Remarks on Moduli of Curves

Carel Faber and Eduard Looijenga

Abstract

We discuss some aspects of the theory of the moduli space of curves as well as some
recent research.

1 Introduction

Rather than trying to provide here a comprehensive introduction to moduli of
curves, we have chosen to limit the discussion to certain aspects of the theory.
We also survey some of the recent research directly related to the papers in this
volume.

After introducing the mapping class group and the Torelli group, the moduli
space of curves is constructed as an analytic orbifold. We discuss the Deligne-
Mumford-Knudsen compactification and the fact that there exist global smooth
covers of it. Next we recall the definition of the tautological classes and the results
on the stability of the homology of the mapping class group as well as Mumford’s
conjecture. Sections 10 and 13 discuss the Witten conjecture that was proved by
Kontsevich and its generalization to moduli spaces of stable maps. We conclude
with a discussion of complete subvarieties of moduli space and of recent results
regarding its intersection theory.

For more information on the moduli space of curves, the reader could consult,
e.g., the books [62, 63, 52, 45], the collections [10, 17], and the survey papers
[44, 40].
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2 Mapping Class Groups

Fix a closed connected oriented surface S, of genus g and a sequence of distinct
points xg,z1,... on S, and let us write Sy, for Sy — {z1,...,2,} and 7y, for
71(Sg,n,%0). If the subscript n is omitted, it is assumed to be zero. We stick to
this notation throughout this introduction.

We begin with noting that in the absence of any punctures we have a natural
isomorphism Hy(my; Z) = Hy(S4,Z), so that the orientation of S, defines a distin-
guished generator of Hy(my; Z). For positive n, the simple positively oriented loops
around z; make up a distinguished conjugacy class B; in 7y ,,, 2 = 1,...,n. Thereis
a standard way to present the group m,, with generators o1, ...,044,61,...,8n,
subject to the relation

(a0 1) (g, g)Bn---P1 =1,

where in case n = 0, the generators a41,...,a+, have been chosen compatibly
with the orientation, and ; € B; in case n > 0. In the latter case, my,, is just
a free group on 2g + n — 1 generators and it is the data of By,...,B, that give
this group its extra structure. The inclusion Sy ;41 C Sy, induces a surjective
homomorphism 7,1 — 74, on fundamental groups and we can arrange that
the generators of 7, are the images of their namesakes in 7 4,41.

One defines the n-pointed mapping class group of genus g, here denoted by
Iy, as the connected component group of the group of orientation preserving
self-homeomorphisms of S, that fix zi,...,z,. This group acts by outer auto-
morphisms (that is, the action is given up to inner automorphisms) on the funda-
mental group m ,. It is a classical result that this action is faithful. According to
Nielsen and Zieschang [76] the image can be characterized as follows: for n = 0,
ry= Fg maps onto the group of outer automorphisms of 7, which act trivially on
Hj(mg;Z), and for n > 0, '} maps onto the group of outer automorphisms of m  ,,
which preserve each conjugacy class B;, ¢ = 1,...,n. So this yields a description of
the mapping class group purely in terms of group theory. Forgetting x,; defines
an obvious homomorphism FZ“ — I'y. Since any orientation preserving self-
homeomorphism of S, that fixes z1,...,z, is isotopic to one that also fixes z,,41,
this homomorphism is surjective. An arc in Sy , connecting o and z,, allows us
to identify F;H with the group of automorphisms of (S, 2n+1) = 7y, which
preserve the conjugacy classes By, ...,B,. With this identification, the kernel of
I‘Z“ — I'y is the group of inner automorphisms of m,,. If we take g = n =1,
then we get the familiar identification of 'l as the group of orientation preserving
automorphisms of 71 o = Z% I'l = SL(2,Z).

A special set of elements of the mapping class group I'y are the Dehn twists. A
Dehn twist is given by a regularly embedded circle § C Sy, and then represented
by a homeomorphism which on a closed neighborhood of that circle (with oriented
parameterization by (¢,t) € S' x [—1,1]) equals (¢,t) — (¢+7(t+1),t) and is the
identity outside that neighborhood. The corresponding element of I'y, denoted
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by 75, only depends on the isotopy class of §. The Dehn twist 74 is the identity
element of I'} if and only if § bounds a disk on Sy which contains at most one
z;, © = 1,...,n; for that reason such a circle is called trivial also. It is known
that finitely many Dehn twists generate the whole mapping class group. For the
unpunctured case n = 0 a relatively simple finite presentation of I'y (with Dehn
twist generators) has been given by Wajnryb [72], and for the general case one
was recently obtained by Gervais [29].

Although mapping class groups have been studied since their introduction
some seventy years ago, they are still mysterious in many ways. In certain regards
they behave as if they were arithmetic groups, but as Ivanov has shown, they
are, apart from a few exceptions, not isomorphic to such a group. Following Hain
and Morita, a mapping class group can however be naturally embedded in a
proarithmetic group (its proarithmetic hull), and the latter is at present much
better accessible. We discuss this briefly in section 9.

3 The Torelli Group

We here focus on the unpunctured case: n = 0. The homology group H(Sy;7Z) is
then of rank 2¢ and the orientation equips it with a unimodular symplectic form.
Let us write V, for Hy(Sy;Z) and w, € A%V, for the ‘inverse’ symplectic form. So
if a; € V, is the class of the generator o; of my, then a41,...,a44 is a basis for Vj,
and wy = ay;Aa_1+---+agAa_4. It is clear that the mapping class group I'y acts
on V, and leaves w, invariant. The image of this representation is in fact the full
integral symplectic group Sp(Vj). Its kernel is called the Torelli group of genus
g, denoted Tj. This group is trivial for genus zero and one; so that for instance
I'y 2 Sp(V1) =2 SL(2,Z). But for g > 2 the Torelli group contains the Dehn twists
around circles which separate S, into two connected components and for g > 3,
also the elements of the form 7475 ! where 6 and &' are disjoint circles on Sy,
which together separate S, into two pieces. According to Powell these elements
generate T,,. The Dehn twists around separating circles generate a subgroup K,
of Tj; that is clearly normal in I'j. We have Ky = T5. In fact, G. Mess showed that
K, is the free group on the separating Dehn twists and that these generators are
in bijective correspondence with the symplectic splittings of V5 into two copies of
V1, hence infinite in number. The situation is quite different when g > 3. Dennis
Johnson, who in the early eighties began a systematic study of the Torelli group,
showed that T}, is then finitely generated and exhibited a remarkable epimorphism
of T, onto the lattice A3V, := A3V, /(V, A w,) with kernel K,. An explicit (but
perhaps not very insightful) way to describe this epimorphism is to say what
it does to an element 7575 I as above: let § C Sy be a connected component
of Sg —d — ¢' and orient § as boundary component of S, so that it determines
a class dg € V. The image Vg of H{(S;Z) in V, is a sublattice on which the
symplectic form is degenerate with kernel spanned by dg. The form on Vg/Zdg
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is unimodular and thus defines an element wg € A%(Vg/Zdg). We can regard
ds A wg as an element of A3Vj. If S’ is the other component of S, — § — &', then
ds = —dg and dg A (wg + wgr) = dg A wy. So the image of dg A wg in /\3Vg only
depends on the ordered pair (4,0"). This is the image of 757 ! under Johnson’s
homomorphism. A more natural description will be given in section 9.

4 Moduli Spaces of Curves

Let us now assume that g and n are such that the Euler characteristic 2—2g—n of
Sg¢.n is negative, in other words, exclude the cases of genus zero with at most two
punctures and genus one without punctures. Then the set of complex structures
on S, compatible with the given orientation and given up to isotopy relative
T1,...,Ty, 18 in a natural way a complex manifold of complex dimension 3g—3+mn.
This manifold, which we shall denote 7, is called the n-pointed Teichmailler
space of genus g. It is known that 7, is contractible and isomorphic to a bounded
domain. Notice that there is an evident action of the mapping class group I'y on
Tgn- This action is faithful and properly discrete, and so the orbit space has
the structure of an analytic orbifold. As such it is denoted by M, ,. From the
definition it is clear that the points of M, ,, are in bijective correspondence with
isomorphism classes of n-pointed closed Riemann surfaces of genus g.

There is an evident forgetful map 74,41 — 74,,- This map is an analytic sub-
mersion that is equivariant over FZ“ — I'g, and hence determines a morphism of
orbifolds Mg 41 — My, The latter is an analytic submersion (in the orbifold
sense) and the fiber over a point p € M, ,, is the quotient of S, ,, equipped with
a complex structure defining p, modulo its (finite) group of complex automor-
phisms. So we might think of this morphism as the universal family of n-pointed
closed Riemann surfaces of genus g.

Since Ty, appears as a contractible universal covering of M, ,, (in the sense
of orbifolds) with Galois group I'y, the rational cohomology of M, is naturally
isomorphic to the rational cohomology of I'y.

But M, has more structure. Recall that a closed Riemann surface is in a
natural way a smooth complex projective algebraic curve. So we may regard M, ;,
as a moduli space of such curves. This interpretation leads to an algebraization
of M, . Better yet: geometric invariant theory enables us to characterize M, ,
as a quasi-projective variety with the orbifold structure lifting to the structure
as a stack over Spec(Z). From now on, we consider M, , as endowed with this
structure.
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5 Deligne-Mumford-Knudsen Completion

Deligne, Mumford and Knudsen [14, 55] discovered that there is a natural com-
pletion of M, , by allowing curves to degenerate in a mild way and that this
completion has itself the interpretation of a moduli stack. The central notion
here is that of stable n-pointed curve of genus g. This consists of a complete
connected curve C' of arithmetic genus g whose singularities are ordinary double
points and n distinct points z,...,z, on the smooth part of C' subject to the
condition that the group Aut(C;zy,...,z,) of automorphisms of C fixing these
points is finite. The last condition amounts to requiring that every connected
component of Creg — {%1,...,2,} has negative Euler characteristic: no compo-
nent is a smooth rational curve with at most two points removed or a smooth
curve of genus one.

The local deformation theory of such curves is as nice as it could possibly be.
For instance, small deformations of stable n-pointed curves of genus g are again of
that type. More is true: such a curve (C;x1,...,z,) has a universal deformation
with smooth base S of dimension 3g — 3 + n. So this is given by a curve over S:
C — S with n disjoint sections s1,...,s, giving each fiber the structure of stable
n-pointed curve of genus g, together with an identification of the closed fiber
with (C;z1,...,2,). The discriminant of the morphism C — S is quite simple:
for every singular point p of C the locus in S parameterizing the curves where p
persists as a singularity is a smooth hypersurface D) in S and their union D is a
normal crossing divisor. The group Aut(C; z1,...x,) acts naturally on the whole
system.

What Deligne, Mumford and Knudsen prove is that there is a moduli stack
of stable n-pointed curves of genus g, Mg,n, and that it is projective, irreducible,
defined over Spec(Z) and contains Mg, as an open-dense subscheme. Notice
that M, , is locally given by a universal deformation as above. In particular,
the underlying variety is at the point defined by (C;z1,...,z,) isomorphic to the
quotient Aut(C;zy,...z,)\S. It is clear from this local picture that the Deligne-
Mumford boundary A = My, — Mg, is a normal crossing divisor (in the sense
of stacks).

The generic points of this divisor parameterize n-pointed curves with a sin-
gle singular point. The case where the curve is irreducible accounts for one such
point; the corresponding irreducible component of A is usually denoted Ay. Oth-
erwise the curve is a one-point union of two smooth connected projective curves,
say of genera ¢g; and go (with g; + g2 = ¢, of course) with an ensuing decompo-
sition of 1, ...z, given by a partition I; U Iy of {1,... ,n}. If gy = 0, then the
corresponding part [, must contain at least two elements. The set of unordered
pairs {(g1,11),(g2,12) }, subject to this condition effectively indexes the irreducible
components # Ag of the boundary divisor A.

The normal crossing structure of A defines a natural decomposition of A
into (connected) strata. In characteristic zero a stratum parameterizes the stable
pointed curves of a fixed topological type. If we remove from an n-pointed curve
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its singular points and the n given points, then we get a (possibly disconnected)
smooth curve, hence a stratum parameterizes such curves. This can be expressed
in a characteristic free manner and thus it is not difficult to see that any stratum
S is a smooth stack that admits a product of moduli stacks []; Mg, n; as a finite

cover. The closure of S is then covered by [T; ng,nj-

6 Covers of Moduli Stacks

The moduli stack ﬂg,n admits many coverings. Any subgroup I' of the map-
ping class group I'y of finite index (more precisely, a conjugacy class of those)
defines a finite flat morphism ngn — Mg, of stacks and then we can take the

normalization ﬂ;n — Mypn of My, in ngn. In characteristic zero there is
a modular interpretation of ngn: it is the moduli space of smooth projective
n-pointed curves (C;z1,...,z,) of genus g endowed with an isomorphism of the
fundamental group of C —{z1,...,z,} (relative some base point) with 7 ,, given

up an automorphism of 7, , mapping to I'. But it is not clear whether such an

interpretation is possible for its completion ﬂg,n.

Subgroups of I'y that are of particular interest are the so-called congruence
subgroups. They are defined as follows: let m C 7y, be a normal subgroup of
finite index that is also invariant under every automorphism that preserves the
distinguished conjugacy classes Bj,...,B, (see section 2). There is an evident
homomorphism from I'j to the outer automorphism group of the finite group
Tgn/ ™. Subgroups of I'y that contain the kernel of such a homomorphism are
called congruence subgroups. They are obviously of finite index. For the case g =
n = 1, this yields the familiar notion of a congruence subgroup of I'} 2 SL(2,Z):
this is a subgroup of SL(2,Z) that contains all the matrices in SL(2,Z) congruent
modulo d to the identity, for some integer d. It is well-known that there exist
subgroups of finite index of SL(2,Z) that are not congruence subgroups. Ivanov
has raised the question whether the situation is different for the mapping class
groups I'y, g > 2 [47].

For some time it was not known whether for a suitable choice of IT', the

variety underlying M;n is smooth over a given base field and this led to the

foundation of an elaborate intersection theory for smooth stacks, needed to define
the appropriate Chow groups. It is now known that such I' exist and that we can
take I" to be a congruence subgroup (Looijenga [57], Pikaart-De Jong [69], Boggi-
Pikaart [8]). This means that the stack M, is obtained as the orbit space of
a smooth variety with respect to a finite group action. The kth Chow group of
Mg, CHF(M, ), is then definable as the invariant part of the kth Chow group
of this smooth variety. (Here CH*(—) stands for the Chow group in codimension
k defined by rational equivalence, tensorized with Q.)
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7 Tautological Classes

If (C;Z1,. .. ,Epy1) is a stable (n+1)-pointed curve, then forgetting the last point
Zny1 yields a stable n-pointed curve unless the component of C’reg —{Z1,.. ., Tnt1}
punctured by #,; is a thrice punctured P'. But then contraction of the irre-
ducible component of C containing #,+; produces a stable n-pointed curve. In
either case, the result is a morphism from (C~Y %1, ...,Ip) onto a stable n-pointed
curve (C;z1,...,x,). The image x of Z,,11 can be any point of C' and it is easy to
see that the (n + 1)-pointed curve can be recovered up to canonical isomorphism
from the system (C;x1,...,z,; ).

This also works in families, so that we have a forgetful morphism Mg,n+1 —
ngn which may be thought of as the universal stable n-pointed curve of genus
g. It comes in particular with n disjoint sections sq,...,s,.

The functor that associates to every stable n-pointed curve its cotangent line
at the ith point (i € {1,...,n}) is realized on the universal example M, ,, as a line
bundle (in the sense of stacks). This line bundle can be gotten more directly as the
pull-back of the relative dualizing sheaf w, ;, of the universal family  : Mg,n+1 —
Mg, along the ith section: siw, ;. The dependence on n is not entirely obvious.
To see this, notice that the morphism C — C above defines a homomorphism
T,.C — Tglé’ This is an isomorphism unless Z; lies on a component that gets
contracted. Which is the case precisely when (C‘ %1, ... ,Ipy1) defines a point on
the irreducible component A; ;1 of A defined by the pair {(g1,11),(g2,12)} with
g2 = 0and Iy = {Z;,Zp41}. So the line bundle 5wy 11 on Mg,n+1 is the pull-back
of stwgn on M, twisted by S0 | A 4.

We can now tell what the basic classes on ﬂg,n are:

(i) the Witten classes
i = c1(sjwgn) € CH! (Mg,n), i=1,...,n,

(ii) the Mumford classes (a la Arbarello-Cornalba [1])

Kp 1= 7r!(Cl(“’g,n)r—i—l) € CH' (Myn), r=12,...,

The tautological subalgebra R® (ﬂ_g,n) of CH*(M,,,) is defined as follows: recall
from Section 5 that the closure S of every stratum S is finitely covered by a
product S = Hj My, n;- The basic classes of the factors generate a subalgebra of

~ - JR—

CH*(S) whose direct image in CH®*(M,,,) we denote by A*(S). Then R*(M, )
is defined as the algebra generated by the A®(S), where S runs over all the
strata, Mg, included. We use the same terminology (and similar notation) for
its restriction R*(My,) to My . The latter is of course already generated by
the 9;’s and the k,’s.
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The tautological algebras are respected by the obvious morphisms between
moduli stacks of pointed curves, such as the pull-back and the push-forward
along the finite morphisms S — M, (with S as above) and the projection
Mg n+l — ./\/lg n- It is possible to characterize R® in this way as the smallest bi-
variant subfunctor of CH® restricted to an appropriate category of moduli spaces
of pointed curves that contains the fundamental classes of the Deligne-Mumford
moduli stacks.

8 Stability

In section 4 we observed that a mapping class group and the corresponding moduli
space have the same rational cohomology. So any homological property of I'y has
immediate relevance for M, ,,. Unfortunately, our knowledge of the homology of
Iy is still rather limited. A central result is the stability theorem, due to Harer
[42], that says that the homology group Hy(I'y;Z) is independent of g, if g is
sufficiently large (according to Ivanov, g > 2k will do, but probably we may
take g > §k). A more precise statement says how the isomorphism Hy(I'y; Z) =
H k(I‘g 13 Z) is defined. There is no obvious map between the groups in question,
but there is a homological correspondence defined as follows. Choose a separating
circle 0 C Sy41 which splits Sg41 into a surface of genus g and a surface S of
genus one with the former containing the points labeled z,...,z,, and choose
an orientation preserving homeomorphism of Sy —{z,41} onto this component in
such a way that the points z1,...,z, of S, retain their name. If FZH,S stands for
the group of mapping classes of Sy, relative to SU{z1,...,zy,}, then we have a
natural monomorphism FZ 1,8 I'y+1 and a composite epimorphism FZ 1,8
FZ“ — I'g. The stability theorem states that these two homomorphisms induce
isomorphisms on integral homology in degree k if ¢ is sufficiently large. We can
slightly generalize the above construction to define a homomorphism

Hy(I'g;Z) ® Hy (FZ/,; Z) — Hk+k'(FZI;I§ Z),

provided that g and ¢’ are sufficiently large: choose here the separating circle ¢

on Sy44 such that one piece has genus g with punctures z1, ... ,z, and the other
has genus ¢’ with punctures z,1, ... ,Zp+m and let the group of mapping classes
of Sy ¢ relative to 6 U{z1,... Zpin } take the role of I'Y,

The stable homology of the mapping class groups {F”} °, can be real-
ized as the homology of a group I'’) that is defined in much the same way
as I'y: replace Sy by a surface of infinite genus (but beware that such sur-
faces are not all mutually homeomorphic) and allow only self-homeomorphisms
that are the identity outside a compact subset. In particular, we get a prod-
uct He(I'o;Z) ® He(I'no;Z) — He(I'no;Z). After tensoring with @Q, this prod-
uct and the standard coproduct on He(I'so; Q) turn He(I'n; Q) into a graded-
bicommutative Hopf algebra. Of course, the same applies to its dual H®(T'o0; Q).
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According to a structure theorem such an algebra is as a graded algebra freely
generated by its primitive subspace.

This construction can be imitated in the moduli context. Identifying the last
point of an (n + 1)-pointed smooth genus g curve with the origin of an elliptic
curve produces a stable n-pointed genus g + 1 curve. This defines a morphism
fiMgnir X Mg — Mg+1,n whose image is an open subset of a boundary
divisor. This morphism has a normal (line) bundle in the orbifold sense. Let £
be the complement of the zero section of this normal bundle. Although there is no
obvious map Ef — Mg, a tubular neighborhood theorem asserts that there
is a natural homotopy class of such maps. So if we choose p € M 1, and let E¢(p)
be the restriction of Ef to My, 41 % {p}, then we have a well-defined homomor-
phism H(E;(p); Q) — Hip(Mgt1,,:Q). On the other hand, projection induces
a homomorphism Hj(E;(p); Q) — Hp(Mgnt1;Q) — Hp(My,; Q). These two
homomorphisms are the geometric incarnations of the stability maps and hence
they are isomorphisms in the stable range. In a similar fashion we get a natural
homomorphism Hy(Mgn; Q) @ Hy (Mg 3 Q) = Hgypr (Mg g nin; Q) (g and ¢
sufficiently large). An important feature of these homomorphisms is that they are
in a sense ‘motivic’: they respect all the extra structure that homology groups of
algebraic varieties carry, such as a mixed Hodge structure. In particular, it follows
that the stable cohomology H*(I'%; Q) has a natural mixed Hodge structure that
is preserved by the coproduct (which is dual to the product defined above). It
was shown by Pikaart [68] that this mixed Hodge structure is actually not mixed
at all: H¥(I'"; Q) is pure of weight k.

The tautological class &, introduced in 7 is, when regarded as an element
of H 2’“(/\/lg;(@), stable for g sufficiently large. It is not hard to prove that the
corresponding element of the stable cohomology Hopf algebra is primitive. Miller
[60] and Morita [61] have shown that it is nonzero and so H*(I's; Q) contains
the polynomial algebra Q[k1,k2,K3,...]. Mumford wrote in [64] that it seems
reasonable to guess that H*®(I'w; Q) is no bigger than this; this ‘reasonable guess’
now goes under the name of Mumford’s conjecture.

9 A Proarithmetic Hull of the Mapping Class Group

The lower central series of a group = is defined inductively by 70 = 7 and
) = (7). So m/7(**+1) is a nilpotent group. We take m = m, and note
that the mapping class group I'y acts in 7,/ wékﬂ). If T'y(k) denotes the image
of this action, then it is clear that I'g(0) = Sp(V}). It is not hard to see that
[y(k 4+ 1) is an extension of I'g(k) by a lattice. For k = 0, this lattice turns
out to be just /\g‘/g, and as one may expect, the resulting map 7, — /\ng
is just the Johnson homomorphism. For higher values k, these lattices are not
so easy to describe, but the least one can say is that they are obtained in a
functorial manner from the symplectic lattice V. Things simplify a great deal
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if we tensor the lattice with C: then it turns out that the resulting vector space
is obtained in a functorial manner from the symplectic vector space Vy ® C (a
fact that is not obvious a priori). In particular, the Sp(V}) action on this vector
space is algebraic in the sense that it extends to an action of the algebraic group
Sp(Vy)(C) = Sp(Vy ® C). With induction one can now construct a sequence of
extensions of algebraic groups by vector groups which contains I'y(0) + I'g(1)
I'4(2) - ... as a sequence of arithmetic groups. We now form the ‘proarithmetic
hull’ of T'y, T'y — T'g(00) := limy, I'y(k). This map is injective, so that we may
regard this as a kind of arithmetic completion of I'y. We are interested in the
induced map on rational cohomology H*(I'y(c0); Q) — H*(I'y; Q). Results of
Borel imply that the rational cohomology group H k(Fg(oo); Q) stabilizes as g —
00 in a way that is compatible with the stabilization maps for H*(T';; Q). In
particular, for g sufficiently large, the image of H¥(T'y(00); Q) — H¥(I'y; Q) is
independent of g. Kawazumi-Morita [50] and Hain-Looijenga [40] proved that this
stable image is precisely the tautological subalgebra Q[k1,k2,k3,...]. (The stable
cohomology limg_,o H*(I'g(00); Q) is however much bigger.) This indicates that
a construction of a stable class not in this algebra must be rather sophisticated. It
would be interesting to see whether a similar result holds if the central lower series
of w4 is replaced by the direct system of its finite index subgroups. (This completes
'y by the system of its congruence subgroups; the result is an ‘adelization’ of I'y.)

10 The Witten Conjecture

Given a positive integer n and an n-tuple of nonnegative integers (ki,ko, ... ,kn),
then for every genus g we can form the integral

k kn
B 1/}11... .
Mg.n

This is of course zero unless ), k; = 3g —3+n and if that equality is satisfied, we
can regard it as an intersection number of tautological classes. Such a number need
not be integral though, because ﬂg,n is not smooth. For instance, fﬂl = ﬁ.
Witten [73] stated in 1989 a conjecture that predicted their values. He phrased
his conjecture in terms of a generating function. In this context, the basic classes
are the multiples (2k + 1)!!3* (where the double factorial stands for the product
of the odd positive integers < its argument) and therefore we find it convenient
to introduce the Witten numbers

[y -+~ Th, ] = (2k1+1)!!---(21<;n+1)u/m b
g,n

It is clear that this number is invariant under permutation of the indices. The
suffix g is redundant, in the sense that the number can be nonzero for only one
possible value of g. But we keep it so that we can define
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1
Fg = Z ﬁ Z [Tkl t 'Tkn]gtklth ctg, € Q[[to’tl’tQ’ e ]]

n o ki,ekn

This is a symmetric function in its variables. Note that if we give ¢; degree 7 —
1, then Fj is homogeneous of degree 3(¢g — 1). We shall not state the original
conjecture (that says that Z :=exp(3_, Fy) € Q[[to,t1,t2, .. .]] satisfies a certain
KdV-hierarchy), but give an equivalent conjecture, due to Dijkgraaf-Verlinde-
Verlinde, instead. It says that Z satisfies a certain system of differential equations
(known as the Virasoro relations). In terms of the individual F’s these amount
to:

OF, 8F
8Tg = Z 2m + 1)t —7 —|— 1(50,gt0, (£-1)
O >
OF, 8F
8Tg = Z (2m + 1)t —4 -I— 151,‘(], (4p)
L m>o0
oF, oF, 1 82Fg_1
= (2m + 1)t + 5 — 12
Otgq1 mz;[] ) mathrk 2 m,+mZ,:k_1 (8tm’8tm” (r21)
OFy OFyn )
= Oty Oty
9'+g9"=g

The last term of (¢_1) resp. (£y) comes from [73]o = 1 resp. [r1]; = 3. By compar-
ing coefficients we obtain a set of relations among the Witten numbers that allows
us to calculate them recursively: equation () gives [7j, - - - Tk, Th+1]g in terms of
Witten numbers involving smaller (g,n) (for the lexicographical ordering). No-
tice that the first two equations involve each F, alone. They give [y, - - 74, 704
and [7g, - Tk, Ti]g in terms of Witten numbers on M, ,,. These relations can be
easily accounted for by means of simple intersection calculus. For k > 1, equa-
tion (£) expresses [Ty, - - Ty, Tk 1]y in terms of Witten numbers of Mg n and its
boundary d1v1sors (i.e., of My_1 ;42 and Mg /41 X M w1 with g’ +¢" =g
and n' + n" = n). These equations have been proved by Kontsevich [53], using
a combinatorial substitute for the varieties ngn. It is desirable to find a purely
algebro-geometric proof of these identities, because such a proof has a fair chance
of generalizing to Gromov-Witten invariants (unlike the combinatorial approach).

11 Complete Subvarieties of Moduli Spaces

The moduli spaces M, are not projective, with the exception of the point Mg 3.
This seems intuitively clear; one can deduce it from the fact that the boundary
OMgn = ngn — M in the Deligne-Mumford compactification is non-empty.

It is clear that the moduli spaces My, and M, are all affine. To see this
in a uniform way, note that the ample divisor k1 = 12A; — d + % can be written
as a sum of boundary divisors in these cases, cf. [9, 73].
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Let therefore g > 2; we first consider the case n = 0. It is well-known that
M3 is affine; more generally, the moduli spaces H, of hyperelliptic curves of genus
g are affine. In characteristic # 2, we can see this by writing a hyperelliptic curve
as a double cover of P! branched in 2¢ + 2 distinct points; a description of H,y as
the quotient of the complement of a hypersurface in A?9~! by the action of the
symietric group Sogo results. In characteristic 2 one obtains the result starting
with the observation that every hyperelliptic curve of genus g can be written in
the form

Y2+ (1+az+aoz®+- - +agz?)y = 2?9 by 1329 4 bg_0z®9 P+ by + b2t

Igusa [46] has given a description of My over Z; in particular, in characteristics
# 2,5 it is the quotient of A3 by a diagonal action of Z/5Z with a unique fixed
point.

For all g > 3, the moduli space M, is not affine; a well-known consequence
of the existence of the Satake compactification of M, in which the boundary has
codimension two. In particular there exist complete curves passing through any
finite number of points of M,.

Such complete curves are not explicit, however. So for some time the problem
of constructing explicit complete curves was studied. A nice solution to this prob-
lem was found by Gonzilez-Diez and Harvey [38]. For all g > 4, they construct
explicit complete curves in M, in the following way. Take a genus 2 curve C
mapping onto an elliptic curve E. Let ¢ be a point of E different from the origin.
The inverse image in C x C of the translated diagonal A, = {(e,e+a) : e € E} is
a complete curve of pairs of distinct points. By going over to a finite cover of this
curve, we obtain a complete curve of pairs of distinct points of C' together with
a square root of the corresponding divisor class of degree 2. That determines a
complete curve of double covers of C ramified in two distinct points: a complete
one-dimensional family of smooth curves of genus 4. One checks that these curves
vary in moduli and obtains a complete curve in M. Similarly, one finds complete
curves in Mg: start with a translate of the diagonal embedding of E in E29~°
that avoids all diagonals, take its inverse image in C?9-%, and form a family of
double covers of C' ramified in 2¢g — 6 points.

In genus 3, this construction doesn’t work. The genus 3 problem was solved by
Zaal. Starting with a complete family of curves of genus 4 with a nonzero point of
order two in the Jacobian, one obtains a complete family of 3-dimensional Prym
varieties. Zaal showed that suitable choices guarantee that all these Pryms are
Jacobians of smooth curves [74]. (For a very different solution, see part II of [38].)

What about complete subvarieties of M, of higher dimension? We cannot
use the Satake compactification (it appears); almost all results rely on a variant of
the classical Kodaira construction. Kodaira observed that one may construct an
explicit complete curve in Mg by starting with a genus 3 curve C' that is a double
unramified cover of a genus 2 curve. This gives a complete curve of pairs of distinct
points of C'; one proceeds as above and obtains the result. The construction can
be repeated, since one finds in fact a complete one-dimensional family of curves



Remarks on Moduli of Curves 35

of genus 6 with a pair of distinct points, the ramification points coming from the
double cover of C'. The monodromy problems arising in the choice of a square root
can always be resolved, so this leads to a complete surface in Mys, a complete
threefold in Moy, etc. This can be improved upon by starting with the complete
curve in My of [38]: one finds a complete surface in Mg, a complete threefold
in Mg, etc. Another variant is to use triple covers ramified in one point: if the
covered curve has genus h, the cover has genus 3h— 1. Asymptotically this doesn’t
lead to better results, but since one can start with a complete curve in M3, one
obtains another construction of a complete surface in Mg.

A new development occurs here through the recent work of Zaal [75]. Using
the important work of Keel [51], Zaal constructs in characteristic p > 0 a complete
surface in M3 9. (At the moment it is not clear yet whether it is also possible to do
this in characteristic 0.) This leads to a complete surface in Mg in characteristic
p > 2 via double covers. One also finds a complete threefold in Mo, etc.

Observe that all known complete subvarieties of M, of dimension > 1 lie in
the locus of curves that admit a map onto a curve of lower (but positive) genus.
(Every component of this locus has codimension > g — 1.) In particular, we don’t
know whether a complete surface in M, could contain a general point. Perhaps
it is more important to study complete subvarieties passing through a general
point than arbitrary ones, cf. [45], p. 55. In [65] Nicorestianu shows that the base
of a complete, generically non-degenerate 2-dimensional family of smooth curves
(of genus g > 4) is necessarily a surface of general type (in characteristic 0).

A celebrated result is Diaz’s upper bound g—2 for the dimension of a complete
subvariety of My, see [15]. Looijenga’s result on the tautological ring of M, gives
a different proof, valid also in positive characteristic [58]. Note that this bound
is known to be sharp only for ¢ = 2 and 3; since we don’t know whether My
contains a complete surface, it might be argued that we don’t understand curves
of genus 4.

The class AyAy 1 in the Chow ring of Mg vanishes on the boundary Mg -M,
([23], see also [24]). Therefore it (or a positive multiple of it) is a candidate for
the class of a complete subvariety of M, of dimension g — 2, if that exists. One
might also phrase the existence of this class as the absence of an intersection-
theoretical obstruction for the existence of a complete subvariety of dimension
g — 2. Compare the discussion in [40], §5. In genus 4 the class AyA3 probably
is the only candidate in cohomology for the class of a complete surface. This
would follow from the calculation of the codimension 2 Chow group of My [22] if
H*(M,) is generated by tautological classes (cf. [2], discussed in section 12, and
[18], where Edidin shows that H* (ﬂg) is generated by tautological classes in the
stable range). In [24] it is pointed out that the structure of the tautological ring
of My (known for g < 15) suggests that there are no constraints on complete
subvarieties of dimension < ¢/3, while there are many constraints on complete
subvarieties of dimension g — 2; so that it might be a better idea to look for the
former rather than the latter. Zaal’s construction of complete surfaces in Mg in
characteristic p > 2 might be considered as evidence for this idea. (On p. 57 of
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[45] it is stated that the maximal dimension of a complete subvariety of Mg (over
C) is known to be at least 2, but this appears to be a typo.)

Diaz’s original motivation [16] for finding an upper bound for the dimension
of a complete subvariety of M, was the implication that a family of curves whose
image in moduli has larger dimension, necessarily degenerates—for many types
of questions, this knowledge can be of great help. In the same spirit, he shows
that a complete subvariety of ﬂg of dimension > 2g — 2 necessarily meets Ay,
the divisor of irreducible singular curves and their degenerations ([16], p. 80,
Corollary; 2g — 2 is certainly what is intended). In other words, one has the
upper bound 2g — 3 for the dimension of a complete subvariety of the moduli
space M, = ﬂg — Ay of curves of compact type. This bound is a direct corollary
of the bound for M, hence it holds in all characteristics as well. The surprise

is that in positive characteristic the bound 2¢g — 3 for M ¢ 18 known to be sharp.

One obtains this result from a consideration of the locus Vo(M,) = V(M) of
stable curves with p-rank 0. In [26] it is shown that it is pure of codimension g.
The role that the class \jA\;—1 played in relation to M, is now played by A,: it
vanishes on A and has the right codimension. Van der Geer [28] (this volume)
explicitly determined the class of Vj(Ay); it is a multiple of )4, hence the same

holds for the class of Vp(M,).
The fact that the bound 2g — 3 for M is sharp in positive characteristic

(more precisely, that the known maximal complete subvariety of M g occurs only
in characteristic p > 0) as well as Keel’s result [51] that the relative dualizing sheaf
of Mg,l over ﬂg is semi-ample in positive characteristic, but not in characteristic
0, lead to the idea that the maximal dimension of a complete subvariety of M,
or of Mg or of A, may well depend on the characteristic. This is poignantly
expressed by a conjecture of Qort (conjecture 2.3 G in [66]) that A3 over C does
not contain a complete threefold.

Equivalently, M3 over C would not contain a complete threefold. Even the
answer to the following question appears to be unknown (cf. [65] for g = 3):

Question 11.1. Does the moduli space H ¢ ® C of complex hyperelliptic curves of
compact type of genus g > 3 contain a complete surface?

It is easy to see that it contains a complete curve. The existence of a complete
surface in H3®C is a necessary condition for the existence of a complete threefold
in M3®C. The question can be formulated in terms of genus 0 curves, so it should
be more approachable.

Finally a brief discussion of M, ,, in case n > 0 (and g > 2). There are obvious
relations to the case n = 0, for different values of the genus. As mentioned above,
M3 2 contains a complete surface in positive characteristic [75], while this is not
known in characteristic 0. (The construction of the complete surface works for
all g > 3.) Since the projection M, — M, is projective, while the projections
My — My are affine, the Diaz-bound for M ;1 is g —1, while for n > 1 it is at
most g—1. The only existence result we know is that M, , is never affine forn > 0
and g > 2. For n > 1 there are fibers of M, over M, that contain a complete
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curve: take a curve C of genus g mapping onto an elliptic curve E, and proceed
as in [38], discussed above. Note also that C' x C' — A always contains complete
curves: the difference map (p,q) — p — q to the surface C — C in the jacobian
contracts the diagonal (Van Geemen). The following question seems relevant:

Question 11.2. For which smooth curves C of genus g > 2 does the complement
in C x C x C of all diagonals contain a complete curve?

We end with a conjecture:
Conjecture 11.3. (Looijenga) M, can be covered with g — 1 affine opens.

Harer’s bound 4g — 5 for the cohomological dimension of M, [43] would be
one of several consequences of this result.

12 Intersection Theory

Here we discuss some of the developments regarding the Chow, tautological, and
cohomology rings of the moduli spaces M, and M, since the survey [40]
was written. Those directly related to Gromov-Witten theory will be reviewed in
section 13.

A great deal of progress has been made in genus 1. Getzler [30, 31, 32] has
calculated the S,-equivariant Serre polynomials of M, and an- Hence the
Sp-representations HP4(M, ,,) are known. In particular, H%''(My ;1) is one-
dimensional, which was known before via Eichler-Shimura theory, cf. [13, 70,
71]; the representation is the alternating one. (The corresponding 2-dimensional
Hodge structure of weight 11 is associated to the discriminant cusp form A.) It
follows that Ml,n is not unirational for all n > 11. With a beautiful construction,
Belorousski [5] has shown that Muo is rational, so that Ml,n is unirational for
all n < 10. In fact, using analogous constructions he shows that the Chow ring of
M, (with Q-coefficients as always) is generated by boundary cycles for n < 10.
By induction this implies that the Chow ring of M ,, equals the tautological ring
for n < 10. This cannot hold (over C) for any n > 11 by (a suitable extension of)
Jannsen’s result ([48], Thm. 3.6, Rem. 3.11).

A crucial case is n = 4. Getzler’s calculation implies that the Sy-invariant part
of H*Y(M,,4) is 7-dimensional. But there are 9 invariant boundary cycles, with
only one WDV V-relation (i.e., coming from My 4) between them. Hence there is
here a new, genus 1, relation. Getzler computes it in [33]. (He also announces there
a proof that the even-dimensional homology of Ml,n is spanned by boundary
cycles, and that all relations among these cycles come from this genus 1 relation
and the genus 0 relations.) In [67], Pandharipande uses the Hurwitz scheme to
construct Getzler’s relation algebraically, and Belorousski uses this to analyze the
Chow rings of M ,, for low n in detail. E.g., he shows that the tautological ring (or
equivalently, the ring generated by boundary cycles) is multiplicatively generated
by divisors for n < 5, while for n > 6 it is generated in codimensions one and two.
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For n < 5, he also obtains explicit presentations of A*(M,,,). Returning to n = 4,
by identifying the 4 points in 2 pairs, one obtains a map MIA — M3. Getzler’s
relation pushes forward to a relation in A*(M3). Belorousski and Pandharipande
verified that the obtained relation equals (modulo genus 0 relations) the non-
trivial relation found in [21], Lemma 4.4, from associativity(!) considerations.!

In genus 2, far less is known. Mumford [64] determined the Chow ring of Mo,
and it is not hard to determine A®(M3 ;) from his results. The Chow, tautological,
and cohomology rings coincide here. With a delicate calculation using lots of
ingredients, Getzler [34] computes the S,-equivariant Serre polynomials of Mg,n
for n = 2 and 3. He also computes the cohomology ring H®(M3 1) and announces
the result for n = 3. In particular, h* (M2,3) = 44. This result is the starting point
for [6]. As Belorousski and Pandharipande point out, there are 47 descendent
stratum classes in A?(Ma3). (It is not hard to see that Getzler’s topological
recursion relations [34] are algebraic, so these 47 classes span R?(Ma,3).) Exactly
2 relations come from genus 0, none from genus 1, so there must exist a new,
genus 2 relation in homology. Belorousski and Pandharipande construct such a
relation algebraically using admissible double covers. Bini, Gaiffi and Polito [7]
have computed the generating function for the Euler characteristic of ngn.

If one believes the conjecture [24] (this volume) that the tautological ring
R* (M) satisfies Poincaré duality, then it is quite reasonable to believe that the

same holds for R*(M,), especially because of the role that the classes AgAy 1
resp. Ay play in these cases (cf. §11 and [40]). These classes also tell us what

in this respect the correct moduli spaces of pointed curves should be: ﬁgyn =

=1 (My) C My, resp. M gn- The first thing to observe is that the tautological
rings of these spaces are one-dimensional in codimension g —2+mn resp. 29 —3+n
and vanish in higher codimensions (this follows quite easily from [58] and [23],
cf. [40], p. 108). The assumption that the tautological rings of these moduli spaces
satisfy Poincaré duality can be used to predict (but not prove) relations of the
type we saw above for ﬂm and m2,3. (Both for M1,4 = M\l,4 and for /(/1\273 the
Sp-invariant part of R! is 3-dimensional, while there are 4 invariant generators
in degree 2, which is assumed to be dual to degree 1.)

In their recent paper [2], Arbarello and Cornalba show how one can in prin-
ciple compute the low degree cohomology groups H* (ngn) for k£ fixed and arbi-
trary g and n. Their elegant method proceeds as follows. If the boundary divisor
OMy,, were ample, H¥(M,,,) would inject for low k into H¥(OMy,,). It hardly
ever is ample, but Harer’s calculation [43] of the virtual cohomological dimen-
sion of Mg, implies that H¥(M,,) — H¥(OM,,) is injective for k < d(g,n)
(where d(g,n) = 2g — 3 + n for g,n > 0, while d(g,0) = d(g,1) = 2g — 2 and
d(0,n) = n — 4). Mixed Hodge theory shows that the map H*(M,,) — H¥(N)

! While doing the calculation, they discovered that some of the genus 0 relations in [21] are
stated incorrectly. The correct relations are [(7)] = 3[(6)] and 61[(e)]o = [(6)]¢ = 2[(7)]e in
codimension 4 and [(¢)] + [()] = 2[(d)], [(©)] = 3[(®)], 3:[@)]e = [(B)lo = £[(e)]o = dol(6)la,
A(6)le = :[(0)]e, 01[(6)]e = —3l(c)]le — 3[(f)]e in codimension 5 (cf. Thm. 3.1, p. 385,
p. 400, Lemma 4.5, p. 403, Table 8).
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is then injective as well, where IV is the normalization of OM,,. Now one uses
the structure of N and a double induction on g and n to compute some of the
low degree cohomology groups. E.g., for odd k, if one shows H¥ (Mg,n) = ( for
all (g,n) with d(g,n) < k, then H*(M,,) = 0 for all (g,n). So the proof that
HY(M,,) = 0 is reduced to checking it for the point My 3 and the projective
lines My 4 and M ;! By checking more seed cases, Arbarello and Cornalba prove
that H3(Mg,) and H?(M,,,) vanish for all (g,n) (this uses results of Getzler
and Looijenga).

For low even k, one would like to show that H* (Mg,n) is generated by tau-
tological classes. At present this is known for ¥ = 2. Arguing by induction, one
assumes that H? (Mh,m) is tautological for the moduli spaces Mh,m appearing in
OM g . Writing N = [ [, X;, one knows that f = &;f; : H*(M,,) — ®:H*(X;) is
injective when d(g,n) > 2. Now on the one hand one knows exactly what happens
to the tautological classes under f, which provides a lower bound for Im(f). But
on the other hand, any collection of classes (fi(«)); € ®;H?(X;) satisfies obvious
compatibility relations on the “intersections” of the X;. Since by the induction
hypothesis the H?(X;) are tautological, the upper bound for Im(f) that this gives
can be described exactly. The beautiful idea is that the lower and upper bound
coincide, essentially. The low genus cases have to be treated carefully because the
tautological classes are not independent. In this way one obtains a different proof
of Harer’s result [41] that H?(M,,) is tautological.

13 Stable Maps and the Virasoro Conjecture

A general method to define invariants of a space X, that was developed through
the work of Donaldson, Gromov, Witten, Kontsevich, and many others, is to con-
sider an auxiliary space, e.g., a space of maps of curves to X, and then to compute
a (well-defined) “natural” integral on that auxiliary space. In algebraic geometry,
a breakthrough occurred through Kontsevich’s construction of the space of stable
maps. In this section, we briefly review the basic definitions and formulate some
of the most important results. Then we discuss the Virasoro conjecture. We will
show how this theory has repercussions for the study of ﬂg,n itself—somewhat
contrary to its original motivation.

Let X be a nonsingular complex projective variety, and let 8 be a class in
Hy(X,Z). One can consider the moduli stack M, ,(X,5) classifying n-pointed
smooth curves of genus g with a map f : C — X satisfying f.([C]) = . The
expected dimension of this stack is

39 —3+n+x(f"Tx) =3¢ —-3+n+ (dmX)(1 —g) - Kx - 0.

One seeks to compactify this space in a natural way; as Kontsevich [54] showed,
this can be done using stable maps. A map f : C — X from a reduced, connected,
nodal, n-pointed curve C of genus g to X, with f,([C]) = f, is stable if each
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nonsingular rational component of C' that is mapped to a point contains at least
three special (nodal or marked) points, and each component of genus 1 that is
mapped to a point contains at least one special point. (Equivalently, the map has
finitely many automorphisms.)

Fulton and Pandharipande [27] explain in detail how a projective coarse
moduli space M, (X,8) of stable maps can be constructed. When X is a point
(hence 8 = 0), one recovers the Deligne-Mumford-Knudsen moduli space M, ,, of
stable n-pointed curves of genus g. In general, however, M, ,(X,03) is reducible,
singular, nonreduced, and has components whose dimension is not the expected
one. That one can nevertheless do intersection theory on this space is something
of a miracle; it is possible thanks to the construction of the virtual fundamental
class [56, 4, 3]. This cycle [M,,(X,5)]"" lives in the expected dimension and
satisfies the axioms of Gromov-Witten theory given by Kontsevich and Manin.

Natural cohomology classes on M, ,,(X,3) arise in two ways. Via the n eval-
uation morphisms e; : My ,(X,6) — X sending a stable map to the image of
the i-th marked point, one can pull back cohomology classes from X. (Fix an
additive homogeneous basis 1 = Ty,T1,...,T), of H*(X) ® Q.) One also has the
first Chern classes of the n cotangent line bundles £; = s}w,, 57, where U is the
universal curve and s; the section corresponding to the i-th marked point. Define
classes _ _

= 7)(6) = ef (Tj) Uer (Li)F.

Gromov-Witten invariants, and their descendents (i.e., T]z with &£ > 0 occur), are
defined in the algebraic context by integrating these classes against the virtual
fundamental class:

(1t = (A0 g = [ HT,;
[Myg,n(X,8)]7

(some care is required when X has odd-dimensional cohomology classes). More
generally, one has the Gromov-Witten classes (or “full system of Gromov-Witten
invariants”):
I n(Tyy, - T5,) = m (Mo (XB)]7 Nef (T3,) N -+ Nep(T5,)) € H (Mg,n,Q)
with m: M, ,,(X,8) = My, the forgetful map (29 —2+n > 0).
There are several ways to produce relations between Gromov-Witten invari-
ants:

a. Under the natural map 7 : My,11(X,8) = My, (X,B) the virtual fun-
damental class pulls back to the virtual fundamental class. Also, ¢;(L;) =
w¥c1(L;) + Ajpy1, where A; 41 is the divisor ‘where the i-th and (n + 1)-
st point have come together’. This leads to generalized string and dilaton
equations, expressing GW invariants involving a 7'(? resp. a 70 in terms of
simpler GW invariants, and a divisor equation, for GW invariants involving

a 7, where D is a divisor class.
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b. Relations between the classes of the strata (and their descendents) occurring
in the topological stratification of ﬂgyn yield relations between GW invari-
ants, via the ‘splitting axiom’. Examples of such relations were given in
section 12. One also has the so-called topological recursion relations (TRR)
that in genus 0 and 1 express the class of a cotangent line in boundary divi-
sor classes. In higher genus, this is not possible. Getzler [34] conjectures that
monomials of degree g in cotangent line classes can be expressed in terms of
boundary classes, and proves this (explicitly) for genus 2.

c. In case X admits a torus action satisfying certain conditions, one can attempt
to compute GW invariants using Bott localization. Ellingsrud and Strgmme
[20] introduced Bott’s formula to enumerative geometry. Subsequently Kont-
sevich [54] used localization to compute GW invariants in genus 0. In higher
genus, one needs a localization formula for the virtual fundamental class;
this was accomplished by Graber and Pandharipande [39]. One should note
that the use of this method is not restricted to the calculation of GW in-
variants on X with a torus action: certain GW invariants can be expressed
in terms of an ambient projective space. Compare the work of Kontsevich
[64] expressing the number of rational curves on a quintic threefold as a sum
over trees—the first step in Givental’s solution [37] of the mirror conjecture.

We end with the Virasoro conjecture of Eguchi, Hori and Xiong [19]. A proof
of it will lead to a wealth of relations between GW invariants and their descen-
dents (although the extent to which it determines all such invariants is not clear
at the moment). Just as in section 10, one organizes the GW invariants and their
descendents for a fixed X into a generating function, the so-called full gravita-
tional potential function. Eguchi, Hori and Xiong conjecture that its exponential
is annihilated by certain formal differential operators that form a representa-
tion of the affine Virasoro algebra. (The initial form of the conjecture was for X
with only (p,p) cohomology; the extension to general X is due to Katz. See, e.g.,
[11, 36].) There is considerable evidence for the Virasoro conjecture, but we will
not discuss this here (see e.g. [35]). Instead, we mention the work of Getzler and
Pandharipande [36] who investigate the implications of the Virasoro conjecture
in the case 8 = 0. There is a natural isomorphism ngn(X,O) = ngn x X under
which the virtual fundamental class is identified with the top Chern class of the
exterior tensor product of the dual of the Hodge bundle on Mg’n and the tangent
bundle of X. Getzler and Pandharipande show that for X = P? this case of the
Virasoro conjecture implies the conjectured proportionality formulas [24] (this
volume) for the tautological ring of M, while for X = P! it implies the beautiful

identities .
. 2g—3+n 29—9
/_ /\qung< >/_ Ag29
Mg.n i—1 ay az Gn Mg

for a; with sum 2g — 3+n. In [25] the integral on the right side is computed using
virtual localization [39] and more classical techniques.
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