
Remarks on Moduli of CurvesCarel Faber and Eduard Looijenga
Abstra
tWe dis
uss some aspe
ts of the theory of the moduli spa
e of 
urves as well as somere
ent resear
h.1 Introdu
tionRather than trying to provide here a 
omprehensive introdu
tion to moduli of
urves, we have 
hosen to limit the dis
ussion to 
ertain aspe
ts of the theory.We also survey some of the re
ent resear
h dire
tly related to the papers in thisvolume.After introdu
ing the mapping 
lass group and the Torelli group, the modulispa
e of 
urves is 
onstru
ted as an analyti
 orbifold. We dis
uss the Deligne-Mumford-Knudsen 
ompa
ti�
ation and the fa
t that there exist global smooth
overs of it. Next we re
all the de�nition of the tautologi
al 
lasses and the resultson the stability of the homology of the mapping 
lass group as well as Mumford's
onje
ture. Se
tions 10 and 13 dis
uss the Witten 
onje
ture that was proved byKontsevi
h and its generalization to moduli spa
es of stable maps. We 
on
ludewith a dis
ussion of 
omplete subvarieties of moduli spa
e and of re
ent resultsregarding its interse
tion theory.For more information on the moduli spa
e of 
urves, the reader 
ould 
onsult,e.g., the books [62, 63, 52, 45℄, the 
olle
tions [10, 17℄, and the survey papers[44, 40℄.



24 Carel Faber and Eduard Looijenga2 Mapping Class GroupsFix a 
losed 
onne
ted oriented surfa
e Sg of genus g and a sequen
e of distin
tpoints x0;x1; : : : on Sg and let us write Sg;n for Sg � fx1; : : : ;xng and �g;n for�1(Sg;n;x0). If the subs
ript n is omitted, it is assumed to be zero. We sti
k tothis notation throughout this introdu
tion.We begin with noting that in the absen
e of any pun
tures we have a naturalisomorphism H2(�g;Z)�= H2(Sg;Z), so that the orientation of Sg de�nes a distin-guished generator ofH2(�g;Z). For positive n, the simple positively oriented loopsaround xi make up a distinguished 
onjuga
y 
lass Bi in �g;n, i = 1; : : : ;n. There isa standard way to present the group �g;n with generators ��1; : : : ;��g;�1; : : : ;�n,subje
t to the relation (�1;��1) � � � (�g;��g)�n � � � �1 = 1;where in 
ase n = 0, the generators ��1; : : : ;��g have been 
hosen 
ompatiblywith the orientation, and �i 2 Bi in 
ase n > 0. In the latter 
ase, �g;n is justa free group on 2g + n � 1 generators and it is the data of B1; : : : ;Bn that givethis group its extra stru
ture. The in
lusion Sg;n+1 � Sg;n indu
es a surje
tivehomomorphism �g;n+1 ! �g;n on fundamental groups and we 
an arrange thatthe generators of �g;n are the images of their namesakes in �g;n+1.One de�nes the n-pointed mapping 
lass group of genus g, here denoted by�ng , as the 
onne
ted 
omponent group of the group of orientation preservingself-homeomorphisms of Sg that �x x1; : : : ;xn. This group a
ts by outer auto-morphisms (that is, the a
tion is given up to inner automorphisms) on the funda-mental group �g;n. It is a 
lassi
al result that this a
tion is faithful. A

ording toNielsen and Zies
hang [76℄ the image 
an be 
hara
terized as follows: for n = 0,�g = �0g maps onto the group of outer automorphisms of �g whi
h a
t trivially onH2(�g;Z), and for n > 0, �ng maps onto the group of outer automorphisms of �g;nwhi
h preserve ea
h 
onjuga
y 
lass Bi, i = 1; : : : ;n. So this yields a des
ription ofthe mapping 
lass group purely in terms of group theory. Forgetting xn+1 de�nesan obvious homomorphism �n+1g ! �ng . Sin
e any orientation preserving self-homeomorphism of Sg that �xes x1; : : : ;xn is isotopi
 to one that also �xes xn+1,this homomorphism is surje
tive. An ar
 in Sg;n 
onne
ting x0 and xn+1 allows usto identify �n+1g with the group of automorphisms of �1(Sg;n;xn+1) �= �g;n whi
hpreserve the 
onjuga
y 
lasses B1; : : : ;Bn. With this identi�
ation, the kernel of�n+1g ! �ng is the group of inner automorphisms of �g;n. If we take g = n = 1,then we get the familiar identi�
ation of �11 as the group of orientation preservingautomorphisms of �1;0 �= Z2: �11 �= SL(2;Z).A spe
ial set of elements of the mapping 
lass group �ng are the Dehn twists. ADehn twist is given by a regularly embedded 
ir
le Æ � Sg;n and then representedby a homeomorphism whi
h on a 
losed neighborhood of that 
ir
le (with orientedparameterization by (�;t) 2 S1� [�1;1℄) equals (�;t) 7! (�+�(t+1);t) and is theidentity outside that neighborhood. The 
orresponding element of �ng , denoted



Remarks on Moduli of Curves 25by �Æ, only depends on the isotopy 
lass of Æ. The Dehn twist �Æ is the identityelement of �ng if and only if Æ bounds a disk on Sg whi
h 
ontains at most onexi, i = 1; : : : ;n; for that reason su
h a 
ir
le is 
alled trivial also. It is knownthat �nitely many Dehn twists generate the whole mapping 
lass group. For theunpun
tured 
ase n = 0 a relatively simple �nite presentation of �g (with Dehntwist generators) has been given by Wajnryb [72℄, and for the general 
ase onewas re
ently obtained by Gervais [29℄.Although mapping 
lass groups have been studied sin
e their introdu
tionsome seventy years ago, they are still mysterious in many ways. In 
ertain regardsthey behave as if they were arithmeti
 groups, but as Ivanov has shown, theyare, apart from a few ex
eptions, not isomorphi
 to su
h a group. Following Hainand Morita, a mapping 
lass group 
an however be naturally embedded in aproarithmeti
 group (its proarithmeti
 hull), and the latter is at present mu
hbetter a

essible. We dis
uss this brie
y in se
tion 9.3 The Torelli GroupWe here fo
us on the unpun
tured 
ase: n = 0. The homology group H1(Sg;Z) isthen of rank 2g and the orientation equips it with a unimodular symple
ti
 form.Let us write Vg for H1(Sg;Z) and !g 2 ^2Vg for the `inverse' symple
ti
 form. Soif ai 2 Vg is the 
lass of the generator �i of �g, then a�1; : : : ;a�g is a basis for Vgand !g = a1^a�1+ � � �+ag^a�g. It is 
lear that the mapping 
lass group �g a
tson Vg and leaves !g invariant. The image of this representation is in fa
t the fullintegral symple
ti
 group Sp(Vg). Its kernel is 
alled the Torelli group of genusg, denoted Tg. This group is trivial for genus zero and one; so that for instan
e�1 �= Sp(V1) �= SL(2;Z). But for g � 2 the Torelli group 
ontains the Dehn twistsaround 
ir
les whi
h separate Sg into two 
onne
ted 
omponents and for g � 3,also the elements of the form �Æ��1Æ0 , where Æ and Æ0 are disjoint 
ir
les on Sg,whi
h together separate Sg into two pie
es. A

ording to Powell these elementsgenerate Tg. The Dehn twists around separating 
ir
les generate a subgroup Kgof Tg that is 
learly normal in �g. We have K2 = T2. In fa
t, G. Mess showed thatK2 is the free group on the separating Dehn twists and that these generators arein bije
tive 
orresponden
e with the symple
ti
 splittings of V2 into two 
opies ofV1, hen
e in�nite in number. The situation is quite di�erent when g � 3. DennisJohnson, who in the early eighties began a systemati
 study of the Torelli group,showed that Tg is then �nitely generated and exhibited a remarkable epimorphismof Tg onto the latti
e ^3oVg := ^3Vg=(Vg ^ !g) with kernel Kg. An expli
it (butperhaps not very insightful) way to des
ribe this epimorphism is to say whatit does to an element �Æ��1Æ0 as above: let S � Sg be a 
onne
ted 
omponentof Sg � Æ � Æ0 and orient Æ as boundary 
omponent of S, so that it determinesa 
lass dS 2 Vg. The image VS of H1(S;Z) in Vg is a sublatti
e on whi
h thesymple
ti
 form is degenerate with kernel spanned by dS . The form on VS=ZdS



26 Carel Faber and Eduard Looijengais unimodular and thus de�nes an element !S 2 ^2(VS=ZdS). We 
an regarddS ^ !S as an element of ^3Vg. If S0 is the other 
omponent of Sg � Æ � Æ0, thendS0 = �dS and dS ^ (!S + !S0) = dS ^ !g. So the image of dS ^ !S in ^3oVg onlydepends on the ordered pair (Æ;Æ0). This is the image of �Æ��1Æ0 under Johnson'shomomorphism. A more natural des
ription will be given in se
tion 9.4 Moduli Spa
es of CurvesLet us now assume that g and n are su
h that the Euler 
hara
teristi
 2�2g�n ofSg;n is negative, in other words, ex
lude the 
ases of genus zero with at most twopun
tures and genus one without pun
tures. Then the set of 
omplex stru
tureson Sg 
ompatible with the given orientation and given up to isotopy relativex1; : : : ;xn is in a natural way a 
omplex manifold of 
omplex dimension 3g�3+n.This manifold, whi
h we shall denote Tg;n, is 
alled the n-pointed Tei
hm�ullerspa
e of genus g. It is known that Tg;n is 
ontra
tible and isomorphi
 to a boundeddomain. Noti
e that there is an evident a
tion of the mapping 
lass group �ng onTg;n. This a
tion is faithful and properly dis
rete, and so the orbit spa
e hasthe stru
ture of an analyti
 orbifold. As su
h it is denoted by Mg;n. From thede�nition it is 
lear that the points ofMg;n are in bije
tive 
orresponden
e withisomorphism 
lasses of n-pointed 
losed Riemann surfa
es of genus g.There is an evident forgetful map Tg;n+1 ! Tg;n. This map is an analyti
 sub-mersion that is equivariant over �n+1g ! �ng , and hen
e determines a morphism oforbifoldsMg;n+1 !Mg;n. The latter is an analyti
 submersion (in the orbifoldsense) and the �ber over a point p 2Mg;n is the quotient of Sg;n equipped witha 
omplex stru
ture de�ning p, modulo its (�nite) group of 
omplex automor-phisms. So we might think of this morphism as the universal family of n-pointed
losed Riemann surfa
es of genus g.Sin
e Tg;n appears as a 
ontra
tible universal 
overing ofMg;n (in the senseof orbifolds) with Galois group �ng , the rational 
ohomology ofMg;n is naturallyisomorphi
 to the rational 
ohomology of �ng .But Mg;n has more stru
ture. Re
all that a 
losed Riemann surfa
e is in anatural way a smooth 
omplex proje
tive algebrai
 
urve. So we may regardMg;nas a moduli spa
e of su
h 
urves. This interpretation leads to an algebraizationofMg;n. Better yet: geometri
 invariant theory enables us to 
hara
terize Mg;nas a quasi-proje
tive variety with the orbifold stru
ture lifting to the stru
tureas a sta
k over Spe
(Z). From now on, we 
onsider Mg;n as endowed with thisstru
ture.



Remarks on Moduli of Curves 275 Deligne-Mumford-Knudsen CompletionDeligne, Mumford and Knudsen [14, 55℄ dis
overed that there is a natural 
om-pletion of Mg;n by allowing 
urves to degenerate in a mild way and that this
ompletion has itself the interpretation of a moduli sta
k. The 
entral notionhere is that of stable n-pointed 
urve of genus g. This 
onsists of a 
omplete
onne
ted 
urve C of arithmeti
 genus g whose singularities are ordinary doublepoints and n distin
t points x1; : : : ;xn on the smooth part of C subje
t to the
ondition that the group Aut(C;x1; : : : ;xn) of automorphisms of C �xing thesepoints is �nite. The last 
ondition amounts to requiring that every 
onne
ted
omponent of Creg � fx1; : : : ;xng has negative Euler 
hara
teristi
: no 
ompo-nent is a smooth rational 
urve with at most two points removed or a smooth
urve of genus one.The lo
al deformation theory of su
h 
urves is as ni
e as it 
ould possibly be.For instan
e, small deformations of stable n-pointed 
urves of genus g are again ofthat type. More is true: su
h a 
urve (C;x1; : : : ;xn) has a universal deformationwith smooth base S of dimension 3g � 3 + n. So this is given by a 
urve over S:C ! S with n disjoint se
tions s1; : : : ;sn giving ea
h �ber the stru
ture of stablen-pointed 
urve of genus g, together with an identi�
ation of the 
losed �berwith (C;x1; : : : ;xn). The dis
riminant of the morphism C ! S is quite simple:for every singular point p of C the lo
us in S parameterizing the 
urves where ppersists as a singularity is a smooth hypersurfa
e Dp in S and their union D is anormal 
rossing divisor. The group Aut(C;x1; : : : xn) a
ts naturally on the wholesystem.What Deligne, Mumford and Knudsen prove is that there is a moduli sta
kof stable n-pointed 
urves of genus g,Mg;n, and that it is proje
tive, irredu
ible,de�ned over Spe
(Z) and 
ontains Mg;n as an open-dense subs
heme. Noti
ethat Mg;n is lo
ally given by a universal deformation as above. In parti
ular,the underlying variety is at the point de�ned by (C;x1; : : : ;xn) isomorphi
 to thequotient Aut(C;x1; : : : xn)nS. It is 
lear from this lo
al pi
ture that the Deligne-Mumford boundary � =Mg;n �Mg;n is a normal 
rossing divisor (in the senseof sta
ks).The generi
 points of this divisor parameterize n-pointed 
urves with a sin-gle singular point. The 
ase where the 
urve is irredu
ible a

ounts for one su
hpoint; the 
orresponding irredu
ible 
omponent of � is usually denoted �0. Oth-erwise the 
urve is a one-point union of two smooth 
onne
ted proje
tive 
urves,say of genera g1 and g2 (with g1 + g2 = g, of 
ourse) with an ensuing de
ompo-sition of x1; : : : xn given by a partition I1 t I2 of f1; : : : ;ng. If gk = 0, then the
orresponding part Ik must 
ontain at least two elements. The set of unorderedpairs f(g1;I1);(g2;I2)g, subje
t to this 
ondition e�e
tively indexes the irredu
ible
omponents 6= �0 of the boundary divisor �.The normal 
rossing stru
ture of � de�nes a natural de
omposition of �into (
onne
ted) strata. In 
hara
teristi
 zero a stratum parameterizes the stablepointed 
urves of a �xed topologi
al type. If we remove from an n-pointed 
urve



28 Carel Faber and Eduard Looijengaits singular points and the n given points, then we get a (possibly dis
onne
ted)smooth 
urve, hen
e a stratum parameterizes su
h 
urves. This 
an be expressedin a 
hara
teristi
 free manner and thus it is not diÆ
ult to see that any stratumS is a smooth sta
k that admits a produ
t of moduli sta
ks QjMgj ;nj as a �nite
over. The 
losure of S is then 
overed by QjMgj ;nj .6 Covers of Moduli Sta
ksThe moduli sta
k Mg;n admits many 
overings. Any subgroup � of the map-ping 
lass group �ng of �nite index (more pre
isely, a 
onjuga
y 
lass of those)de�nes a �nite 
at morphismM�g;n !Mg;n of sta
ks and then we 
an take thenormalization M�g;n ! Mg;n of Mg;n in M�g;n. In 
hara
teristi
 zero there isa modular interpretation of M�g;n: it is the moduli spa
e of smooth proje
tiven-pointed 
urves (C;x1; : : : ;xn) of genus g endowed with an isomorphism of thefundamental group of C�fx1; : : : ;xng (relative some base point) with �g;n, givenup an automorphism of �g;n mapping to �. But it is not 
lear whether su
h aninterpretation is possible for its 
ompletionM�g;n.Subgroups of �ng that are of parti
ular interest are the so-
alled 
ongruen
esubgroups. They are de�ned as follows: let � � �g;n be a normal subgroup of�nite index that is also invariant under every automorphism that preserves thedistinguished 
onjuga
y 
lasses B1; : : : ;Bn (see se
tion 2). There is an evidenthomomorphism from �ng to the outer automorphism group of the �nite group�g;n=�. Subgroups of �ng that 
ontain the kernel of su
h a homomorphism are
alled 
ongruen
e subgroups. They are obviously of �nite index. For the 
ase g =n = 1, this yields the familiar notion of a 
ongruen
e subgroup of �11 �= SL(2;Z):this is a subgroup of SL(2;Z) that 
ontains all the matri
es in SL(2;Z) 
ongruentmodulo d to the identity, for some integer d. It is well-known that there existsubgroups of �nite index of SL(2;Z) that are not 
ongruen
e subgroups. Ivanovhas raised the question whether the situation is di�erent for the mapping 
lassgroups �g, g � 2 [47℄.For some time it was not known whether for a suitable 
hoi
e of �, thevariety underlying M�g;n is smooth over a given base �eld and this led to thefoundation of an elaborate interse
tion theory for smooth sta
ks, needed to de�nethe appropriate Chow groups. It is now known that su
h � exist and that we 
antake � to be a 
ongruen
e subgroup (Looijenga [57℄, Pikaart-De Jong [69℄, Boggi-Pikaart [8℄). This means that the sta
k Mg;n is obtained as the orbit spa
e ofa smooth variety with respe
t to a �nite group a
tion. The kth Chow group ofMg;n, CHk(Mg;n), is then de�nable as the invariant part of the kth Chow groupof this smooth variety. (Here CHk(|) stands for the Chow group in 
odimensionk de�ned by rational equivalen
e, tensorized with Q .)
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al ClassesIf ( ~C; ~x1; : : : ;~xn+1) is a stable (n+1)-pointed 
urve, then forgetting the last point~xn+1 yields a stable n-pointed 
urve unless the 
omponent of ~Creg�f~x1; : : : ;~xn+1gpun
tured by ~xn+1 is a thri
e pun
tured P1. But then 
ontra
tion of the irre-du
ible 
omponent of ~C 
ontaining ~xn+1 produ
es a stable n-pointed 
urve. Ineither 
ase, the result is a morphism from ( ~C; ~x1; : : : ;~xn) onto a stable n-pointed
urve (C;x1; : : : ;xn). The image x of ~xn+1 
an be any point of C and it is easy tosee that the (n+1)-pointed 
urve 
an be re
overed up to 
anoni
al isomorphismfrom the system (C;x1; : : : ;xn;x).This also works in families, so that we have a forgetful morphismMg;n+1 !Mg;n whi
h may be thought of as the universal stable n-pointed 
urve of genusg. It 
omes in parti
ular with n disjoint se
tions s1; : : : ;sn.The fun
tor that asso
iates to every stable n-pointed 
urve its 
otangent lineat the ith point (i 2 f1; : : : ;ng) is realized on the universal exampleMg;n as a linebundle (in the sense of sta
ks). This line bundle 
an be gotten more dire
tly as thepull-ba
k of the relative dualizing sheaf !g;n of the universal family � :Mg;n+1 !Mg;n along the ith se
tion: s�i!g;n. The dependen
e on n is not entirely obvious.To see this, noti
e that the morphism ~C ! C above de�nes a homomorphismT �xiC ! T �~xi ~C. This is an isomorphism unless ~xi lies on a 
omponent that gets
ontra
ted. Whi
h is the 
ase pre
isely when ( ~C; ~x1; : : : ;~xn+1) de�nes a point onthe irredu
ible 
omponent �i;n+1 of � de�ned by the pair f(g1;I1);(g2;I2)g withg2 = 0 and I2 = f~xi;~xn+1g. So the line bundle ~s�i!g;n+1 onMg;n+1 is the pull-ba
kof s�i!g;n onMg;n twisted by Pni=1�i;n+1.We 
an now tell what the basi
 
lasses onMg;n are:(i) the Witten 
lasses i := 
1(s�i!g;n) 2 CH1(Mg;n); i = 1; : : : ;n;(ii) the Mumford 
lasses (�a la Arbarello-Cornalba [1℄)�r := �!(
1(!g;n)r+1) 2 CHr(Mg;n); r = 1;2; : : : ;The tautologi
al subalgebra R�(Mg;n) of CH�(Mg;n) is de�ned as follows: re
allfrom Se
tion 5 that the 
losure S of every stratum S is �nitely 
overed by aprodu
t Ŝ �=QjMgj ;nj . The basi
 
lasses of the fa
tors generate a subalgebra ofCH�(Ŝ) whose dire
t image in CH�(Mg;n) we denote by A�(S). Then R�(Mg;n)is de�ned as the algebra generated by the A�(S), where S runs over all thestrata, Mg;n in
luded. We use the same terminology (and similar notation) forits restri
tion R�(Mg;n) to Mg;n. The latter is of 
ourse already generated bythe  i's and the �r's.



30 Carel Faber and Eduard LooijengaThe tautologi
al algebras are respe
ted by the obvious morphisms betweenmoduli sta
ks of pointed 
urves, su
h as the pull-ba
k and the push-forwardalong the �nite morphisms Ŝ ! Mg;n (with Ŝ as above) and the proje
tionMg;n+1 !Mg;n. It is possible to 
hara
terize R� in this way as the smallest bi-variant subfun
tor of CH� restri
ted to an appropriate 
ategory of moduli spa
esof pointed 
urves that 
ontains the fundamental 
lasses of the Deligne-Mumfordmoduli sta
ks.8 StabilityIn se
tion 4 we observed that a mapping 
lass group and the 
orresponding modulispa
e have the same rational 
ohomology. So any homologi
al property of �ng hasimmediate relevan
e forMg;n. Unfortunately, our knowledge of the homology of�ng is still rather limited. A 
entral result is the stability theorem, due to Harer[42℄, that says that the homology group Hk(�ng ;Z) is independent of g, if g issuÆ
iently large (a

ording to Ivanov, g � 2k will do, but probably we maytake g � 32k). A more pre
ise statement says how the isomorphism Hk(�ng ;Z) �=Hk(�ng+1;Z) is de�ned. There is no obvious map between the groups in question,but there is a homologi
al 
orresponden
e de�ned as follows. Choose a separating
ir
le Æ � Sg+1 whi
h splits Sg+1 into a surfa
e of genus g and a surfa
e S ofgenus one with the former 
ontaining the points labeled x1; : : : ;xn, and 
hoosean orientation preserving homeomorphism of Sg�fxn+1g onto this 
omponent insu
h a way that the points x1; : : : ;xn of Sg retain their name. If �ng+1;S stands forthe group of mapping 
lasses of Sg+1 relative to S [ fx1; : : : ;xng, then we have anatural monomorphism �ng+1;S ! �ng+1 and a 
omposite epimorphism �ng+1;S !�n+1g ! �ng . The stability theorem states that these two homomorphisms indu
eisomorphisms on integral homology in degree k if g is suÆ
iently large. We 
anslightly generalize the above 
onstru
tion to de�ne a homomorphismHk(�ng ;Z)
Hk0(�n0g0 ;Z)! Hk+k0(�n+n0g+g0 ;Z);provided that g and g0 are suÆ
iently large: 
hoose here the separating 
ir
le Æon Sg+g0 su
h that one pie
e has genus g with pun
tures x1; : : : ;xn and the otherhas genus g0 with pun
tures xn+1; : : : ;xn+m and let the group of mapping 
lassesof Sg+g0 relative to Æ [ fx1; : : : ;xn+n0g take the role of �ng+1;S.The stable homology of the mapping 
lass groups f�ng g1g=1 
an be real-ized as the homology of a group �n1 that is de�ned in mu
h the same wayas �ng : repla
e Sg by a surfa
e of in�nite genus (but beware that su
h sur-fa
es are not all mutually homeomorphi
) and allow only self-homeomorphismsthat are the identity outside a 
ompa
t subset. In parti
ular, we get a prod-u
t H�(�1;Z) 
 H�(�1;Z) ! H�(�1;Z). After tensoring with Q , this prod-u
t and the standard 
oprodu
t on H�(�1;Q) turn H�(�1;Q) into a graded-bi
ommutative Hopf algebra. Of 
ourse, the same applies to its dual H�(�1;Q).
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ording to a stru
ture theorem su
h an algebra is as a graded algebra freelygenerated by its primitive subspa
e.This 
onstru
tion 
an be imitated in the moduli 
ontext. Identifying the lastpoint of an (n + 1)-pointed smooth genus g 
urve with the origin of an ellipti

urve produ
es a stable n-pointed genus g + 1 
urve. This de�nes a morphismf : Mg;n+1 �M1;1 ! Mg+1;n whose image is an open subset of a boundarydivisor. This morphism has a normal (line) bundle in the orbifold sense. Let Efbe the 
omplement of the zero se
tion of this normal bundle. Although there is noobvious map Ef !Mg+1;n, a tubular neighborhood theorem asserts that thereis a natural homotopy 
lass of su
h maps. So if we 
hoose p 2M1;1, and let Ef (p)be the restri
tion of Ef toMg;n+1 �fpg, then we have a well-de�ned homomor-phism Hk(Ef (p);Q) ! Hk(Mg+1;n;Q). On the other hand, proje
tion indu
esa homomorphism Hk(Ef (p);Q) ! Hk(Mg;n+1;Q) ! Hk(Mg;n;Q). These twohomomorphisms are the geometri
 in
arnations of the stability maps and hen
ethey are isomorphisms in the stable range. In a similar fashion we get a naturalhomomorphismHk(Mg;n;Q)
Hk0 (Mg0;n0 ;Q) ! Hk+k0(Mg+g0;n+n0 ;Q) (g and g0suÆ
iently large). An important feature of these homomorphisms is that they arein a sense `motivi
': they respe
t all the extra stru
ture that homology groups ofalgebrai
 varieties 
arry, su
h as a mixed Hodge stru
ture. In parti
ular, it followsthat the stable 
ohomology H�(�n1;Q) has a natural mixed Hodge stru
ture thatis preserved by the 
oprodu
t (whi
h is dual to the produ
t de�ned above). Itwas shown by Pikaart [68℄ that this mixed Hodge stru
ture is a
tually not mixedat all: Hk(�n1;Q) is pure of weight k.The tautologi
al 
lass �r introdu
ed in 7 is, when regarded as an elementof H2r(Mg;Q), stable for g suÆ
iently large. It is not hard to prove that the
orresponding element of the stable 
ohomology Hopf algebra is primitive. Miller[60℄ and Morita [61℄ have shown that it is nonzero and so H�(�1;Q) 
ontainsthe polynomial algebra Q [�1 ;�2;�3; : : : ℄. Mumford wrote in [64℄ that it seemsreasonable to guess that H�(�1;Q) is no bigger than this; this `reasonable guess'now goes under the name of Mumford's 
onje
ture.9 A Proarithmeti
 Hull of the Mapping Class GroupThe lower 
entral series of a group � is de�ned indu
tively by �(0) = � and�(k+1) = (�;�(k)). So �=�(k+1) is a nilpotent group. We take � = �g and notethat the mapping 
lass group �g a
ts in �g=�(k+1)g . If �g(k) denotes the imageof this a
tion, then it is 
lear that �g(0) = Sp(Vg). It is not hard to see that�g(k + 1) is an extension of �g(k) by a latti
e. For k = 0, this latti
e turnsout to be just ^3oVg, and as one may expe
t, the resulting map Tg ! ^3oVgis just the Johnson homomorphism. For higher values k, these latti
es are notso easy to des
ribe, but the least one 
an say is that they are obtained in afun
torial manner from the symple
ti
 latti
e Vg. Things simplify a great deal



32 Carel Faber and Eduard Looijengaif we tensor the latti
e with C : then it turns out that the resulting ve
tor spa
eis obtained in a fun
torial manner from the symple
ti
 ve
tor spa
e Vg 
 C (afa
t that is not obvious a priori). In parti
ular, the Sp(Vg) a
tion on this ve
torspa
e is algebrai
 in the sense that it extends to an a
tion of the algebrai
 groupSp(Vg)(C ) = Sp(Vg 
 C ). With indu
tion one 
an now 
onstru
t a sequen
e ofextensions of algebrai
 groups by ve
tor groups whi
h 
ontains �g(0) �g(1) �g(2) : : : as a sequen
e of arithmeti
 groups. We now form the `proarithmeti
hull' of �g, �g ! �g(1) := limk �g(k). This map is inje
tive, so that we mayregard this as a kind of arithmeti
 
ompletion of �g. We are interested in theindu
ed map on rational 
ohomology H�(�g(1);Q) ! H�(�g;Q). Results ofBorel imply that the rational 
ohomology group Hk(�g(1);Q) stabilizes as g !1 in a way that is 
ompatible with the stabilization maps for Hk(�g;Q). Inparti
ular, for g suÆ
iently large, the image of Hk(�g(1);Q) ! Hk(�g;Q) isindependent of g. Kawazumi-Morita [50℄ and Hain-Looijenga [40℄ proved that thisstable image is pre
isely the tautologi
al subalgebra Q [�1 ;�2;�3; : : : ℄. (The stable
ohomology limg!1H�(�g(1);Q) is however mu
h bigger.) This indi
ates thata 
onstru
tion of a stable 
lass not in this algebra must be rather sophisti
ated. Itwould be interesting to see whether a similar result holds if the 
entral lower seriesof �g is repla
ed by the dire
t system of its �nite index subgroups. (This 
ompletes�g by the system of its 
ongruen
e subgroups; the result is an `adelization' of �g.)10 The Witten Conje
tureGiven a positive integer n and an n-tuple of nonnegative integers (k1;k2; : : : ;kn),then for every genus g we 
an form the integralZMg;n  k11 � � � knn :This is of 
ourse zero unlessPi ki = 3g�3+n and if that equality is satis�ed, we
an regard it as an interse
tion number of tautologi
al 
lasses. Su
h a number neednot be integral though, be
auseMg;n is not smooth. For instan
e, RM1;1  1 = 124 .Witten [73℄ stated in 1989 a 
onje
ture that predi
ted their values. He phrasedhis 
onje
ture in terms of a generating fun
tion. In this 
ontext, the basi
 
lassesare the multiples (2k + 1)!! ki (where the double fa
torial stands for the produ
tof the odd positive integers � its argument) and therefore we �nd it 
onvenientto introdu
e the Witten numbers[�k1 � � � �kn ℄g := (2k1 + 1)!! � � � (2kn + 1)!!ZMg;n  k11 � � � knn :It is 
lear that this number is invariant under permutation of the indi
es. ThesuÆx g is redundant, in the sense that the number 
an be nonzero for only onepossible value of g. But we keep it so that we 
an de�ne



Remarks on Moduli of Curves 33Fg :=Xn 1n! Xk1;:::;kn[�k1 � � � �kn ℄gtk1tk2 � � � tkn 2 Q [[t0 ;t1;t2; : : : ℄℄:This is a symmetri
 fun
tion in its variables. Note that if we give ti degree i �1, then Fg is homogeneous of degree 3(g � 1). We shall not state the original
onje
ture (that says that Z := exp(Pg Fg) 2 Q [[t0 ;t1;t2; : : : ℄℄ satis�es a 
ertainKdV-hierar
hy), but give an equivalent 
onje
ture, due to Dijkgraaf-Verlinde-Verlinde, instead. It says that Z satis�es a 
ertain system of di�erential equations(known as the Virasoro relations). In terms of the individual Fg's these amountto: �Fg�t0 =Xm�1(2m+ 1)tm �Fg�tm�1 + 12Æ0;gt20; (`�1)�Fg�t1 =Xm�0(2m+ 1)tm �Fg�tm + 18Æ1;g; (`0)�Fg�tk+1 =Xm�0(2m+ 1)tm �Fg�tm+k + 12 Xm0+m00=k�1 � �2Fg�1�tm0�tm00 (`k�1)+ Xg0+g00=g �Fg0�tm0 �Fg00�tm00 �:The last term of (`�1) resp. (`0) 
omes from [�30 ℄0 = 1 resp. [�1℄1 = 18 . By 
ompar-ing 
oeÆ
ients we obtain a set of relations among the Witten numbers that allowsus to 
al
ulate them re
ursively: equation (`k) gives [�k1 � � � �kn�k+1℄g in terms ofWitten numbers involving smaller (g;n) (for the lexi
ographi
al ordering). No-ti
e that the �rst two equations involve ea
h Fg alone. They give [�k1 � � � �kn�0℄gand [�k1 � � � �kn�1℄g in terms of Witten numbers onMg;n. These relations 
an beeasily a

ounted for by means of simple interse
tion 
al
ulus. For k � 1, equa-tion (`k) expresses [�k1 � � � �kn�k+1℄g in terms of Witten numbers ofMg;n and itsboundary divisors (i.e., ofMg�1;n+2 andMg0;n0+1 �Mg00;n00+1 with g0 + g00 = gand n0 + n00 = n). These equations have been proved by Kontsevi
h [53℄, usinga 
ombinatorial substitute for the varietiesMg;n. It is desirable to �nd a purelyalgebro-geometri
 proof of these identities, be
ause su
h a proof has a fair 
han
eof generalizing to Gromov-Witten invariants (unlike the 
ombinatorial approa
h).11 Complete Subvarieties of Moduli Spa
esThe moduli spa
esMg;n are not proje
tive, with the ex
eption of the pointM0;3.This seems intuitively 
lear; one 
an dedu
e it from the fa
t that the boundary�Mg;n =Mg;n �Mg;n in the Deligne-Mumford 
ompa
ti�
ation is non-empty.It is 
lear that the moduli spa
es M0;n and M1;n are all aÆne. To see thisin a uniform way, note that the ample divisor �1 = 12�1 � Æ +  
an be writtenas a sum of boundary divisors in these 
ases, 
f. [9, 73℄.



34 Carel Faber and Eduard LooijengaLet therefore g � 2; we �rst 
onsider the 
ase n = 0. It is well-known thatM2 is aÆne; more generally, the moduli spa
es Hg of hyperellipti
 
urves of genusg are aÆne. In 
hara
teristi
 6= 2, we 
an see this by writing a hyperellipti
 
urveas a double 
over of P1 bran
hed in 2g+2 distin
t points; a des
ription of Hg asthe quotient of the 
omplement of a hypersurfa
e in A 2g�1 by the a
tion of thesymmetri
 group S2g+2 results. In 
hara
teristi
 2 one obtains the result startingwith the observation that every hyperellipti
 
urve of genus g 
an be written inthe formy2+(1+a1x+a2x2+� � �+agxg)y = x2g+1+bg�1x2g�1+bg�2x2g�3+� � �+b2x5+b1x3:Igusa [46℄ has given a des
ription ofM2 over Z; in parti
ular, in 
hara
teristi
s6= 2;5 it is the quotient of A 3 by a diagonal a
tion of Z=5Z with a unique �xedpoint.For all g � 3, the moduli spa
e Mg is not aÆne; a well-known 
onsequen
eof the existen
e of the Satake 
ompa
ti�
ation ofMg in whi
h the boundary has
odimension two. In parti
ular there exist 
omplete 
urves passing through any�nite number of points ofMg.Su
h 
omplete 
urves are not expli
it, however. So for some time the problemof 
onstru
ting expli
it 
omplete 
urves was studied. A ni
e solution to this prob-lem was found by Gonz�alez-D��ez and Harvey [38℄. For all g � 4, they 
onstru
texpli
it 
omplete 
urves in Mg in the following way. Take a genus 2 
urve Cmapping onto an ellipti
 
urve E. Let a be a point of E di�erent from the origin.The inverse image in C�C of the translated diagonal �a = f(e;e+a) : e 2 Eg isa 
omplete 
urve of pairs of distin
t points. By going over to a �nite 
over of this
urve, we obtain a 
omplete 
urve of pairs of distin
t points of C together witha square root of the 
orresponding divisor 
lass of degree 2. That determines a
omplete 
urve of double 
overs of C rami�ed in two distin
t points: a 
ompleteone-dimensional family of smooth 
urves of genus 4. One 
he
ks that these 
urvesvary in moduli and obtains a 
omplete 
urve inM4. Similarly, one �nds 
omplete
urves in Mg: start with a translate of the diagonal embedding of E in E2g�6that avoids all diagonals, take its inverse image in C2g�6, and form a family ofdouble 
overs of C rami�ed in 2g � 6 points.In genus 3, this 
onstru
tion doesn't work. The genus 3 problem was solved byZaal. Starting with a 
omplete family of 
urves of genus 4 with a nonzero point oforder two in the Ja
obian, one obtains a 
omplete family of 3-dimensional Prymvarieties. Zaal showed that suitable 
hoi
es guarantee that all these Pryms areJa
obians of smooth 
urves [74℄. (For a very di�erent solution, see part II of [38℄.)What about 
omplete subvarieties of Mg of higher dimension? We 
annotuse the Satake 
ompa
ti�
ation (it appears); almost all results rely on a variant ofthe 
lassi
al Kodaira 
onstru
tion. Kodaira observed that one may 
onstru
t anexpli
it 
omplete 
urve inM6 by starting with a genus 3 
urve C that is a doubleunrami�ed 
over of a genus 2 
urve. This gives a 
omplete 
urve of pairs of distin
tpoints of C; one pro
eeds as above and obtains the result. The 
onstru
tion 
anbe repeated, sin
e one �nds in fa
t a 
omplete one-dimensional family of 
urves



Remarks on Moduli of Curves 35of genus 6 with a pair of distin
t points, the rami�
ation points 
oming from thedouble 
over of C. The monodromy problems arising in the 
hoi
e of a square root
an always be resolved, so this leads to a 
omplete surfa
e in M12, a 
ompletethreefold inM24, et
. This 
an be improved upon by starting with the 
omplete
urve in M4 of [38℄: one �nds a 
omplete surfa
e in M8, a 
omplete threefoldinM16, et
. Another variant is to use triple 
overs rami�ed in one point: if the
overed 
urve has genus h, the 
over has genus 3h�1. Asymptoti
ally this doesn'tlead to better results, but sin
e one 
an start with a 
omplete 
urve inM3, oneobtains another 
onstru
tion of a 
omplete surfa
e inM8.A new development o

urs here through the re
ent work of Zaal [75℄. Usingthe important work of Keel [51℄, Zaal 
onstru
ts in 
hara
teristi
 p > 0 a 
ompletesurfa
e inM3;2. (At the moment it is not 
lear yet whether it is also possible to dothis in 
hara
teristi
 0.) This leads to a 
omplete surfa
e inM6 in 
hara
teristi
p > 2 via double 
overs. One also �nds a 
omplete threefold inM12, et
.Observe that all known 
omplete subvarieties ofMg of dimension > 1 lie inthe lo
us of 
urves that admit a map onto a 
urve of lower (but positive) genus.(Every 
omponent of this lo
us has 
odimension � g�1.) In parti
ular, we don'tknow whether a 
omplete surfa
e inMg 
ould 
ontain a general point. Perhapsit is more important to study 
omplete subvarieties passing through a generalpoint than arbitrary ones, 
f. [45℄, p. 55. In [65℄ Ni
orestianu shows that the baseof a 
omplete, generi
ally non-degenerate 2-dimensional family of smooth 
urves(of genus g � 4) is ne
essarily a surfa
e of general type (in 
hara
teristi
 0).A 
elebrated result is Diaz's upper bound g�2 for the dimension of a 
ompletesubvariety ofMg, see [15℄. Looijenga's result on the tautologi
al ring ofMg givesa di�erent proof, valid also in positive 
hara
teristi
 [58℄. Note that this boundis known to be sharp only for g = 2 and 3; sin
e we don't know whether M4
ontains a 
omplete surfa
e, it might be argued that we don't understand 
urvesof genus 4.The 
lass �g�g�1 in the Chow ring ofMg vanishes on the boundaryMg�Mg([23℄, see also [24℄). Therefore it (or a positive multiple of it) is a 
andidate forthe 
lass of a 
omplete subvariety ofMg of dimension g � 2, if that exists. Onemight also phrase the existen
e of this 
lass as the absen
e of an interse
tion-theoreti
al obstru
tion for the existen
e of a 
omplete subvariety of dimensiong � 2. Compare the dis
ussion in [40℄, x5. In genus 4 the 
lass �4�3 probablyis the only 
andidate in 
ohomology for the 
lass of a 
omplete surfa
e. Thiswould follow from the 
al
ulation of the 
odimension 2 Chow group ofM4 [22℄ ifH4(M4) is generated by tautologi
al 
lasses (
f. [2℄, dis
ussed in se
tion 12, and[18℄, where Edidin shows that H4(Mg) is generated by tautologi
al 
lasses in thestable range). In [24℄ it is pointed out that the stru
ture of the tautologi
al ringof Mg (known for g � 15) suggests that there are no 
onstraints on 
ompletesubvarieties of dimension � g=3, while there are many 
onstraints on 
ompletesubvarieties of dimension g � 2; so that it might be a better idea to look for theformer rather than the latter. Zaal's 
onstru
tion of 
omplete surfa
es inM6 in
hara
teristi
 p > 2 might be 
onsidered as eviden
e for this idea. (On p. 57 of



36 Carel Faber and Eduard Looijenga[45℄ it is stated that the maximal dimension of a 
omplete subvariety ofM6 (overC ) is known to be at least 2, but this appears to be a typo.)Diaz's original motivation [16℄ for �nding an upper bound for the dimensionof a 
omplete subvariety ofMg was the impli
ation that a family of 
urves whoseimage in moduli has larger dimension, ne
essarily degenerates|for many typesof questions, this knowledge 
an be of great help. In the same spirit, he showsthat a 
omplete subvariety of Mg of dimension � 2g � 2 ne
essarily meets �0,the divisor of irredu
ible singular 
urves and their degenerations ([16℄, p. 80,Corollary; 2g � 2 is 
ertainly what is intended). In other words, one has theupper bound 2g � 3 for the dimension of a 
omplete subvariety of the modulispa
e fMg =Mg��0 of 
urves of 
ompa
t type. This bound is a dire
t 
orollaryof the bound for Mg, hen
e it holds in all 
hara
teristi
s as well. The surpriseis that in positive 
hara
teristi
 the bound 2g � 3 for fMg is known to be sharp.One obtains this result from a 
onsideration of the lo
us V0(Mg) = V0(fMg) ofstable 
urves with p-rank 0. In [26℄ it is shown that it is pure of 
odimension g.The role that the 
lass �g�g�1 played in relation to Mg is now played by �g: itvanishes on �0 and has the right 
odimension. Van der Geer [28℄ (this volume)expli
itly determined the 
lass of V0(Ag); it is a multiple of �g, hen
e the sameholds for the 
lass of V0(fMg).The fa
t that the bound 2g � 3 for fMg is sharp in positive 
hara
teristi
(more pre
isely, that the known maximal 
omplete subvariety of fMg o

urs onlyin 
hara
teristi
 p > 0) as well as Keel's result [51℄ that the relative dualizing sheafofMg;1 overMg is semi-ample in positive 
hara
teristi
, but not in 
hara
teristi
0, lead to the idea that the maximal dimension of a 
omplete subvariety of Mgor of fMg or of Ag may well depend on the 
hara
teristi
. This is poignantlyexpressed by a 
onje
ture of Oort (
onje
ture 2.3 G in [66℄) that A3 over C doesnot 
ontain a 
omplete threefold.Equivalently, fM3 over C would not 
ontain a 
omplete threefold. Even theanswer to the following question appears to be unknown (
f. [65℄ for g = 3):Question 11.1. Does the moduli spa
e eHg 
 C of 
omplex hyperellipti
 
urves of
ompa
t type of genus g � 3 
ontain a 
omplete surfa
e?It is easy to see that it 
ontains a 
omplete 
urve. The existen
e of a 
ompletesurfa
e in eH3
C is a ne
essary 
ondition for the existen
e of a 
omplete threefoldin fM3
C . The question 
an be formulated in terms of genus 0 
urves, so it shouldbe more approa
hable.Finally a brief dis
ussion ofMg;n in 
ase n > 0 (and g � 2). There are obviousrelations to the 
ase n = 0, for di�erent values of the genus. As mentioned above,M3;2 
ontains a 
omplete surfa
e in positive 
hara
teristi
 [75℄, while this is notknown in 
hara
teristi
 0. (The 
onstru
tion of the 
omplete surfa
e works forall g � 3.) Sin
e the proje
tionMg;1 !Mg is proje
tive, while the proje
tionsMg;n !Mg;1 are aÆne, the Diaz-bound forMg;1 is g�1, while for n > 1 it is atmost g�1. The only existen
e result we know is thatMg;n is never aÆne for n > 0and g � 2. For n > 1 there are �bers ofMg;n over Mg that 
ontain a 
omplete
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urve: take a 
urve C of genus g mapping onto an ellipti
 
urve E, and pro
eedas in [38℄, dis
ussed above. Note also that C � C �� always 
ontains 
omplete
urves: the di�eren
e map (p;q) 7! p � q to the surfa
e C � C in the ja
obian
ontra
ts the diagonal (Van Geemen). The following question seems relevant:Question 11.2. For whi
h smooth 
urves C of genus g � 2 does the 
omplementin C � C � C of all diagonals 
ontain a 
omplete 
urve?We end with a 
onje
ture:Conje
ture 11.3. (Looijenga) Mg 
an be 
overed with g � 1 aÆne opens.Harer's bound 4g � 5 for the 
ohomologi
al dimension of Mg [43℄ would beone of several 
onsequen
es of this result.12 Interse
tion TheoryHere we dis
uss some of the developments regarding the Chow, tautologi
al, and
ohomology rings of the moduli spa
es Mg;n and Mg;n sin
e the survey [40℄was written. Those dire
tly related to Gromov-Witten theory will be reviewed inse
tion 13.A great deal of progress has been made in genus 1. Getzler [30, 31, 32℄ has
al
ulated the Sn-equivariant Serre polynomials of M1;n and M1;n. Hen
e theSn-representations Hp;q(M1;n) are known. In parti
ular, H0;11(M1;11) is one-dimensional, whi
h was known before via Ei
hler-Shimura theory, 
f. [13, 70,71℄; the representation is the alternating one. (The 
orresponding 2-dimensionalHodge stru
ture of weight 11 is asso
iated to the dis
riminant 
usp form �.) Itfollows thatM1;n is not unirational for all n � 11. With a beautiful 
onstru
tion,Belorousski [5℄ has shown thatM1;10 is rational, so thatM1;n is unirational forall n � 10. In fa
t, using analogous 
onstru
tions he shows that the Chow ring ofM1;n (with Q-
oeÆ
ients as always) is generated by boundary 
y
les for n � 10.By indu
tion this implies that the Chow ring ofM1;n equals the tautologi
al ringfor n � 10. This 
annot hold (over C ) for any n � 11 by (a suitable extension of)Jannsen's result ([48℄, Thm. 3.6, Rem. 3.11).A 
ru
ial 
ase is n = 4. Getzler's 
al
ulation implies that the S4-invariant partof H4(M1;4) is 7-dimensional. But there are 9 invariant boundary 
y
les, withonly one WDVV-relation (i.e., 
oming fromM0;4) between them. Hen
e there ishere a new, genus 1, relation. Getzler 
omputes it in [33℄. (He also announ
es therea proof that the even-dimensional homology of M1;n is spanned by boundary
y
les, and that all relations among these 
y
les 
ome from this genus 1 relationand the genus 0 relations.) In [67℄, Pandharipande uses the Hurwitz s
heme to
onstru
t Getzler's relation algebrai
ally, and Belorousski uses this to analyze theChow rings ofM1;n for low n in detail. E.g., he shows that the tautologi
al ring (orequivalently, the ring generated by boundary 
y
les) is multipli
atively generatedby divisors for n � 5, while for n � 6 it is generated in 
odimensions one and two.



38 Carel Faber and Eduard LooijengaFor n � 5, he also obtains expli
it presentations of A�(M1;n). Returning to n = 4,by identifying the 4 points in 2 pairs, one obtains a mapM1;4 !M3. Getzler'srelation pushes forward to a relation in A4(M3). Belorousski and Pandharipandeveri�ed that the obtained relation equals (modulo genus 0 relations) the non-trivial relation found in [21℄, Lemma 4.4, from asso
iativity(!) 
onsiderations.1In genus 2, far less is known. Mumford [64℄ determined the Chow ring ofM2,and it is not hard to determineA�(M2;1) from his results. The Chow, tautologi
al,and 
ohomology rings 
oin
ide here. With a deli
ate 
al
ulation using lots ofingredients, Getzler [34℄ 
omputes the Sn-equivariant Serre polynomials ofM2;nfor n = 2 and 3. He also 
omputes the 
ohomology ring H�(M2;2) and announ
esthe result for n = 3. In parti
ular, h4(M2;3) = 44. This result is the starting pointfor [6℄. As Belorousski and Pandharipande point out, there are 47 des
endentstratum 
lasses in A2(M2;3). (It is not hard to see that Getzler's topologi
alre
ursion relations [34℄ are algebrai
, so these 47 
lasses span R2(M2;3).) Exa
tly2 relations 
ome from genus 0, none from genus 1, so there must exist a new,genus 2 relation in homology. Belorousski and Pandharipande 
onstru
t su
h arelation algebrai
ally using admissible double 
overs. Bini, GaiÆ and Polito [7℄have 
omputed the generating fun
tion for the Euler 
hara
teristi
 ofM2;n.If one believes the 
onje
ture [24℄ (this volume) that the tautologi
al ringR�(Mg) satis�es Poin
ar�e duality, then it is quite reasonable to believe that thesame holds for R�(fMg), espe
ially be
ause of the role that the 
lasses �g�g�1resp. �g play in these 
ases (
f. x11 and [40℄). These 
lasses also tell us whatin this respe
t the 
orre
t moduli spa
es of pointed 
urves should be: 
Mg;n =��1(Mg) �Mg;n resp. fMg;n. The �rst thing to observe is that the tautologi
alrings of these spa
es are one-dimensional in 
odimension g�2+n resp. 2g�3+nand vanish in higher 
odimensions (this follows quite easily from [58℄ and [23℄,
f. [40℄, p. 108). The assumption that the tautologi
al rings of these moduli spa
essatisfy Poin
ar�e duality 
an be used to predi
t (but not prove) relations of thetype we saw above forM1;4 andM2;3. (Both for fM1;4 = 
M1;4 and for 
M2;3 theSn-invariant part of R1 is 3-dimensional, while there are 4 invariant generatorsin degree 2, whi
h is assumed to be dual to degree 1.)In their re
ent paper [2℄, Arbarello and Cornalba show how one 
an in prin-
iple 
ompute the low degree 
ohomology groups Hk(Mg;n) for k �xed and arbi-trary g and n. Their elegant method pro
eeds as follows. If the boundary divisor�Mg;n were ample, Hk(Mg;n) would inje
t for low k into Hk(�Mg;n). It hardlyever is ample, but Harer's 
al
ulation [43℄ of the virtual 
ohomologi
al dimen-sion of Mg;n implies that Hk(Mg;n) ! Hk(�Mg;n) is inje
tive for k � d(g;n)(where d(g;n) = 2g � 3 + n for g;n > 0, while d(g;0) = d(g;1) = 2g � 2 andd(0;n) = n� 4). Mixed Hodge theory shows that the map Hk(Mg;n) ! Hk(N)1 While doing the 
al
ulation, they dis
overed that some of the genus 0 relations in [21℄ arestated in
orre
tly. The 
orre
t relations are [(7)℄ = 3[(6)℄ and Æ1[(e)℄Q = [(6)℄Q = 23 [(7)℄Q in
odimension 4 and [(
)℄ + [(e)℄ = 2[(d)℄, [(
)℄ = 3[(b)℄, Æ1[(2)℄Q = [(b)℄Q = 43 [(
)℄Q = Æ0[(6)℄Q,�[(6)℄Q = 19 [(
)℄Q, Æ1[(6)℄Q = � 19 [(
)℄Q � 23 [(f)℄Q in 
odimension 5 (
f. Thm. 3.1, p. 385,p. 400, Lemma 4.5, p. 403, Table 8).
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tive as well, where N is the normalization of �Mg;n. Now one usesthe stru
ture of N and a double indu
tion on g and n to 
ompute some of thelow degree 
ohomology groups. E.g., for odd k, if one shows Hk(Mg;n) = 0 forall (g;n) with d(g;n) < k, then Hk(Mg;n) = 0 for all (g;n). So the proof thatH1(Mg;n) = 0 is redu
ed to 
he
king it for the point M0;3 and the proje
tivelinesM0;4 andM1;1! By 
he
king more seed 
ases, Arbarello and Cornalba provethat H3(Mg;n) and H5(Mg;n) vanish for all (g;n) (this uses results of Getzlerand Looijenga).For low even k, one would like to show that Hk(Mg;n) is generated by tau-tologi
al 
lasses. At present this is known for k = 2. Arguing by indu
tion, oneassumes that H2(Mh;m) is tautologi
al for the moduli spa
esMh;m appearing in�Mg;n. Writing N =`iXi, one knows that f = �ifi : H2(Mg;n)! �iH2(Xi) isinje
tive when d(g;n) � 2. Now on the one hand one knows exa
tly what happensto the tautologi
al 
lasses under f , whi
h provides a lower bound for Im(f). Buton the other hand, any 
olle
tion of 
lasses (fi(�))i 2 �iH2(Xi) satis�es obvious
ompatibility relations on the \interse
tions" of the Xi. Sin
e by the indu
tionhypothesis the H2(Xi) are tautologi
al, the upper bound for Im(f) that this gives
an be des
ribed exa
tly. The beautiful idea is that the lower and upper bound
oin
ide, essentially. The low genus 
ases have to be treated 
arefully be
ause thetautologi
al 
lasses are not independent. In this way one obtains a di�erent proofof Harer's result [41℄ that H2(Mg;n) is tautologi
al.13 Stable Maps and the Virasoro Conje
tureA general method to de�ne invariants of a spa
e X, that was developed throughthe work of Donaldson, Gromov, Witten, Kontsevi
h, and many others, is to 
on-sider an auxiliary spa
e, e.g., a spa
e of maps of 
urves to X, and then to 
omputea (well-de�ned) \natural" integral on that auxiliary spa
e. In algebrai
 geometry,a breakthrough o

urred through Kontsevi
h's 
onstru
tion of the spa
e of stablemaps. In this se
tion, we brie
y review the basi
 de�nitions and formulate someof the most important results. Then we dis
uss the Virasoro 
onje
ture. We willshow how this theory has reper
ussions for the study of Mg;n itself|somewhat
ontrary to its original motivation.Let X be a nonsingular 
omplex proje
tive variety, and let � be a 
lass inH2(X;Z). One 
an 
onsider the moduli sta
k Mg;n(X;�) 
lassifying n-pointedsmooth 
urves of genus g with a map f : C ! X satisfying f�([C℄) = �. Theexpe
ted dimension of this sta
k is3g � 3 + n+ �(f�TX) = 3g � 3 + n+ (dimX)(1 � g)�KX � �:One seeks to 
ompa
tify this spa
e in a natural way; as Kontsevi
h [54℄ showed,this 
an be done using stable maps. A map f : C ! X from a redu
ed, 
onne
ted,nodal, n-pointed 
urve C of genus g to X, with f�([C℄) = �, is stable if ea
h
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omponent of C that is mapped to a point 
ontains at leastthree spe
ial (nodal or marked) points, and ea
h 
omponent of genus 1 that ismapped to a point 
ontains at least one spe
ial point. (Equivalently, the map has�nitely many automorphisms.)Fulton and Pandharipande [27℄ explain in detail how a proje
tive 
oarsemoduli spa
eMg;n(X;�) of stable maps 
an be 
onstru
ted. When X is a point(hen
e � = 0), one re
overs the Deligne-Mumford-Knudsen moduli spa
eMg;n ofstable n-pointed 
urves of genus g. In general, however,Mg;n(X;�) is redu
ible,singular, nonredu
ed, and has 
omponents whose dimension is not the expe
tedone. That one 
an nevertheless do interse
tion theory on this spa
e is somethingof a mira
le; it is possible thanks to the 
onstru
tion of the virtual fundamental
lass [56, 4, 3℄. This 
y
le [Mg;n(X;�)℄vir lives in the expe
ted dimension andsatis�es the axioms of Gromov-Witten theory given by Kontsevi
h and Manin.Natural 
ohomology 
lasses onMg;n(X;�) arise in two ways. Via the n eval-uation morphisms ei : Mg;n(X;�) ! X sending a stable map to the image ofthe i-th marked point, one 
an pull ba
k 
ohomology 
lasses from X. (Fix anadditive homogeneous basis 1 = T0;T1; : : : ;Tm of H�(X) 
 Q .) One also has the�rst Chern 
lasses of the n 
otangent line bundles Li = s�i!U=M , where U is theuniversal 
urve and si the se
tion 
orresponding to the i-th marked point. De�ne
lasses � jk = � jk(i) = e�i (Tj) [ 
1(Li)k :Gromov-Witten invariants, and their des
endents (i.e., � jk with k > 0 o

ur), arede�ned in the algebrai
 
ontext by integrating these 
lasses against the virtualfundamental 
lass:h� j1k1 � � � � jnknig;n;� = h� j1k1 (1) � � � � jnkn(n)ig;n;� := Z[Mg;n(X;�)℄vir nYi=1 � jiki(i)(some 
are is required when X has odd-dimensional 
ohomology 
lasses). Moregenerally, one has the Gromov-Witten 
lasses (or \full system of Gromov-Witteninvariants"):I�g;n(Tj1 ; : : : ;Tjn) = ��([Mg;n(X;�)℄vir \ e�1(Tj1) \ � � � \ e�n(Tjn)) 2 H�(Mg;n;Q)with � :Mg;n(X;�)!Mg;n the forgetful map (2g � 2 + n > 0).There are several ways to produ
e relations between Gromov-Witten invari-ants:a. Under the natural map � : Mg;n+1(X;�) ! Mg;n(X;�) the virtual fun-damental 
lass pulls ba
k to the virtual fundamental 
lass. Also, 
1(Li) =��
1(Li) + �i;n+1, where �i;n+1 is the divisor `where the i-th and (n + 1)-st point have 
ome together'. This leads to generalized string and dilatonequations, expressing GW invariants involving a �00 resp. a �01 in terms ofsimpler GW invariants, and a divisor equation, for GW invariants involvinga �D0 , where D is a divisor 
lass.
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lasses of the strata (and their des
endents) o

urringin the topologi
al strati�
ation ofMg;n yield relations between GW invari-ants, via the `splitting axiom'. Examples of su
h relations were given inse
tion 12. One also has the so-
alled topologi
al re
ursion relations (TRR)that in genus 0 and 1 express the 
lass of a 
otangent line in boundary divi-sor 
lasses. In higher genus, this is not possible. Getzler [34℄ 
onje
tures thatmonomials of degree g in 
otangent line 
lasses 
an be expressed in terms ofboundary 
lasses, and proves this (expli
itly) for genus 2.
. In 
aseX admits a torus a
tion satisfying 
ertain 
onditions, one 
an attemptto 
ompute GW invariants using Bott lo
alization. Ellingsrud and Str�mme[20℄ introdu
ed Bott's formula to enumerative geometry. Subsequently Kont-sevi
h [54℄ used lo
alization to 
ompute GW invariants in genus 0. In highergenus, one needs a lo
alization formula for the virtual fundamental 
lass;this was a

omplished by Graber and Pandharipande [39℄. One should notethat the use of this method is not restri
ted to the 
al
ulation of GW in-variants on X with a torus a
tion: 
ertain GW invariants 
an be expressedin terms of an ambient proje
tive spa
e. Compare the work of Kontsevi
h[54℄ expressing the number of rational 
urves on a quinti
 threefold as a sumover trees|the �rst step in Givental's solution [37℄ of the mirror 
onje
ture.We end with the Virasoro 
onje
ture of Egu
hi, Hori and Xiong [19℄. A proofof it will lead to a wealth of relations between GW invariants and their des
en-dents (although the extent to whi
h it determines all su
h invariants is not 
learat the moment). Just as in se
tion 10, one organizes the GW invariants and theirdes
endents for a �xed X into a generating fun
tion, the so-
alled full gravita-tional potential fun
tion. Egu
hi, Hori and Xiong 
onje
ture that its exponentialis annihilated by 
ertain formal di�erential operators that form a representa-tion of the aÆne Virasoro algebra. (The initial form of the 
onje
ture was for Xwith only (p;p) 
ohomology; the extension to general X is due to Katz. See, e.g.,[11, 36℄.) There is 
onsiderable eviden
e for the Virasoro 
onje
ture, but we willnot dis
uss this here (see e.g. [35℄). Instead, we mention the work of Getzler andPandharipande [36℄ who investigate the impli
ations of the Virasoro 
onje
turein the 
ase � = 0. There is a natural isomorphismMg;n(X;0) =Mg;n�X underwhi
h the virtual fundamental 
lass is identi�ed with the top Chern 
lass of theexterior tensor produ
t of the dual of the Hodge bundle onMg;n and the tangentbundle of X. Getzler and Pandharipande show that for X = P2 this 
ase of theVirasoro 
onje
ture implies the 
onje
tured proportionality formulas [24℄ (thisvolume) for the tautologi
al ring ofMg, while for X = P1 it implies the beautifulidentities ZMg;n �g nYi=1  aii = � 2g � 3 + na1 a2 � � � an� ZMg;1 �g 2g�21for ai with sum 2g�3+n. In [25℄ the integral on the right side is 
omputed usingvirtual lo
alization [39℄ and more 
lassi
al te
hniques.
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