
Remarks on Moduli of CurvesCarel Faber and Eduard Looijenga
AbstratWe disuss some aspets of the theory of the moduli spae of urves as well as somereent researh.1 IntrodutionRather than trying to provide here a omprehensive introdution to moduli ofurves, we have hosen to limit the disussion to ertain aspets of the theory.We also survey some of the reent researh diretly related to the papers in thisvolume.After introduing the mapping lass group and the Torelli group, the modulispae of urves is onstruted as an analyti orbifold. We disuss the Deligne-Mumford-Knudsen ompati�ation and the fat that there exist global smoothovers of it. Next we reall the de�nition of the tautologial lasses and the resultson the stability of the homology of the mapping lass group as well as Mumford'sonjeture. Setions 10 and 13 disuss the Witten onjeture that was proved byKontsevih and its generalization to moduli spaes of stable maps. We onludewith a disussion of omplete subvarieties of moduli spae and of reent resultsregarding its intersetion theory.For more information on the moduli spae of urves, the reader ould onsult,e.g., the books [62, 63, 52, 45℄, the olletions [10, 17℄, and the survey papers[44, 40℄.



24 Carel Faber and Eduard Looijenga2 Mapping Class GroupsFix a losed onneted oriented surfae Sg of genus g and a sequene of distintpoints x0;x1; : : : on Sg and let us write Sg;n for Sg � fx1; : : : ;xng and �g;n for�1(Sg;n;x0). If the subsript n is omitted, it is assumed to be zero. We stik tothis notation throughout this introdution.We begin with noting that in the absene of any puntures we have a naturalisomorphism H2(�g;Z)�= H2(Sg;Z), so that the orientation of Sg de�nes a distin-guished generator ofH2(�g;Z). For positive n, the simple positively oriented loopsaround xi make up a distinguished onjugay lass Bi in �g;n, i = 1; : : : ;n. There isa standard way to present the group �g;n with generators ��1; : : : ;��g;�1; : : : ;�n,subjet to the relation (�1;��1) � � � (�g;��g)�n � � � �1 = 1;where in ase n = 0, the generators ��1; : : : ;��g have been hosen ompatiblywith the orientation, and �i 2 Bi in ase n > 0. In the latter ase, �g;n is justa free group on 2g + n � 1 generators and it is the data of B1; : : : ;Bn that givethis group its extra struture. The inlusion Sg;n+1 � Sg;n indues a surjetivehomomorphism �g;n+1 ! �g;n on fundamental groups and we an arrange thatthe generators of �g;n are the images of their namesakes in �g;n+1.One de�nes the n-pointed mapping lass group of genus g, here denoted by�ng , as the onneted omponent group of the group of orientation preservingself-homeomorphisms of Sg that �x x1; : : : ;xn. This group ats by outer auto-morphisms (that is, the ation is given up to inner automorphisms) on the funda-mental group �g;n. It is a lassial result that this ation is faithful. Aording toNielsen and Zieshang [76℄ the image an be haraterized as follows: for n = 0,�g = �0g maps onto the group of outer automorphisms of �g whih at trivially onH2(�g;Z), and for n > 0, �ng maps onto the group of outer automorphisms of �g;nwhih preserve eah onjugay lass Bi, i = 1; : : : ;n. So this yields a desription ofthe mapping lass group purely in terms of group theory. Forgetting xn+1 de�nesan obvious homomorphism �n+1g ! �ng . Sine any orientation preserving self-homeomorphism of Sg that �xes x1; : : : ;xn is isotopi to one that also �xes xn+1,this homomorphism is surjetive. An ar in Sg;n onneting x0 and xn+1 allows usto identify �n+1g with the group of automorphisms of �1(Sg;n;xn+1) �= �g;n whihpreserve the onjugay lasses B1; : : : ;Bn. With this identi�ation, the kernel of�n+1g ! �ng is the group of inner automorphisms of �g;n. If we take g = n = 1,then we get the familiar identi�ation of �11 as the group of orientation preservingautomorphisms of �1;0 �= Z2: �11 �= SL(2;Z).A speial set of elements of the mapping lass group �ng are the Dehn twists. ADehn twist is given by a regularly embedded irle Æ � Sg;n and then representedby a homeomorphism whih on a losed neighborhood of that irle (with orientedparameterization by (�;t) 2 S1� [�1;1℄) equals (�;t) 7! (�+�(t+1);t) and is theidentity outside that neighborhood. The orresponding element of �ng , denoted



Remarks on Moduli of Curves 25by �Æ, only depends on the isotopy lass of Æ. The Dehn twist �Æ is the identityelement of �ng if and only if Æ bounds a disk on Sg whih ontains at most onexi, i = 1; : : : ;n; for that reason suh a irle is alled trivial also. It is knownthat �nitely many Dehn twists generate the whole mapping lass group. For theunpuntured ase n = 0 a relatively simple �nite presentation of �g (with Dehntwist generators) has been given by Wajnryb [72℄, and for the general ase onewas reently obtained by Gervais [29℄.Although mapping lass groups have been studied sine their introdutionsome seventy years ago, they are still mysterious in many ways. In ertain regardsthey behave as if they were arithmeti groups, but as Ivanov has shown, theyare, apart from a few exeptions, not isomorphi to suh a group. Following Hainand Morita, a mapping lass group an however be naturally embedded in aproarithmeti group (its proarithmeti hull), and the latter is at present muhbetter aessible. We disuss this briey in setion 9.3 The Torelli GroupWe here fous on the unpuntured ase: n = 0. The homology group H1(Sg;Z) isthen of rank 2g and the orientation equips it with a unimodular sympleti form.Let us write Vg for H1(Sg;Z) and !g 2 ^2Vg for the `inverse' sympleti form. Soif ai 2 Vg is the lass of the generator �i of �g, then a�1; : : : ;a�g is a basis for Vgand !g = a1^a�1+ � � �+ag^a�g. It is lear that the mapping lass group �g atson Vg and leaves !g invariant. The image of this representation is in fat the fullintegral sympleti group Sp(Vg). Its kernel is alled the Torelli group of genusg, denoted Tg. This group is trivial for genus zero and one; so that for instane�1 �= Sp(V1) �= SL(2;Z). But for g � 2 the Torelli group ontains the Dehn twistsaround irles whih separate Sg into two onneted omponents and for g � 3,also the elements of the form �Æ��1Æ0 , where Æ and Æ0 are disjoint irles on Sg,whih together separate Sg into two piees. Aording to Powell these elementsgenerate Tg. The Dehn twists around separating irles generate a subgroup Kgof Tg that is learly normal in �g. We have K2 = T2. In fat, G. Mess showed thatK2 is the free group on the separating Dehn twists and that these generators arein bijetive orrespondene with the sympleti splittings of V2 into two opies ofV1, hene in�nite in number. The situation is quite di�erent when g � 3. DennisJohnson, who in the early eighties began a systemati study of the Torelli group,showed that Tg is then �nitely generated and exhibited a remarkable epimorphismof Tg onto the lattie ^3oVg := ^3Vg=(Vg ^ !g) with kernel Kg. An expliit (butperhaps not very insightful) way to desribe this epimorphism is to say whatit does to an element �Æ��1Æ0 as above: let S � Sg be a onneted omponentof Sg � Æ � Æ0 and orient Æ as boundary omponent of S, so that it determinesa lass dS 2 Vg. The image VS of H1(S;Z) in Vg is a sublattie on whih thesympleti form is degenerate with kernel spanned by dS . The form on VS=ZdS



26 Carel Faber and Eduard Looijengais unimodular and thus de�nes an element !S 2 ^2(VS=ZdS). We an regarddS ^ !S as an element of ^3Vg. If S0 is the other omponent of Sg � Æ � Æ0, thendS0 = �dS and dS ^ (!S + !S0) = dS ^ !g. So the image of dS ^ !S in ^3oVg onlydepends on the ordered pair (Æ;Æ0). This is the image of �Æ��1Æ0 under Johnson'shomomorphism. A more natural desription will be given in setion 9.4 Moduli Spaes of CurvesLet us now assume that g and n are suh that the Euler harateristi 2�2g�n ofSg;n is negative, in other words, exlude the ases of genus zero with at most twopuntures and genus one without puntures. Then the set of omplex strutureson Sg ompatible with the given orientation and given up to isotopy relativex1; : : : ;xn is in a natural way a omplex manifold of omplex dimension 3g�3+n.This manifold, whih we shall denote Tg;n, is alled the n-pointed Teihm�ullerspae of genus g. It is known that Tg;n is ontratible and isomorphi to a boundeddomain. Notie that there is an evident ation of the mapping lass group �ng onTg;n. This ation is faithful and properly disrete, and so the orbit spae hasthe struture of an analyti orbifold. As suh it is denoted by Mg;n. From thede�nition it is lear that the points ofMg;n are in bijetive orrespondene withisomorphism lasses of n-pointed losed Riemann surfaes of genus g.There is an evident forgetful map Tg;n+1 ! Tg;n. This map is an analyti sub-mersion that is equivariant over �n+1g ! �ng , and hene determines a morphism oforbifoldsMg;n+1 !Mg;n. The latter is an analyti submersion (in the orbifoldsense) and the �ber over a point p 2Mg;n is the quotient of Sg;n equipped witha omplex struture de�ning p, modulo its (�nite) group of omplex automor-phisms. So we might think of this morphism as the universal family of n-pointedlosed Riemann surfaes of genus g.Sine Tg;n appears as a ontratible universal overing ofMg;n (in the senseof orbifolds) with Galois group �ng , the rational ohomology ofMg;n is naturallyisomorphi to the rational ohomology of �ng .But Mg;n has more struture. Reall that a losed Riemann surfae is in anatural way a smooth omplex projetive algebrai urve. So we may regardMg;nas a moduli spae of suh urves. This interpretation leads to an algebraizationofMg;n. Better yet: geometri invariant theory enables us to haraterize Mg;nas a quasi-projetive variety with the orbifold struture lifting to the strutureas a stak over Spe(Z). From now on, we onsider Mg;n as endowed with thisstruture.



Remarks on Moduli of Curves 275 Deligne-Mumford-Knudsen CompletionDeligne, Mumford and Knudsen [14, 55℄ disovered that there is a natural om-pletion of Mg;n by allowing urves to degenerate in a mild way and that thisompletion has itself the interpretation of a moduli stak. The entral notionhere is that of stable n-pointed urve of genus g. This onsists of a ompleteonneted urve C of arithmeti genus g whose singularities are ordinary doublepoints and n distint points x1; : : : ;xn on the smooth part of C subjet to theondition that the group Aut(C;x1; : : : ;xn) of automorphisms of C �xing thesepoints is �nite. The last ondition amounts to requiring that every onnetedomponent of Creg � fx1; : : : ;xng has negative Euler harateristi: no ompo-nent is a smooth rational urve with at most two points removed or a smoothurve of genus one.The loal deformation theory of suh urves is as nie as it ould possibly be.For instane, small deformations of stable n-pointed urves of genus g are again ofthat type. More is true: suh a urve (C;x1; : : : ;xn) has a universal deformationwith smooth base S of dimension 3g � 3 + n. So this is given by a urve over S:C ! S with n disjoint setions s1; : : : ;sn giving eah �ber the struture of stablen-pointed urve of genus g, together with an identi�ation of the losed �berwith (C;x1; : : : ;xn). The disriminant of the morphism C ! S is quite simple:for every singular point p of C the lous in S parameterizing the urves where ppersists as a singularity is a smooth hypersurfae Dp in S and their union D is anormal rossing divisor. The group Aut(C;x1; : : : xn) ats naturally on the wholesystem.What Deligne, Mumford and Knudsen prove is that there is a moduli stakof stable n-pointed urves of genus g,Mg;n, and that it is projetive, irreduible,de�ned over Spe(Z) and ontains Mg;n as an open-dense subsheme. Notiethat Mg;n is loally given by a universal deformation as above. In partiular,the underlying variety is at the point de�ned by (C;x1; : : : ;xn) isomorphi to thequotient Aut(C;x1; : : : xn)nS. It is lear from this loal piture that the Deligne-Mumford boundary � =Mg;n �Mg;n is a normal rossing divisor (in the senseof staks).The generi points of this divisor parameterize n-pointed urves with a sin-gle singular point. The ase where the urve is irreduible aounts for one suhpoint; the orresponding irreduible omponent of � is usually denoted �0. Oth-erwise the urve is a one-point union of two smooth onneted projetive urves,say of genera g1 and g2 (with g1 + g2 = g, of ourse) with an ensuing deompo-sition of x1; : : : xn given by a partition I1 t I2 of f1; : : : ;ng. If gk = 0, then theorresponding part Ik must ontain at least two elements. The set of unorderedpairs f(g1;I1);(g2;I2)g, subjet to this ondition e�etively indexes the irreduibleomponents 6= �0 of the boundary divisor �.The normal rossing struture of � de�nes a natural deomposition of �into (onneted) strata. In harateristi zero a stratum parameterizes the stablepointed urves of a �xed topologial type. If we remove from an n-pointed urve



28 Carel Faber and Eduard Looijengaits singular points and the n given points, then we get a (possibly disonneted)smooth urve, hene a stratum parameterizes suh urves. This an be expressedin a harateristi free manner and thus it is not diÆult to see that any stratumS is a smooth stak that admits a produt of moduli staks QjMgj ;nj as a �niteover. The losure of S is then overed by QjMgj ;nj .6 Covers of Moduli StaksThe moduli stak Mg;n admits many overings. Any subgroup � of the map-ping lass group �ng of �nite index (more preisely, a onjugay lass of those)de�nes a �nite at morphismM�g;n !Mg;n of staks and then we an take thenormalization M�g;n ! Mg;n of Mg;n in M�g;n. In harateristi zero there isa modular interpretation of M�g;n: it is the moduli spae of smooth projetiven-pointed urves (C;x1; : : : ;xn) of genus g endowed with an isomorphism of thefundamental group of C�fx1; : : : ;xng (relative some base point) with �g;n, givenup an automorphism of �g;n mapping to �. But it is not lear whether suh aninterpretation is possible for its ompletionM�g;n.Subgroups of �ng that are of partiular interest are the so-alled ongruenesubgroups. They are de�ned as follows: let � � �g;n be a normal subgroup of�nite index that is also invariant under every automorphism that preserves thedistinguished onjugay lasses B1; : : : ;Bn (see setion 2). There is an evidenthomomorphism from �ng to the outer automorphism group of the �nite group�g;n=�. Subgroups of �ng that ontain the kernel of suh a homomorphism arealled ongruene subgroups. They are obviously of �nite index. For the ase g =n = 1, this yields the familiar notion of a ongruene subgroup of �11 �= SL(2;Z):this is a subgroup of SL(2;Z) that ontains all the matries in SL(2;Z) ongruentmodulo d to the identity, for some integer d. It is well-known that there existsubgroups of �nite index of SL(2;Z) that are not ongruene subgroups. Ivanovhas raised the question whether the situation is di�erent for the mapping lassgroups �g, g � 2 [47℄.For some time it was not known whether for a suitable hoie of �, thevariety underlying M�g;n is smooth over a given base �eld and this led to thefoundation of an elaborate intersetion theory for smooth staks, needed to de�nethe appropriate Chow groups. It is now known that suh � exist and that we antake � to be a ongruene subgroup (Looijenga [57℄, Pikaart-De Jong [69℄, Boggi-Pikaart [8℄). This means that the stak Mg;n is obtained as the orbit spae ofa smooth variety with respet to a �nite group ation. The kth Chow group ofMg;n, CHk(Mg;n), is then de�nable as the invariant part of the kth Chow groupof this smooth variety. (Here CHk(|) stands for the Chow group in odimensionk de�ned by rational equivalene, tensorized with Q .)



Remarks on Moduli of Curves 297 Tautologial ClassesIf ( ~C; ~x1; : : : ;~xn+1) is a stable (n+1)-pointed urve, then forgetting the last point~xn+1 yields a stable n-pointed urve unless the omponent of ~Creg�f~x1; : : : ;~xn+1gpuntured by ~xn+1 is a thrie puntured P1. But then ontration of the irre-duible omponent of ~C ontaining ~xn+1 produes a stable n-pointed urve. Ineither ase, the result is a morphism from ( ~C; ~x1; : : : ;~xn) onto a stable n-pointedurve (C;x1; : : : ;xn). The image x of ~xn+1 an be any point of C and it is easy tosee that the (n+1)-pointed urve an be reovered up to anonial isomorphismfrom the system (C;x1; : : : ;xn;x).This also works in families, so that we have a forgetful morphismMg;n+1 !Mg;n whih may be thought of as the universal stable n-pointed urve of genusg. It omes in partiular with n disjoint setions s1; : : : ;sn.The funtor that assoiates to every stable n-pointed urve its otangent lineat the ith point (i 2 f1; : : : ;ng) is realized on the universal exampleMg;n as a linebundle (in the sense of staks). This line bundle an be gotten more diretly as thepull-bak of the relative dualizing sheaf !g;n of the universal family � :Mg;n+1 !Mg;n along the ith setion: s�i!g;n. The dependene on n is not entirely obvious.To see this, notie that the morphism ~C ! C above de�nes a homomorphismT �xiC ! T �~xi ~C. This is an isomorphism unless ~xi lies on a omponent that getsontrated. Whih is the ase preisely when ( ~C; ~x1; : : : ;~xn+1) de�nes a point onthe irreduible omponent �i;n+1 of � de�ned by the pair f(g1;I1);(g2;I2)g withg2 = 0 and I2 = f~xi;~xn+1g. So the line bundle ~s�i!g;n+1 onMg;n+1 is the pull-bakof s�i!g;n onMg;n twisted by Pni=1�i;n+1.We an now tell what the basi lasses onMg;n are:(i) the Witten lasses i := 1(s�i!g;n) 2 CH1(Mg;n); i = 1; : : : ;n;(ii) the Mumford lasses (�a la Arbarello-Cornalba [1℄)�r := �!(1(!g;n)r+1) 2 CHr(Mg;n); r = 1;2; : : : ;The tautologial subalgebra R�(Mg;n) of CH�(Mg;n) is de�ned as follows: reallfrom Setion 5 that the losure S of every stratum S is �nitely overed by aprodut Ŝ �=QjMgj ;nj . The basi lasses of the fators generate a subalgebra ofCH�(Ŝ) whose diret image in CH�(Mg;n) we denote by A�(S). Then R�(Mg;n)is de�ned as the algebra generated by the A�(S), where S runs over all thestrata, Mg;n inluded. We use the same terminology (and similar notation) forits restrition R�(Mg;n) to Mg;n. The latter is of ourse already generated bythe  i's and the �r's.



30 Carel Faber and Eduard LooijengaThe tautologial algebras are respeted by the obvious morphisms betweenmoduli staks of pointed urves, suh as the pull-bak and the push-forwardalong the �nite morphisms Ŝ ! Mg;n (with Ŝ as above) and the projetionMg;n+1 !Mg;n. It is possible to haraterize R� in this way as the smallest bi-variant subfuntor of CH� restrited to an appropriate ategory of moduli spaesof pointed urves that ontains the fundamental lasses of the Deligne-Mumfordmoduli staks.8 StabilityIn setion 4 we observed that a mapping lass group and the orresponding modulispae have the same rational ohomology. So any homologial property of �ng hasimmediate relevane forMg;n. Unfortunately, our knowledge of the homology of�ng is still rather limited. A entral result is the stability theorem, due to Harer[42℄, that says that the homology group Hk(�ng ;Z) is independent of g, if g issuÆiently large (aording to Ivanov, g � 2k will do, but probably we maytake g � 32k). A more preise statement says how the isomorphism Hk(�ng ;Z) �=Hk(�ng+1;Z) is de�ned. There is no obvious map between the groups in question,but there is a homologial orrespondene de�ned as follows. Choose a separatingirle Æ � Sg+1 whih splits Sg+1 into a surfae of genus g and a surfae S ofgenus one with the former ontaining the points labeled x1; : : : ;xn, and hoosean orientation preserving homeomorphism of Sg�fxn+1g onto this omponent insuh a way that the points x1; : : : ;xn of Sg retain their name. If �ng+1;S stands forthe group of mapping lasses of Sg+1 relative to S [ fx1; : : : ;xng, then we have anatural monomorphism �ng+1;S ! �ng+1 and a omposite epimorphism �ng+1;S !�n+1g ! �ng . The stability theorem states that these two homomorphisms indueisomorphisms on integral homology in degree k if g is suÆiently large. We anslightly generalize the above onstrution to de�ne a homomorphismHk(�ng ;Z)
Hk0(�n0g0 ;Z)! Hk+k0(�n+n0g+g0 ;Z);provided that g and g0 are suÆiently large: hoose here the separating irle Æon Sg+g0 suh that one piee has genus g with puntures x1; : : : ;xn and the otherhas genus g0 with puntures xn+1; : : : ;xn+m and let the group of mapping lassesof Sg+g0 relative to Æ [ fx1; : : : ;xn+n0g take the role of �ng+1;S.The stable homology of the mapping lass groups f�ng g1g=1 an be real-ized as the homology of a group �n1 that is de�ned in muh the same wayas �ng : replae Sg by a surfae of in�nite genus (but beware that suh sur-faes are not all mutually homeomorphi) and allow only self-homeomorphismsthat are the identity outside a ompat subset. In partiular, we get a prod-ut H�(�1;Z) 
 H�(�1;Z) ! H�(�1;Z). After tensoring with Q , this prod-ut and the standard oprodut on H�(�1;Q) turn H�(�1;Q) into a graded-biommutative Hopf algebra. Of ourse, the same applies to its dual H�(�1;Q).



Remarks on Moduli of Curves 31Aording to a struture theorem suh an algebra is as a graded algebra freelygenerated by its primitive subspae.This onstrution an be imitated in the moduli ontext. Identifying the lastpoint of an (n + 1)-pointed smooth genus g urve with the origin of an elliptiurve produes a stable n-pointed genus g + 1 urve. This de�nes a morphismf : Mg;n+1 �M1;1 ! Mg+1;n whose image is an open subset of a boundarydivisor. This morphism has a normal (line) bundle in the orbifold sense. Let Efbe the omplement of the zero setion of this normal bundle. Although there is noobvious map Ef !Mg+1;n, a tubular neighborhood theorem asserts that thereis a natural homotopy lass of suh maps. So if we hoose p 2M1;1, and let Ef (p)be the restrition of Ef toMg;n+1 �fpg, then we have a well-de�ned homomor-phism Hk(Ef (p);Q) ! Hk(Mg+1;n;Q). On the other hand, projetion induesa homomorphism Hk(Ef (p);Q) ! Hk(Mg;n+1;Q) ! Hk(Mg;n;Q). These twohomomorphisms are the geometri inarnations of the stability maps and henethey are isomorphisms in the stable range. In a similar fashion we get a naturalhomomorphismHk(Mg;n;Q)
Hk0 (Mg0;n0 ;Q) ! Hk+k0(Mg+g0;n+n0 ;Q) (g and g0suÆiently large). An important feature of these homomorphisms is that they arein a sense `motivi': they respet all the extra struture that homology groups ofalgebrai varieties arry, suh as a mixed Hodge struture. In partiular, it followsthat the stable ohomology H�(�n1;Q) has a natural mixed Hodge struture thatis preserved by the oprodut (whih is dual to the produt de�ned above). Itwas shown by Pikaart [68℄ that this mixed Hodge struture is atually not mixedat all: Hk(�n1;Q) is pure of weight k.The tautologial lass �r introdued in 7 is, when regarded as an elementof H2r(Mg;Q), stable for g suÆiently large. It is not hard to prove that theorresponding element of the stable ohomology Hopf algebra is primitive. Miller[60℄ and Morita [61℄ have shown that it is nonzero and so H�(�1;Q) ontainsthe polynomial algebra Q [�1 ;�2;�3; : : : ℄. Mumford wrote in [64℄ that it seemsreasonable to guess that H�(�1;Q) is no bigger than this; this `reasonable guess'now goes under the name of Mumford's onjeture.9 A Proarithmeti Hull of the Mapping Class GroupThe lower entral series of a group � is de�ned indutively by �(0) = � and�(k+1) = (�;�(k)). So �=�(k+1) is a nilpotent group. We take � = �g and notethat the mapping lass group �g ats in �g=�(k+1)g . If �g(k) denotes the imageof this ation, then it is lear that �g(0) = Sp(Vg). It is not hard to see that�g(k + 1) is an extension of �g(k) by a lattie. For k = 0, this lattie turnsout to be just ^3oVg, and as one may expet, the resulting map Tg ! ^3oVgis just the Johnson homomorphism. For higher values k, these latties are notso easy to desribe, but the least one an say is that they are obtained in afuntorial manner from the sympleti lattie Vg. Things simplify a great deal



32 Carel Faber and Eduard Looijengaif we tensor the lattie with C : then it turns out that the resulting vetor spaeis obtained in a funtorial manner from the sympleti vetor spae Vg 
 C (afat that is not obvious a priori). In partiular, the Sp(Vg) ation on this vetorspae is algebrai in the sense that it extends to an ation of the algebrai groupSp(Vg)(C ) = Sp(Vg 
 C ). With indution one an now onstrut a sequene ofextensions of algebrai groups by vetor groups whih ontains �g(0) �g(1) �g(2) : : : as a sequene of arithmeti groups. We now form the `proarithmetihull' of �g, �g ! �g(1) := limk �g(k). This map is injetive, so that we mayregard this as a kind of arithmeti ompletion of �g. We are interested in theindued map on rational ohomology H�(�g(1);Q) ! H�(�g;Q). Results ofBorel imply that the rational ohomology group Hk(�g(1);Q) stabilizes as g !1 in a way that is ompatible with the stabilization maps for Hk(�g;Q). Inpartiular, for g suÆiently large, the image of Hk(�g(1);Q) ! Hk(�g;Q) isindependent of g. Kawazumi-Morita [50℄ and Hain-Looijenga [40℄ proved that thisstable image is preisely the tautologial subalgebra Q [�1 ;�2;�3; : : : ℄. (The stableohomology limg!1H�(�g(1);Q) is however muh bigger.) This indiates thata onstrution of a stable lass not in this algebra must be rather sophistiated. Itwould be interesting to see whether a similar result holds if the entral lower seriesof �g is replaed by the diret system of its �nite index subgroups. (This ompletes�g by the system of its ongruene subgroups; the result is an `adelization' of �g.)10 The Witten ConjetureGiven a positive integer n and an n-tuple of nonnegative integers (k1;k2; : : : ;kn),then for every genus g we an form the integralZMg;n  k11 � � � knn :This is of ourse zero unlessPi ki = 3g�3+n and if that equality is satis�ed, wean regard it as an intersetion number of tautologial lasses. Suh a number neednot be integral though, beauseMg;n is not smooth. For instane, RM1;1  1 = 124 .Witten [73℄ stated in 1989 a onjeture that predited their values. He phrasedhis onjeture in terms of a generating funtion. In this ontext, the basi lassesare the multiples (2k + 1)!! ki (where the double fatorial stands for the produtof the odd positive integers � its argument) and therefore we �nd it onvenientto introdue the Witten numbers[�k1 � � � �kn ℄g := (2k1 + 1)!! � � � (2kn + 1)!!ZMg;n  k11 � � � knn :It is lear that this number is invariant under permutation of the indies. ThesuÆx g is redundant, in the sense that the number an be nonzero for only onepossible value of g. But we keep it so that we an de�ne



Remarks on Moduli of Curves 33Fg :=Xn 1n! Xk1;:::;kn[�k1 � � � �kn ℄gtk1tk2 � � � tkn 2 Q [[t0 ;t1;t2; : : : ℄℄:This is a symmetri funtion in its variables. Note that if we give ti degree i �1, then Fg is homogeneous of degree 3(g � 1). We shall not state the originalonjeture (that says that Z := exp(Pg Fg) 2 Q [[t0 ;t1;t2; : : : ℄℄ satis�es a ertainKdV-hierarhy), but give an equivalent onjeture, due to Dijkgraaf-Verlinde-Verlinde, instead. It says that Z satis�es a ertain system of di�erential equations(known as the Virasoro relations). In terms of the individual Fg's these amountto: �Fg�t0 =Xm�1(2m+ 1)tm �Fg�tm�1 + 12Æ0;gt20; (`�1)�Fg�t1 =Xm�0(2m+ 1)tm �Fg�tm + 18Æ1;g; (`0)�Fg�tk+1 =Xm�0(2m+ 1)tm �Fg�tm+k + 12 Xm0+m00=k�1 � �2Fg�1�tm0�tm00 (`k�1)+ Xg0+g00=g �Fg0�tm0 �Fg00�tm00 �:The last term of (`�1) resp. (`0) omes from [�30 ℄0 = 1 resp. [�1℄1 = 18 . By ompar-ing oeÆients we obtain a set of relations among the Witten numbers that allowsus to alulate them reursively: equation (`k) gives [�k1 � � � �kn�k+1℄g in terms ofWitten numbers involving smaller (g;n) (for the lexiographial ordering). No-tie that the �rst two equations involve eah Fg alone. They give [�k1 � � � �kn�0℄gand [�k1 � � � �kn�1℄g in terms of Witten numbers onMg;n. These relations an beeasily aounted for by means of simple intersetion alulus. For k � 1, equa-tion (`k) expresses [�k1 � � � �kn�k+1℄g in terms of Witten numbers ofMg;n and itsboundary divisors (i.e., ofMg�1;n+2 andMg0;n0+1 �Mg00;n00+1 with g0 + g00 = gand n0 + n00 = n). These equations have been proved by Kontsevih [53℄, usinga ombinatorial substitute for the varietiesMg;n. It is desirable to �nd a purelyalgebro-geometri proof of these identities, beause suh a proof has a fair haneof generalizing to Gromov-Witten invariants (unlike the ombinatorial approah).11 Complete Subvarieties of Moduli SpaesThe moduli spaesMg;n are not projetive, with the exeption of the pointM0;3.This seems intuitively lear; one an dedue it from the fat that the boundary�Mg;n =Mg;n �Mg;n in the Deligne-Mumford ompati�ation is non-empty.It is lear that the moduli spaes M0;n and M1;n are all aÆne. To see thisin a uniform way, note that the ample divisor �1 = 12�1 � Æ +  an be writtenas a sum of boundary divisors in these ases, f. [9, 73℄.



34 Carel Faber and Eduard LooijengaLet therefore g � 2; we �rst onsider the ase n = 0. It is well-known thatM2 is aÆne; more generally, the moduli spaes Hg of hyperellipti urves of genusg are aÆne. In harateristi 6= 2, we an see this by writing a hyperellipti urveas a double over of P1 branhed in 2g+2 distint points; a desription of Hg asthe quotient of the omplement of a hypersurfae in A 2g�1 by the ation of thesymmetri group S2g+2 results. In harateristi 2 one obtains the result startingwith the observation that every hyperellipti urve of genus g an be written inthe formy2+(1+a1x+a2x2+� � �+agxg)y = x2g+1+bg�1x2g�1+bg�2x2g�3+� � �+b2x5+b1x3:Igusa [46℄ has given a desription ofM2 over Z; in partiular, in harateristis6= 2;5 it is the quotient of A 3 by a diagonal ation of Z=5Z with a unique �xedpoint.For all g � 3, the moduli spae Mg is not aÆne; a well-known onsequeneof the existene of the Satake ompati�ation ofMg in whih the boundary hasodimension two. In partiular there exist omplete urves passing through any�nite number of points ofMg.Suh omplete urves are not expliit, however. So for some time the problemof onstruting expliit omplete urves was studied. A nie solution to this prob-lem was found by Gonz�alez-D��ez and Harvey [38℄. For all g � 4, they onstrutexpliit omplete urves in Mg in the following way. Take a genus 2 urve Cmapping onto an ellipti urve E. Let a be a point of E di�erent from the origin.The inverse image in C�C of the translated diagonal �a = f(e;e+a) : e 2 Eg isa omplete urve of pairs of distint points. By going over to a �nite over of thisurve, we obtain a omplete urve of pairs of distint points of C together witha square root of the orresponding divisor lass of degree 2. That determines aomplete urve of double overs of C rami�ed in two distint points: a ompleteone-dimensional family of smooth urves of genus 4. One heks that these urvesvary in moduli and obtains a omplete urve inM4. Similarly, one �nds ompleteurves in Mg: start with a translate of the diagonal embedding of E in E2g�6that avoids all diagonals, take its inverse image in C2g�6, and form a family ofdouble overs of C rami�ed in 2g � 6 points.In genus 3, this onstrution doesn't work. The genus 3 problem was solved byZaal. Starting with a omplete family of urves of genus 4 with a nonzero point oforder two in the Jaobian, one obtains a omplete family of 3-dimensional Prymvarieties. Zaal showed that suitable hoies guarantee that all these Pryms areJaobians of smooth urves [74℄. (For a very di�erent solution, see part II of [38℄.)What about omplete subvarieties of Mg of higher dimension? We annotuse the Satake ompati�ation (it appears); almost all results rely on a variant ofthe lassial Kodaira onstrution. Kodaira observed that one may onstrut anexpliit omplete urve inM6 by starting with a genus 3 urve C that is a doubleunrami�ed over of a genus 2 urve. This gives a omplete urve of pairs of distintpoints of C; one proeeds as above and obtains the result. The onstrution anbe repeated, sine one �nds in fat a omplete one-dimensional family of urves



Remarks on Moduli of Curves 35of genus 6 with a pair of distint points, the rami�ation points oming from thedouble over of C. The monodromy problems arising in the hoie of a square rootan always be resolved, so this leads to a omplete surfae in M12, a ompletethreefold inM24, et. This an be improved upon by starting with the ompleteurve in M4 of [38℄: one �nds a omplete surfae in M8, a omplete threefoldinM16, et. Another variant is to use triple overs rami�ed in one point: if theovered urve has genus h, the over has genus 3h�1. Asymptotially this doesn'tlead to better results, but sine one an start with a omplete urve inM3, oneobtains another onstrution of a omplete surfae inM8.A new development ours here through the reent work of Zaal [75℄. Usingthe important work of Keel [51℄, Zaal onstruts in harateristi p > 0 a ompletesurfae inM3;2. (At the moment it is not lear yet whether it is also possible to dothis in harateristi 0.) This leads to a omplete surfae inM6 in harateristip > 2 via double overs. One also �nds a omplete threefold inM12, et.Observe that all known omplete subvarieties ofMg of dimension > 1 lie inthe lous of urves that admit a map onto a urve of lower (but positive) genus.(Every omponent of this lous has odimension � g�1.) In partiular, we don'tknow whether a omplete surfae inMg ould ontain a general point. Perhapsit is more important to study omplete subvarieties passing through a generalpoint than arbitrary ones, f. [45℄, p. 55. In [65℄ Niorestianu shows that the baseof a omplete, generially non-degenerate 2-dimensional family of smooth urves(of genus g � 4) is neessarily a surfae of general type (in harateristi 0).A elebrated result is Diaz's upper bound g�2 for the dimension of a ompletesubvariety ofMg, see [15℄. Looijenga's result on the tautologial ring ofMg givesa di�erent proof, valid also in positive harateristi [58℄. Note that this boundis known to be sharp only for g = 2 and 3; sine we don't know whether M4ontains a omplete surfae, it might be argued that we don't understand urvesof genus 4.The lass �g�g�1 in the Chow ring ofMg vanishes on the boundaryMg�Mg([23℄, see also [24℄). Therefore it (or a positive multiple of it) is a andidate forthe lass of a omplete subvariety ofMg of dimension g � 2, if that exists. Onemight also phrase the existene of this lass as the absene of an intersetion-theoretial obstrution for the existene of a omplete subvariety of dimensiong � 2. Compare the disussion in [40℄, x5. In genus 4 the lass �4�3 probablyis the only andidate in ohomology for the lass of a omplete surfae. Thiswould follow from the alulation of the odimension 2 Chow group ofM4 [22℄ ifH4(M4) is generated by tautologial lasses (f. [2℄, disussed in setion 12, and[18℄, where Edidin shows that H4(Mg) is generated by tautologial lasses in thestable range). In [24℄ it is pointed out that the struture of the tautologial ringof Mg (known for g � 15) suggests that there are no onstraints on ompletesubvarieties of dimension � g=3, while there are many onstraints on ompletesubvarieties of dimension g � 2; so that it might be a better idea to look for theformer rather than the latter. Zaal's onstrution of omplete surfaes inM6 inharateristi p > 2 might be onsidered as evidene for this idea. (On p. 57 of



36 Carel Faber and Eduard Looijenga[45℄ it is stated that the maximal dimension of a omplete subvariety ofM6 (overC ) is known to be at least 2, but this appears to be a typo.)Diaz's original motivation [16℄ for �nding an upper bound for the dimensionof a omplete subvariety ofMg was the impliation that a family of urves whoseimage in moduli has larger dimension, neessarily degenerates|for many typesof questions, this knowledge an be of great help. In the same spirit, he showsthat a omplete subvariety of Mg of dimension � 2g � 2 neessarily meets �0,the divisor of irreduible singular urves and their degenerations ([16℄, p. 80,Corollary; 2g � 2 is ertainly what is intended). In other words, one has theupper bound 2g � 3 for the dimension of a omplete subvariety of the modulispae fMg =Mg��0 of urves of ompat type. This bound is a diret orollaryof the bound for Mg, hene it holds in all harateristis as well. The surpriseis that in positive harateristi the bound 2g � 3 for fMg is known to be sharp.One obtains this result from a onsideration of the lous V0(Mg) = V0(fMg) ofstable urves with p-rank 0. In [26℄ it is shown that it is pure of odimension g.The role that the lass �g�g�1 played in relation to Mg is now played by �g: itvanishes on �0 and has the right odimension. Van der Geer [28℄ (this volume)expliitly determined the lass of V0(Ag); it is a multiple of �g, hene the sameholds for the lass of V0(fMg).The fat that the bound 2g � 3 for fMg is sharp in positive harateristi(more preisely, that the known maximal omplete subvariety of fMg ours onlyin harateristi p > 0) as well as Keel's result [51℄ that the relative dualizing sheafofMg;1 overMg is semi-ample in positive harateristi, but not in harateristi0, lead to the idea that the maximal dimension of a omplete subvariety of Mgor of fMg or of Ag may well depend on the harateristi. This is poignantlyexpressed by a onjeture of Oort (onjeture 2.3 G in [66℄) that A3 over C doesnot ontain a omplete threefold.Equivalently, fM3 over C would not ontain a omplete threefold. Even theanswer to the following question appears to be unknown (f. [65℄ for g = 3):Question 11.1. Does the moduli spae eHg 
 C of omplex hyperellipti urves ofompat type of genus g � 3 ontain a omplete surfae?It is easy to see that it ontains a omplete urve. The existene of a ompletesurfae in eH3
C is a neessary ondition for the existene of a omplete threefoldin fM3
C . The question an be formulated in terms of genus 0 urves, so it shouldbe more approahable.Finally a brief disussion ofMg;n in ase n > 0 (and g � 2). There are obviousrelations to the ase n = 0, for di�erent values of the genus. As mentioned above,M3;2 ontains a omplete surfae in positive harateristi [75℄, while this is notknown in harateristi 0. (The onstrution of the omplete surfae works forall g � 3.) Sine the projetionMg;1 !Mg is projetive, while the projetionsMg;n !Mg;1 are aÆne, the Diaz-bound forMg;1 is g�1, while for n > 1 it is atmost g�1. The only existene result we know is thatMg;n is never aÆne for n > 0and g � 2. For n > 1 there are �bers ofMg;n over Mg that ontain a omplete



Remarks on Moduli of Curves 37urve: take a urve C of genus g mapping onto an ellipti urve E, and proeedas in [38℄, disussed above. Note also that C � C �� always ontains ompleteurves: the di�erene map (p;q) 7! p � q to the surfae C � C in the jaobianontrats the diagonal (Van Geemen). The following question seems relevant:Question 11.2. For whih smooth urves C of genus g � 2 does the omplementin C � C � C of all diagonals ontain a omplete urve?We end with a onjeture:Conjeture 11.3. (Looijenga) Mg an be overed with g � 1 aÆne opens.Harer's bound 4g � 5 for the ohomologial dimension of Mg [43℄ would beone of several onsequenes of this result.12 Intersetion TheoryHere we disuss some of the developments regarding the Chow, tautologial, andohomology rings of the moduli spaes Mg;n and Mg;n sine the survey [40℄was written. Those diretly related to Gromov-Witten theory will be reviewed insetion 13.A great deal of progress has been made in genus 1. Getzler [30, 31, 32℄ hasalulated the Sn-equivariant Serre polynomials of M1;n and M1;n. Hene theSn-representations Hp;q(M1;n) are known. In partiular, H0;11(M1;11) is one-dimensional, whih was known before via Eihler-Shimura theory, f. [13, 70,71℄; the representation is the alternating one. (The orresponding 2-dimensionalHodge struture of weight 11 is assoiated to the disriminant usp form �.) Itfollows thatM1;n is not unirational for all n � 11. With a beautiful onstrution,Belorousski [5℄ has shown thatM1;10 is rational, so thatM1;n is unirational forall n � 10. In fat, using analogous onstrutions he shows that the Chow ring ofM1;n (with Q-oeÆients as always) is generated by boundary yles for n � 10.By indution this implies that the Chow ring ofM1;n equals the tautologial ringfor n � 10. This annot hold (over C ) for any n � 11 by (a suitable extension of)Jannsen's result ([48℄, Thm. 3.6, Rem. 3.11).A ruial ase is n = 4. Getzler's alulation implies that the S4-invariant partof H4(M1;4) is 7-dimensional. But there are 9 invariant boundary yles, withonly one WDVV-relation (i.e., oming fromM0;4) between them. Hene there ishere a new, genus 1, relation. Getzler omputes it in [33℄. (He also announes therea proof that the even-dimensional homology of M1;n is spanned by boundaryyles, and that all relations among these yles ome from this genus 1 relationand the genus 0 relations.) In [67℄, Pandharipande uses the Hurwitz sheme toonstrut Getzler's relation algebraially, and Belorousski uses this to analyze theChow rings ofM1;n for low n in detail. E.g., he shows that the tautologial ring (orequivalently, the ring generated by boundary yles) is multipliatively generatedby divisors for n � 5, while for n � 6 it is generated in odimensions one and two.



38 Carel Faber and Eduard LooijengaFor n � 5, he also obtains expliit presentations of A�(M1;n). Returning to n = 4,by identifying the 4 points in 2 pairs, one obtains a mapM1;4 !M3. Getzler'srelation pushes forward to a relation in A4(M3). Belorousski and Pandharipandeveri�ed that the obtained relation equals (modulo genus 0 relations) the non-trivial relation found in [21℄, Lemma 4.4, from assoiativity(!) onsiderations.1In genus 2, far less is known. Mumford [64℄ determined the Chow ring ofM2,and it is not hard to determineA�(M2;1) from his results. The Chow, tautologial,and ohomology rings oinide here. With a deliate alulation using lots ofingredients, Getzler [34℄ omputes the Sn-equivariant Serre polynomials ofM2;nfor n = 2 and 3. He also omputes the ohomology ring H�(M2;2) and announesthe result for n = 3. In partiular, h4(M2;3) = 44. This result is the starting pointfor [6℄. As Belorousski and Pandharipande point out, there are 47 desendentstratum lasses in A2(M2;3). (It is not hard to see that Getzler's topologialreursion relations [34℄ are algebrai, so these 47 lasses span R2(M2;3).) Exatly2 relations ome from genus 0, none from genus 1, so there must exist a new,genus 2 relation in homology. Belorousski and Pandharipande onstrut suh arelation algebraially using admissible double overs. Bini, GaiÆ and Polito [7℄have omputed the generating funtion for the Euler harateristi ofM2;n.If one believes the onjeture [24℄ (this volume) that the tautologial ringR�(Mg) satis�es Poinar�e duality, then it is quite reasonable to believe that thesame holds for R�(fMg), espeially beause of the role that the lasses �g�g�1resp. �g play in these ases (f. x11 and [40℄). These lasses also tell us whatin this respet the orret moduli spaes of pointed urves should be: Mg;n =��1(Mg) �Mg;n resp. fMg;n. The �rst thing to observe is that the tautologialrings of these spaes are one-dimensional in odimension g�2+n resp. 2g�3+nand vanish in higher odimensions (this follows quite easily from [58℄ and [23℄,f. [40℄, p. 108). The assumption that the tautologial rings of these moduli spaessatisfy Poinar�e duality an be used to predit (but not prove) relations of thetype we saw above forM1;4 andM2;3. (Both for fM1;4 = M1;4 and for M2;3 theSn-invariant part of R1 is 3-dimensional, while there are 4 invariant generatorsin degree 2, whih is assumed to be dual to degree 1.)In their reent paper [2℄, Arbarello and Cornalba show how one an in prin-iple ompute the low degree ohomology groups Hk(Mg;n) for k �xed and arbi-trary g and n. Their elegant method proeeds as follows. If the boundary divisor�Mg;n were ample, Hk(Mg;n) would injet for low k into Hk(�Mg;n). It hardlyever is ample, but Harer's alulation [43℄ of the virtual ohomologial dimen-sion of Mg;n implies that Hk(Mg;n) ! Hk(�Mg;n) is injetive for k � d(g;n)(where d(g;n) = 2g � 3 + n for g;n > 0, while d(g;0) = d(g;1) = 2g � 2 andd(0;n) = n� 4). Mixed Hodge theory shows that the map Hk(Mg;n) ! Hk(N)1 While doing the alulation, they disovered that some of the genus 0 relations in [21℄ arestated inorretly. The orret relations are [(7)℄ = 3[(6)℄ and Æ1[(e)℄Q = [(6)℄Q = 23 [(7)℄Q inodimension 4 and [()℄ + [(e)℄ = 2[(d)℄, [()℄ = 3[(b)℄, Æ1[(2)℄Q = [(b)℄Q = 43 [()℄Q = Æ0[(6)℄Q,�[(6)℄Q = 19 [()℄Q, Æ1[(6)℄Q = � 19 [()℄Q � 23 [(f)℄Q in odimension 5 (f. Thm. 3.1, p. 385,p. 400, Lemma 4.5, p. 403, Table 8).



Remarks on Moduli of Curves 39is then injetive as well, where N is the normalization of �Mg;n. Now one usesthe struture of N and a double indution on g and n to ompute some of thelow degree ohomology groups. E.g., for odd k, if one shows Hk(Mg;n) = 0 forall (g;n) with d(g;n) < k, then Hk(Mg;n) = 0 for all (g;n). So the proof thatH1(Mg;n) = 0 is redued to heking it for the point M0;3 and the projetivelinesM0;4 andM1;1! By heking more seed ases, Arbarello and Cornalba provethat H3(Mg;n) and H5(Mg;n) vanish for all (g;n) (this uses results of Getzlerand Looijenga).For low even k, one would like to show that Hk(Mg;n) is generated by tau-tologial lasses. At present this is known for k = 2. Arguing by indution, oneassumes that H2(Mh;m) is tautologial for the moduli spaesMh;m appearing in�Mg;n. Writing N =`iXi, one knows that f = �ifi : H2(Mg;n)! �iH2(Xi) isinjetive when d(g;n) � 2. Now on the one hand one knows exatly what happensto the tautologial lasses under f , whih provides a lower bound for Im(f). Buton the other hand, any olletion of lasses (fi(�))i 2 �iH2(Xi) satis�es obviousompatibility relations on the \intersetions" of the Xi. Sine by the indutionhypothesis the H2(Xi) are tautologial, the upper bound for Im(f) that this givesan be desribed exatly. The beautiful idea is that the lower and upper boundoinide, essentially. The low genus ases have to be treated arefully beause thetautologial lasses are not independent. In this way one obtains a di�erent proofof Harer's result [41℄ that H2(Mg;n) is tautologial.13 Stable Maps and the Virasoro ConjetureA general method to de�ne invariants of a spae X, that was developed throughthe work of Donaldson, Gromov, Witten, Kontsevih, and many others, is to on-sider an auxiliary spae, e.g., a spae of maps of urves to X, and then to omputea (well-de�ned) \natural" integral on that auxiliary spae. In algebrai geometry,a breakthrough ourred through Kontsevih's onstrution of the spae of stablemaps. In this setion, we briey review the basi de�nitions and formulate someof the most important results. Then we disuss the Virasoro onjeture. We willshow how this theory has reperussions for the study of Mg;n itself|somewhatontrary to its original motivation.Let X be a nonsingular omplex projetive variety, and let � be a lass inH2(X;Z). One an onsider the moduli stak Mg;n(X;�) lassifying n-pointedsmooth urves of genus g with a map f : C ! X satisfying f�([C℄) = �. Theexpeted dimension of this stak is3g � 3 + n+ �(f�TX) = 3g � 3 + n+ (dimX)(1 � g)�KX � �:One seeks to ompatify this spae in a natural way; as Kontsevih [54℄ showed,this an be done using stable maps. A map f : C ! X from a redued, onneted,nodal, n-pointed urve C of genus g to X, with f�([C℄) = �, is stable if eah



40 Carel Faber and Eduard Looijenganonsingular rational omponent of C that is mapped to a point ontains at leastthree speial (nodal or marked) points, and eah omponent of genus 1 that ismapped to a point ontains at least one speial point. (Equivalently, the map has�nitely many automorphisms.)Fulton and Pandharipande [27℄ explain in detail how a projetive oarsemoduli spaeMg;n(X;�) of stable maps an be onstruted. When X is a point(hene � = 0), one reovers the Deligne-Mumford-Knudsen moduli spaeMg;n ofstable n-pointed urves of genus g. In general, however,Mg;n(X;�) is reduible,singular, nonredued, and has omponents whose dimension is not the expetedone. That one an nevertheless do intersetion theory on this spae is somethingof a mirale; it is possible thanks to the onstrution of the virtual fundamentallass [56, 4, 3℄. This yle [Mg;n(X;�)℄vir lives in the expeted dimension andsatis�es the axioms of Gromov-Witten theory given by Kontsevih and Manin.Natural ohomology lasses onMg;n(X;�) arise in two ways. Via the n eval-uation morphisms ei : Mg;n(X;�) ! X sending a stable map to the image ofthe i-th marked point, one an pull bak ohomology lasses from X. (Fix anadditive homogeneous basis 1 = T0;T1; : : : ;Tm of H�(X) 
 Q .) One also has the�rst Chern lasses of the n otangent line bundles Li = s�i!U=M , where U is theuniversal urve and si the setion orresponding to the i-th marked point. De�nelasses � jk = � jk(i) = e�i (Tj) [ 1(Li)k :Gromov-Witten invariants, and their desendents (i.e., � jk with k > 0 our), arede�ned in the algebrai ontext by integrating these lasses against the virtualfundamental lass:h� j1k1 � � � � jnknig;n;� = h� j1k1 (1) � � � � jnkn(n)ig;n;� := Z[Mg;n(X;�)℄vir nYi=1 � jiki(i)(some are is required when X has odd-dimensional ohomology lasses). Moregenerally, one has the Gromov-Witten lasses (or \full system of Gromov-Witteninvariants"):I�g;n(Tj1 ; : : : ;Tjn) = ��([Mg;n(X;�)℄vir \ e�1(Tj1) \ � � � \ e�n(Tjn)) 2 H�(Mg;n;Q)with � :Mg;n(X;�)!Mg;n the forgetful map (2g � 2 + n > 0).There are several ways to produe relations between Gromov-Witten invari-ants:a. Under the natural map � : Mg;n+1(X;�) ! Mg;n(X;�) the virtual fun-damental lass pulls bak to the virtual fundamental lass. Also, 1(Li) =��1(Li) + �i;n+1, where �i;n+1 is the divisor `where the i-th and (n + 1)-st point have ome together'. This leads to generalized string and dilatonequations, expressing GW invariants involving a �00 resp. a �01 in terms ofsimpler GW invariants, and a divisor equation, for GW invariants involvinga �D0 , where D is a divisor lass.



Remarks on Moduli of Curves 41b. Relations between the lasses of the strata (and their desendents) ourringin the topologial strati�ation ofMg;n yield relations between GW invari-ants, via the `splitting axiom'. Examples of suh relations were given insetion 12. One also has the so-alled topologial reursion relations (TRR)that in genus 0 and 1 express the lass of a otangent line in boundary divi-sor lasses. In higher genus, this is not possible. Getzler [34℄ onjetures thatmonomials of degree g in otangent line lasses an be expressed in terms ofboundary lasses, and proves this (expliitly) for genus 2.. In aseX admits a torus ation satisfying ertain onditions, one an attemptto ompute GW invariants using Bott loalization. Ellingsrud and Str�mme[20℄ introdued Bott's formula to enumerative geometry. Subsequently Kont-sevih [54℄ used loalization to ompute GW invariants in genus 0. In highergenus, one needs a loalization formula for the virtual fundamental lass;this was aomplished by Graber and Pandharipande [39℄. One should notethat the use of this method is not restrited to the alulation of GW in-variants on X with a torus ation: ertain GW invariants an be expressedin terms of an ambient projetive spae. Compare the work of Kontsevih[54℄ expressing the number of rational urves on a quinti threefold as a sumover trees|the �rst step in Givental's solution [37℄ of the mirror onjeture.We end with the Virasoro onjeture of Eguhi, Hori and Xiong [19℄. A proofof it will lead to a wealth of relations between GW invariants and their desen-dents (although the extent to whih it determines all suh invariants is not learat the moment). Just as in setion 10, one organizes the GW invariants and theirdesendents for a �xed X into a generating funtion, the so-alled full gravita-tional potential funtion. Eguhi, Hori and Xiong onjeture that its exponentialis annihilated by ertain formal di�erential operators that form a representa-tion of the aÆne Virasoro algebra. (The initial form of the onjeture was for Xwith only (p;p) ohomology; the extension to general X is due to Katz. See, e.g.,[11, 36℄.) There is onsiderable evidene for the Virasoro onjeture, but we willnot disuss this here (see e.g. [35℄). Instead, we mention the work of Getzler andPandharipande [36℄ who investigate the impliations of the Virasoro onjeturein the ase � = 0. There is a natural isomorphismMg;n(X;0) =Mg;n�X underwhih the virtual fundamental lass is identi�ed with the top Chern lass of theexterior tensor produt of the dual of the Hodge bundle onMg;n and the tangentbundle of X. Getzler and Pandharipande show that for X = P2 this ase of theVirasoro onjeture implies the onjetured proportionality formulas [24℄ (thisvolume) for the tautologial ring ofMg, while for X = P1 it implies the beautifulidentities ZMg;n �g nYi=1  aii = � 2g � 3 + na1 a2 � � � an� ZMg;1 �g 2g�21for ai with sum 2g�3+n. In [25℄ the integral on the right side is omputed usingvirtual loalization [39℄ and more lassial tehniques.
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