

Random network models and routing on weighted networks

Remco van der Hofstad

Mathematics and Neuroscience: A Dialogue, September 3-5, 2013

G. Hooghiemstra, P. Van Mieghem (Delft)

S. Bhamidi (North Carolina).

Complex networks

Yeast protein interaction network

Internet topology in 2001

Scale-free paradigm

Loglog plot of degree sequences in Internet Movie Data Base (2007) and in the AS graph (FFF97)

Small-world paradigm

Distances in social networks gay.eu on December 2008 and livejournal in 2007.

Network statistics I

> Clustering:

$$C = \frac{3 \times \text{ number of triangles}}{\text{number of connected triplets}}.$$

Proportion of friends that are friends of one another.

> Assortativity:

$$\rho = \frac{\frac{1}{|E_n|} \sum_{ij \in E_n} d_i d_j - \left(\frac{1}{|E_n|} \sum_{ij \in E_n} d_i\right)^2}{\frac{1}{|E_n|} \sum_{ij \in E_n} d_i^2 - \left(\frac{1}{|E_n|} \sum_{ij \in E_n} d_i\right)^2}.$$

Correlation between degrees at either end of edge.

[Recent work vdH-Litvak (2013): assortivity coefficient flawed. Proposes rank correlations instead.]

Network statistics II

> Closeness centrality:

$$\ell_i = \frac{1}{n} \sum_{j \in [n]} \operatorname{dist}(i, j).$$

Vertices with low closeness centrality are central in network.

$$b_i = \frac{1}{n^2} \sum_{s,t \in [n]} \frac{n_{st}^i}{n_{st}},$$

where n_{st} is number of shortest paths between s,t, and n_{st}^i is number of shortest paths between s,t that pass through i. Betweenness large for bottlenecks.

Modeling complex networks

Use random graphs to model uncertainty in how connections between elements are formed.

Two settings:

> Static models:

Graph has fixed number of elements.

> Dynamic models:

Graph has evolving number of elements.

Universality??

Configuration model

▷ Invented by Bollobás (1980), EJC: 441 cit. (19-5-2013) to study number of graphs with given degree sequence. Inspired by Bender+Canfield (1978), JCT(A): 493 cit. (19-5-2013) Giant component: Molloy, Reed (1995), RSA: 1208 cit. (19-5-2013) Popularized by Newman, Strogatz, Watts (2001), Psys. Rev. E: 2074 cit. (19-5-2013).

 $\triangleright n$ number of vertices;

 $ightharpoonup d = (d_1, d_2, \dots, d_n)$ sequence of degrees.

Often take $(d_i)_{i \in [n]}$ to be sequence of independent and identically distributed (i.i.d.) random variables with certain distribution.

 \triangleright Special attention to power-law degrees, i.e., for $\tau > 1$ and c_{τ}

$$\mathbb{P}(D_1 \ge k) = c_{\tau} k^{-\tau + 1} (1 + o(1)).$$

Configuration model: graph construction

 \triangleright Assign d_i half-edges to vertex j. Asume total degree

$$\ell_n = \sum_{i \in [n]} d_i$$

is even.

> Pair half-edges to create edges as follows:

Number half-edges from 1 to ℓ_n in any order.

First connect first half-edge at random with one of other $\ell_n - 1$ half-edges.

- Continue with second half-edge (when not connected to first) and so on, until all half-edges are connected.
- \triangleright Resulting graph is denoted by $CM_n(\boldsymbol{d})$.

Graph distances in CM

 H_n is graph distance between uniform pair of vertices in graph.

Theorem 1. (vdHHVM03). When $\nu = \mathbb{E}[D(D-1)]/\mathbb{E}[D] \in (1,\infty)$ and $\mathbb{E}[D_n^2] \to \mathbb{E}[D^2]$, conditionally on $H_n < \infty$,

$$\frac{H_n}{\log_n n} \stackrel{\mathbb{P}}{\longrightarrow} 1.$$

For i.i.d. degrees having power-law tails, fluctuations are bounded.

Theorem 2. (vdHHZ07, Norros+Reittu 04). When $\tau \in (2,3)$, conditionally on $H_n < \infty$,

$$\frac{H_n}{\log\log n} \xrightarrow{\mathbb{P}} \frac{2}{|\log(\tau - 2)|}.$$

For i.i.d. degrees having power-law tails, fluctuations are bounded.

$x \mapsto \log \log x$ grows extremely slowly

Plot of $x \mapsto \log x$ and $x \mapsto \log \log x$.

Preferential attachment models

Albert-Barabási (1999):

Emergence of scaling in random networks (Science).

16850 cit. (19-5-2013).

Bollobás, Riordan, Spencer, Tusnády (2001):

The degree sequence of a scale-free random graph process (RSA) 506 cit. (19-5-2013).

[In fact, Yule 25 and Simon 55 already introduced similar models.]

In preferential attachment models, network is growing in time, in such a way that new vertices are more likely to be connected to vertices that already have high degree.

Rich-get-richer model.

Preferential attachment models

At time n, single vertex is added with m edges emanating from it. Probability that edge connects to i^{th} vertex is proportional to

$$D_i(n-1)+\delta$$
,

where $D_i(n)$ is degree vertex i at time $n, \delta > -m$ is parameter.

Yields power-law degree sequence with exponent $\tau = 3 + \delta/m > 2.$

BRST01 $\delta = 0$, DvdEvdHH09,...

$$m = 2, \delta = 0, \tau = 3, n = 10^6$$

Distances PA models

Theorem 3 (Bol-Rio 04). For all $m \geq 2$ and $\tau = 3$,

$$H_n = \frac{\log n}{\log \log n} (1 + o_{\mathbb{P}}(1)).$$

Theorem 4 (Dommers-vdH-Hoo 10). For all $m \geq 2$ and $\tau \in (3, \infty)$,

$$H_n = \Theta(\log n).$$

Theorem 5 (Dommers-vdH-Hoo 10, DerMonMor 11). For all $m \ge 2$ and $\tau \in (2,3)$,

$$\frac{H_n}{\log\log n} \xrightarrow{\mathbb{P}} \frac{4}{|\log(\tau - 2)|}.$$

Network modeling mayhem

Models:

- > Configuration Model
- > Inhomogeneous Random Graphs
- > Preferential Attachment Model

What is bad about these models?

- No communities (unlike collaboration networks and WWW);
- No attributes (geometry, gender,...);

Models are caricature of reality!

Network models I

> Small-world model:

Start with d-dimensional torus (=circle d = 1, donut d = 2, etc).

Put in nearest-neighbor edges. Add few edges between uniform vertices, either by rewiring or by simply adding.

Result: Spatial random graph with high clustering, but degree distribution with thin tails.

Application: None?

> Configuration model with clustering:

Input per vertex i is number of simple edges, number of triangles, number of squares, etc. Then connect uniformly at random.

Result: Random graph with (roughly) specified degree, triangle, square, etc distribution over graph.

Application: Social networks?

Network models II

> Random intersection graph:

Specify collection of groups. Vertices choose group memberships. Put edge between any pairs of vertices in same group.

Result: Flexible collection of random graphs, with high clustering, communities by groups, tunable degree distribution.

Application: Collaboration graphs?

> Spatial preferential attachment model:

First give vertex uniform location. Let it connect to close by vertices with probability proportionally to degree.

Result: Spatial random graph with scale-free degrees and high clustering.

Application: Social networks, WWW?

Network models III

> Scale-free percolation:

Vertex set \mathbb{Z}^d . Each vertex x has a weight W_x , which form a collection of independent and identically distributed random variables.

Put edge between x and y with probability, conditionally on weights, equal to

$$p_{xy} = 1 - e^{-W_x W_y / \|x - y\|^{\alpha}},$$

where $\alpha > 0$ is parameter model.

Result: Spatial random graph with scale-free degrees when weights obey power-law, high clustering and small-world.

Application: Social networks, WWW, brain?

Distances other models

Similar results (though often weaker) proved for related models:

- > Scale-free percolation.

Full extent of universality paradigm still unclear.

Work in progress!

Weighted graphs

 \triangleright Time delay experienced by vertices in network is given by hop-count H_n , which is number of edges on shortest-weight path.

How does weight structure influence hopcount and weight SWP?

> Assume that

edge weights are i.i.d. random variables.

Graph distances: weights = 1.

Setting

> Central objects of study:

 C_n is smallest-weight two uniform connected vertices, i.e.,

$$C_n = \min_{\pi \colon V_1 \to V_2} \sum_{e \in \pi} X_e,$$

where X_e is edge-weight of edge $e, V_1, V_2 \in [n]$ chosen uniformly. Hopcount H_n is number of edges in smallest-weight path $|\pi^*|$, where π^* is unique minimizing path.

- \triangleright Restrict ourselves to complete graph K_n or configuration model, weights are i.i.d. with continuous distribution.
- > Problem on complete graph received tremendous attention in theoretical physics community in works by Havlin, Braunstein, Stanley, et al.

Weighted sparse random graph

 H_n number of edges in shortest-weight path two uniform connected vertices, C_n its weight.

Theorem 6. (BvdHH 12). Let configuration model satisfy $D_n \stackrel{d}{\longrightarrow} D$, and

$$\lim_{n\to\infty} \mathbb{E}[D_n^2 \log(D_n \vee 1)] = \mathbb{E}[D^2 \log(D \vee 1)].$$

Then, there exist $\alpha_n, \beta, \gamma_n > 0$ with $\alpha_n \to \alpha, \gamma_n \to \gamma$ s.t.

$$\frac{H_n - \alpha_n \log n}{\sqrt{\beta \log n}} \xrightarrow{d} Z, \qquad C_n - \gamma_n \log n \xrightarrow{d} C_{\infty},$$

where Z is standard normal, \mathcal{C}_{∞} is some limiting random variable.

Weighted complete graphs

Consider complete graph $K_n=([n],E_n)$ with edge weights E_e^s , where $(E_e)_{e\in E_n}$ are i.i.d. exponentials.

Janson (1999): Scaling weight, flooding, diameter for s = 1.

Theorem 7. (BvdH10). Let C_n and H_n be weight and number of edges of shortest path between two uniformly chosen vertices in K_n . Then, with

$$\lambda = \lambda(s) = \Gamma(1 + 1/s)^s,$$

there exists a limiting random variable \mathcal{C}_{∞} , such that

$$\frac{H_n - s \log n}{\sqrt{s^2 \log n}} \stackrel{d}{\longrightarrow} Z, \qquad C_n - \frac{1}{\lambda} \log n \stackrel{d}{\longrightarrow} C_{\infty},$$

where Z is standard normal.

Weights matter: s < 0

Not always CLT, even when weights have density: Consider complete graph $K_n = ([n], \mathcal{E}_n)$ with edge weights E_e^s , where $(E_e)_{e \in \mathcal{E}_n}$ are i.i.d. exponentials and s < 0.

Theorem 8. (BvdHH10b). H_n converges in distribution. Limit is constant k = k(s) for most s...

Minimal spanning tree

Recent interest in minimal spanning tree on complete graph:

Theorem 9. (AB-B-G13). Minimal spanning tree is no small-world:

$$H_n/n^{1/3} \stackrel{d}{\longrightarrow} H_{\infty}.$$

MST on graph is closely related to critical percolation on graph.

Explains $n^{1/3}$ behavior as this also appears for critical Erdős-Rényi random graphs. Are such distances observed in brain networks?

Clustering: Tree is poor network. For example, tree has zero clustering.

Networks of the brain

Several levels:

- \triangleright Neuronal level: 10^{11} vertices of average degree 10^4 ;
- > Functional level: much smaller, modular structure.

What is meaning network?

Features:

- Short time scales: stochastic process on network (non-linear?);
- > Strong dependence between different regions network.

Big question:

What is a good network model for brain functionality?

Weighted brain graphs

Big question:

How to obtain informative network data from collection of weights?

Thresholding?

Comparing networks with different average edge weights? Union of smallest-weight paths?

- Application to brain: Interpretation edge weights? Negative edge weights?