
THE CLASS OF THE BIELLIPTIC LOCUS IN GENUS 3

CAREL FABER AND NICOLA PAGANI

Abstract. Let the bielliptic locus be the closure in the moduli space of stable curves
of the locus of curves that admit a double covering map to a smooth genus 1 curve. In
this paper we compute the class of the bielliptic locus in M3 in terms of a standard basis
of the rational Chow group of codimension 2 classes in the moduli space. Our method
is to test the class on the hyperelliptic locus: this gives the desired result up to two free
parameters, which are then determined by intersecting the locus with two surfaces in M3.

1. The main result

A smooth bielliptic curve is a genus g curve that admits a 2 : 1 map to a smooth genus 1
curve, with 2g−2 ramification points by the Riemann-Hurwitz formula. It follows that the
locus of bielliptic curves has codimension g − 1 in Mg, the moduli stack of stable curves
of genus g. In terms of enumerative geometry, we are interested in the following general
problem: given a family over a base of dimension g−1, how many bielliptic curves occur in
it? We solve this problem by expressing the class of the bielliptic locus in terms of standard
classes in the case of genus 3 (and 2).

The main result of this paper is the following.

Theorem 1. The rational stack class of the bielliptic locus [B3]Q in M3 equals

[B3]Q =
2673

2
λ2 − 267λδ0 − 651λδ1 +

27

2
δ20 + 69δ0δ1 +

177

2
δ21 −

9

2
κ2.

Proof. In [Fa90] the first author has studied in particular the codimension 2 rational Chow
group of M3. In [Fa90, Thm. 2.9] he proves that

(1) λ2, λδ0, λδ1, δ20 , δ0δ1, δ21 , κ2

is a basis for A2
Q(M3).

We obtain the result by considering the pull-back via the map from the moduli stack of
admissible hyperelliptic curves

(2) φ : H
adm
3 → M3.

We prove in Proposition 3 that the pull-back φ∗([B3]Q) is a multiple of [I
inv

8 ]: the class

of the locus in H
adm
3 of the curves admitting an involution that acts without fixed points

on the set of Weierstrass points. In Section 7 we prove by computing the class [B3]Q on a

suitable test surface Σ5 that in fact φ∗([B3]Q) = [I
inv
8 ].
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The moduli stack H
adm

3 admits a moduli map to M0,8; we identify the Chow groups of
the former with those of the latter via the pull-back map. In Proposition 5 we compute

the class [I
inv
8 ] in terms of boundary strata classes.

Observe that the inverse image loci via the map φ are invariant under permutation of
the Weierstrass points. The linear map

φ∗ : A2
Q(M3) → A2

Q(M0,8)
S8

is surjective onto the S8-invariant classes and thus it has 1-dimensional kernel since the
image has dimension 6 (cf. the beginning of Section 5). To express the class [B3]Q in the
chosen basis (1) we write in Lemma 9 the matrix associated with the above linear map,
where we have fixed the invariant boundary strata classes as a basis for the image. To
conclude, we need to calculate the missing parameter coming from the kernel of φ∗. This is
done in Section 7, by evaluating the class of [B3]Q on a test surface Σ1 containing bielliptic
non-hyperelliptic curves. �

As explained in Section 7, we obtain as a corollary that the degree of the bielliptic locus
in the P14 parametrizing plane quartic curves equals 225; a classical enumerative geometry
result obtained via the moduli space.

Let us observe that an easy but nontrivial check of Theorem 1 can be made on a suitable
test surface Σ2 where the number of bielliptic curves is evident; this is done in Section 7.

Note that, with exactly the same method, we can compute the class of the bielliptic locus
in M2 with the simplifying difference that all genus 2 curves are hyperelliptic. Therefore,
in the same way as before, but much simpler, we obtain the result:

Proposition 2. The class of the bielliptic locus [B2]Q in M2 can be written as

[B2]Q = 15λ + 3δ1 =
3

2
δ0 + 6δ1.

This agrees with the result for the usual fundamental class stated in [Fa96, p. 6].

Proof. With the obvious adjustments of notation from the proof of the theorem above, we

see in Proposition 3 that φ∗([B2]Q) = [I
inv

6 ]. The map φ∗ is an isomorphism of PicQ(M2)

with PicQ(M0,6)
S6 . The class [I

inv

6 ] is computed in Corollary 4, and the isomorphism φ∗

at the level of rational Picard groups is recalled in (5). �

Throughout this paper we work with Chow groups with rational coefficients. We express
our results in the Chow groups in terms of the stack classes.

Acknowledgements. This project was carried out at KTH Royal Institute of Technology.
The second author was supported by grant KAW 2005.0098 from the Knut and Alice
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2. Admissible double covers

We begin by recalling admissible double covers. Admissible covers were introduced by
Harris and Mumford in their seminal paper [HMu82]. The definition we give here is the
one of [ACV03, Section 4.1], adapted for the special case of degree-two covers.
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Definition 1. Let C be a semistable curve of genus g. An admissible double cover with
source C is the datum of a nodal genus g′ < g stable curve (C ′, x1, . . . , xn), and of a finite,
degree 2 map φ : C → C ′ such that:

(1) the restriction φsm : Csm → C ′sm is branched over the marked points;
(2) the image via φ of each node is a node.

An admissible hyperelliptic structure on C is an admissible double cover where the genus
g′ equals 0, while an admissible bielliptic structure corresponds to the case when g′ is 1.

By using the Riemann-Hurwitz formula and an induction on the number of nodes of C ′,
one can see that the number n of marked points in the above definition must be 2g+2−4g′.

On a smooth curve of genus g an admissible double cover is just the datum of a curve
of genus g′ and of the 2g + 2 − 4g′ ordered points of ramification. One can define families
of admissible double covers, and isomorphisms of families of admissible double covers.

In particular we have the two moduli stacks H
adm
g and B

adm
g parametrizing admissible

hyperelliptic and bielliptic curves. They are both smooth proper Deligne–Mumford stacks,
the first of dimension 2g − 1, the second of dimension 2g − 2.

We will use the following two maps. To each family of admissible hyperelliptic covers
one can associate the target family of stable genus 0 curves together with the ordered

branch divisor. This gives the map (a µ2-gerbe): H
adm

g → M0,2g+2. Given a family of
admissible bielliptic covers, one can forget all the extra structure besides the source family
C of semistable curves, and then contract all rational bridges (the rational components
that intersect the closure of the complement in precisely two points). This gives a map:

B
adm

g → Mg. It follows from the properness of B
adm

g that on every family of stable curves,
the locus corresponding to stable bielliptic curves forms a closed subscheme. We have thus
a well-defined class

[Bg]Q ∈ Ag−1
Q (Mg).

3. Loci in moduli spaces of pointed, stable genus 0 curves

The following loci in M0,2g+2 will play a central role.

Definition 2. We define I2g+2 as the closed subscheme of M0,2g+2 that parametrizes
curves (C, x1, . . . , x2g+2) admitting an involution σ whose induced permutation on the

marked points is (12)(34) . . . (2g+ 1, 2g+ 2). Let I2g+2 be the closure of I2g+2 in M0,2g+2.

The condition of admitting such an involution is a codimension g − 1 condition. Let us
now consider the invariant notion associated with the previous one.

Definition 3. We define Iinv
2g+2 as the closed subscheme in M0,2g+2 that parametrizes

curves (C, x1, . . . , x2g+2) admitting a fixed-point-free involution σ. Let I
inv

2g+2 be the closure

of I2g+2 in M0,2g+2.

Let us take the chance to fix the notation for the boundary strata classes of M0,n.
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Notation 4. Given a partition [n] = A1 ⊔ A2 where |Ai| ≥ 2, the general element of the
divisor (A1|A2) = (A2|A1) is made of genus 0 curves with two irreducible components,
one of them containing the marked points in A1 and the other those in A2. Given a
partition [n] = A1 ⊔ A2 ⊔ A3 with |A2| ≥ 1 and |A1|, |A3| ≥ 2, the general element of the
codimension 2 boundary stratum (A1|A2|A3) = (A3|A2|A1) is made of genus 0 curves with
three irreducible components, the central one containing the marked points in A2 and the
extreme ones those in A1 and A3.

We also fix the notation for the invariant boundary strata classes on M0,n or, equiv-

alently, the classes in [M0,n/Sn] pulled-back to M0,n. Given a partition of n = λ1 + λ2

with λi ≥ 2, the invariant divisor dλ1,λ2
= dλ2,λ1

is the sum of all the distinct divisors
(A1|A2) such that |Ai| = λi. Given a partition of n = λ1 +λ2 +λ3 that satisfies λ2 ≥ 1 and
λ1, λ3 ≥ 2, the invariant codimension 2 boundary stratum dλ1,λ2,λ3

= dλ3,λ2,λ1
is the sum

of all distinct codimension 2 boundary strata (A1|A2|A3) such that |Ai| = λi. A picture of
d5,1,2 in M0,8 is in Figure 1.

Figure 1. A picture of the boundary strata class d5,1,2.

We now turn our attention to the genus 2 case. Vermeire in [Ve02] has computed

(3) [I6] = (15|2346) + (25|1346) + (36|1245) + (46|1235) − (56|1234) + 2(125|346).

From this, it is immediate to compute the class of I
inv

6 in terms of the boundary divisors.

Let d2,4 and d3,3 be the two invariant divisor classes in M0,6. The invariant divisor I
inv

6 is
the union of 15 irreducible divisors, each of them corresponding to an element in S6 in the
conjugacy class of (12)(34)(56). Now since d2,4 is the sum of 15 boundary divisor classes,

and d3,3 is the sum of the remaining 10, we obtain the equality in A1(M0,6)

(4) [I
inv
6 ] = 3d2,4 + 3d3,3.

4. The bielliptic locus and the invariant locus

We consider the moduli space H
adm

g , which parametrizes admissible hyperelliptic curves.
We have a diagram:

H
adm

g

φ

((

π

��

j
// Hg

i
// Mg

M0,2g+2

where the map j forgets the structure of admissible double cover, and the representable
map i is a closed embedding. The map j in particular forgets the ordering on the branch
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divisor and it stabilizes the strictly semistable components. We will implicitly assume the
isomorphism π∗ at the level of the Chow groups. Note also that the pull-back j∗ is an
isomorphism between the Chow groups of Hg and the S2g+2-invariants of the Chow groups

of M0,2g+2.

Proposition 3. The inverse images via φ of B2 and B3 are respectively I
inv
6 and I

inv
8 . In

other words, we have that φ∗([B2]Q) = [I
inv
6 ], and there exists ǫ ∈ Q such that:

φ∗([B3]Q) = ǫ · [I
inv

8 ].

Proof. We study the case of genus 3: the other case is similar and simpler.

We start by proving that Iinv
8 = φ−1(B3) and that I

inv

8 is contained in φ−1(B3). Let
C be a smooth genus 3 curve with a hyperelliptic quotient map ψ : C → C ′. If C also
admits a bielliptic involution, this descends to an involution of C ′ because the hyperelliptic
involution commutes with all automorphisms of C. The action of this involution on the
branch locus of ψ swaps the 8 unordered points two-by-two. Vice versa, from a smooth
curve C ′ of genus 0 with 8 distinct points on it, one can reconstruct the genus 3 hyperelliptic
curve by taking the double cover branched at the 8 points. If C ′ admits an involution that
exchanges the branch points two-by-two, this can be lifted to a bielliptic involution of C.

Finally, if C is in H
adm
3 , the same argument goes through after substituting “bielliptic

involution” with “admissible bielliptic structure”.
To conclude the proof, one has to check the following combinatorial statements.

(1) In each of the three irreducible boundary divisors of H3, consider the open locus of
curves that have the minimum number of singular points. On each of these open
loci, the condition of having a bielliptic structure cuts out a locus of codimension
strictly greater than one.

(2) None of the six codimension-two boundary strata classes of H3 admits a bielliptic
structure generically.

�

We will eventually be able to prove that ǫ = 1 in Section 7, by enumerating bielliptic
curves on the test surface Σ5. We remark that when the genus is higher than 3, there are
no smooth bielliptic-hyperelliptic curves. Therefore our method fails for computing the
class of the bielliptic locus in higher genus.

By using the previous result, we can immediately compute the class of the bielliptic
locus in genus 2. Let us take the boundary strata classes d2,4 and d3,3 as a basis for the

S6-invariant Picard group of M0,6. We have the following equalities ([HMo98, 6.17, 6.18]):

(5)

{

φ∗δ0 = 2d2,4;

φ∗δ1 = 1
2d3,3.

In view of (4) and Proposition 3, these relations give the expression for the class of the
bielliptic locus in terms of δ0 and δ1 stated in Proposition 2.
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5. The class of the invariant locus in M0,8

In this section, we express the class [I
inv
8 ] in terms of the generators of the invariant

boundary strata classes in M0,8 (see Notation 4):

(6) d5,1,2, d4,2,2, d4,1,3, d3,3,2, d3,2,3, d2,4,2.

We see from [Ge94, Theorem 5.9] that the S8-invariant Chow ring of codimension 2 classes
in M0,8 has dimension 6, so that these 6 generators form a basis. We first compute the

class of I8 in terms of boundary strata classes in M0,8.

Let π12 and π78 be the two forgetful maps from M0,8 to M0,6. The map π12 forgets the
marked points 1 and 2, and then renames 7, 8 to 1, 2. We have the equality

(7) I8 = π−1
12 (I6) ∩ π

−1
78 (I6).

Indeed, the right hand side contains curves admitting an involution σ that permutes the
last six marked points as (34)(56)(78), and an involution τ that permutes the first six
points as (12)(34)(56). The composition σ ◦ τ must be the identity, as it fixes 4 points on
a smooth genus 0 curve, and this means that both σ and τ do actually permute the eight
marked points as (12)(34)(56)(78).

Equality (7) does not hold if one näıvely puts closures on both sides; anyway the argu-
ment above shows that I8 is an irreducible component of

(8) π−1
12 (I6) ∩ π

−1
78 (I6).

We introduce the other components in M0,8 that are contained in this intersection.

(1) Consider the locus (1278|3456) whose generic element is a curve with a node sepa-
rating {1, 2, 7, 8} from {3, 4, 5, 6}. The locus Div is the closure of the locus of curves
in (1278|3456) with the property that the node is invariant under the involution
that exchanges the points (34) and (56).

(2) Consider the 210 codimension 2 irreducible components of d(2,4,2). Two of them
have {1, 2, 7, 8} as marked points on the separating component and occur in (8).
We call the union of these strata Type I.

(3) Finally, consider the 280 irreducible components of d(3,2,3). Four of these boundary
strata have the property that {3, 4} are the markings on the separating component,
and {1, 2} are on two different components, and the same for {5, 6} and {7, 8}. Four
other ones come by exchanging the role of {3, 4} and that of {5, 6} in the previous
sentence. In total, we call the union of these eight strata Type II.

1
2

3
4

5
6

7
8

invariant

1 23 4
5 6

7 8 1 2
3 4

5 6
7 8

Figure 2. The locus Div, one component of Type I, and one component of Type II.

It is clear that these components are in the intersection (8).
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Lemma 4. The following equality holds in A2(M0,8):

π∗12([I6]) · π
∗

78([I6]) = α[I8] + β[Div] + γ[Type I] + δ[Type II].

We will prove at the end of this section that the coefficients α, β, γ and δ equal 1.
Assuming this for the moment, Lemma 4 gives a way to express the class of I8 as an
explicit linear combination of boundary strata classes in A2(M0,8).

Corollary 5. The class [I
inv

8 ] equals:

[I
inv

8 ] =
5

2
d5,1,2 +

7

4
d4,2,2 +

3

4
d4,1,3 +

15

4
d3,3,2 + 3d3,2,3 +

3

2
d2,4,2.

Proof. In Lemma 4 we have expressed [I
inv

8 ] in terms of the other classes; we will prove
that the coefficients α, β, γ, δ are all equal to 1, see (6), (7), (8). So let us say how one can
express all other classes in terms of boundary.

(1) By pulling back equality (3), it is not difficult to express π∗12([I6]) and π∗78([I6]) in
terms of boundary strata classes in M0,8. It is then lengthy but straightforward to
express the product of the latter classes in terms of boundary.

(2) Let us study the class of Div. On M0,5 with marked points {3, 4, 5, 6, •} there is a
divisor corresponding to the condition of • being fixed by the involution (34)(56).
The class of the latter divisor, by identifying M0,5 with the blow-up of P2 in four
general points, is the proper transform of the class of an hyperplane. Its class is
therefore equal to ψ• = (346) + (345) + (34). The class of Div is the push-forward
of the class of this locus under the map that glues M0,5 to the M0,5 with marked
points {1, 2, 7, 8, ⋆}:

[Div] = (1278|5|346) + (1278|6|345) + (1278|56|34).

(3) The loci Type I and Type II are already boundary.

Once this is settled, the class of I
inv

8 can be computed in terms of the invariant classes
d5,1,2, d4,3,3, d4,1,3, d3,3,2, d3,2,3, and d2,4,2 by symmetrizing, similarly to what was done in

(4). The inverse image of the locus Iinv
8 in M0,8 is the union of 105 irreducible components,

each of them corresponding to an element in S8 in the conjugacy class of (12)(34)(56)(78).
The numbers of irreducible components in M0,8 of the invariant loci are 168, 420, 280,
560, 280, and 210, respectively. �

Proof (of Lemma 4). We want to show that

π−1
12 (I6) ∩ π

−1
78 (I6) = I8 ∪ Div∪Type I∪Type II .

That the right hand side is included in the left hand side is a straightforward check. To
prove the other inclusion, we consider the stratification of M0,8 given by number of nodes.

We have already observed that the restriction of the left hand side to the open part M0,8 is
precisely I8. To conclude the proof, one has to check the following combinatorial statements
involving boundary strata classes of M0,8 of codimension 1 and 2.
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(1) Among the boundary divisors of M0,8, only one has the property that π−1
12 (I6) ∩

π−1
78 (I6) cuts a codimension 1 locus on the open part of the divisor that parametrizes

curves with precisely one singular point. This boundary divisor is (1234|5678), and
π−1

12 (I6) ∩ π
−1
78 (I6) cuts out in it precisely the locus Div.

(2) The only boundary strata classes of codimension 2 in M0,8 that are included in

π−1
12 (I6) ∩ π

−1
78 (I6) are precisely those in Type I and Type II.

�

We now prove the equalities

α = β = γ = δ = 1,

for the coefficients that appear in Lemma 4. This is needed to complete the proof of
Corollary 5. We have to perform computations of multiplicities of intersections that take
place in M0,8.

Lemma 6. The coefficient α in (4) is 1.

Proof. We want to show that the intersection of π∗12([I6]) and π∗78([I6]) has generically a
reduced scheme structure.

We recall a description of I6 due to Vermeire in [Ve02], that uses Kapranov’s description
of M0,6. From Kapranov’s construction, there is a blow-down map M0,6 → P3. Vermeire

has proved that I6 is the proper transform of the divisor x0x1 − x2x3.
Similarly, there is a blow-down map M0,8 → P5. After restricting to a Zariski open

subset U of P5, π∗12([I6]) is the proper transform of x0x1 − x2x3 and π∗78([I6]) the proper
transform of x0x1 − x4x5. It can then be checked that the two equations define a reduced
subscheme of U . �

For the remaining coefficients, we construct test surfaces for M0,8, and see that π∗12([I6])

and π∗78([I6]) intersect transversely on them.

Lemma 7. The coefficients γ and δ in (4) are both 1.

Proof. We construct a test surface over P1 × P1. The general fiber is a genus 0 pointed
stable curve with one node, which separates the odd markings from the even ones. The
points 3 and 4 vary.

More precisely, we define a test surface for M0,5 ×M0,5 (marked points in {1, 3, 5, 7, ⋆}

and {2, 4, 6, 8, •} respectively), to obtain then a test surface for M0,8 by gluing the last two

marked points. So we take the product of two test P1’s on M0,5 to obtain the test surface.
In M0,4 we fix the point p that corresponds to:

5 → 0, ⋆→ ∞, 1 → 1, 7 → 2.

The first family on P1 is obtained as the fiber over p of the last-point-forgetful map M0,5 →

M0,4 (marked points {1, 5, 7, ⋆, 3}), under the natural identification of the latter map with
the universal curve. We call λ the free parameter on the first P1, corresponding to the
variation of the marked point 3.
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The second curve on P1 is constructed similarly, but starting from the point in M0,4

that corresponds to:
6 → 0, • → ∞, 2 → 1, 8 → 3.

We call µ the free parameter on the second P1, corresponding to the variation of the marked
point 4.

Now the two divisors π∗12([I6]) and π∗78([I6]) define two divisors on the test surface. The
divisor π∗12([I6]) imposes the condition that the quadruples 5, ⋆, 7, 3 and 6, •, 8, 4 define
the same point on M0,4. Thus it is given by the equation 3λ = 2µ on P1

λ × P1
µ. The

divisor π∗78([I6]) instead imposes that the quadruples 5, ⋆, 1, 3 and 6, •, 2, 4 identify the
same point on M0,4. Thus it corresponds to the equation λ = µ on P1

λ × P1
µ. The set-

theoretic intersection is therefore in λ = µ = 0 and λ = µ = ∞. The solution λ = µ = 0
corresponds to a curve with three nodes, each of them separating the curve in 2 connected
components, and distribution of points (35|17|28|46) (Type I). On the other hand, the
second solution corresponds again to a curve with three nodes, each of them separating the
curve in 2 connected components, and distribution of points (157|3|4|268) (Type II). The
fact that the two equations have degree 1 is enough to establish that both the intersection
multiplicities are 1. �

Lemma 8. The coefficient β in (4) is 1.

Proof. We construct the following test surface. Fix 4 distinct points (3, 4, 5, 6) on a smooth
genus 0 curve C, and let two points 1, • vary on it. This defines a test surface for M0,6

(markings {1, 3, 4, 5, 6, •}). This also gives a test surface for M0,8 once a choice of 4 distinct
points (2, 7, 8, ⋆) is fixed on a smooth genus 0 curve, by gluing • with ⋆.

We fix an isomorphism of C with P1 in such a way that

3 → 0 4 → ∞, 5 → 1, 6 → 4, • → λ, 1 → µ.

On this test surface, with this choice of coordinates, π∗12([I6]) is given by the equation
λ2 = 4, and π∗78([I6]) is given by λµ = 4, which clearly intersect transversely in

Div = {(2, 2), (−2,−2)}.

�

6. Pulling back from M3 to the hyperelliptic locus

In this section we study the linear map

(9) φ∗ : A2(M3) → A2(H
adm
3 )S8 .

We have fixed (1) as the basis in the domain, and (6) as the basis in the image.

Remark 1. In the following lemma we will need an explicit expression of some tautological
invariant classes in M0,8 in terms of invariant boundary strata classes. These computations
can be done using [FaMa].

Recall the Arbarello-Cornalba κ classes:

κi := π∗
(

c1(ωπ(D))i+1
)
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where π is the universal curve over M0,8, ωπ is the relative dualizing sheaf, and D is
the divisor corresponding to the 8 disjoint sections in the universal curve. Another useful

invariant class will be ψ̃j :=
∑8

i=1 ψ
j
i .

In codimension 1 we have (observe that κ1 = ψ̃1 − d2,6 − d3,5 − d4,4):

(10)

{

κ1 = 5
7d2,6 + 8

7d3,5 + 9
7d4,4,

ψ̃1 = 12
7 d2,6 + 15

7 d3,5 + 16
7 d4,4.

In codimension 2, we obtain:

(11)

{

κ2 = 1
7d5,1,2 + 1

7d4,2,2 + 6
35d4,1,3 + 1

10d3,3,2 + 6
35d3,2,3 + 1

21d2,4,2,

ψ̃2 = 11
21d5,1,2 + 16

35d4,2,2 + 3
7d4,1,3 + 3

10d3,3,2 + 3
7d3,2,3 + 16

105d2,4,2.

Finally, we can express the products of the invariant codimension 1 classes in terms of the
invariant codimension 2 classes:

(12)







































d2
2,6 = −2

3d5,1,2 −
2
5d4,2,2 −

1
5d3,3,2 + 28

15d2,4,2,

d2,6d3,5 = d5,1,2 + d3,3,2,

d2,6d4,4 = d4,2,2,

d2
3,5 = −1

3d5,1,2 −
3
5d4,1,3 −

1
10d3,3,2 + 7

5d3,2,3,

d3,5d4,4 = d4,1,3,

d2
4,4 = −1

6d4,2,2 −
1
2d4,1,3.

We are now in the position of computing the matrix associated with φ∗:

Lemma 9. The following 7 × 6 matrix is associated to φ∗ in the bases (1) and (6).
























1
42

19
210

1
35

1
20

3
35

1
35

0 11
15 0 1

5 0 4
5

1
12 0 1

10
1
10

1
10 0

−8
3

86
15 −2 −4

5 0 112
15

1 0 1 1 0 0

− 1
12 0 − 3

20 − 1
40

7
20 0

13
84

6
35

33
140

1
8

33
140

2
35

























Proof. Let us first study the pull-back φ∗ at the level of codimension 1 classes. We fix d2,6,

d3,5 and d4,4 as a basis of A1(M0,8)
S8 . We have:

(13)











φ∗λ = 3
14d2,6 + 1

7d3,5 + 2
7d4,4,

φ∗δ0 = 2d2,6 + 2d4,4,

φ∗δ1 = 1
2d3,5.

The last two are well-known equalities (see [HMo98, 6.17, 6.18]), while the first is obtained
from the equally well-known equation 12λ = κ1 + δ0 + δ1. Indeed from [FP00, p. 234],
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we can compute φ∗(κ1) = 2κ1 −
1
2 ψ̃1, and the latter terms are expressed in codimension 1

boundary strata classes in (10).
From this and from (12), it is immediate to compute the pull-back of the basis (1) in

terms of the basis (6). We need only compute φ∗(κ2), and this can be done again from the

equality φ∗(κ2) = 2κ2 −
1
4 ψ̃2 ([FP00, p. 234]). The two terms on the right of the equality

can be expressed in the basis (6) by using (11). �

By putting together Corollary 5, Proposition 3 and Lemma 9, we have an explicit ex-
pression of [B3]Q in the basis (1) up to two parameters. For example, the coordinates for

[B3]Q in the basis (1) can be written in terms of the coefficient of δ20 (that we call d) and
of ǫ, the parameter introduced in Proposition 3:

(14)

(

459 + 560dǫ

6ǫ
,
18 + 58dǫ

3ǫ
,
−117 − 136dǫ

3ǫ
, d,

18 + 14dǫ

3ǫ
,
99 + 32dǫ

6ǫ
,−

9

2ǫ

)

.

7. Test surfaces

In this section we study three families of genus 3 stable curves over surfaces Σ5,Σ1 and
Σ2. These test surfaces for M3 were first studied by the first author, we refer to [Fa90,
Section 2] for their precise definition. We will be able to count the number of bielliptic
curves on each of these families by means of elementary considerations. They will provide
the following information (in order).

(1) The computation of the number of bielliptic curves on Σ5 will prove that the coef-
ficient ǫ in Proposition 3 equals 1.

(2) The computation of the number of bielliptic curves on Σ1 will complete the proof
of our main result: Theorem 1.

(3) The computation of the number of bielliptic curves on Σ2 gives us a consistency
check on Corollary 5.

Remark 2. On every family of stable curves the intersection between the loci of admis-
sible (double) covers and the locus of singular curves is transversal. This is a general
consequence of the fact that admissible covers are smoothable. In particular, we will use
the transversality of the bielliptic locus and the locus parametrizing singular curves. See
for example [ACG11, Lemma 6.15, p. 211], where the authors work out this transversality
result for the hyperelliptic locus and the boundary of Mg.

For the fifth test surface ([Fa90, Section 2.5]), let us consider (E, p), (F, q), two 1-pointed
curves of genus 1. On the surface Σ5 := E × F there is a family of genus 3 curves, whose
fiber over (e, f) is obtained by gluing E and F at p, q and at e, f . For a curve in the fiber
to admit an admissible bielliptic involution, both e and f need to be points of 2−torsion
of the elliptic curves (E, p) and (F, q). Thus we have 9 = 3× 3 such fibers; this is also the
value of [B3]Q on Σ5 as the test surface parametrizing singular curves is transversal to the
bielliptic locus (cf. Remark 2).
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We read in [Fa90, Proposition 2.5] that on this surface the following equalities hold:

λ2 = λδ0 = λδ1 = κ2 = 0, δ20 = 8, δ0δ1 = −4, δ21 = 2.

After substituting these values in equation (14) we deduce that ǫ = 1. So a posteriori we
obtain that the bielliptic locus and the hyperelliptic locus are transversal on all of M3

(cf. Proposition 3).
For the first test surface ([Fa90, Section 2.1]), we consider a curve C of genus 2. On the

surface Σ1 = C × C there is a family whose fiber over (p, q) is obtained by gluing on C
the two points p and q. The fibers admit an admissible bielliptic involution when p and q
are distinct Weierstrass points of C, thus there are 30 = 6 × 5 such fibers. For the same
reason as above, we have that 30 is the value of the class [B3]Q restricted to Σ1. We read
in [Fa90, Proposition 2.1] that on this surface the following equalities hold:

λ2 = λδ0 = λδ1 = δ0δ1 = 0, δ20 = 16, δ21 = −2, κ2 = 2.

Since we now know that ǫ equals 1, Equation 14 gives the last parameter d = 27
2 .

The second test surface ([Fa90, Section 2.2]) is the product C×P1, where C is a general
genus 2 curve. Given a pencil of elliptic curves over P1, the fiber over a point (p, q) is
obtained by gluing the curve C at p and the elliptic curve over q in the chosen pencil at the
origin. No curve in the fiber admits an admissible bielliptic involution. We read in [Fa90,
Proposition 2.2] that on this surface the following equalities hold:

λ2 = λδ0 = δ20 = κ2 = 0, λδ1 = −2, δ0δ1 = −24, δ21 = 4, κ2 = 2.

These numbers, substituted in Equation 14, give a nontrivial consistency check of Corollary
5 and of Lemma 9.

Note that after the results of [Fa90, Section 2], it is equivalent to know the class of the
bielliptic locus in the basis (1), and to know the restriction of the bielliptic class to the
seven test surfaces. While we can compute [B3]Q on Σ1, . . . ,Σ5, we do not know a direct
way to compute it on Σ6 and Σ7.

After Theorem 1 and [Fa90, Section 2] however, a straightforward computation gives:

[B3]Q|Σ3
= −24, [B3]Q|Σ4

= 33, [B3]Q|Σ6
= 225, [B3]Q|Σ7

= 675.

Let us consider the sixth test surface Σ6 ([Fa90, Section 2.6]). This surface is obtained by
applying stable reduction to a linear P2 inside the P14 of plane quartics. Since the bielliptic
locus has codimension 2, and the locus of singular curves has codimension 1, for a generic
choice of the linear P2 the points corresponding to bielliptic curves are all smooth. Again
by genericity we have that the number 225 enumerates the number of smooth bielliptic
curves on the linear P2, and that the codimension 2 bielliptic locus in P14 has degree 225.
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