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Complex networks
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Yeast protein interaction network Internet topology in 2001



Scale-free paradigm

, Log-Log histogram for actor degree in 2007 (1477961 values)
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Loglog plot of degree sequences in Internet Movie Data Base (2007)
and in the AS graph (FFF97)



Small-world paradigm

0Iz.li(;/ejournal histogram for user distance in 2007 (8279218338 values)

Ggyegu histogram for user distance in 200812 (1656328424 values)
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Distances in social networks gay .eu on December 2008 and
livejournal in 2007.



Network statistics |

> Clustering:

3 x number of triangles
~ number of connected triplets’

Proportion of friends that are friends of one another.

> Assortativity:
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Correlation between degrees at either end of edge.
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[Recent work vdH-Litvak (2013): assortivity coefficient flawed.
Proposes rank correlations instead.]



Network statistics Il

> Closeness centrality:
1
U= — dist (4, 7).
p=—p  dist(i,j)
j€ln]
Vertices with low closeness centrality are central in network.

> Betweenness centrality:

where n, is number of shortest paths between s, ¢, and n’, is num-
ber of shortest paths between s, ¢t that pass through .
Betweenness large for bottlenecks.



Modeling complex networks

Use random graphs to model uncertainty in how

connections between elements are formed.

Two settings:

> Static models:
Graph has fixed number of elements.

> Dynamic models:
Graph has evolving number of elements.

Universality??



Configuration model

> Invented by Bollobas (1980), EJC: 441 cit. (19-5-2013)

to study number of graphs with given degree sequence.
Inspired by Bender+Canfield (1978), JCT(A): 493 cit. (19-5-2013)
Giant component: Molloy, Reed (1995), RSA: 1208 cit. (19-5-2013)
Popularized by Newman, Strogatz, Watts (2001), Psys. Rev. E:
2074 cit. (19-5-2013).

> n number of vertices;

>d = (dy,ds, ...,d,) sequence of degrees.

Often take (d;);c, to be sequence of independent and identically
distributed (i.i.d.) random variables with certain distribution.

> Special attention to power-law degrees, i.e., for 7 > 1 and ¢,

P(D; > k) = ¢,k (1 + o(1)).



Configuration model: graph construction

> Assign d; half-edges to vertex j. Asume total degree
gn - Z dL
i€[n]

IS even.

> Pair half-edges to create edges as follows:

Number half-edges from 1 to /,, in any order.

First connect first half-edge at random with one of other 7, — 1 half-
edges.

> Continue with second half-edge (when not connected to first)
and so on, until all half-edges are connected.

> Resulting graph is denoted by CM,,(d).



Graph distances in CM

H,, is graph distance between uniform pair of vertices in graph.

Theorem 1. (vdHHVMO03). When v =E[D(D — 1)]/E[D] € (1, 00)
and E[D?| — E[D?], conditionally on H, < oo,
Hn P

> 1.
log, n

For i.i.d. degrees having power-law tails, fluctuations are bounded.

Theorem 2. (vdHHZ07, Norros+Reittu 04). When 7 € (2, 3), condi-
tionally on H,, < oo,

H, » 2
loglogn ~ |log (1 —2)|’

For i.i.d. degrees having power-law tails, fluctuations are bounded.



r — loglog x grows extremely slowly
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Plot of x +— logx and z — log log x.



Preferential attachment models

Albert-Barabasi (1999):

Emergence of scaling in random networks (Science).

16850 cit. (19-5-2013).

Bollobas, Riordan, Spencer, Tusnady (2001):

The degree sequence of a scale-free random graph process (RSA)
506 cit. (19-5-2013).

[In fact, Yule 25 and Simon 55 already introduced similar models.]

In preferential attachment models, network is growing in time, in
such a way that new vertices are more likely to be connected to
vertices that already have high degree.

Rich-get-richer model.



Preferential attachment models

At time n, single vertex is added with m edges emanating from it.
Probability that edge connects to i'" vertex is proportional to

D@(ﬂ — 1) + 5,

where D;(n) is degree vertex i at time n, 6 > —m is parameter.
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Distances PA models

Theorem 3 (Bol-Rio 04). Forallm > 2and 7 = 3,

H - logn

1 1)).
loglogn( + (1)

Theorem 4 (Dommers-vdH-Hoo 10). For all m > 2 and 7 € (3, o),

H, = O(logn).

Theorem 5 (Dommers-vdH-Hoo 10, DerMonMor 11). For all m > 2

and 7 € (2,3),
H, P 4

log log n ’ |log (1 —2)|




Network modeling mayhem

Models:

> Configuration Model
> Inhomogeneous Random Graphs
> Preferential Attachment Model

What is bad about these models?

> Low clustering and few short cycles (unlike social networks);
> No communities (unlike collaboration networks and WWW);
> No attributes (geometry, gender,...);

Models are caricature of reality!



Network models |

> Small-world model:

Start with d-dimensional torus (=circle d = 1, donut d = 2, etc).

Put in nearest-neighbor edges. Add few edges between uniform
vertices, either by rewiring or by simply adding.

Result: Spatial random graph with high clustering, but degree dis-
tribution with thin tails.

Application: None?

> Configuration model with clustering:
Input per vertex i is number of simple edges, number of triangles,
number of squares, etc. Then connect uniformly at random.

Result: Random graph with (roughly) specified degree, triangle,
square, etc distribution over graph.

Application: Social networks?



Network models Il

> Random intersection graph:
Specity collection of groups. Vertices choose group memberships.
Put edge between any pairs of vertices in same group.

Result: Flexible collection of random graphs, with high clustering,
communities by groups, tunable degree distribution.

Application: Collaboration graphs?

> Spatial preferential attachment model:
First give vertex uniform location. Let it connect to close by vertices
with probability proportionally to degree.

Result: Spatial random graph with scale-free degrees and high
clustering.
Application: Social networks, WWW?



Network models il

> Scale-free percolation:
Vertex set Z¢. Each vertex x has a weight .., which form a collec-
tion of independent and identically distributed random variables.

Put edge between x and y with probability, conditionally on weights,

equal to

_ —WaWy/|lz—y|*
pxy_l_e L ?//” H’

where o > 0 is parameter model.

Result: Spatial random graph with scale-free degrees when
weights obey power-law, high clustering and small-world.

Application: Social networks, WWW, brain?



Distances other models

Similar results (though often weaker) proved for related models:
> Random intersection graphs;

> Small-world model;

> Scale-free percolation.

Full extent of universality paradigm still unclear.

/8

Work in progress!




Weighted graphs

> In many applications, edge weights represent cost structure
graph, such as economic or congestion costs across edges.

> Time delay experienced by vertices in network is given by hop-
count H,,, which is number of edges on shortest-weight path.

How does weight structure influence hopcount and weight SWP?

> Assume that
edge weights are i.i.d. random variables.

Graph distances: weights = 1.



Setting

> Central objects of study:
C, is smallest-weight two uniform connected vertices, i.e.,

where X, is edge-weight of edge ¢, V1, V; € [n] chosen uniformly.
Hopcount H, is number of edges in smallest-weight path |7*|,
where 7* is unique minimizing path.

> Restrict ourselves to complete graph K, or configuration model,
weights are i.i.d. with continuous distribution.

> Problem on complete graph received tremendous attention in
theoretical physics community in works by Havlin, Braunstein,
Stanley, et al.



Weighted sparse random graph

H,, number of edges in shortest-weight path two uniform connected
vertices, C, its weight.

Theorem 6. (BvdHH 12). Let configuration model satisfy
D, - D, and

lim E[D?log(D, V 1)] = E[D*log(D V 1)].

n—oo

Then, there exist «,,, 5,7, > 0 with o, — «a,~,, — 7 s.1.

H, —a,logn 4
VB logn

where Z is standard normal, C., is some limiting random variable.

> /. Cn—ynlogngcoo,



Weighted complete graphs

Consider complete graph K, = ([n], £,) with edge weights F£?,
where (E.).cp, are i.i.d. exponentials.
Janson (1999): Scaling weight, flooding, diameter for s = 1.

Theorem 7. (BvdH10). Let C, and H, be weight and number of
edges of shortest path between two uniformly chosen vertices in
K,,. Then, with

A=As)=T(1+1/s)%,

there exists a limiting random variable C., such that

H, — sl 1
coeh d>Z, Cn——lognLCoo,
\/s?logn A

where 7 is standard normal.



Weights matter: s < 0

Not always CLT, even when weights have density:
Consider complete graph K, = ([n],&,) with edge weights FE?
where (E,).c¢, are i.i.d. exponentials and s < 0.

Theorem 8. (BvdHH10b). H, converges in distribution. Limit is
constant k = k(s) for most s...



Minimal spanning tree

Recent interest in minimal spanning tree on complete graph:

Theorem 9. (AB-B-G13). Minimal spanning tree is no small-world:

H,/n'? L 1.

MST on graph is closely related to critical percolation on graph.
Explains n'/® behavior as this also appears for critical Erdds-Rényi
random graphs. Are such distances observed in brain networks?

> Clustering: Tree is poor network. For example, tree has zero
clustering.



Networks of the brain

Several levels:

> Neuronal level: 10! vertices of average degree 10%;
> Functional level: much smaller, modular structure.
What is meaning network?

Features:

> Short time scales: stochastic process on network (non-linear?);
> Long time scales: network is changed by functionality brain
(learning, pruning,...);

> Strong dependence between different regions network.

Big question:

What is a good network model for brain functionality?



Weighted brain graphs

> Brain: data has weight (e.g., correlation between data signals)
between any pair of vertices. Yields weighted complete graph.

Big question:

How to obtain informative network data from collection of weights?

Thresholding?
Comparing networks with different average edge weights?
Union of smallest-weight paths?

> Weight distribution: Edge weights are likely dependent.
How robust are results to dependencies?

> Application to brain: Interpretation edge weights?
Negative edge weights?



