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Context and motivation





Multi Electrodes Array

Figure: Multi-Electrodes Array.



Raster plot

Figure: Raster plot/spike train.



Statistical decoding

Stimulus S → spike response R .

Try to compute P [R | S ] then P [ S |R ].



Ex: Moving bar
O. Marre, D. Amodei, N. Deshmukh,K. Sadeghi,F. Soo, T. E. Holy, M. J. Berry, "Mapping a Complete Neural

Population in the Retina", J Neurosci. 32(43), 2012
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To �t

Extract a probabilistic model of P [R | S ], P [ S |R ] from data.

⇓

To predict

Apply the probabilistic model to predict the behaviour of test samples.

⇓

To explain

How does a neural network "encode" a stimulus.

To predict is not to explain.

(René Thom)
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Mathematics can bring in neuroscience not only techniques to solving
problems but also new concepts and questions.

Mathematics can also help to propose laws (in the same sense as in
Physics) predictive and explanatory, governing the behaviour of the brain.

Proposing new paradigms.



The map is not the territory. (A. Korzibsky).
A model is a representation of reality.

Mathematics must be fed and controlled by experiments.
A theorem is not a su�cient justi�cation.
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From spike trains to mathematical results and questions



This spike train has been generated
by an hidden dynamics / stochastic

process.

Can we infer this process from the
spike train's analysis ?



Spike events

Figure: Spike state.

Spike state

ωk(n) ∈ { 0, 1 }

Spike pattern

ω(n) = (ωk(n) )Nk=1

Spike block

ωnm = {ω(m)ω(m + 1) . . . ω(n) }

Raster plot

ω
def
= ωT0
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Figure: Spike block.
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Spike events

Figure: Raster plot/Spike train.
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Main idea

Construct:

Pn
[
ω(n)

∣∣ωn−1
n−D

]
from data.



Main idea

1 Assume that spike statistics is generated by a (Markov) process.

2 Assume a parametric form for the transition probabilities of this
process (Ex: Linear-Non Linear, Generalized Linear Model, . . . ).

3 Fit the parameters (Maximum likelihood, Kullback-Leibler divergence
minimization, learning methods, . . . ).

4 Generate sample probabilities and compare to data: does the model �t
and predict correctly (con�dence plots, Kullback-Leibler divergence,
correlations, . . . ) ?

5 Handle correctly the �nite size sampling of data (standard statistical
tests, Central Limit theorem, convergence rate, . . . ).





Example 1: The Generalized-Linear Model (GLM)

Paradigms of rates and receptive �elds.

Figure: Generalized Linear Models.



The Generalized-Linear Model (GLM)

λk(t|Ht)→ Pn [ωk(n) = 1 |Hn−1 ] ≈ λk(n|Hn−1)∆t = pk(n)

Considering Conditional independence:

Pn
[
ω(n)

∣∣ωn−1
n−D

]
=

N∏
k=1

pk(n)ωk(n)(1− pk(n))1−ωk(n)



GLM Experimental Validation

"Modeling the impact of common noise inputs on the network activity of retinal ganglion cells". M.Vidne, Y.

Ahmadian, J. Shlens, J. Pillow, J.Kulkarn, A. Litke , E. J. Chichilnisky E.Simoncelli, L. Paninski. Journal of

Computational Neuroscience( 2011)



Example 2: Handling correlations with the Maximum
Entropy Principle
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Example 2: Handling correlations with the Maximum
Entropy Principle

Measuring the statistics of characteristic spike events

single spikes, pairs, triplets, . . . , what else ?.



Example 2: Handling correlations with the Maximum
Entropy Principle
E. Schneidman, M.J. Berry, R. Segev, and W. Bialek. "Weak pairwise correlations imply strongly correlated network

states in a neural population". Nature, 440(7087):1007-1012, 2006.
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Example 2: Handling correlations with the Maximum
Entropy Principle

Are pairwise correlations signi�cant, although weak ?

1 Compute the pairwise correlations.

2 Find the probability distribution which maximizes the statistical
entropy and reproduces the observed pairwise correlations ⇒ Gibbs

distribution.

3 Fit and predict.



Example 2: Handling correlations with the Maximum
Entropy Principle

E. Schneidman, M.J. Berry, R. Segev, and W. Bialek. "Weak pairwise correlations imply strongly correlated network

states in a neural population". Nature, 440(7087):1007-1012, 2006.



Example 2: Handling correlations with the Maximum
Entropy Principle

Extensions:

Ganmor-Schneidman-Segev, 2012: taking into account instantaneous
triplets, quadruplets;

Marre et al, 2009: One step memory pairwise Markov process;

Vasquez et al, 2012: General form of events can be taken into account
from general theory of Gibbs distributions and Perron-Frobenius
theorem;

Nasser et al, 2013: Monte Carlo approach to spatio-temporal Gibbs
sampling.



A statistical model makes assumptions

GLM:

1 Assumption of conditional independence;
2 Questionable interpretation of parameters.

MaxEnt:

1 Assumption of stationarity;
2 Questionable interpretation of parameters;
3 Which events to choose ?
4 Exponential complexity;
5 Over�tting ?



Some mathematical remarks, answers and new questions



What could be the hidden process ?



What could be the hidden process ?
R.Cofré,B. Cessac: "Dynamics and spike trains statistics in conductance-based Integrate-and-Fire neural networks

with chemical and electric synapses", Chaos, Solitons and Fractals, 2013.



What could be the hidden process ?

The sub-threshold variation of the membrane potential of neuron k at time
t is given by:

Ck
dVk

dt
= −gL,k(Vk − EL)−

∑
j

gkj(t, ω)(Vk − Ej)

−
∑
j

ḡkj (Vk − Vj) + Ik(t).

Ck is the membrane capacity of neuron k . Ik(t) = i
(ext)
k (t) + σBξk(t),

where i
(ext)
k (t) is a deterministic external current (�stimulus").



What could be the hidden process ?

gkj(t) = gkj(t
r
j (ω)) + Gkjαkj(t − trj (ω)), t > trj (ω),

αkj(t) =
t

τkj
e
− t

τkj H(t),



What could be the hidden process ?

Mathematical answers

In this example, the hidden process is non Markovian: it has an in�nite
memory, although it can be well approximated by a Markov process.

Without gap-junctions the transition probabilities can be explicitly
computed. The form is similar to GLM (conditional independence and
interpretation of parameters).

With gap-junctions the conditional independence breaks down. The
explicit form of the transition probabilities has (not yet) been
computed.

The statistics of spike is described by a Gibbs distribution (even in the
non stationary case). In the stationary case, it obeys a Maximum
Entropy Principle.



Is there any relation between GLM like models and MaxEnt
?
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Can we hear the shape of a Maximum entropy potential

Two distinct potentials H(1),H(2) of range R = D + 1 correspond to the
same Gibbs distribution (are �equivalent"), if and only if there exists a
range D function f such that (Chazottes-Keller (2009)):

H(2)
(
ωD0

)
= H(1)

(
ωD0

)
− f

(
ωD−1
0

)
+ f

(
ωD1

)
+ ∆, (1)

where ∆ = P(Hβ
(2))− P(Hβ

(1)).



Can we hear the shape of a Maximum entropy potential

Summing over periodic orbits we get rid of the function f

R∑
n=1

φ(ωσnl1) =
R∑
n=1

H∗(ωσnl1)− RP(H∗), (2)

We eliminate equivalent constraints.



Can we hear the shape of a Maximum entropy potential

Conclusion

Given a set of transition probabilities P
[
ω(D)

∣∣∣ωD−1
0

]
> 0 there is a

unique, up to a constant, MaxEnt potential, written as a linear combination
of constraints (average of spike events) with a minimal number of terms.
This potential can be explicitly (and algorithmically) computed.



Combinatorial Explosion of constraints



Combinatorial Explosion of constraints

A GLM like model has typically O(N2) parameters where N is the
number of neurons.

The equivalent MaxEnt potential has generically 2NR − 2N(R−1)

parameters, non linear and redundant functions of the GLM
parameters.

⇒

Intractable determination of parameters;

Stimulus dependent parameters;

Over�tting.

BUT Real neural networks are not generic
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Remark

MaxEnt approach might be useful if there is some hidden law of nature/
symmetry which cancels most of the terms of its expansion.



Finite size e�ects



Finite size e�ects

Having a nice mathematical model for spike statistics will be really e�cient
if one can control/ predict �nite size e�ects:

Fluctuations (Central Limit theorem; in�nitely divisible distributions)

Errors on parameters estimations.

Convergence rate (Large deviations; concentrations inequalities)

Statistical tests (Neymann-Pearson, . . . );



Paradigm changes ?



Paradigm changes ?

Thomas S. Kuhn, (1922-1996)
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Receptive �eld

The receptive �eld of a sensory neuron is a region of space in which the
presence of a stimulus will alter the �ring of that neuron. (wikipedia)

http:
//thebrain.mcgill.ca/flash/d/d_
02/d_02_cl/d_02_cl_vis/d_02_cl_

vis.html

http://www.luc.edu/faculty/
asutter/RecField.html

http:
//theses.ulaval.ca/archimede/

fichiers/24200/ch01.html

http://thebrain.mcgill.ca/flash/d/d_02/d_02_cl/d_02_cl_vis/d_02_cl_vis.html
http://thebrain.mcgill.ca/flash/d/d_02/d_02_cl/d_02_cl_vis/d_02_cl_vis.html
http://thebrain.mcgill.ca/flash/d/d_02/d_02_cl/d_02_cl_vis/d_02_cl_vis.html
http://thebrain.mcgill.ca/flash/d/d_02/d_02_cl/d_02_cl_vis/d_02_cl_vis.html
http://www.luc.edu/faculty/asutter/RecField.html
http://www.luc.edu/faculty/asutter/RecField.html
http://theses.ulaval.ca/archimede/fichiers/24200/ch01.html
http://theses.ulaval.ca/archimede/fichiers/24200/ch01.html
http://theses.ulaval.ca/archimede/fichiers/24200/ch01.html


Receptive �eld

The receptive �eld of a sensory neuron is a region of space in which the
presence of a stimulus will alter the �ring of that neuron. (wikipedia)

http:
//thebrain.mcgill.ca/flash/d/d_
02/d_02_cl/d_02_cl_vis/d_02_cl_

vis.html

http://www.luc.edu/faculty/
asutter/RecField.html

http:
//theses.ulaval.ca/archimede/

fichiers/24200/ch01.html

http://thebrain.mcgill.ca/flash/d/d_02/d_02_cl/d_02_cl_vis/d_02_cl_vis.html
http://thebrain.mcgill.ca/flash/d/d_02/d_02_cl/d_02_cl_vis/d_02_cl_vis.html
http://thebrain.mcgill.ca/flash/d/d_02/d_02_cl/d_02_cl_vis/d_02_cl_vis.html
http://thebrain.mcgill.ca/flash/d/d_02/d_02_cl/d_02_cl_vis/d_02_cl_vis.html
http://www.luc.edu/faculty/asutter/RecField.html
http://www.luc.edu/faculty/asutter/RecField.html
http://theses.ulaval.ca/archimede/fichiers/24200/ch01.html
http://theses.ulaval.ca/archimede/fichiers/24200/ch01.html
http://theses.ulaval.ca/archimede/fichiers/24200/ch01.html


Receptive �eld

The receptive �eld of a sensory neuron is a region of space in which the
presence of a stimulus will alter the �ring of that neuron. (wikipedia)

http:
//thebrain.mcgill.ca/flash/d/d_
02/d_02_cl/d_02_cl_vis/d_02_cl_

vis.html

http://www.luc.edu/faculty/
asutter/RecField.html

http:
//theses.ulaval.ca/archimede/

fichiers/24200/ch01.html

http://thebrain.mcgill.ca/flash/d/d_02/d_02_cl/d_02_cl_vis/d_02_cl_vis.html
http://thebrain.mcgill.ca/flash/d/d_02/d_02_cl/d_02_cl_vis/d_02_cl_vis.html
http://thebrain.mcgill.ca/flash/d/d_02/d_02_cl/d_02_cl_vis/d_02_cl_vis.html
http://thebrain.mcgill.ca/flash/d/d_02/d_02_cl/d_02_cl_vis/d_02_cl_vis.html
http://www.luc.edu/faculty/asutter/RecField.html
http://www.luc.edu/faculty/asutter/RecField.html
http://theses.ulaval.ca/archimede/fichiers/24200/ch01.html
http://theses.ulaval.ca/archimede/fichiers/24200/ch01.html
http://theses.ulaval.ca/archimede/fichiers/24200/ch01.html


Receptive �eld

The receptive �eld of a sensory neuron is a region of space in which the
presence of a stimulus will alter the �ring of that neuron. (wikipedia)

http:
//thebrain.mcgill.ca/flash/d/d_
02/d_02_cl/d_02_cl_vis/d_02_cl_

vis.html

http://www.luc.edu/faculty/
asutter/RecField.html

http:
//theses.ulaval.ca/archimede/

fichiers/24200/ch01.html

http://thebrain.mcgill.ca/flash/d/d_02/d_02_cl/d_02_cl_vis/d_02_cl_vis.html
http://thebrain.mcgill.ca/flash/d/d_02/d_02_cl/d_02_cl_vis/d_02_cl_vis.html
http://thebrain.mcgill.ca/flash/d/d_02/d_02_cl/d_02_cl_vis/d_02_cl_vis.html
http://thebrain.mcgill.ca/flash/d/d_02/d_02_cl/d_02_cl_vis/d_02_cl_vis.html
http://www.luc.edu/faculty/asutter/RecField.html
http://www.luc.edu/faculty/asutter/RecField.html
http://theses.ulaval.ca/archimede/fichiers/24200/ch01.html
http://theses.ulaval.ca/archimede/fichiers/24200/ch01.html
http://theses.ulaval.ca/archimede/fichiers/24200/ch01.html


Characterizing the collective response to stimuli.


