1)gλg
)

−
(

(ψ1)
g − λ1(ψ1)

g−1 + · · · + (−1)gλg
)

.

Let us suppose this identity continues to hold onCg = Mg,1 modulo classes
on whichψ2g−2

1 is zero. Then, by the vanishing (30), the formula forf−2(t)
is equivalent to

ψ
2g−1
1 [WHg] =

1

22g−1(2g + 1)!
.(33)
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Note the usual fundamental class appears on the left in (33), as this is more
convenient in the sequel. We will first prove identity (33) and then verify
the required assumption.

The spaceM0,2g+2 may be viewed as the moduli space of stable hyper-
elliptic curves of genusg with an ordering of the 2g + 2 Weierstrass points.
(The hyperelliptic automorphism is lost in this identification, however.) The
universal (ordered) hyperelliptic curve is a double cover ofM0,2g+3 (the
universal curve overM0,2g+2). The ramification locus isWHg (ordered);
the branch locusB is

2g+2
∑

j=1

D j,2g+3 ,

where D j,2g+3 is the boundary divisor corresponding to the partition
{ j,2g + 3} ∪ { j,2g + 3}c (note that the 2g + 2 divisors are disjoint). The
reason we can computeψ2g−1

1 [WHg] is thatψ1 on the double cover is
a pullback fromM0,2g+3. Denote the double cover map byf , thenψ1 =
f ∗(ψ2g+3 − B/2). This follows from the Riemann-Hurwitz formula; note
that ψ2g+3 has degree−2 + (2g + 2) = 2g on the fibers of the map to
M0,2g+2. Hence

ψ
2g−1
1 [WHg] = f∗(ψ

2g−1
1 [WHg])

=

(

ψ2g+3 −
1

2
B

)2g−1

B =

(

−
1

2

)2g−1

B2g.

The last equality holds becauseψ2g+3 is zero on every component ofB. Now
B consists of 2g + 2 disjoint components, each isomorphic toM0,2g+2; the
restriction ofB to itself is then−ψ∗ if ∗ is the marked point corresponding
to the node. Hence

ψ
2g−1
1 [WHg] = (2g + 2)

(

1

2

)2g−1

ψ2g−1
∗ =

2g + 2

22g−1
.

This is the answer in the ordered case; the formula for the unordered case
follows immediately.

It remains to verify the assumption made: that Mumford’s formula for
[WHg]Q valid onCg holds onCg after multiplying byψ2g−1

1 . One may prove
Mumford’s formula by observing that the locus of hyperelliptic Weierstrass
points is the degeneracy locus{rkφ2 ≤ 1}, whereφ2 : E→ F2 is the natural
evaluation map from the Hodge bundle to the jet bundleF2 whose fiber at
[C, p] is the vector spaceH0(C, K/K(−2p)) of dimension 2. The class of
the locus is then given by Porteous’s formula.

In order to verify the assumption, we must analyze the irreducible loci
{L i} of singular stable pointed curves included in the degeneracy locus
{rkφ2 ≤ 1} and showψ2g−1

1 [L i] = 0. If [C, p] lies in the degeneracy locus,
it is easy to see one of the following two possibilities must be satisfied:
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(a) p lies on a nonsingular rational componentX;
(b) p is a hyperelliptic Weierstrass point: the componentX containingp is

a possibly nodal hyperelliptic curve (of arithmetic genush ≥ 1), and
the pointp is a Weierstrass point onX.

Let L i be an irreducible boundary component of the degeneracy locus. If (a)
holds generically onL i, naive estimates show the moduli of the component
X (with marked nodes and pointp) is bounded by(3g − 4)/2 parameters.
Hence,ψ2g−1

1 [L i] is certainly 0 in this case. Suppose (b) holds generically
on L i. We may assume the generic total curveC is not hyperelliptic, other-
wise L i lies in the closure ofWHg and is of dimension less than 2g − 1. In
particular,C must be reducible. We will show the marked componentX has
fewer than 2g − 1 moduli. We may assumeX is nonsingular and meets the
rest of the curve inm points. We have to show that 2h − 1 + m < 2g − 1.
Sinceh < g this is clear whenm = 1. Whenm = 2, h = g − 1 doesn’t
result in a stable curve of genusg, so we are done. Form ≥ 3, the maximal
h is obtained when rational curves are attached. But attaching ak-pointed
rational curve lowers 2h − 1+ m by k − 2, so 2h − 1+ m is always smaller
than 2g − 1. This finishes the proof of Proposition 4. ⊓⊔

3.3. Proof of Theorem 2. Define the seriesF(t, k) ∈ Q[k][[t]] by

F(t, k) = 1 +
∑

g≥1

g
∑

i=0

t2gki
∫

Mg,1

ψ
2g−2+i
1 λg−i.

By Propositions 3 and 4

F(t, ξ) = fξ(t) =
( t/2

sin(t/2)

)ξ+1

for all ξ ∈ Z. The equality of formal series

F(t, k) =
( t/2

sin(t/2)

)k+1

then follows immediately. Theorem 2 is proven. ⊓⊔

4. Bernoulli identities and Theorems 3-4

4.1. Proof of Theorem 3. Let Mg,0(P1, d) be the moduli stack of genusg,
degreed maps toP1. Consider theC∗ action onP(V) = P1 as defined in
Sect. 2. As before, there are canonical maps

π : U → Mg,0(P1, d), µ : U → P(V)
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whereU is the universal curve over the moduli stack. LetN denote the
bundleOP1(−1)⊕ OP1(−1). Let

C(g, d) =

∫

[Mg,0(P1,d)]vir
ctop(R

1π∗µ
∗ N).

For each pair of linearizations[α, α+ 1], [β, β+ 1], the virtual localization
formula yields an explicit computation ofC(g, d).

For general choices of linearization,C(g, d) is expressed as a com-
plicated sum over connected graphsΓ (see [GrP]) indexing theC∗-fixed
loci of Mg,0(P1, d). The vertices of these graphs lie over the fixed points
p1, p2 ∈ P1 and are labelled with genera (which sum over the graph to
g − h1(Γ)). The edges of the graphs lie overP1 and are labelled with de-
grees (which sum over the graph tod). However, for the natural linearization
[0,1], [0,1], a vanishing result holds: if a graphΓ contains a vertex lying
over p1 of genus greater than 0 or valence greater than 1, then the contri-
bution ofΓ to C(g, d) vanishes. As a result, the sum over graphs reduces to
a more manageable sum over partitions ofd. This linearization was found
by Manin and used to computeC(0, d) = 1/d3 in [Ma]. In [GrP], the same
choice was used to computeC(1, d) = 1/12d.

A dramatic improvement occurs if the linearization[0,1], [−1,0] is
chosen. In this case, a stronger vanishing holds: if a graphΓ contains
any vertex of valence greater than 1, then the contribution ofΓ to C(g, d)
vanishes. Hence, contributing graphs have exactly 1 edge. The graph sum
then reduces simply to a sum over partitionsg1 + g2 = g of the genus. The
localization formula yields the following result forg ≥ 0:

C(g, d) = d2g−3
∑

g1+g2=g
g1, g2≥0

bg1bg2(34)

wherebg is defined by (3). In particular, the computations ofC(0, d) and
C(1, d) now require no series manipulations of the type pursued in [Ma],
[GrP]. Note equation (34) implies

∑

g≥0

C(g,1)t2g = f0(t)
2 = f1(t).(35)

In Sect. 4.2, the formula (forg ≥ 1)

∑

g1+g2=g
g1, g2≥0

bg1bg2 =
|B2g|

2g

1

(2g − 2)!

will be proven from Theorem 2 and Bernoulli identities to complete the
proof of Theorem 3.
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4.2. Identities. Recall, the Bernoulli numbersBm are defined by the series
expansion

β(t) =
t

et − 1
=

∞
∑

m=0

Bm
tm

m!
.(36)

We start by computingbg explicitly in terms of Bernoulli numbers.

Lemma 1.
t/2

sin(t/2)
= 1 +

∑

g≥1

22g−1 − 1

22g−1

|B2g|

(2g)!
t2g.

Proof. This is well-known. We include a proof only for the reader’s conve-
nience.

t/2

sin(t/2)
=

it

eit − 1
eit/2 =

it

eit/2 − 1
−

it

eit − 1
= 2β(it/2)− β(it)

= 2 −
1

2
it −

∑

g≥1

1

22g−1

|B2g|

(2g)!
t2g −



1 −
1

2
it −

∑

g≥1

|B2g|

(2g)!
t2g





= 1 +
∑

g≥1

22g−1 − 1

22g−1

|B2g|

(2g)!
t2g.

⊓⊔

By Theorem 2, we see (forg ≥ 1)

bg =

∫

Mg,1

ψ
2g−2
1 λg =

22g−1 − 1

22g−1

|B2g|

(2g)!
.

The seriesf1(t) = f 2
0 (t) is determined by the following lemma.

Lemma 2.
g
∑

h=0

bhbg−h =
|B2g|

2g

1

(2g − 2)!
.

Proof. Setβg = (2 − 22g)
B2g

(2g)!
. The identity to be proved (forg ≥ 1) is

then

2βg +

g−1
∑

h=1

βhβg−h = −
22g

2g

B2g

(2g − 2)!
.(37)

Since
∞
∑

g=0
βgx2g−1 =

1

sinh(x)
and

∞
∑

g=0

22g B2g

(2g)!
x2g−1 = coth(x), equation (37)

is an immediate consequence of(cothx)′ = − sinh−2 x. ⊓⊔
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Lemma 2 yields the equality

f1(t) = 1 +
∑

g≥1

|B2g|

2g

t2g

(2g − 2)!
.

This result together with equations (34-35) completes the proof of The-
orem 3. ⊓⊔

4.3. Proof of Theorem 4. The equality (forg ≥ 2)
∫

Mg

λ3
g−1 =

|B2g|

2g

|B2g−2|

2g − 2

1

(2g − 2)!

now may be established by manipulating Mumford’s Grothendieck-Riemann-
Roch formulas and using Lemma 2.

Proof. The formula
∑

k≥1(−1)k−1(k − 1)! chk(V)tk = log(
∑

k≥0 ck(V)tk)
gives forV = E

∑

k≥1

(−1)k−1k! chk(E)t
k−1 =

(

g
∑

k=1

kλktk−1

)(

g
∑

k=0

λk(−t)k
)

sincec(E)−1 = c(E∗). (Note that both sides are even polynomials int.) In
particular(2g − 3)! ch2g−3(E) = (−1)g−1(3λgλg−3 − λg−1λg−2) so that

λgλg−1λg−2 = (−1)g(2g − 3)!λgch2g−3(E).

Mumford’s formula [Mu] for ch(E) gives

(2g−3)! ch2g−3(E)=
B2g−2

2g − 2

[

κ2g−3 +
1

2

g−1
∑

h=0

ih,∗

(

2g−4
∑

i=0

ψi
1(−ψ2)

2g−4−i

)]

.

Sinceλg = 0 on∆0 while i∗hλg = pr∗1λhpr∗2λg−h for h > 0, this implies

∫

Mg

λ3
g−1 =

∫

Mg

2λgλg−1λg−2 =
|B2g−2|

2g − 2

[

2bg +

g−1
∑

h=1

bhbg−h

]

(where the first equality follows fromc(E)c(E∗) = 1). Hence, it remains to
prove

g
∑

h=0

bhbg−h =
|B2g|

2g

1

(2g − 2)!
.

But, this is Lemma 2. ⊓⊔
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4.4. The Virasoro prediction for cg. We include here D. Zagier’s proof
of the prediction (forg ≥ 1):

(

2g−1
∑

k=1

1

k

)

bg = cg +
1

2

∑

g=g1+g2,gi>0

(2g1 − 1)!(2g2 − 1)!

(2g − 1)!
bg1bg2.

From Theorem 2, we obtain

∑

g≥1

cgt2g =
( t/2

sin(t/2)

)

· log
( t/2

sin(t/2)

)

.

Lemma 3 below (together with Lemma 1) expressescg in terms of Bernoulli
numbers. Then, the Virasoro prediction forcg is equivalent to an identity
among Bernoulli numbers proven in Lemma 4.

Lemma 3.

log

(

t/2

sin(t/2)

)

=
∑

k≥1

|B2k|

(2k)(2k)!
t2k.

Proof. Let f(t) =
t/2

sin(t/2)
. It suffices to prove

t
f ′(t)

f(t)
=
∑

k≥1

|B2k|

(2k)!
t2k.(38)

By definition (36), the right side of (38) equals 1−
1

2
it −

it

eit − 1
. The left

side equals 1−
t

2
cot(t/2) = 1 − i

t

2

eit + 1

eit − 1
. ⊓⊔

Lemma 4.

(

2g−1
∑

l=1

1

l

)

22g−1 − 1

22g−1

|B2g|

(2g)!
=

g−1
∑

k=0

|22k−1 − 1|

22k−1

|B2k|

(2k)!

|B2g−2k|

(2g − 2k)(2g − 2k)!

+
1

2

∑

g1+g2=g
g1, g2>0

1

(2g − 1)!

22g1−1 − 1

22g1−1

22g2−1 − 1

22g2−1

|B2g1|

2g1

|B2g2|

2g2
.
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Proof (Zagier). Setβg = (2 − 22g)
B2g

(2g)!
. The identity to be proved is

a(g)+ b(g) = c(g), where

a(g) :=

(

1 +
1

2
+ · · · +

1

2g − 1

)

βg ,

b(g) :=

g
∑

n=1

22n B2n

2n (2n)!
βg−n ,

c(g) :=
1

2

∑

g1+g2=g
g1, g2>0

(2g1 − 1)! (2g2 − 1)!

(2g − 1)!
βg1βg2 .

Using the generating function identity
∞
∑

g=0
βg x2g−1 =

1

sinhx
, we find

A(x) :=

∞
∑

g=1

a(g) x2g−1 =

∞
∑

g=1

βg

∫ x

0

x2g−1 − t2g−1

x − t
dt

=

∫ x

0

[

1

x − t

(

1

sinhx
−

1

sinht

)

+
1

xt

]

dt ,

B(x) :=

∞
∑

g=1

b(g) x2g−1 =
1

sinhx

∞
∑

n=1

22n B2n

2n (2n)!
x2n =

1

sinhx
log

(

sinhx

x

)

,

C(x) :=

∞
∑

g=1

c(g) x2g−1 =
1

2

∑

g1+g2=g
g1, g2>0

βg1βg2

∫ x

0
t2g1−1 (x − t)2g2−1 dt

=
1

2

∫ x

0

(

1

t
−

1

sinht

)(

1

x − t
−

1

sinh(x − t)

)

dt

and hence

2C(x)− 2 A(x) =

∫ x

0

{(

1

t
−

1

sinht

)(

1

x − t
−

1

sinh(x − t)

)

−

(

1

x − t
+

1

t

)(

1

sinhx
+

1

x

)

+
1

x − t

1

sinht
+

1

t

1

sinh(x − t)

}

dt

=

∫ x

0

(

1

sinh(t) sinh(x − t)
−

x

sinhx

1

t (x − t)

)

dt

=
1

sinhx
log
(

sinht

t
·

x − t

sinh(x − t)

)
∣

∣

∣

∣

x

0

= 2 B(x) .
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Note added in proof:

We have recently proved the Virasoro prediction (2) using generalizations of
the Hodge relations given at the end of Sect. 2 (“Hodge integrals, partition
matrices, and theλg conjecture”, in preparation).


