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We derive rigorously general results on the critical behavior of the 
magnetization in Ising models, as a function of the temperature and the external 
field. For the nearest-neighbor models it is shown that in d~> 4 dimensions the 
magnetization is continuous at T~ and its critical exponents take the classical 
values ~ = 3 and/~ = �89 with possible logarithmic corrections at d=  4. The con- 
tinuity, and other explicit bounds, formally extend to d>  3�89 Other systems to 
which the results apply include long-range models in d= 1 dimension, with 
1~ix--yl ~ couplings, for which 2 / (2 -1 )  replaces d in the above summary. The 
results are obtained by means of differential inequalities derived here using the 
random current representation, which is discussed in detail for the case of a 
nonvanishing magnetic field. 
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1. I N T R O D U C T I O N  

1.1. The  M a i n  Results  

T h e  cr i t ica l  b e h a v i o r  of  the  o r d e r  p a r a m e t e r  in s ta t i s t ica l  m e c h a n i c a l  

sys tems  is c h a r a c t e r i z e d  by a n u m b e r  o f  cr i t ica l  exponen t s .  A grea t  dea l  o f  

i n f o r m a t i o n  m a y  be  d e d u c e d ,  o r  r a t h e r  guessed  in a fair ly soph i s t i c a t ed  

m a n n e r ,  a b o u t  such  quan t i t i e s  by us ing  the  p h e n o m e n o l o g i c a l  sca l ing  

theory ,  a n d  a field t heo re t i c a l  f o r m u l a t i o n  e f  the  cr i t ical  b e h a v i o r .  
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However, due to the interest both in these "universal quantities" and in the 
underpinning of the general methods quated above, it is still very desirable 
to study the critical behavior by methods which deal with these issues 
within the given model, i.e., assuming only the "first principles" of 
statistical mechanics. 

In this paper we consider, from this point of view, the critical behavior 
of the magnetization in translation-invariant ferromagnetic Ising spin 
systems with the Hamiltonian 

1 
U= --~ Z Jx,~xay- ~ hxax (1.1) 

x , y  X 

Our main purpose is to analyze the nonsymmetric regime, in the vicinity of 
the critical point (T = To, h = 0). 

Many aspects of the phase transition in such models have by now 
been derived by rigorous methods. In particular, the notion of the upper 
critical dimension has been confirmed by proofs of the facts that in the 
nearest-neighbor models in d > 4 dimensions the critical exponents (-) 
c~+, 7+ of the specific heat (1~ and of the magnetic susceptibility (2'3) take 
their "classical" values, and the scaling limits are gaussian. (2'4) 

It should, however, be emphasized that the above results refer to the 
critical behavior in the very special regime Ro = {T> To, h =0} in which 
the symmetry a--* -~r is not removed by either an explicit term in the 
Hamiltonian or by dynamical symmetry breaking. The analysis has not 
been extended to the nonsymmetric regime h r  or T< To where other 
issues (see Ref. 5) have to be confronted. 

In this work we address one of these pending issues: the upper critical 
dimension for the magnetization's critical exponents/? and 6. This question 
may, in fact, be viewed as symptomatic of the more general issue of the 
extent of the "triviality" picture for d > 4 dimensions, which was rigorously 
derived for the critical behavior of the Ising model only in the symmetric 
"high-temperature" phase, i.e., the region Ro. 

The critical exponents mentioned above are defined by the limiting 
values of the logarithmic ratios (generally presumed to exist) in the 
following expressions: 

m(T,h=O) oc(To-T) ~ for T<~Tc 
(1.2) 

M(T=Tc ,  h) ochl/~ for h>~0 

Our results combined with previous results quoted below show that for the 
translation-invariant nearest neighbor models in d~> 4 dimensions these 
limits exist and the critical exponents take their mean field values: 

/~ = 1/2 and 6 = 3 (1.3) 



Critical Magnetization Exponents in Ising Models 395 

As was the case with other results about critical exponents for d~> 4 (i.e., 
the uniform boundedness of the specific heat in the high-temperature 
phase (1~ for d >  4, and the equality(2'3/7 + = 1), the condition of high dimen- 
sion enters here only through the requirement of the finiteness of the 
"bubble diagram": 

Bo = ~ ( aoax)~_0  < oo (1.4) 
x 

at T =  T c. Thus, the values (1.3) extend also to the other Ising systems for 
which (1.4) holds. An example would be the one-dimensional ferromagnetic 
models with Jxy= I x -  y[ ~ for 1 < 2 <  1.5. (6) 

Before presenting the results more explicitly, let us make some com- 
ments about the notation which is followed. The relevant parameters for 
our work are chosen to be ~ and flh. Thus, we denote by O/c~ the 
derivative performed at constant/~h and define 

<OO, x)=Z (1.5) 
x x 

For the analysis of the critical regime it is convenient also to use the 
parameter t = t i c - f l  which, with our choice, is positive on the high-tem- 
perature side of the critical point. 

We shall assume in this paper that the system under discussion 
exhibits a sharp transition, at h-= 0, from the high-temperature regime, for 
which )~ < 0% to the low-temperature regime which is characterized by the 
long-range order. Let us note that the coincidence of the two notions of a 
critical point Tc induced by these conditions was proven in Ref. 6 for a 
class of Ising models which satisfy a certain regularity condition. This con- 
dition was proven there to be satisfied by the n.n. model in dimensions 
d >  2 and the one-dimensional long-range systems for 1 < 2 < 2. 

It was also proven in Ref. 6 that under the above-mentioned regularity 
condition 

M(t,h=O)>~clt[  1/2 for t < O  (1.6) 

(with a constant which is remarkably independent of the bound which 
establishes the regularity). We shall assume here that such a bound is 
satisfied in the models we discuss. It seems to us (although we have at 
present no proof) 4 that the last two assumptions are valid in any dimension 
for any translation-invariant ferromagnetic system with ~x  Jox < oo. 

The relation (1.6) may be regarded as a mean-field type bound on the 
critical behavior of M(t, h = 0). Another generally valid relation of that sort 
is 

M(t  = O, h) >~ ch ~/3 (1.7) 

4 This claim has now been proved for all translation invariant models (M. Aizenman, 
D. Barsky and R. Fernfindez; in preparation). 
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The lower bound (1.7) was derived by Fr6hlich and Sokal, (7/and indepen- 
dently by C. Newman, (8) who pointed out that it follows from (1.6) by an 
argument involving the GHS inequality (this observation is explained and 
further expanded here in Sec. 2 and Appendix B). 

The main goals of this work are to provide upper bounds on M which 
are complementary to (1.6) and (1.7). To state the results, let us distinguish 
among three kinds of critical behavior of the bubble as t + 0 +: 

Case 1:B0 ~< c 

Case 2: Bo<~C Iln t] ~ (1.8) 

Case 3: Bo <. et 

The results derived here, together with (1.6) and (1.7), show that in the 
critical regime the magnetization obeys the following bounds: 

(i) At h = 0 ,  tT0-:  
l c ]tl 1/2 Case 1 

c Itll/2~M<<. c2 Itl m [In ]tll 3~'/2 Case 2 (1.9) 

c 3 It] (1-3~)/2 Case 3 with ~ < 1/3 

(ii) Along any ray t=a f t&h+0  + we have the asymptotic 
inequalities: 

l Cl(flh) /3 Case 1 

c(~h)~/3<~M<<, c2(~h) ~/3 [ln(/~h)L '~ Case 2 (1.10) 

c3(flh) (l-3~)/(3-3~) Case 3 with ~ < 1/3 

with constants which are asymptotically independent of the slope a of the 
ray. 

It may be worth emphasizing the following explicit implication of the 
above bounds: 

(iii) For cases 1, 2, and 3 with ~< 1/3 the magnetization is con- 
tinuous at T~. 

The above bounds imply the following inequalities for the critical 
exponents/~ and 6, defined as limits of logarithmic ratios: 

1 

3 ~ 6 ~  

1 
Cases 1 and 2 

1-3~ 
Case 3 with ~ < 1/3 

2 

1 3 ( ~ )  Cases l a n d 2  

3 Case 3 with ~ < 1/3 

(1.11) 

(1.12) 
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The results described above apply in particular to the translation- 
invariant n.n. models for which the known bounds of Ref. 9, 10, and 3 
can be combined to prove the following dimension dependence (see 
Appendix A): 

d >  4 Case t 

d = 4 Case 2, with co = 1 

2 < d < 4  Case3, with(---(4-d)/(d-2) 
(1.13) 

However, since the restriction ( <  1/3 is satisfied only for d >  31, and our 
analysis was developed only for lattices of integral dimension, we have no 
meaningful new results for the n.n. models in d < 4  dimensions. 
Nevertheless, the results for Case 3 are meaningful in the context of the 
next example. 

For the one-dimensional long-range models with Jxy = I x - y [  ~, we 
have 

1 < 2 < 1 � 8 9  

2=1�89 
1 � 8 9  

Case 1 

Case 2, with co = 1 

Case 3, with ~ = (22 - 3)/(2 - 2) 

(1.14) 

Expanding on the observation of Newman mentioned after (1.7), we 
also obtain here extrapolation principles relating not only fl with 6 but, 
more generally, the critical behavior along any two different (straight) lines 
of the approach to the critical point in the (/~,/~h) plane (with the exception 
of the line of the symmetric regime Ro = { T > To, h = 0 }). This interesting, 
and useful, implication of these principles (Lemma 2.2) provides a confir- 
mation of one of the basic predictions of the scaling theory. 

1.2.  R e m a r k s  o n  t h e  M e t h o d  

The method used to obtain the above bounds on the critical behavior 
falls within the general approach in which one searches for, and then 
applies, differential inequalities relating the few relevant physical quantities. 
The difficulty is, of course, that we are interested in understanding the non- 
perturbative regime of a system with infinitely many degrees of freedom. 
The method introduced in Ref. 2 is to consider a diagrammatic represen- 
tation, which often is taken as the basis for a high-temperature expansion, 
as a statistical mechanical system endowed with a probability measure, in 
which various physical quantities are given a stochastic geometric inter- 
pretation. The geometric representations are often quite suggestive of non- 
perturbative relations, some of which may even be proven to be true. 
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The geometric picture may become yet more transparent upon a par- 
tial resummation of the diagrammatic representation, in which one sums 
over all the terms with the same "backbone." The result is an expansion 
whose terms can be identified with simple geometric objects, e.g., random 
walks (with certain interactions.) Different variants of random walk expan- 
sions of this kind appear in Refs. 2, 3, and 11. 

The latter representations for the correlation functions of the Ising 
model share some of the basic properties with the expansion developed in 
the works of Brydges, Fr6hlich, and Spencer (12) and Fr6hlich (4) (see also 
Ref. 13), from the "Symanzik representation" of a Euclidean field theory. 
This point will be further emphasized in another paper, co-authored jointly 
with Fr6hlich and Sokal, (14) in which we shall address also some other 
aspects of the "triviality" issue for the nonsymmetric approach to the 
critical point in dimensions d >  4. 

For the purpose of this work, it was instructive to have a random 
walk expansion for the magnetization in the presence of an external field. 
This concept first appeared in the work of Fr6hlich and Sokal, (7) and we 
would like to thank them for conveying to us their very stimulating ideas 
prior to publication, and many useful comments. The close analogy 
between the two expansions for the order parameter found in Ref. 7 and in 
this paper will be explicity discussed in Ref. 14, and, in fact, these three 
papers may be regarded as one unit. 

Alas, the general properties of the (simpler) random walk expansions 
did not suffice for the derivation of the relations on which our results are 
based. In fact, our analysis required the full power of the "random current" 
representation, (2) which we discuss in Sec. 3. When applicable, "random 
walk" expressions have a simpler form, and we have attempted therefore to 
use them whenever possible. This formalism is introduced in Sec. 4. 

The main new ingredient which was needed for the derivation of (1.9) 
and (1.10) was the lower bound in the following result (Theorem 5.7 
below). For a translation-invariant Ising model, on Z d 

[1-QB~ tanh(/?h))~4~ < ~32/~lJI I + ~ Q  (tanh(/~h))3 
96Bo(1 + 2/~0) 2 

(1.15) 

where Lxl + = max(x, 0), /~o = Bo IJI/~, Q(t, h) - tanh( f lh ) /M IJI/3 ~< 
(//]JI Z) 1 (which is vanishingly small in the vicinity of the critical point), 
and in the upper bound h r 0. 

It should be emphasized that the quantity Bo [defined in (1.4)] refers 
to the untruncated bubble diagram at h = 0, and the given value of/?. Thus 
B0(/~)= oo for /~>/?o, and therefore the lower bound in (1.15) provides 
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direct information only about the region {fl<~fio, h > 0 } .  However, the 
extrapolation principles mentioned at the end of the previous subsection 
allow us to extend the consequences of (1.15) beyond that domain. 

In the process of proving (1.15) we also obtain and use the lower 
bound of the following inequality which may be of independent interest. 
With the same hypothesis as for (1.15): 

I1 - QBol  + IJI M Z  <<. c~M 
1 + 2B-o - -~ <~ I JI MZ (1.16) 

The lower bound is proven in Theorem 5.6 below, and the upper bound is 
a consequence (15) of the GHS inequality316) 

To a certain extent, a precursor for the above inequalities may be 
found in a result of Ref. 3, on 0Z/~fl in the symmetric regime Ro (these 
results formed also the basis for Ref. 6 and are further discussed there). A 
common feature is that one has two bounds: the first resembling the mean 
field approximation, and the second (in the opposite direction) incor- 
porating "loop corrections". Since the quantity Bo is not infinitesimal, and 
in fact is divergent at Tc below the upper critical dimension, corrective fac- 
tors of the form ( 1 -  const. Bo) are of much more limited use than factors 
like 1/(1 +const.  Bo) which can be seen in (1.15) and (1.16). The latter 
imply, of course, information on the corrections to "all orders in Bo." 

A significant difference between the nonsymmetric regime and R0 is 
that one has to contend with cancellation effects [as in (1.15)], which raise 
the level of difficulty. Furthermore, the analysis of the inequalities does not 
proceed directly along the lines of interest (like the critical isotherm 
{ T = Tc } ), requiring, in addition to (1.15), some extrapolation arguments. 
We shall present those in the next section before proceeding to the more 
technical part of this work, which is the derivation of (1.15). 

2. F R O M  D I F F E R E N T I A L  I N E Q U A L I T I E S  TO C R I T I C A L  
E X P O N E N T S  

In this section we shall discuss the derivation of the main results 
(1.9)-(1.10) from the differential inequality (1.15). Let us first remark that 
not all inequalities of this type can be integrated. Furthermore, even when 
a direct integration is possible, the result may not be entirely satisfactory. 
We shall overcome these difficulties with the help of an extrapolation prin- 
ciple Eand (1.6)]. It should, of course, be noted that if one is willing to 
assume a strict power law behavior in (1.2), then (1.15) does immediately 
lead to the critical exponents given in (1.10) for Case 1, where the bubble 
diagram is uniformly bounded. 



400 Aizenman and Fernbndez 

2.1. Integrat ion of  the Lower  Bound in (1 .15)  

First, we need to determine the shape of the region 
R1 = {(fl, flh)] Q/~0< 1} where the lower bound in (1.15) is nontrivial. For 
this, some information is needed about the behavior of Bo(t), which is also 
relevant for the bound itself, and of M(t, h). Under the assumptions made 
in the introduction, R~ contains the region where t > 0 and 

l c Case 1 

flh<~ c Iln t1-3~ Case 2 (2.1) 
ct  3U2 Case 3 

(We used the lower bound in M given in (1.10) which is derived indepen- 
dently below.) In the first two cases, and the third one as long as ff < 2 
( "d>a•  "~ the regime described by (2.1) is convex and includes a final ~ 5 '  ! 

segment of the approach to the critical point along any of the rays t = aflh 
with a > 0 (see Fig. 1 ) 

The lower bound in (1.15), the mean-field bound flJ[JI ~> 1, and the 
GHS inequality imply that in a region of the form (2.1) 

~Z ?flhz 4 
- - -  ( 2 . 2 )  

 (Bh) 8o 

Fig. 1. Regimes involved in the process of extrapolation. 
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with 
0.9 

g=  (2.3) 
9.96(flc [J[ )2 

Integrating (2.2) "up" from flh = 0 along a line t = const > O we get 

1 1 ~ B o 
X3 ;~o3 >~ (3c-/2) ~ ~ Z ~< (2/(3c)) 1/3 (fib)2~3 

A further integration yields 

M <~ cBo(fl) (flh)'/3 (2.4) 

with c=3(2/ (3~))  1/3. Here we have used the boundary value for t>O 
M(t,  h = 0 ) = 0 .  

It should be pointed out that the above integration could be perfor- 
med because at each step the bound was reduced to a first-order differential 
inequality. Since the upper bound of (1.15) is not of that form, we are not 
able to use it to obtain an inequality which should supplement (2.4). 

The bound (2.4) is still rather unsatisfactory for two reasons: 

(i) It does not apply to the critical isotherm in Cases 2 and 3, and in 
particular to the nearest-neighbor Ising model in d = 4  dimen- 
sions. 

(ii) From a general perspective, the form of (2.4) is totally unnatural 
when viewed from the vantage point of the scaling theory, (17) 
which predicts the same critical behavior along any ray 
t = aflh, h >~ O. 

The three limitations pointed out above will be removed by an 
application of an extrapolation technique which will be introduced next. 

2.2. Extrapolation Principles 

Our procedure is an elaboration on the basic observation of 
Newman (s) that the GHS inequality can be used to relate the critical 
behavior along different lines of approach of the critical point. (We learned 
from J. Lebowitz that somewhat weaker information can be deduced from 
the F K G  inequalities. (is)) A particularly useful way to state the basic prin- 
ciple is to note that the GHS inequality has the consequence that the slope 
of any constant magnetization line in the (t, flh) plane satisfies 

~ ( f l h )  M . . . . .  t ( ~ 0 )  - -M I J I - ~  
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This remark leads to the following extrapolation principles (derived in 
Appendix B). 

L e m m a  2.1. Translation invariance, GHS, and Griffiths (II) (19) 
inequalities imply that for every point (/3o,/3oh0), with magnetization 
Mo = M(/3o,/3oho), and A > 0: 

M(/3o + A,/3oho + Mo I J[ A) i> M(/3o,/3oho) (2.5) 

L e m m a  2.2. If along a ray t = a/3h, h >~ 0 

Cl(/3h) cq Iln (/3h)l ~ (1 + O(/3h)) <~M<~ c2(/3h) ~2 Iln(/3h)l ~ (1 + O(/3h)) (2.6) 

with 0 < ei < 1 and ms ~> 0, then the same inequality (with the same ci, ~i, 
~o~) is asymptotically true for any other ray t = b/3h, h >~ O. 

Lemma 2.2 shows that the behavior along the critical isotherm is the 
same as for any other ray t = a/3h. The next result relates those rays with 
R2, the multiphase regime. 

Lemma 2.3. 

1. If along a ray t = a/3h, h >~ 0 

M <~ c(/3h ) ~ Iln(/3h)l ~~ (1 + O(/3h ) ) 

with 0 < ~ <  1 and ~o~>0, then in the region R 2 =  {(/3,/3h =0)I/3 >/3c} 

M~<(IJI cl/C~) ~/(1-~) Itl ~/(~ ~ Iln(M Itl)l ~~ =~(1 +O([tL) (2.7) 

2. If in region R 2 

M~>c It[ ~ (1 + O(t)) (2.8) 

with 2 >~ 0, then, along any ray t = a/3h, h >~ 0, 

M/> (c IJI-~)~/(' + ~)(/3h) ;L(I +~(1 + O(/3h)) (2.9) 

2.3. Der iva t ion  of  the  M a i n  Results 

Having stated the extrapolation principles, we may now describe the 
flow diagram for the derivation of the bounds (1.9)-(1.10) In essence, for 
the upper bounds on M we will use (2.4) along some ray, and then 
extrapolate it to all other rays and to the region R2 using Lemma 2.2 and 
Lemma 2.3 part 1. For  the lower bounds the direction of extrapolation is 
the opposite, namely from R2 to the rays. 
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The argument goes as follows. We start from the lower bound (1.6) for 
the magnetization in the multicritical regime. Using (2.9) it implies the 
lower bound in (1.10). To prove the upper bounds we first make use of the 
latter result to obtain the description (2.1) of R1 and thus to conclude that 
there exists a ray--in fact any ray t = arh with a > 0 will do--for  which the 
bound (2.4) holds. For Cases 1 and 2 the desired upper bounds follow 
readily: the one in (1.10) is just an application of (2.4) along any of such 
rays, and then the extrapolation principle (2.7) yields the one in (1.9). For 
this last step in Case 2 we eliminate the reference to In IMI in the RHS of 
(2.7) by invoking the already proven lower bound in (1.9). 

For an upper bound for Case 3 one can proceed in the same way, 
namely insert the lower line of (1.8) in (2.4) for t = a r h  (a >0). One gets 
M~< const h ~1/~)- ~ which, of course, is of interest only if ~ < �89 In the follow- 
ing argument we shall improve this bound and get a better exponent for 
the RHS. We note that the (unnatural) upper bound (2.4) has a different 
behavior with respect to t than to h. In fact, the RHS increases with h but 
decreases with t. Thus, there is still room for improvement, which can be 
obtained by an optimization procedure based on (2.5). Indeed, we have 
from (2.5), (2.4), and the lowest line in (1.8) that, for any A/>0, 

M(t,  flh) <... c(flh + M(t ,  fih) ]J] A) ~/' (t + A) ~ (2.10) 

provided the point (t', (flh) ') = (t + A, flh + M(t ,  flh) IJP A) is in the region 
Rl. We shall use this inequality with the following value of A: 

_ 3~rh 
(2.11) 

IJlM(t, flh)(1 - 3 ~ )  

(The optimal value of A for (2.10) has an additional term ( - M  IJI t) in the 
numerator. However, its incorporation would not lead to any significant 
improvement.) Again, our analysis can proceed only if ~< 1/3. For the 
points along the critical isotherm the above procedure yields 

M(O, Pc) ~< o~((rch)') '/3 (t')-:  (2.12) 

with 
rich 

( r i c h ) ' = - -  (2.13) 1 - 3 r  

3~ 
t' - ( roh) '  (2.14) 

M(O, rich) fJI 

It is not hard to see that for ~ < 1/3 the curve rich --+ (t'(flch), (rich)' (rich)) 
is asymptotically inside R~ so the bound (2.12) is applied properly. 
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Writing (2.12) in an explicit form, we see that the optimization 
produced the improved power: 

c IJI ~ ]1/~-r 
M(0, flo) ~< (1 - 3 ( )  1/3 ( 3 ( ) c J  (flch)(1/3 r (2.15) 

By Lemma 2.2 such a bound is asymptotically satisfied also along any 
other ray t = aflh. (In fact, the above analysis may be applied directly to 
such cases, even with a < 0, yielding the same result.) 

Inequality (2.t5) is the upper bound in (1.10) for Case 3; the upper 
bound in (1.9) follows by (2.7). 

3. THE R A N D O M  C U R R E N T  REPRESENTATION 

3.1. General  Features 

In this section we introduce the random current representation (RCR), 
which is the basic formalism used to prove the inequalities (1.9) and (1.10). 
Our goal here is to define it, describe some of its most useful properties, 
and demonstrate the basic techniques by performing the delicate can- 
cellations which occur in some of the truncated correlation functions which 
are relevant for our discussion. 

The starting point of the RCR is similar to that of the high-tem- 
perature expansions (HTE). It may therefore be helpful to emphasize in 
what the use of the RCR, as developed in Ref. 2, differs from the more 
standard techniques. 

Both RCR and HTE start from diagrammatic representations for the 
free energy and the correlation functions. An approach which is often 
followed for the development of a HTE is to extract from a diagrammatic 
representation an expansion in more primitive terms, which are expressed 
by diagrams with a higher degree of connectivity (connected, 1-particle 
irreducible, etc.). One may often obtain by such methods an expansion 
which converges in the high-temperatur e regime, and which may be used 
for various purposes like the construction and the study of the infinite 
volume limit. 

Basic points at which the approach which led to RCR departs from 
the above scenario are: 

(i) Probabilistic interpretation. Instead of attempting to sum the 
diagrammatic representation, one looks at its terms as defining a new 
(interacting) statistical-mechanical system, and poses questions about the 
properties of the "typical" (i.e., dominant) terms. There is never a question 
of convergence since the setting is basically probabilistic, although there 
are problems related to the uniqueness of the infinite volume limit and its 
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independence of the boundary conditions. We shall avoid such issues by 
basing our analysis on finite systems. 

(ii) Nonperturbative geometric identification. For a number of 
observables there is a clear identification of their expectation values with 
the probabilities of precisely described geometric events in the ensemble of 
diagrams mentioned above. For the systems discussed here, the diagrams 
can be viewed as describing random currents. A basic example of an event 
related to a physical quantity is the event that the currents connect a 
specified set of sites. This may be the point to explain that the purpose of 
some of the seemingly cumbersome operations, like the use of duplicated 
ensembles, is to arrive at precise geometric characterizations in terms of 
events of this kind. In particular, this is required for the performance of the 
rather delicate cancellations necessary for the interpretation of the trun- 
cated correlation functions. A special attribute of the RCR is the existence 
of such identities at the nonperturbative level. 

(iii) Inequalities. An attractive feature of geometric representations is 
that they provide a "robust" description of subtle correlation effects, and 
suggest important relations which may be expressed by inequalities. The 
"lexicon" described above may then be used in order to arrive at relations 
which are stated purely in terms of the physical quantities. From that point 
on, the analysis may proceed without any reference to the RCR. 

Note that the strength of the above approach is related to its 
limitations. We avoid divergence problems since we are not trying to cast 
the interacting system into the mold of a perturbation of a noninteracting 
"ideal gas" of connected clusters. After all, near Tc that picture fails. At the 
same time we lack the semblance of a full solution of the model, which is 
offered by expansion methods. Nevertheless, the RCR method has 
produced nonperturbative results which go beyond what has been accom- 
plished by other available methods. It seems that in our favor is the fact 
(which is explained by the renormalization group picture) that despite the 
infinite number of degrees of freedom only few parameters are relevant in 
the critical regime. Thus much can be learned from few differential 
inequalities relating the key physical quantities. 

3.2. The Formalism 

Let us recall first the starting point for the random current represen- 
tation for the symmetric (h =0)  case. For a finite system in a region A, 
with a Hamiltonian (1.1), the partition function at h = 0  is 

Z= t r ace  I l~ e~b~x~Y] (3.1) 
b ~  {x,y} 
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where trace = I ~  A [�89 Z~x= _+1] and b stands for a pair of sites which are 
referred to as bonds. Expanding each exponential in powers of /~Jb, we 
obtain 

Z= ~ W(_n) trace [ F [ a2x ~o~b] (3.2) 
n_ x ~ A  

where _n = (nb)b= A ranges over all the integer-valued functions on the bonds 
of the lattice, and 

W(_n ) = ~ (~Jb ! (3.3) 

The trace in (3.2) is zero unless all the spin functions a x have an even 
exponent, in which case it is one. Thus, 

Z =  ~ W(_n) (3.4) 
~ -  

where the constraint is that the following set 0_n, to which we refer as a set 
of "sources," is empty: 

O_n=txsA ~ nbisodd} (3.5) 
k b g x  

Similarly one gets the following expression for the correlation 
functions which are the expectation values of aA = 1-[x~A ax, A c A ,  

(aA)= ~ W(n) (3.6) 
On = A Z 

For ferromagnetic models, the sum is over nonnegative terms. If there is a 
decay of correlations this is a result of the source constraint in (3.6). 

In line with the general comments made above, we shall consider the 
weights W(_n) as defining probability distributions for the collection of ran- 
dom variables {rib} within sectors characterized by source constraints. 
Since the source constraints express "conservation of parity," it is con- 
venient to regard the variables _n as flux numbers which describe a "current 
configuration." 

The measures are easy to understand in the high-temperature regime 
where low flux numbers are favored. In such a case the typical current con- 
figurations are formed by a backbone of current lines which pairwise con- 
nect the sources in A, and some scarce eddy currents (which enhance the 
entropy.) As the temperature is lowered, the density of the eddy currents 
increases and the current lines develop larger fluctuations. The backbone is 
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not clearly separated from the eddy currents; however, one may still regard 
the configuration as a combination of two such terms. In view of the exact 
characterization of the onset of the long-range order as a percolation 
transition (see Ref. 2), we expect the simple high-temperature picture to 
provide the right intuition for T >  T c. The notion of the backbone will be 
further developed in the next section where it leads to a random walk 
expansion. 

The expansions (3.4), (3.6) generalize immediately to the case where a 
magnetic field is present. Perhaps the simplest way to incorporate it into 
this picture is using a construction closely related with the "ghost" spin pic- 
ture of Griffiths. (19) We introduce extra "h-bonds" linking each site of the 
lattice with a corresponding "ghost" site (see Fig. 2). The configurations of 
currents can now have arbitrary sources among the h-sites (which is how 
we shall refer to the ghosts.) With a small abuse of notation, we shall 
denote by hx both the magnetic field at x and the h-site linked to x. The 
corresponding h-bond is {x, hx}. Therefore, we consider two kinds of 
bonds: the lattice bonds 

B L = { { x , y }  Ix, yEA) 

and the h-bonds 

eh= {{x, hx} I xEA) 

More generally, if A is a set of bonds, we will denote AL=A~Bc; 
Ah = A ~ B h. 

h -  si te 
/ 

h -  bond 

Fig. 2. Fictitious extra bonds representing the effect of a magnetic field. 



408 Aizenman and Fernbndez 

The interaction with magnetic field can now be written as an Ising 
model with only pair interactions for which the spins at the h-sites are fixed 
at the value 1, and the coupling constants are 

jb=SJxy for b = { x , y } e B  L 
(3.7) lhx for b={x ,  h x } e B  h 

With this notation, we can make expressions (3.3) (3.6) valid for the 
general case. In particular, to keep (3.5) we will adopt  the convention that 
~_n represents only the sources in A (lattice sources); each current con- 
figuration can have in addition an unrestricted collection of sources in h- 
sites (h-sources.) Again, we can interpret (3.6) probabilistically only if 
Jxy ~ 0 and h x >~ 0 Vx, y e A (although further methods can be applied for 
other cases). 

In order to discuss the basic techniques used to handle the RCR, we 
need to introduce some notation and terminology. We will say that two 
sites x, y (lattice- or h-sites) are connected by a current configuration _n if 
there is a path of bonds with nb r 0 joining x with y. (The definition of a 
path will be formalized in the next section.) In such cases we will write 
n: x ~ y. The notat ion n: x --, h will indicate that n connects x to some h- 
site. If  A is a set of sites, n: x - ~  A means that there exists some a e A such 
that _n: x ~ a. Having defined a notion of connection, we can define what a 
cluster is. In fact, one can define both the notion of a cluster of sites (set of 
connected sites), and the notion of cluster of bonds (see below.) Some con- 
fusion can arise if both kinds of clusters are used at the same time; to avoid 
that we shall use in this paper only the notion of cluster of bonds. Given a 
(lattice) site x and a current configuration n, the (bond) cluster o f x  in n is 
the set of bonds with at least one site connected to x: 

C , ( x ) = { { y , z }  lY, z ~ A  and _n: 

x ~ { y , z } } u { { y ,  h y } I y ~ A  and _n:x~--~y} 

One can also define the cluster for a set of sites; the only case of interest 
here is the cluster of the set of h-sites or the h-cluster: 

C,(h)= {{y, z} [ y , z ~ A  and either_n: 

y ~ h  or n:z--*h}tJ {{y, hy} [ y e A }  

In addition, we need to consider the concept of connection "via" h. In a ter- 
minology motivated in the ghost spin picture, we shall say that a current 
configuration n connects two sites x, y ~ A possibly via h, and denote this by 
n: x ~ y, if either n: x ~-~ y, or n: x ~ h and n: y ~ h. 
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3.3. Basic Techniques 

As discussed above, one of the reasons for the power of the RCR is 
that it yields geometrical identities for some of the important  physical 
quantities. These are obtained by means of two basic techniques: the 
Switching Lemma and conditioning over clusters. The Switching Lemma 
deals with duplicated systems of currents. An example may clarify its con- 
tent. Consider two independent systems of random currents on the same 
lattice, one (call it blue) with @ 2 =  {x, y} and another (red) with 
@ 1 =  {Y,Z} (such a situation occurs in the representation of 
<6xffy)<O'yffz) when h = 0). We can picture the systems as in Fig. 3 where 
the broken line represents the blue currents and the unbroken line the red 
ones. If we add the currents, i.e., we go to a color-blind system, the picture 
suggests that the source y is cancelled and our original system should be 
closely related with a system of currents with (switched) sources {x, z} 
constrained, however, to pass through y, plus another one which consists 
of eddy currents. The Switching Lemma states that the combinatorial  fac- 
tors of the RCR are such that this expected relation is an exact identity. 
This fact has been exploited in Ref. 16 and 2. The explicit statement of the 
Switching Lemma follows. 

L e m m a  3.1. Let A c A, x, y ~ A and let f be any function defined 
on current configurations; then 

W ( - n l )  W ( ~ 2 )  
Z ~ f ( n , + n 2 )  

On I = A 
0,2 = {x} z{y} 

y 

O_n2 = 

0 

W(_nl) 
W(n,@2) f(n I +n2) I [_n 1 +_n2"x ~ y] (3.8) 

Z z 

/ 
J 

p Z  

I / 
/ f 
k..,. I 

X 

Fig. 3. An illustration for the switching principle. The two types of lines represent two 
independent currents. Their sum is statistically undistinguishable from the sum of two other 
currents whose sources are {x, z} and ~.  

822/44/3-4-9 
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and 

W(n,) W(_n 2) 
Z - - f ( - n l + - n 2 )  

0-" 1 = A Z 
o_-2= {x} 

W(-nl) W_~2) f (n  1 
Z +_n2)I [_n~ +_n2: x ~ h ]  (3.9) 

o-"~ = AA {x } 
O_n2 = .~ 

Here I [ . . . ]  is the indicator function which takes the value 1 if the con- 
dition between the square brackets is satisfied, and 0 otherwise; A is the 
symmetric difference between sets: AAB=AwB\(A riB); and n 1 +_n 2 is 
defined by the bondwise sum of fluxes: (_n 1 +B2)b=nlb+n2b. The lemma 
was proven in Ref. 2 for the case h = 0. The necessary adaptations of the 
argument when a magnetic field is present are most straightforward. 

The second technique employed, conditioning over clusters, involves 
no combinatorics, but rather a suggestive way of rewriting certain 
expressions. An example of a situation to which this technique applies is 
depicted in Fig. 4. There is a given set of sources A w B, a site p- -or  a 
collection of sites, which could in particular be the collection of h- 
sites--and one is interested in summing over all current configurations sub- 
ject to the constraint that p is connected to the set A and disconnected 
from the set B. The disconnection requirement is symbolized by the dashed 
line isolating p from B. This line represents C(p), the (bond) cluster of p, 
whose (internal) boundary must be formed by bonds with zero flux num- 

f / \ j/J 
/ / 

I / 
\ p 

/ 

O 

Fig. 4. The setup for the technique of conditioning over clusters. 
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bers. The technique consists of conditioning over the cluster C(p) and, for 
each such cluster, summing independently over the current configurations 
inside and outside the cluster. The latter gives the expectation of a~ in a 
less ferromagnetic system which has been deprived of all the bonds in C(p). 
The result is: 

L e m m a  3.2. 
of B. Then: 

w(_n ) 
E z 

On = A A B  

Consider A, B ~ A, p e A, F a function on the subsets 

- - F ( C , , ( p ) )  I [_n: p+-~a, VaeA]  I ~n: p ~ B] 

W(-n)F(C,(p)I [_n:p+-~.a, Va~A](aB)c~(p) (3.10) 
= Z - -  E 

On = A 

An analogous result holds if C,(p) is replaced by Cn(h). We followed here 
the convention that if A is a set of bonds, the subindex A as in ZA, ( )A 
indicates that the coupling constants are set to zero for bonds not 
belonging to A. We remark that the restriction p ~ B is implicit in the 
RHS. Indeed, if there exists a e B visited by bonds of C,(p) with nonzero 
flux, then 

<GB>~n(p) = <0a)noint . . . .  t i o n  <(TB\{a})G(p)=O 
Most of the identities below involve a combination of both the 

Switching Lemma and conditioning over clusters. In this regard we need 
the analog of (3.10) for a duplicate system of currents: 

k e m m a  3.3. Let A,,  A2, B1, B2 be subsets of A; p e A; F function 
on the subsets of B. Then: 

W(n,)z W_~2) F(C,,L+,2(p)) 
a~71 = A ] A A 2  
c~n2 = B 1 A B 2  

xI  E nl +_n2: p+--~a, VaeA1 w B1] I[_nl +_n2: p ~, A 2 uB2] 

= Z w(_,,) w(_,2) 
Z Z F(Cv'+'2(P)) 

a n t  = A I 
c?n2 = B I  

x I [_n 1 +92: P ~ a, Va~ A, w B1]((TA2)C~+~2(p) ((TB2~C~+,~Z(p) 

3.4. S o m e  A p p l i c a t i o n s  (3.11) 

To demonstrate the use of the previous techniques, let us present some 
identities for the truncated correlation functions, which will be used later. 
In the following applications we need the cluster conditioning expression 
(3.11) for the case p = x ~ A ;  AI= {x} AA; A2=B; (A,B~A);  
F(C,,~+v2(x)) -- I [_n 1 +_n2: x ~, hi. If we denote 



412 Aizenman and Fernbndez 

S x ( A , O ) =  E W(-H1)  W(-nz) I[-nl +-n2 :x+-+aVaeA ] 
e_~l = {x}aA~B Z Z 

0n2 = if5 

x I[_n~ + 0 2 " x  ~ B]  I [ n  t + n 2 : x  r h i  (3.12) 

then from (3.11 ), 

W(_nl) W(_n2) I [n 1 +_n2: x ~  aVa c A ]  Sx(A, B ) =  
Z Z or1 = {x}aa 

On 2 = 

x I [_n~ +_n 2 x ~ h]  ( a B )  G~ +_n2(X) (3.13) 

The first result provides an example of  how the RCR takes care of the 
cancellations necessary for the manifestat ion of the sign of some of the 
truncated correlations. 

Propos i t ion  3.4. For  any x e A ,  A ~ A  

(ax,  aA)  = ~ 2 W(-nl---~) W(-n2--~)I[-n,+n2:x*-+agaeA,] 
Z Z - A I c A  an_l={x}AAt 

IAI] odd 0n2= 

xI[_n~+v2'x +~ h ] < ~ A , )  c Cnl +n2 (x) 

= ~ Sx(A~, AAA~) (3.14) 
A I c A  

IAt[ odd 

ProoL 

w(_n~) w(_n~) w(_nj 
= E z E z z 

~n_l = {x}AA On_t = A 
0_~2 = {x} 

Now,  we do the following: in the first summat ion  of the RHS we add an 
extra current  configurat ion by multiplying and dividing by ~2e~=~ W(-n2); 
and in the second summand  we use the switching lemma (3.9) to obtain the 
same source distr ibution as in the first term. The two terms can be corn- 
bined, with the result 

W ( _ n l )  W ( n j  

Z Z &_,l = (x}~A 
a_n 2 = 

= E 
o~, = {x}AA 

o~2 = if5 

_ _  _ _  {1  - -  I [_/'/1 + V 2 :  X---+ h i  } 

w(m) w(nj  
Z Z I[_n~+_n 2 " x + + h ]  

For  each pair _n I , _n 2 we denote A 1 = {a e A [ n~ + n 2 : x ~-~ a}. The condi t ion 
_nl +_n2" x ~ h implies that  [All is odd. 
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<O'x~ O" A > = E E w(_n~) w(_n~) I I-_n, + n z x  ~ h-1 
Z Z AlGA ~nl = {x}JA 

IAfl odd 0n2 = 0 

xI[_n 1 +n2"x*-+aVaeA~] I I t /1  -[-_n2" X 7 ~ A3AI] 

= Z S~(Ax, AAA1) 
AIcA 

lAir odd 

This is exactly (3.14) by Lemma 3.3. | 

From this proposition we immediately obtain: 

C o r o l l a r y  3.5. For any x, y, z~A 

m ( ~ l )  W(-H2) I [-#'/1 ~--H2:  X 7 4 h i  ( 3 . 1 5 )  

@~ = (~}aiy} 
an2 - 

{ W(~I) W(~2)I[-nl-{-~2"xT~h]<~Tz)C~q+,~2(x)} <o~,O~Oz>= Y ~ 2 -  
am={x}~{y}  - - 

0n 2 -- 

+ { y ~ z  permutation of the above} (3.16) 

The results (3.15) and (3.16) can be sumarized diagrammatically as shown 
in Fig. 5. The diagrams are similar to that of Fig. 4 with the added conven- 
tion that the interior of the cluster delimited by the broken line is 

i N 
/ / Y l  

/ /I 

(O-x,O'y) = / / 
[ / / /  . 

kX / /  

( O-x,O'y o" z ) 

Fig. 5. 

f 

/ 'l 
/ ~ Y l  

/ (y-,:--~ z 

\ ~ .  I Z 
Diagrammat ic  representat ions of the formulas  (3.15) and (3.16). 

permutation) 
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understood to be disconnected from h-sites as well. An arrow from a given 
site indicates connection with h. 

We now turn to analogous expressions for triple truncations. 

P r o p o s i t i o n  3.6. For  any x~A, A, BoA: 

W(B1) W(_rt2 1 [Vx +-rt2: x~--~aVaeA~] 
: X Z ~ -  z Aj~A On_1={x}AA~ 

1All odd co_n2 = JZ5 "1 

X I [ ~ 1  -I--r/2 : X ~'~ h]E<O'AAAIO'B>C__nI+r,2(x)- <GB><O'AAA 1 > Ccnl+_n2(x)-]} 

+ {A ~* ~} 

w(v~) w ( . j  
+ Z Y" z z 

AI = A A B  ~ 1 =  {x}AAI 
A l C ~ A # ~  an2 = .(~ 
A I C ~ B r  

]All odd 

x I [-_r/1 +I ' l  2 " X ~ hJ( fYAAAtGB)~__~I+t ,  ZfX) 

Proof. 

- -  - -  I [_n I +_n2: x*-+aVaEAl] 

(3.17) 

= ~ Sx(Ao,(AAB) AAo)-(aA) ~ Sx(B1, BAB1) 
A 0 m AzJB B 1 c B 
]A0[ odd [BI[ odd 

--{aB) ~ Sx(A~,AAA1) 
A I = A  

]All odd 

The mast equality is due to (3.14). To obtain (3.17) we decompose the first 
summand in the RHS in the form 

E = 2 + Y -  Y - y~ + Y, 
A o ~ A A B  A o ~ A  AO~B Ao=A A o ~ B  AO ~ A A B  

[AoL odd ]A0[ odd [A0[ odd ]A0] odd IA0] odd [A0[ odd 
A o ~ B ~  A o ~ A ~  A o ~ A ~  

A o n B ~  

and group terms, noting that in the RHS the summations preceded by a 
minus sign disappear from the final expression. Indeed, in all such sum- 
mations the sets A, B, A0 are such that ((AAB)AAo)c~Ao#~, hence 
Sx(Ao, (AAB)AAo)= 0 by the remark following (3.10). | 

The particular applications of this proposition which we need later 
are: 
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Corollary 3.7. For any x, y, z, k, l e A  

<ax, ~ry, cry) 

={ Z z z a,,1 = {~}zqy} 
On2 = 

W ( ~ I )  m ( ~ 2 )  I l-F/1 "{-~2:  X 7 ~ h i  

= { [  o., = ~{y} W(-n~)W(-n2)'[-nl+-n2"x+*h]Z Z 
a_n 2 = 

X (<(Tz(Tkal)~nnl+n2(X) -- <(Tk(Tl)<az)C~n_l+n2(X))] 

+ { (yz) r (k/)} + {I  [y, z, k , / a l l  different] 

W(-nl) W(-n2) I [_n~ + v 2 : x  ~ h] 
• Z z -2- -  

a_n~ = {x}Zf ~ y , z , k }  
On2 = E~ 

• I [n~ +_n2: x*-* y. z and k]  <al)~;l+,2(x)] 

+ [k<=> I ] }  + {(yz)<=~(kl)} 

(3.~s) 

+ [y<~z] }  

(3.19) 

4. T H E  R A N D O M  W A L K  R E P R E S E N T A T I O N  

4.1. D e f i n i t i o n  of  the  Forma l i sm 

As discussed above, it helps to visualize the current configurations as 
formed by two contributions: a backbone of current lines satisfying the 
source constraints and a "sea" of current loops. To make this picture 
precise we shall define a map f2 A which, to each current configuration _n 
with ~n = A (or, more generally, ~?n ~ A), associates a well-defined sequence 
of paths co linking the points in A between themselves or possibly with h- 
sites. Given such a map, we can cast (3.6) in the form 

(aA)  = ~, ~, W(-n) I [QA(n)=co] 
Or = A 8n = A Z 

= ~ p(~o) (4.1) 
~o~=A 
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which defines a random walk representation (RWR). The key observation 
for the definition of (2 a is that, due to parity constraints, the currents 
whose sets of sources include A must exhibit a set of disjoint walks formed 
by bonds where the flux is odd, connecting each point of A with another 
source. We shall describe below one possible way of constructing such a 
path, for which the function p(co) has a number of useful properties. 

The application of random walk expansions to the study of the Ising 
model may be traced to the work of Fisher, (2~ who employed simple and 
self-avoiding random walks for bounds, rather than an exact representation 
as (4.1). The algorithm used here for the generation of a RWR is based on 
that of Ref. 2, in the somewhat simpler version of Ref. 11. 

It may be interesting to note that the RWR presented here shares a 
number of properties with the random walk expansion introduced by 
Brydges, Fr6hlich, and Spencer (12'13) for the ~4 system and other con- 
tinuous spin models. In a sense, the two random walk expansions are com- 
plementary: the BFS representation seems more suited for the derivation of 
perturbation expansions, while the one based on the Ising model deals 
more effectively with the "strong-coupling" limit. However, their striking 
similarities suggest the possibility of a unified analysis. This point is further 
pursued in Ref. 14. It must be emphasized, however, that pure random 
walk methods have not yet yielded precise enough techniques for the can- 
cellations which are necessary for estimates of the truncated correlation 
functions. In this regard, the Ising model's RWR has the benefit of the 
additional insight provided by the underlying RCR with its powerful iden- 
tities like the Switching Lemma. 

Let us proceed to describe the notions which will be used in our 
definition of the backbone of a configuration of currents. A step from x to y 
is an oriented bond (x, y). At each site x ~ A we choose an order for the set 
of steps emerging from x, such that the step (x, hx) is the first or earliest 
one. To each step (x, y) (y can be the h-site hx), we associate a set of can- 
celled bonds formed by the bond used by the step itself and all the bonds 
corresponding to steps emerging from x that are earlier than (x, y). In  par- 
ticular, a lattice step (x, y), y ~ A cancels, besides itself, the step (x, hx) and 
possibly other lattice steps emerging from x. On the other hand, the step 
(x, hx) only cancels itself. 

D e f i n i t i o n  4.1. A sequence of steps is said to be consistent if no 
step of the sequence uses a bond cancelled by a previous step. 

If co is a consistent sequence of steps, we denote byc~ the set of all the 
bonds its steps cancel. With a slight abuse of terminology we shall say that 
a bond b is in a sequence of steps co (and denote this as b ~ co) if one of the 
two steps associated with b is a step of co. Other definitions needed are: 
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�9 A path or walk from p to q is a sequence of steps {(x~,x~+l), 
i =  0,..., n} with x o = p ,  Xn+l =q.  

~ Given two sequences of steps ~ol, ~o2, the composition c~ o co 2 is the 
sequence obtained by traversing first the steps of ~ol and then those 
of o~ z (composition of sequences). 

~ The lattice sources 009 of a sequence of steps ~o is the set of lattice 
points covered by an odd number of steps of ~o. If sx(o9 ) is the 
cardinality of the set { ( p , q ) ~ o  I p = x  or q = x } ,  then 
& o =  { x ~ A  I sx(o~) is odd}. (As for currents, the h-sources of ~o 
will not be explicity written.) 

We define the backbone of a current configuration by using the order 
chosen for the steps emerging from one point, and by requiring 
consistency--which forces the path to move forward. The first example is 
the following: 

Def in i t i on  4.2. Given a current configuration _n and a lattice site 
x~0_n, the x-backbone of n is the path f2x(_n)= {(xi, xi+l),  i = 0  ..... n} 
determined as follows: 

(P1) Xo = x  and the first step (x, xl)  is the earliest one of all the steps 
emerging from x with n{x,Xl} odd. 

(P2) Each step (xi, Xi+l) is the earliest of all steps emmerging from 
xi that have not been cancelled by previous steps, and for which 
the flux number is odd. 

(P3) The path stops when it reaches a site from which there are no 
more noncancelled bonds with odd flux number available. This 
always happen at a source of _n; in particular it can be at an h- 
site. 

Note that if the backbone visits an h-site, then it must stop because the 
only bond available to return is the h-bond which has been cancelled by 
the last step. This is a basic feature of all the paths considered here: if they 
reach an h-site they stop there. 

If more lattice sources are present we have several candidates for 
backbones. For  instance, if there is no magnetic field the current con- 
figurations contributing to (~rxay) are (in a finite system) exactly those 
whose x-backbone stops at y. However, we can group current con- 
figurations in an equally effective way considering, instead of the complete 
x-backbone, the smaller piece obtained by cutting such backbone the first 
time it hits y. We found convenient to choose the second possibility, hence 
for a set of sources A c A we will define the A-backbone as follows. First, 
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we will assume a standard order for the lattice sites (for example 
lexicographic). 

D e f i n i t i o n  4.3. For a configuration _n with &n D A, the A-backbone 
of_n is the sequence of paths g2 A = col ~ ""  ~ cos (s ~< JA[ ) defined as follows: 

(S1) Pick the earliest of the points in A, say x, and take col as the 
piece of the x-backbone that extends until it first hits another 
source of_n (which can be an h-source). 

($2) To determine coi once col,--., coi-1 are found, consider a system 
deprived of all the bonds cancelled by the sequence 
co~ ~ "'" ~ coi-l '  and remove from A all the sites already visited 
by such sequence. Then repeat step S1. 

($3) Continue until the set A is exhausted. 

With these definitions we can write (3.6) in the form 

( ~ r a ) =  ~ p(co) (4.2) 
& o  = A 

where, for a sequence of steps co: 

W(O) I [g20o~(_n) = co] (4.3) p(co) = I [co is consistent] }-'1 Z 
On -- Oco 

For ferromagnetic systems we have again a probabilistic picture in which 
the weights p(co)/(aA) define a probability distribution on the space of 
random sequences of steps. 

We can write more explicit expressions for p(co). Given a consistent 
sequence of steps co, the current configurations n contributing to p(co) are 
exactly those that satisfy: 

(i) n is odd on all bonds in co, 

(ii) _n is even on all bonds in 05\co, 

(iii) n restricted to coc or 05c is sourceless. 

Therefore, using the notation (3.7), we have 
W(n) 

p(co) = I [co is consistent] [ I  sinh(fiJb) if[ cosh(flJb) ~ Z 
b e o J  b ~  cS \o )  n o n  o5 c 

-O r = ; ~  

o r  

p(co)=I [co iscons i s ten t ]  H tanh(flJb) [ In[ c~ s (4.4) 
b ~ o  b c c 3  

Note that the last square bracket is just the probability that all the bonds 
in (5 have even flux numbers; hence: 

w(n) 
p(co) = I [co is consistent] 1-[ tanh(fiJb) ~ ~ I [n b is even on 05] (4.5) 

b ~ m O n = g O  
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4.2. Propert ies of  the W e i g h t s  

Let us list some useful properties of the weights p(m). 

Proposition 4.4. The weights p(co) have the following properties: 

(a) A simple upper bound: 

p(co) ~ I  [co is consistent] ~ tanh(flJb) (4.6) 
bEco 

(b) The composition law: If col ~ co2 is a consistent sequence of steps, 
then 

p(co~ o co2) = P(col) P<~(co2) (4.7) 

(c) The dichotomy: For any pair of step sequences col, co2 

(d) 

P(COl o co2) is 

{ ~__p(co~) p(co2) 

0 (and hence ~< P(col) P(co2)) 

if col o co2is consistent (4.8) 

otherwise (4.9) 

If F is a family of sequences of steps such that there exists A c A 
with (aA) -Z~o~rp(~o), then 

~o2~F ~2E/~  

(e) Let A be a set of bonds. If co caA = ~ ,  then 

p(co) ~< pAt(co) 

(f) If co does not visit h-sites 

p(co) ~ p~ o(co) 

Remarks. 

(4.10) 

(4.11) 

(4.12) 

(i) Close analogies to the properties (a) through (d) [but not yet 
for (e) and (f)] are known for the Brydges-Fr6hlich Spencer 
random walk representation for continuous spin models. The 
relation (e) appears implicity in Ref. 2; however, we shall make 
a better use of it here. 

(ii) One reason why these relations are so effective is that the direc- 
tion of the inequality in the first alternative (4.8) of the 
dichotomy is opposite to the relation (4.10) for unconstrained 
sums. This fact has been used extensively in Ref. 2 and 4. 
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(iii) A similar complementary relation exists between the inequalities 
(4.10) and (4.11). Let us emphasize that the latter one requires 
only o~ itself not to include bonds of A; ~ need not be disjoint 
from A. 

Proof. The above listed properties (a) up to (d) were used and dis- 
cused in Ref. 2, 4, and 11. The proofs are presented here for the sake of 
completeness. We shall prove the properties in the order (a), (e), (f), (b), 
(c), (d). 

Proof of (a). It follows from the observation that by (4.5) the sum in 
(3.4) is smaller than one. 

Proof of (e). One obtains an upper bound for p(~o) by replacing in 
(4.5) the condition "nb is even on &" by the weaker restriction "n b is even 
on ~ \A."  

p(co) ~< I [~oisconsistent] I~ tanh(flJb) 

= I leo is consistent] I I  tanh(flJb) I~ 
b~o~ b ~ c b \ A  

On the other hand, from (4.4): 

pAc(~O) = I E~o is consistent] 1F-[ tanh(fiJb) 
bGco 

Hence 

W(_n) I [nb is even on cb\A ] 
Z 

cosh(flJb ) Z(zA)" (4.13) 

[ I  cosh(flJb) Z(~,\A) 
ZAC b ~ \ A  

p(m)  <~ pAc(~o) ZA_____L_~ Z(~\A~ 
Z(~C\A ) Z 

= pAc(~o) - -  
Z(ac\co) Z 

(4.11) is therefore a consequence of the following inequality: 

Claim. If A,A '  are disjoints families of bonds, 
ferromagnetic system, 

(4.14) 

then, for a 

The LHS can be interpreted as the change in the partition function 
produced by turning off the bonds in A, while the RHS is the change when 

Z A , ZAC<< (4.15) 
Z ZA uA' 
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one turns off the bonds of A in a system after the bonds of (A w A') C have 
already been turned off. F rom this point of view (4.15) means that there is 
a smaller effect in the latter case. To prove (4.15), notice that 

by the Griffiths (II) inequality. 

Proof of (f). Set A = Bh in (4.11). 

Proof of (b). Let us first remark that if 0)1 ~ 0)2 is a consistent path, 
then (51 c~ o 2 = ~ .  This is so because 0)2 is chosen out of a system for 
which all the bonds in eS~ were removed (Property $2 in Definition 4.3). 
Therefore, every current configuration n contributing to P(0)I ~ o92) can be 
uniquely written as _n =_nl +02 with _nl supported on (51 and _n2 on eS~. One 
has that 0_nl = &o~, ~_n 2 ~- O(.D2, and, since _n 1 and _n 2 have disjoint supports, 
W(_n) = W(n~) W(_n2). We obtain (4.7) by conditioning on c5~. 

Proof of (c). (4.8) follows from (4.7) and (4.11). (4.9) is trivial 
because the LHS is zero. 

Proof of (d). In the LHS only the terms with 0)1 ~ 0)2 consistent 
contribute. For  these we can use (4.7) 

2 /)(0)1 ~ 0)2) = P(0) I )  2 Po5~(0)2) I [0)1 ~ 0)2 consistent] 
eo2ffF ~2~F 

<"-P(0),) Z Pr P(0),){a A),~'i 
4o2 c F 

~P(0)  I )~ (YA)=P(0) I )  2 P(0)2) 
~o2~A 

where we used the Griffiths (II) inequality. | 

4.3. The  kernel  K 

Within the random walk formalism it is quite natural to introduce a 
certain "kernel" which although lacking direct physical meaning is reveal- 
ing for the analysis of the critical behavior. A kernel of this type was first 
introduced in the work of Fr6hlich and Sokal (7) within the framework of 
the BFS representation. It was shown there to be a useful tool for the 
derivation of an inequality which, for instance, leads to the bound (1.7). In 
recognition of the fact that the kernel introduced below shares some 
properties with the one of Fr6hlich and Sokal (7) we shall use for it the same 
notation K. 
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Defini t ion 4.5. For x, y ~ A :  

w(_n) T 
K(x, y) = ~ ~ l [t2x(_n ) visits y ]  (4.16) 

In words, K(x, y) is formed by those current configurations with sour- 
ces in {x, y} whose x-backbone is not stopped at an h-site before visiting y, 
that is, whose {x, y}-backbone actually connects x with y. For  such con- 
figurations the step sequence ~xy(n) of Definition 4.3 consists of a "path" 
from x to y [the other alternative in (4.1) is that QA is a pair of paths from 
x and y to hi.  Therefore, 

K(x, f ) =  E P(co) (4.17) 
o ) : x ~  y 

where we adopted the notation 

co: x ~ y (4.18) 

to mean that co is a (not necessarily consistent) path which starts at x, ends 
at y, and visits y only once (i.e., it stops when it reaches y). In (4.18) y can 
be either a lattice or an h-site. Moreover, the expression 

co: x --* h (4.19) 

will mean that co starts at x and ends at some h-site. For  instance, 

( x ) =  ~ p ( c o ) = ~  ~ p(co) (4.20) 
co: x ~ h y co: x - - ~  h y  

The reason for the relevance of K is that it shows up in the 
probabilities for walks to pass through a given site or to use a certain 
bond. An example of this role for K is provided by the next proposition. 

P r o p o s i t i o n  4.6. For  any sites x, y e A  and z which is either a 
lattice site or an h-site, let F(x,y.~)= {paths co which start at x and whose 
last step is (y, z)}. Then 

Proof. 

~ l ) x , y , z )  

W(n) 
= Y~ Z 

o n  = { x , z }  

w(v)  

On_ = { x , z }  

p(co) <~ K(x, y) tanh(flJyz) 
co ~ I ' (x ,y , z  ) 

Splitting from the paths their last step we have 

(4.21) 

- -  I [t2x(_n) reaches z for the last time via the step (y, z)] 

- -  I [ny.z is odd]  I [-s visits y ]  
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We can now sum independently over odd values of ny,z, and over con- 
figurations _n' defined on B\{y,  z} with sources ~?_n'= {x, y} and satisfying 
the restriction of the last indicator function. The sum over ny,z yields a 
hyperbolic sine which can be replaced by a hyperbolic tangent by switching 
to a sum over even values of ny,z. In conclusion, 

p(~o) <~ tanh(flJyz) ~ W(_n) Z 1 [ny,ziS even] 
r F(x,y,z) On= {x , y }  

x I [s ) visits y]  

Relaxing the restriction on the parity of ny,z, we obtain (4.21). | 

Since the kernel K is a natural object within the random walk for- 
malism, it is important to find expressions for it in terms of physical quan- 
tities. The next two propositions provide some basic bounds. Formally, 
these relations are closely analogous to those which first appeared in the 
work of Fr6hlich and Sokal (7) within the BFS formalism. One difference is 
that here (4.24) is not quite an equality. Another is the existence of the very 
useful upper bound in (4.22). 

Proposition 4.7. 
(ax; ay) <~ K(x, y ) ~  ( axay)h=  o (4.22) 

Proof. 

= 2 p(r 2 [P(091 ~162 
o ) : x ~  y r  

r y ~ h  

= K(x, y) + A(x, y) (4.23) 

As Zo~2:x~hp(C02)= ( y ) ,  we can apply (4.10) to prove that A(x, y)<~O, 
which proves the leftmost inequality in (4.22). The rightmost inequality is 
an immediate consequence of (4.17), and (4.12). | 

Let us note that, except for a narrow wedge around the domain R0 in 
the (fl, flh) plane, there would be a very significant difference between the 
upper and lower bound in (4.22). The following result provides a much 
sharper physical representation for the sum of the kernel K. 

Proposition 4.8. 

tanh(flhy ) 
K(x, Y) l + (ay)  tanh(flhy)<~ (a~) <. ~ K(x, y) tanh(flhy) (4.24) 

y e a  y e a  

Note that the two bounds differ only by a factor of 1 + O(flh)(~- 1). 
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Proof. The upper bound is just (4.21) when z is replaced by the h-site 
hz. To prove the lower bound we start from 

Y p( o) 
y ~ : x ~ h y  

Each oJ: x ~ hy is of the form ~o = co L o (y, hy) with ~o r �9 x ~ y, i.e., ~o L only 
visits y once. Moreover, GJ = ~L U {y, hy}. Therefore 

But 

( a x ) =  Z tanh(flhy) 
y C O L : x ~  y b E t o  L 

• cosh(flhy) Z(~,~ {y,hy}r 
Z 

H tanh(flJb) H c~ 
bEcTJ L 

cosh (flhy ) Z ~ \ { y,h~} 
= ~ t a n h ( f l h y )  ~ p(oJL) 

y ~Oz : x ~ y Z ~  

= ~ tanh(flhy) ~ P(~L) cosh(flhy) 
y a ~ L : x ~ y  (exp(flhyay))~\{y,hy} 

(4.25) 

( exp(flhya y) ) Ac = cosh(flhy) + ( a y ) Ac sinh(flhy) 

~< cosh(flhy) + ( ~ y )  sinh(flhy) 

We have used Griffiths (II) inequality. Substituting this into (4.25) we 
obtain (4.24). | 

For  the applications below we will suppose translation invariance. In 
this case (4.24) yields 

M M 
tanh(flh) ~< ~ K(x,  y) <<. tanh(flh) [-1 + M tanh(flh)] 

Y 

(4.26) 

5. PROOF OF THE D IFFERENTIAL  INEQUALIT IES 

We turn now to the actual proof of the main differential inequalities 
(1.15) and (1.16). In this section we assume that the system is translation 
invariant and has a finite ]J] = Zx Jox < ~ .  

5.1. Some Pre l iminary  Results 

To free the proofs of details which could obscure the flow of the 
argument, we have grouped in this section certain auxiliary results. Most of 
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these results are bounds of physical quantities in terms of objects defined in 
the random current or random walk ensembles. The only exception is 
Lemma 5.2 which provides a bound of certain truncation functions in 
terms of simpler correlations. 

In the sequel we will make use of a particular application of 
Lemma 3.3, which is stated next. It is obtained by setting F =  1, AI = ~ ,  
B I =  ~ in (3.11). 

kemma 5.1. F o r A ,  B, c A ; p E A :  

y. ~ ~ W ( - n l )  W(_n2) I[_nl +_n2: p ~ A wB]  = E { ( f A ) c ~ + 4 ,  ~ . . . .  (fB)C~m+4p~ } 
~?nl -- A 

a,_,2 = z~ (5.1) 

where E is the probability measure on the space of duplicated sourceless 
current configurations defined by 

W ( ~ I )  .T.,w~2) f(_nl +_n2) (5.2t E{f(-nl+-n2)} = Z Z 
an 1 = .@" 

z a  

an2 = ffJ 

An analogous result holds if C~_ +,2 (P) is replaced by C cv~+v2 (h). 
Note that for A = {x} A{y},  B = ~ ,  and p replaced by h, (5.1) yields 

another expression for the two-point truncated correlation: 

<fx, f~> = E{ (f~f~>~_:,+,,;~} (5.3) 

The next result is a new correlation inequality which is derived using 
the random current representation. 

Proposition 5.2. For any x, y , z ,k ,  l e A  

( f~,  cryf~, f k f t )  ~< { [ 2 ( f ~ ,  Cry) ( fkf~)  h -0 ( f l )  + (k r l)] 

+ [(yz) r (k/)] } + �89 ~,- z} (5.4) 

For coincidental pairs {k, l} = {y, z} we also have 

( f  x, f ~f~, f y f z )  <~ 0 (5.5) 

Proof. (5.5) follows from the Griffiths (II) inequality: 

( f~ ,  fy fz ,  f y f ~ )  = - 2 ( f y f ~ ) ( f ~ ,  a / r ~ ) ~ 0  

To prove (5.4) we resort to (3.19) which we write as 

( f i x ,  O'yO'z, GkO' l )  = Z~A Jr- A2 + Permut. (5.6) 

where A t and A 2 are the two summatories in the RHS of (3.19). 

822/44/3-4- l0 
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To bound A 1 we need to obtain a bound, for any set of bonds A, of 

= <o-=, o - ~ , > ~ -  [<o-~o-,> - <o-~o-,>,,] < ~ > ~  

~< (o-~, ~ko-Z>A (5.7) 

The neglected term is nonpositive as a consequence of the Griffiths (II) 
inequality. Resorting once more to this inequality we have, from (3.16), 

(o-z~ O-ko-I) 

W ( - F / 1 )  W ( - / / 2 )  I [-_F/1 --~ Fl2 : X -/~ h i  -[- ( l ,r k ) 
E z __7_ 0,1- {~}a {k} 

a_n2 = ~Z~ 

= (o-,)(o-z, o-~)+(lr 

(o-z) (a~ak)h=o + (Ice. k) (5.8) 

We have used (3.15) in the equality and (4.22) in the last inequality. This 
bound is monotonic with the strength of the interaction, hence 

(o-z, aka t ) a  ~ (o- t ) (a~rk)h=o + (l'*~- k) 

Combining this with (5.7) for A = C~1+,_2(x ) we finally get 

W(_nl) W(_n2) I [_n, +_n2: x ~ hi 
avl = {x}~{y} 

0_n2 = ~25 

+ (I.*~ k) 

= (o-l) (azo-k)h=o (o-x, o-y) + ( lr  (5.9) 

The last step is due to (3.15). 
To bound A2 we ignore the requirement that y, z, k, l be all different, 

use the Switching Lemma (3.9) and Griffiths (II) inequality, and replace 
the restriction "n l + n  2 x ~ z "  by the weaker one '~ +_n2: z ~ h." We 
obtain 

J ~  (o-,) E w(_nl) w(_nO 
z ~ I [_nl +_n~" x ~ hi  I [_nl +_n~" z ~ hi  

(3n 1 = { x } A { y }  
0-~2 = {z}A{k} 

= (O-l)  E{(o-xo-y)c~l+~_2(h) (ffzo-te)cC,+._2(h)} 

The equality is due to (5.1). We pull out one correlation outside the 
E-integration by means of the bound (Cr~o-e)c;~+.~(h~<(a~rk)h=o. 
The remaining E-integration is just (o-~, O-y) by (5.3). In conclusion, 

A2~< (a , ) (a~o-e)h=o (o-x, o-y) (5.10) 
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This is exactly the same contribution as (5.9), except that the permutation 
(lr is missing. 

We obtain (5.5) by substituting (5.9) and (5.10) in (5.6) and suitably 
grouping the permutations. | 

L e m m a  5.3. 

W(_nl) w(vo 
E E z z y,~eA a~= {o}~{y} 

a_n2= {y}A{z} 

i[_na+n2: y 74 hi  > 2 - -  ~ - z  ( 5 . 1 1 )  

Remark. The result (5.11) is a direct consequence of the following 
inequalite due to Graham (211 

y~ W(_nl) W(_n2) i[_n,+_n2.y~h]>~(ao, G v) (%,az  ) 
o.~- {o}~{y} Z Z 
av2- {y}~{z} 

However, the case of interest here, in which the sites y and z are summed 
over, admits a simpler proof which we present for the sake of completeness. 
In the proof we use the fact that if A is a finite group (under the addition 
+ ) and f :  A 3 ~ R a function such that f ( x  + a, y + a, z + a) =f(x ,  y, z) for 
every x, y, z, a e A, then 

f(x,  y, z) = ~ f (y ,  x, z) (5.12) 
y,z E A y,z c A 

for every x e A. Indeed, both expressions are equal to 
(1/IA[) Y~x,y,~ f(x,  y, z). 

Proof. Let us first use (5.12) and then (5.1) 

w(_n,) w(_n2) ! [v~ +_n2:0 ~ hi L H S =  y. E Z 
y,zEA 0hi= {0}A{y} 

a~2= {o}~{z} 

=E{~ (aOay)C~l+V2(h)(GOaz)CCl+~2(h)} 
y,z ~ A 

We now apply the Schwartz inequality in L2(dE) which yields 

[{ t;[ L H S  ~ E y}A (GO~Y >Cc-nl +-n2(h) = y~A (~YO' fly > = ~2 

In the first equality we used (5.3). | 
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L e m m a  5.4. For x, y, u, l e A  and h = 0  

W(n~) W(_n2) I [-n~ +_n2: x --+ 1] Y ~< 
Z Z O_rt 1 = {X}A{U} 

a~2= {.}a{y} 

(5.13) 

Remark.  This result provides an example of how, in the framework 
of the RCR, the intuitive picture which applies in high temperatures may 
suggest relations which remain basically true at all temperatures. The sum 
in (5.13) is over pairs of configurations _n,,_n z with the sources {x, u} and 
{u, y } correspondingly. At high temperature one expects the required con- 
nections to be performed in the minimal way, in which case each of these 
configurations would consist of a simple path (o~1 and 092 respectively) 
linking the sources, and only rare fluctuations. The condition 
I 1-~1 "~--F/2: X"+ l] would be satisfied if either the path 09, or the path c% 
visit the site/. The contribution from these two possibilities perturbatively 
looks like the upper bound in (5.13). Our result shows that the above 
relation holds as an inequality even on a nonperturbative level. 

Let us remark also that the lower bound in (5.13) shows that the 
upper bound there is off by at most a factor of 2. 

Proof. 

LHS = E 
av2= {.}a{y} 

m ( ~ l )  W(_r/2) 

Z Z 
- -  { 1 - I  [_nl +_n2. x ~-~/]} 

= <o'~o'.><a.ay} - E{ <axau>C~,+_.2( 0 <(Tu~y>CC_nl+n_2(1) } 

The last expression is due to (5.1). Adding and substracting 
(O 'uOy)  E{ <axa.)c;1+.2(1)} we obtain 

LHS = <O.ay> E{<axo.> - <(~x(~u>CC_nl+n2(1) } 
(5.14) 

To obtain the upper bound we bound the last term in the RHS by a term 
analogous to the first one by using a Griffiths inequality. Then, we use (5.1) 
in both terms to obtain 



Critica~ Magnetization Exponents in Ising Models 429 

L H S ~  <~r.ay > 
0~1 = {x}z{u} 

0_//2 = (~ 

= 

a_~ = {x}z{u} 
8_n2 = 

W(-F/1 ) W(_H2) 

Z Z 
- -  { 1 - I [ n l  +_n2:x ,/+ l]} + (x c.. y ) 

m(_/'/1 ) W(_H2) 

Z Z 
- -  I [-~1 -{--H2 : X +'-'~ l ]  ~- (X ~::> y) 

W(_nl) w(_n2) + (x y )  

= z a.l = {t}z{.} 
@2= {x}z{t} 

= <a.ay><a,au><axr~,> + (x~=> y) 

Along the way we used the Switching Lemma (3.8). 
To obtain the lower bound we simply neglect the last summand in the 

RHS of (5.14) and proceed as above. | 

The last preliminary inequality can be entirely derived from the 
properties proved for the random walk formalism. 

Lemrna  5.5. Let A be a set of bonds; A = A L ~ A h ;  and let H(Ah) 
denote the set of the lattice sites of the bonds of Ah:H(Ah)= {k~A: 
{k, hk} eAh}. Then, for every yeA,  

<a~>-<~r~>A~< ~ tanh(flhe)K(v,k) 
k e H ( A h )  

+ Y, K(v, k) tanh(fiJk,)<a,>ac 
(k,l): { k , l }  ~ A L 

(5.15) 

Proof. Using the random walk representation (4.20): 

o J : v ~ h  c o : v ~ h  
~ o ~ A  = ~  

c o : v ~ h  c o : v ~ h  

o ~ : v ~ h  

The inequality is due to (4.11). The paths co intercepting A can be classified 
in terms of the last step they take in A. If such step involves a bond in A h 
the path is of the form co: v ~ hk for some k s  H(Ah); if the last step in A is 
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(k, l) with {k, l} ~ A L ,  the path is of the form o~ = (01 o 0) 2 with ~] having 
(k, l) as last step; and r 2 : l ~ h with co 2 n A = ~ .  Hence 

k ~ H ( A h )  r v ---* hk ( k , l ) :  { k , l }  ~ A L 091 ~ F ( v , k , l )  
c o 2 : l ~ h  

~o2 c~ A = Q5 

= I + I I  (5.16) 

The situation is more easily understood in the pictorial form of Fig. 6. The 
proof consists in splitting the last step (k, hk) from the walks contributing 
to the first diagram (term I in (5.16)); and the intermediate step (k, l) from 
the walks of the second diagram (term II). 

Indeed, the inequality (4.21) implies 

I~< ~ tanh(flhk) K(v,k) (5.17) 
k E H ( A L )  

which is the first summand in the RHS of (5.15). In II we will first use (4.7) 
and then the representation (4.20): 

II = Z Z p(~o,) Z P~(~~ 
( k , l ) :  { k , l  } ~:A L ~Ol ~ F (  v ,k , l  ) ~o2 : l ~ h 

~o2 c~ A = ~ 

( k , l ) :  { k , l }  �9 AL (o l  e l ' ( v , k , l )  

We use the bound (aZ)AC~d, <<. <a~>AC and we resort once again to (4.21) 

II ~< ~ K(v, k) tanh(flJkz)(az) w 
( k , l ) :  { k , l }  e A L 

This is the last summand in the RHS of (5.15). | 

(5.18) 

<~176 -< Z i II ki~i, ll + Z 
k ~,A /? (k,t) 

v 

I/ / -- k ~  

V 

Fig. 6. Diagrammatic representation of the walks which contribute in the upper bound 
(5.16). 
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5.2. D i f f e r e n t i a l  Inequal i t ies  

T h e o r e m  5.6. In a finite, 
ferromagnetic Ising system, we have 

translation-invariant (i.e., periodic) 

- - > ~  IM I J[ x -  tanh(/3h) [Ji BoZI + 
1 + 2/~ I JI Bo 

(5.19) 

ProoL 

Therefore, from (3.16), 

QM 1 
~ 3 ~ - 2  y] J .v (ao ,  a . a . >  (5.20) 

U,/; E A 

tOM 1 {[ ~ W(_n~)W(_n2) 
ofl=Y y~&~ Y z u,v~A 0n~ = (o}z{~} 

c3n 2 = .(~ 

t, 1t 

By symmetry the sum for the permuted term is identical to the sum for the 
first term, hence its net effect is to remove the factor 1/2. 

The basic idea of the proof  can be explained with the aid of diagrams. 
Starting with the diagram in Fig. 7, we can write OM/O~ as the difference of 
the terms with no restriction for the walk emerging from v and the ones in 
which this walk is constrained to intercept the cluster of 0. These are 
exactly the diagrams on Fig. 6 with two extra sources inside the cluster 
limited by the dashed line (which really represents a hypersurface). 

Such diagrams suggest the inequality 

~M ~?M OM 
#0---z-) ( M - -  tanh(flh) Bo) IJI vt#n)~-zz-zz7"' ' - 2fiB~ IJI ~---~- (5.22) 

which is indeed proven below. Let us note that had not been for the 
manifest presence of the factor c~M/~ in the RHS which allows us to close 

/oh 
aM =I_!_ }: t / + ( u <  > v )  
aB 2 U,V \ 

" ~  V 

Fig. 7. A d i a g r a m m a t i c  r e p r e s e n t a t i o n  of  the  c u r r e n t  c o n f i g u r a t i o n s  w h i c h  c o n t r i b u t e  in 

(5.21). The solid lines indicate the backbones, the dashed line denotes the existence of a 
separating surface of zero flux, and the wiggled short line represents the numerical factor J,v- 
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the inequality, the relation (5.22) would have been of little use since the 
RHS can easily be negative. 

Let us now derive (5.22) by a detailed analysis. We start by bounding 
(av)c~l+.2(o) by the expression obtained from (5.15): 

OM W(_nt) W(_n2) 
0----# -~> S J-~ Z - - I [ - n l + - n 2 : O ~ h ]  

u ,veA  O_n1= {O}A{u} Z g 
O_n 2 = 

• t < o . >  - tanh( f lh )  ~ K(v, k) 
L k ~/- / (Cvl  + n2(0)) 

- ~ K(v, k) tanh(flJkz)<at>c~+.2(o)t 
(k,/): {k,l} e C_ni +_n2(O) ) 

= I - II - I I I  (5.23) 

By translation invariance we obtain 

I = ~  <Oo, au> ~J.~<o.> =M [JI Z (5.24) 
u 

We rearrange the second term in the form 

w(_n, ) w(_n0 
II = tanh(fih) Z K(v, k) J,v ~ Z Z 

~,v,k @1 = {o}z{~} 

x I[_n~ +02"0  ~ h] I [n  1 + n  2" O ~ k ]  

= tanh(flh) ~ K(v, k) JurE{ <Ou~k>C;l+.2(h~<OOOk>c;~+. ~} 
u,v,k 

(5.25) 

In the last step we used the switching lemma (3.8) and (5.1). By Griffiths 
(II) inequality ( o ,  cr k > c; 1 +,2(h ) ~< (or u cr k)h = o. Hence 

II ~< tanh(flh) ~ K(v, k) J.~<a.ok>h=o E{ (Croa~)c~+.2(h)} 
u,v,k 

= tanh(f lh)~  (Oo, Ok> [ ~  J..K(v,k)<o.ok>h=o] 
k U,V 

The equality is due to (5.3). To bound the sum inside the square bracket 
we first use the rightmost inequality in (4.22) and then the Schwartz 
inequality in the space of functions f(u, v) which are square summable with 
the weights J,v : 
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Ju~K(v, k)(o',O'k)h = 0 
u,v 

<~ ~,Juvr(ffvfk>h=o] 2 } Y ' , J u ~ [ ( a . f f k > h = o ]  2 
u , v  v u , v  

= BolJI  (5.26) 

Hence, 

II ~< tanh(fih) ZBo iJI (5.27) 

We shall now operate on the third term in (5.23) in order to pull a fac- 
tor ~?Mfi?fl which can be grouped with the LHS. We first notice that the 
restriction {k, l} e C,1+,~(0 ) is, in the presence of the factor (at)c_,l+,_,~(o) c 

equivalent to the condition "_nl + _n2 : 0 --* k." Hence, 

III ~< 
W(_n,) w(_n2) 

Z K(v, k) J.ofl&, Z T T 
.... k,t ~ = {o},/{.} 

an2 = 

X I E JV/l + 0 2 :  O -/-+ h i  t I--hi + - /72 :0  +---) k ]  ( 0 i ) C n  c + .(O)l _ _nz ) (5.28) 

(where we also used the bound tanh x ~ x). The sum in the curly brackets 
can be written in terms of the h-cluster via the following equality: 

Claim. For any a, b, c, d e  A 

Y~ w(_n,) W(_n2) 
z T I E_n, +_n2: a ~ h]<~>c_;,+_.2(. ~ 

On 1 = { a } A { a } ,  
062= {a}Aic} 

(5.29) 

The claim is a consequence of Lemma 3.3 which implies that each of the 
expressions in (5.29) is equal to 

Z 
0nl = {,}~{b}~{a} 
- 0.z = {a}~{c} 

W(n~) W(_n2) 

Z Z 
- -  I[_n l + _ n  2 ' { a , b , c }  ~ h ] I [ _ n , + n  2 " d - - + h ]  

Alter applying the Switching Lemma (3.8) and (5.29) the curly bracket 
in (5.28) becomes 
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} =  Z W ( - n l )  W(-n2) 
g Z (O'uO'k)CCl+n-2(h) ((J'Oak)CC-ni+n-2(h) 

O_n2 = 

<ffu(Tk>h=O 2 W(-]'/1 ) W(-F/2) 
Z Z <a~ 

O_n I -- {l} 
an 2 = .Q~ 

where the inequali ty is a consequence of Griffiths (II). N o w  we use again 
(5.29) (for a = c): 

{ } ~ <GuO'k>CC_nl+n2(h) 
a.~ = {o}a{k} 

O_n 2 = 

= <ffutTk>h=O <O'0, O'ktTl> 

w(_nl) w(_.2) 
Z Z 

I [_n, +-/'*/2:0 ~ h]  (O'l>CCl+n2(h) 

[see (3.16)]. Subst i tut ing this into (5.28), we obta in  

III <~ ~ [~ J.~K(v, k)(a.ak>h=o] flJk/(aO, aka/> 
k,l u,v 

For  the square  bracket  we use the bound  (5.26) and  the rest is 2fl t imes the 
first s u m m a n d  in (5.20): 

0 M  
I I I  ~ Bo IJI 2fl - -  (5.30) 

Subst i tut ing (5.24), (5.27), and (5.30) in (5.23), we obta in  (5.22). To  
prove  the theorem we just  have to solve for t3M/Ofl. | 

Remark. Using the same arguments ,  but  s tar t ing f rom the d iag ram 
of Fig. 8, one obtains  in the h = 0 case: 

~X/> IJI Z 2 

aft 1 + 2fl [J[ Bo (5.31) 

/ \ ax-'--z ,,o\ , , /  
aB 2 x,u,v i 

~ / V  

X 

+ 

Fig. 8. Diagrammatic representation of the quantity bounded by inequality (5.31). 
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This inequality was first obtained by Aizenman and Graham (3) in a less 
direct way (which, however, yielded also other results). 

Theorem ft.7. In a finite, translation-invariant ferromagnetic Ising 
system OM/~(/3h) satisfies the following bounds: 

(a) 

~(@h) M 4  44/3 IJI [1 + �89 + Mtanh(/3h)] 3 [_tanh(flh)]3 (5.32) 

(b) For any fl>~/3c/24 

#(~h) t anh ( /3h )  Z 4 (5.33) 
I1 OBol~ 

/> 48[,1 + M tanh(/3h)] Bo(1 + 2/3 IJI no) 2 

As in (1.15), Q(h, t)= tanh(flh)/(M IJI fl) and/70 = Bo IJI/3. 

Remark. The upper bound is mentioned here only for completeness, 
the main result is the lower bound which differs from the upper one by the 
appropriate bubble insertions. 

Proof. Our basic expression is a consequence of (3.18): 

a~-7-~ ~ = Y~ I(~0, Gx, ~,>1 
x , y ~ A  

=2~, Z W(_n,) W(_n2__ ) i  E-nl+-n2:0 ~ hi 
x,y a_~-{o}a{x} Z Z 

On 2 = 

x (<o-y> - <G, )c;,+_4o~ ) (5.34) 

(a) Proof of the upper bound 

Inserting (5.15) in the RHS of (5.34), we obtain 

c~(~h ) ~<2~ ~ W(_n~)z W(-n2)~ I [-~1 +-//2: O ~ h] 
x , y  0n 1 = {O}zJ{x} 

x {~  tanh(flh)K(y,k)I [n I +n2: O~+k] +/3M E K(y,k)Jk, 
l,k 

x (I [_n I +//2:0 ~ k ]  "~- I [,_nl + _/72"0 +-4- l]  )} (5.35) 
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where the following bounds were used: 

(i) (ay)C;l+,2(o) <~M 
(ii) tanhx~<x 

(iii) I[{k, l} ~ C_,~+_,2(0)] ~<I[n~ +_n2: 0 ~ k ]  +I[_nl +_n2: 0 ~ l ]  

The random current sums in (5.35) may be simplified by the following 
bound, in terms of the kernel K. 

W(-n~) W(-n2) l [_n~ +_n2"O T~ h] I [_n~ +_n2"O+-~k] 
Z Z 0_,1 = {o}a{x} 

0 n  2 = 

W(_nl) W(n2) I In I +_n2:0 4-, h] <~K(x, k) K(O, k) V 
z - - -2-  

Onl = { k } d { x }  

0_,2= {oil{k} (5.36) 

The equality is due to the Switching Lemma and the inequality is because 
all the terms in the LHS satisfy the condition that both Ox(_nl) and ~2o(_n2) 
visit k. With this, (5.35) becomes 

{ ~< 2 ~ [tanh(~h) + tiM kJI ] K(y, k) K(O, k) K(x, k) 
X, y 

k 

+ Jk,K(y, k) K(O, t) Iqx, t) I 
l ) 

To arrive at (5.32) we now need only to use (4.26). 

(b) Proof of the lower bound 

The basic strategy of the proof was suggested by the technique used by 
Brydges, Fr6hlich, and Sokal (13) for the derivation of skeleton inequalities, 
and it consists of repeated application of the fundamental theorem of 
calculus. The systems studied here differ, however, from the "softly" 
coupled fields analyzed there. For the latter, each iteration produces a term 
of higher order in the bare coupling constant 2o, hence the succesive terms 
can be controlled if the coupling is sufficiently weak. For the "infinitely 
coupled" Ising model, the expansion parameter is instead the bubble Bo 
which may be extremely large in the region we are interested in. Thus, we 
do not obtain satisfactory bounds by just truncating the procedure at a 
finite number of steps. In a sense, we must consider all orders of B o at the 
same time. One of the ways to do that was showed in the previous 
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theorem, where the terms were handled so that a bothersome factor 
( l - B 0 )  was transformed into ( l + B o )  -1. For the present theorem we 
resort to still another technique which is the dilution method used in a dif- 
ferent context in Ref. 22. It may be of interest to see a systematic 
elaboration of these methods used here in a somewhat ad hoc fashion. 

The starting point for the lower bound on ]c?g/~?(~h)] is the equality 
(5.34) where the last factor in the RHS represents the effect on (ay)  of 
turning off the pair couplings along the bonds of the cluster C_~ +_~2(0). Let 
us now "dilute" this cluster by replacing it by its intersection with a set of 
bonds A which would be described later. 

By the Griffiths (II) monotonicity, for each set of bonds A: 

<O'y> --  <O'y>Ccl+n2(O) ~ <(Ty> -- <ay>(Cgl+n2(O)c~A)C (5.37) 

Let us now invoke the fundamental theorem of calculus. Our first 
application is 

( ,  
(ay)  - (ay >(% =_.2(o ~ ~ A~C = Jo ds -~s (ay >, (5.38) 

where ( " ) s  means average in a system for which the coupling constant 
for each {u, v} e C~ +n;(0) c~ A has been multiplied by s~ Therefore 

1 1 
>/ gEflJu,~I[_nl+O2"O--~u]I[{u,v}ffA] fodS(ffy, Ouav> s (5.39) 

u,v 

We have used the fact that [[ {u, v} e Cv, +,~(0)1 ~>][_nl +_n2:0 +--, u]. 
We would like to use now the lower bound provided by the previous 

theorem for the truncated correlation function which appears in (5.39). 
However, this function was modified by the parameter s. To control its 
effect we apply the fundamental theorem of calculus once again: 

1 
= <(~y' [~u~v > -- 2 ~ ~Jk[ I [ {k , l}  e Cn I + n2(O)] I [ {k, l} e A ] 

fs' x dsl(~y, a,,(r~, ahat>,~ (5.40) 

No further iteration of this tactic is needed; we have bounds in the 
right direction for the truncated correlations appearing in the above 
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expression, and we are able to control the remaining factors appearing in 
(5.34). Substituting the decomposition (5.40) into (5.39) and then using the 
result in (5.34), we find that for every set of bonds A: 

O~-~flh) >~ S,(A)-  S2(A ) (5.41) 

with 

1 
S I ( A ) - - - - ~  

1 &(A) =~ 

flJuv(ay, aua~) I[{u,  v}cA] T(O, u, x) (5.42) 
x ,  y ,u , v  

y, 
x , y , u , v  

k,l 

flJ,vflJk, I [{u, v} c A ]  I [-{k, l} c A ]  R(0, x, y, u, v, k, l) 

• dsl ds2(a, ,  o-uo-~, ak(rt}~2 
1 

(5.43) 

where 

T(0, u, x) 

= 2 
a~l = {o)z{x} 

an2 = 

R(0, x, y, u, v, k, l) 

W(-nl) W(-n2) I [_n I + n2" 0 ~+ h] I In 1 + nz" 0 (--+ u] 
Z Z - - 

(5.44) 

W(-nl) W(-n2) I [_nl +_n2' 0 7~ hi  I [_n~ +_n2' 0--+ u] 
= ~" Z Z a_,l = {o}~{x} 

c~_n2 = 

x I [{k, l} e Cv, +,2(0)] (5.45) 

The inequality (5.41) is satisfied for every set of bonds A. We shall 
now average it over random sets generated by selecting bonds indepen- 
dently with probability p, whose choice will be specified later. The 
corresponding averages of the indicator function which appear in (5.42) are 

P(I[{u,v}eA])=p 
(5.46) 

P(I[{u,v}eA]X[{k, l}cA])=p 2 if {u,v}r 

What is accomplished is that the term S~ acquires a factor p, while $2 
picks the much smaller factor of p2, except for its coincidental terms which 
pick a factor p. Since, by (5.5), such terms are negative, we still obtain an 
upper bound on S 2 by ignoring the last distinction. With a suitable choice 
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of p, the difference P(S~)- P(S2) would be positive, and large enough for 
our purpose. 

Let us now consider P(&). After averaging over A, the sum over y 
and v of the relevant factors in (5.42) yields [by (5.12)] the following sim- 
ple value--independently of u and x. 

OM 

y,/) 

Hence, using the bound on OM/afl provided by Theorem 5.6 

P(S~) >~ IM [J[ Z - tanh(flh) IJI OoZ I + pfl E T(O, u, x)  = p C  1 (5.47) 
1 + 2fl l Jt Bo .,x 

The sum over T(0, u, x) also has a rather simple lower bound: 

T(0, u, x) ~> )~2 (5.48) 
u , x  

which is proven in Lemma 5.3. However, we shall use it only after the 
terms P(S-~) and -P(S2) are combined together. 

Let us consider now P(S2). To deal with R we bound 

I [ {k, l} E C n t + n2(0)l  ~ ][ If/1 n t- F /2 :0  ~ k ]  ~- I [-n I ~- ~ 2 : 0  ~ l ]  

and decompose R into a sum over clusters C~l+n2(h). Using the switching 
lemma (3.8) outside each cluster, one gets 

{ W(n{)W(_n~) } 
a.{ = { o } < . }  

a4= {~ }a { x }  

where n~ _n2 ~ are the current configurations on C C .=(h). In order to relate nl+ - 
R to the factor T which appears in $1, we apply the bound (5.13) together 
with the inequality (a0 ak > c;1 +,2(~) ~< { ao ak > h _ o to obtain 

R<~[(aoak>h=oT(O,u,x)+(u.~k)]+Ek.~l] (5.49) 

Substituting in (5.43) the factors p2, from the average (5.46), and the 
relation (5.49) we have 

P(Sz)<~P 2 Z flJ,~flJk,(~oCrk)h=o T(O, u, x) 
x ,  y , u , v  

k , l  

x dSl ds2<ay, a.a~, ak~l>,2 (5.50) 
1 

[The permutations in (5.49) were used to cancel the factor 1/4 in (5.43).] 
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The third-order truncated correlation function in (5.50) is bounded by 
our new correlation inequality, which was presented in Proposition 5.2. 
Altogether, the bound (5.4) involves 12 terms, which can be controlled by 
only slight variations of the same argument. As an example, let us present 
here one of them, which is 

U= p2 ~ T(O, u, x) flJuvflJkt(aOak)h=O 
x , y , u , ~  

k , l  

• ds, ds2(~l)s2 (ay, O'u),2 (O-~O-k).~.>h= 0 
1 

The two untruncated correlation functions in the integral are bounded 
by its values with s2 = 1 [Griffiths (II)]. An upper bound for the truncated 
correlation (ay, au) that is monotone in s2 is obtained by combining the 
leftmost inequality of (4.22) with the rightmost inequality of (4.26). With 
these bounds, 

M 2 
U= p2f12 tanh(flh--~) (1 + M tanh(flh)) E T(0, u, x) E Juv 

x , u  

x y,  &,<~oOk>h-0 (~o~k>,,=o 
k , l  

M 2 
<~ p 2 f 1 2  (1 + M tanh(flh))IJI 2 Bo ~ T(0, u, x) 

tanh(flh) ~,. 

= p2C 2 (5.51) 

In the last inequality we have used the Schwartz inequality as in 
(5.26). In fact, each of the 12 terms in the above-mentioned bound for 
P(S2) is also bounded by p2C 2. Thus P(S2) ~ 12p2C2, and hence, by sub- 
stituting this inequality and (5.47) into (5.41), we have 

~h >~ pC1 - 12p2C2 

The major difference between the magnitudes C1 and C2 [-defined in 
(5.47) and (5.51)] is that C2 has also the factor B o. Therefore, C2 may 
become much larger than C1 at the critical regime. It is to cure this 
problem that we resorted to the dilution technique in the first place. 
Indeed, if we optimize this inequality by choosing the maximizing value of 
p, namely p = cl/24c2, we obtain 

1 tanh(flh) B 2 

~ - ~  M + tanh(fih) Z 2 ~ r(o, u, x) 
OZ I> 4811 + M tanh(flh)] Bo(1 + 2fl [JI Bo) 2 u,x 
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We note that since Bo ~> 1 and flo is well known to obey the mean field 
bound flo [J] ~> 1, the condition fl ) tiff24 is sufficient to ensure that such p 
is not larger than one. 

Having performed the cancellation between P(S~) and P(S2), we 
finally apply the bound (5.48) on Z,,x T(0, u, x). The resulting inequality is 
the lower bound (5.33). | 

This concludes the derivation of the differential inequalities. The 
results summarized in Sec. 1 are based on the lower bound (5.33) of the 
last theorem, as discussed in Sec. 2. 

APPENDIX  A. B O U N D S  ON THE CRITICAL BEHAVIOR OF 
THE BUBBLE 

We summarize here a set of sufficient conditions which lead to the 
bounds (1.8) on the bubble. In this section we assume translation 
invariance and denote by G(p) the Fourier transform of (ax,  ay).  

The derivation of (1.8) is based on the following four properties of the 
model, which refer only to the regime Ro = {fl < tic, h =0}:  

1. "Gaussian domination" bounds: 

1 
G ( p ) < ~ - -  for fl<flc (A.1) 

2fiE(p) 

with 

. 

1 
E(p) = ~ ~ (1 - e ipx) Jox (A.2) 

x 

which is the energy of an elementary excitation in a "spin wave" 
picture. Such bounds are known to be satisfied in reflection 
positive models. (9) 

The bound 

. 

IG(p)] <~ Z 

which follows from the positivity of (ax, ay) 
instance, by the Griffiths (II) inequality]. 

A differential inequality of the form 

8Z -~  IJI 

8,B ~ c~ + c2(/~ Igl )a Bo 

(A.3) 

[implied, for 

(A.4) 

822/44/3-4-11 
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with a/> 1. Such an inequality is satisfied for Ising models with 
c~ = 1, c2 = 2, a = 1; and for general models in the Griffiths-Simon 
class with c~ = 3/2, C 2 = 2  , a = 2  [Ref. 3; see also (5.31)]. 

4. An upper bound on the integrated density of states of low "spin 
wave excitations." We refer by this to the quantity ~c(u) defined as 

~c(u) = (@~) dfE-~,~Y dpI[E(p)<,u]  (1.5) 

Let us note that u is naturally restricted to 0 ~< u ~< [J[ by (A.2). The 
assumption which is needed is that 

~c(u) <~ c(J) with some s > 1 

For the nearest neighbor Ising, and ~b 4, models 

E(p) >i e(J) p2 ~ to(u) <<, g(J) u d/2 

(A.6) 

(A.7) 

and hence the assumption (A.6) is satisfied in d >  2 dimensions. For long- 
range one-dimensional models with Jox = C Ix]-a, we have 

E(p) >1 c(C) p~ 1 ~ x(u) <~ g(C) u 1/(~ 1) (A.8) 

and thus (A.6) is satisfied if 2 < 2. 

l . e m m a  A.1, In a system satisfying the above four assumptions, 
i.e., (A.1), (A.3), (A.4), and (A.6), the magnetic susceptibility and the bub- 
ble diagram satisfy the following bounds along the line h = 0, /~ ~</?o : 

Z~< 

Bo ~< 

C s > 2  

C t - l [ l + l l n t ] ]  s = 2  (A.9) 

Ct 1/(s-~) 1 < s < 2  

t 
C s > 2  

C [ 1 +  Iln tl] s = 2  (A.10) 
Ct (2-s)/(s 1) l < s < 2  

where in each case C is some constant (whose dependence on the model 
can be found from our argument), and t =/~c-/3. 

Remark. The nearest neighbor and the long-range models mentioned 
in the introduction are known to satisfy all the assumptions required in this 
lemma, with the values of s given by (A.7) and (A.8). (9"23). Thus the above 
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general criterion implies the bounds (1.13) and (1.14) which were stated 
and used in the introduction. 

Proof. We start by using the observation of Sokal (Ref. 10, Appen- 
dix A) that the Gaussian domination bound and (A.3) my be combined for 
the useful inequality: 

IG(p)I ~ min{(2flE(p)) -~, Z} ~< 
2flECp) + Z-~ 

CA.11) 

whose substitution in the Parseval identity 

1 dp IG(p)t 2 (A.12) 
~~ (-5~)~ f E ~,~]d 

yields 

Bo <~ , 4 a f ~ dp )2  (A.13) 
(2n) E . . . .  l (2f lE(p)+z-I  

This bound permits us to convert (A.4) (which involves both Z and B) 
into a bound on the derivative of an explicit function of a single "dynamical 
variable" -Z .  We get: 

E + + , ,  ac + f + IJ[~< 
(2=) d ~E . . . .  ~'(2flE(P)+Z-t) 2 - ~ /  

4c2(fl [J[) '+ f dp ] (A.14) 

In the second step, we used the fact that a ~> 1. An integration from fl 
up to tic yields 

4c2(fl ]J] )a fE dp (A.15) 
IJI t ~ c l ) ~  - l  q (2=)a . . . .  le2flE(p)(2-f~(p)z+ l ) 

The dependence of the integral in the RHS of (A.15) on the quantity Z 
is clearly determined by only the "density of states" K(u). To make this 
dependence explicit we use the following principle: 

(2;t)a F(E(p)) dp = ~L-q #(u) F(u) du 
[ ~,rt] d ~0 

f 
lJI 

=F(]J I )  + ~c(u) F'(u)du 
o 0 

(A.16) 
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for functions F such that 

lim F(u) x(u)=0 (A.17) 
u ~ 0  

For the quantity in (A.15) F(u)= O(1/u) (as long as Z < oe), and the con- 
dition (A.17) is satisfied by the requirement that s > 1 [in (A.6)]. We get 

IJI t ~ C l X  -1 +4c2(fl IJI) ~ [. 1 
2fl IJI (2fl IJI z4- 1) 

X0,~ ~c(u) ] + flu2(2fluz + 1 ) du 
(A.18) 

With the assumption (A.6) on K(u), the last integral can be bounded as: 

2 
~,s, t~(u) c s z ~ ) d z  (A.19) 
~o fiu2(2fluz+l)dU<<'(2fllJlz)~-'lJI o (z+ 

If we combine this expression with the bound 

r 

;o z 
fO c Zrl )b dZ r < b - - 1  

(z+ 
ln(1 +a )  r = b - 1  
a r b+ 1 

r > b - 1  
r - b + l  

(A.20) 

we obtain in (A.18): 

I Cz -~ s > 2  
t<<.CIZ ~+ CZ ~ln ( l+2f l l J l z )  s = 2  (m.21) 

C~ (s 1) l < s < 2  

From this, the claimed inequalities (A.9) can readily be o'btained. 
To prove (A.10) we perform a partial integration (A.16) and use the 

assumption (A.6): 

1 ~al ~c(u) (A.22) 
B~ (2/3 I11 + z - a )  2+ 16fl (flu+ g_~) 3 du 

1 2c ~2/~lJIz z s 
~< (2fl i J i ) ~  t (fllJi)=(2fltjizy_2j ~ (z+l)--------Tdz (A.23) 
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This last inequality and (A.20) yield 

1 2c 
B0 ~< (2fl IJ] )~ + 

1 
s > 2  

( s - Z )  

ln(1 + 2fl I JI Z) s = 2 

(2fl IJI z) (z-s) 1 < s < 2 

(A.24) 

The bounds (A.10) follow now by combining (A.24) with (A.9). I 

A P P E N D I X  B. P R O O F  OF T H E  E X T R A P O L A T I O N  P R I N C I P L E S  

In this section we discuss the derivation of the extrapolation principles 
presented in Sec. 2. Two principles will be proven here: one is a relation 
between the critical behavior along the two-phase regime 
R2={fl>~flc, h=O } and the critical isotherm, or in fact any ray 
{ t = aflh, h >1 0}. The fact that this follows from the GHS inequality is an 
observation of Newman. (8) The other principle, which is interesting because 
of its agreement with the predictions of the heuristic scaling theory, 
establishes that if along one ray { t = aflh, h/> 0 } the magnetization has a 
power law behavior (with possible logarithmic corrections), then the same 
behavior is asymptotically true for all other such rays. 

The proof of these principles is based on the following properties of 
the infinite volume magnetization M(fl, ~) (in this section we denote 

= ~ h ) :  

(1) In the reg ion/~>0 the function M(fl,/~) is continuous in/~. (The 
continuity a t /~=  0 is here just a matter of definition.) 

(2) F o r / ~ > 0 ,  M(fl, fz) is the pointwise limit of differentiable (in fact 
analytic) functions ML: 

M =  lira ML(fl, h) (n.1) 
L ~ o o  

(3) The functions ML satisfy the following inequalities: 

OML 8Me (B.2) 
0 ~ - - - ~ - ~  IJI ML 8 ~  

o < a_._~M, (a.3) 
8h 

The functions ML are here the magnetizations per site on cubes of 
side L with the periodicized interaction J(~Ly)=~_.n~ZdJx, y+n L. The func- 
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tions M and ML can be represented as the upper derivatives 
ML(fl,/~) = --(~/~/~)fL(fl,/~ + 0) of the corresponding free energy functions. 
By general arguments the functions fL(fl, On) are concave in/~, and they con- 
verge pointwise to f(fl,  h). Hence their derivatives converge for almost 
every n c. However, the systems discussed here have the additional property 
that the functions ML are concave in /~--for /~>0 (GHS inequality.) 
Therefore, the limiting function M(fl, ~), which is continuous from above, 
is also concave and thus continuous for /~> 0. This implies the pointwise 
convergence in (B.1) for /~>0. At /~=0, the limit L-- ,oo is of course 
discontinuous if fl > tic. 

The inequality (B.3) and the lower bound in (B.2) are a consequence 
of Griffiths (II) while the upper bound in the latter follows from the GHS 
inequality. We remark that there is no continuity requirement in fl for M; 
however, the previous two conditions imply that M is an increasing 
function of fl for each/~/> 0. 

The basic observation is that (B.2) and (B.3) imply that the lines of 
constant magnetization 

M L(fl, h(fl) ) = m (B.4) 

have a negative slope bounded by - IJI m. Indeed, differentiating (B.4) and 
using (B.2), we obtain 

0 = ---~c~M L dl~ + r (B.5) 
0/~ ML . . . . .  t 

) \-"~'-ff'-J]\"~ ML . . . . .  t + IJI M ~  (B .6 )  

Therefore, 

-JJI MY ~<-5-~ ~<0 (B.7) up ML = const 

[The left inequality follows from (B.6) and (B.3), while the right one is a 
consequence of (B.5) and the lower bounds (B.2) and (B.3).] 

A manifestation of this last inequality, valid even in the infinite volume 
limit, is provided by the following result. 

k e m m a  B.1. Consider s o m e  j~l>~0,  hl~>0 and let M(fll,fll)=m; 
then 

(i) M(fl, l~)>~m for every (fl, fz) in the region 

{(fl,/~) J/~>~ max[/zl , /zl-  ]J[ m(fl--fll)]} (B.8) 
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(ii) M(fl, fl) <~ m for every (fl, h) in the region 

{(fl,/~) ]/~ ~< min[/~l, nr l -  IJI m(f l - f l l ) ]}  (B.9) 

except possibly at the corner (fl = f i l  -~- fh/]JI rn, f~= 0). 
Figure 9 presents a graphical summary of these results. In the proof of 

this lemma and the following results in this section we shall omit some 
totally elementary calculations, and present just the sketch of the 
arguments. 

S k e t c h  o f  t h e  P roo f .  For finite volume and/~1 > 0 the statements 
are an easy consequence of (B.7). The convergence properties of ML 
immediately imply the bounds for the interior of the regions (B.8) and 
(B.9). Moreover, the continuity in fz extends the bound to the boundary of 
those regions, except for the c o r n e r  ( / ~ - - / ~ i  +hl/[JI rn,/~=0) where such 
continuity argument fails. 

The special case for/~a = 0 is proven by applying the above argument 
to points ( i l l , /~)  with/~1 ~ 0 and resorting once again to the continuity in 
L ! 

By repeatedly applying this lemma one can prove the following two 
extrapolation principles. 

k e m m a  B.2. If along a ray t=af~,h>~O 

c~(/~) ~1 Iln (,~)l ~ (1 + O(h)) ~< M~< c2(/~)": Iln (/~)l ~ (1 + 0(/~)) (B.IO) 

with 0 < % <  1 and ( 1 ) i ) 0  , then the same inequality (with the same 
ci, cq, coi) is asymptotically true for any other ray t=bft, fl>~O. 

~./ M - > m  

/ / / / / / /  / / / /1~  h' I , 

191 
(a )  (b) 

Fig. 9. Graphical summary of Lemma B.1. (a) The general situation; (b) the particular case 
in which net = 0. The slope of each slanted line is - ]J] m, where m is the magnetization at the 
darkened point. 
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Lemma B.3. 
(1) If along a ray t = a/~,/~ ~> 0 

M~< c(/~) ~ Iln(/~)l ~ (1 + 0(/~)) (B.11) 

with 0 < e <  1 and w~>0, then in the region R2=  {(fl, h=O) lfl>flc } 

M~< (IJI cl/~) ~/(1-~) [tl ~/(~-~) Iln(IJlM Itl)l ~/(1 ~)(1 + O(Itl) (B.12) 

(2) If in region R2 

M~> c It[ a (1 + O(t)) (B.13) 

with 2 ~> 0; then, along any ray t = ah, h/> 0, 

M>~ (IJIcl/;~) ~/~ +4) (/~);~/(a + ~)(1 + O(/~)) (B.14) 

S k e t c h  o f  t h e  P r o o f  o f  k e m m a  B.2. Consider two rays with 
slopes a~ and a2 respectively. Lemma B.1 implies the situation summarized 
in Fig. 10, which shows that every point of one of the rays has the 
magnetization bounded above and below by the magnetization at points of 
the other ray. For instance, 

M(Po) <~ M(P~) <~ M(P2) 

t=alh A 

t -- a2h 

~p2=~pi -~"~-'~- h'Po ~ / ~  PO 

B 
Fig. 10. Summary of the argument for the proof of Lemma B.2. The arrows indicate the 
direction of increasing magnetization. The slope of each tilted dashed line is - IJI times the 
magnetization at the corresponding darkened point. Under the assumption of Lemma B.2 
these slopes are vanishingly small for P0, P3 close to (tic, nC = 0). 

A 

h 
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Moreover, nee1 =/~p2 while P1 and Po are connected by a straight line of 
slope not larger (in absolute value) than IJI M(Po). Hence, if the 
magnetization obeys a power law (upper) bound in the ray of slope a2, the 
difference among/~el,/~e0, and/~p2 becomes negligible for points of the ray 
close to the critical point ( t=0 ,  /~=0). Hence, asymptotically the same 
power law is obeyed by the points of the ray of slope al. | 

The proof of Lemma B.3 is based on similar considerations. 

A P P E N D I X  C. D IFFERENTIAL  INEQUALIT IES  FOR SPINS 
W I T H  M E A S U R E S  IN THE G R I F F I T H S - S I M O N  
C LASS 

In this appendix we present an extension of one of the inequalities 
derived in this paper to a more general class of spin measures--the Grif- 
fiths-Simon class described below. At the outset, let us point out that we 
do not have such a full generalization of Theorem 5.7 which is the basis for 
the results derived in Sec. 1 for Ising systems. The result discussed here is 
the following more general version of the inequality (5.19). 

Theorem C.1. For any finite ferromagnetic system in [ - L ,  L] a 
with periodic interactions and spin measures in the Griffiths-Simon class, 
we have 

~?M IMI J f z - ( � 8 8  Ijl)2go)hXl+ 
o---fl - >  ~ + 2(/~ IJI) 2 g o (C.1) 

Before discussing the proof let us briefly describe the Griffiths-Simon 
class of spin measures. Its definition is based on the observation of 
Griffit]hs ~24) that a number of interesting spin distributions can be generated 
by representating the spin variable as a weighted sum of ferromagnetically 
coupled Ising spins. By taking limits of such variables, Simon and 
Griffiths {24) further enlarged the class of spin measures which inherit some 
of the properties of Ising spins and showed that it contains the "~b 4'' 
variables [with po(dO) = exp( - ~ 4  ..}_ b~2) dq~]. 

For a convenient representation of a system of G.S. spins, one may 
regard each lattice site as a "block" of "microscopic" sites, with an internal 
index ~=  1,..., N, and each spin variable q~ as a weighted average of 
"microscopic" Ising spins a~x,~: 

N 
~x = ~ Q~U)cr(x,~) (C.2) 

with positive coefficients Q(N3. 
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The Griffiths-Simon class of measures is the set of measures p0(~b)dO 
induced for ~b by letting the microscopic Ising spins be either independent 
or coupled with a ferromagnetic intrablock Hamiltonian of the form 

1 
H1 = - ~  Z Z I(~N!~ cr(x,~)~(y,~) (C.3) 

x c~,~ 

and taking limits of such measures with N ~  c~. To ensure convergence as 
N ~ oo of the finite volume correlation function, we shall always assume 
that ~ e a*2 po(dO)< oo for all a < oo. This class of measures includes discrete 
as well as continuous spin variables and, in particular, the ~4 measure men- 
tioned above (for which Q~N) is independent of ~). 

The Griffiths-Simon representation of some continuous spin systems 
as limits of Ising spins provides a perspective which is complementary to 
the standard interpretation of Ising spins as the strong coupling limit of ~4 
continuous variables. Furthermore, from the point of view of this work this 
representation is a convenient tool for the extension of results proved for 
the Ising models via random current representations, to a broader family of 
models. Indeed, a model with the two-body interaction 

1 
H2= --~ ~, Jx, y~x~)y-- 2 hx~ x (C.4) 

x , y  X 

and spins in the G.S. class can be approximated by Ising models with a 
total Hamiltonian 

1 
H= H, + H2 = - ~  ~ J~yax_ay - ~ hzax- (C.5) 

x_,y_ x- 

for which we can apply the random current representation. We have 
denoted here _x = (x ,  ~);  _y = ( y , / ? )  and: 

I JxyQ~N,Q~N, if y CX 
Jxy = i(xu!a if y = X (C.6) 

h~=h~Q~ N) 

To obtain results applicable to the whole Griffiths-Simon class, we 
must maneuver so as to arrive at expressions which are stated only in terms 
of the block spins {~bx} and the interblock couplings Jxy, with no reference 
to the microscopic variables a or any intrablock parameter. Such 
expressions are insensitive to the limit N ~ oo and are automatically valid 
for all measures in the Griffiths-Simon class regardless of the particular 
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forms of Q(N) and l (N). To comply with this program we shall try, as a 
general policy, to replace connection constraints involving sites by con- 
straints referring to blocks. For  this purpose, the following result provides 
an useful extension of the principle derived in Lemma 3.1. For  each z e A 
let us denote B~= {(z, ~)1 1 ~<~<N}(z-block.) 

Proposition C.2. Let f be any positive function on current con- 
figurations. For any z r x: 

W(n,) W ( n 2 ) f ( n l + n 2 )  I [n~ +_n2:_x--, Bz] 
a. l-  {x}~ {y} 

O n2 - ~ - 

<~ Z flJp,(z,a) Z W(_nl) W(_nz)/(_n t +n2) (C.7) 
6 a,_,~ = {x}J{p} 

p: p �9 ~ a_.2 = {(~,a)}~{_y} 

The proof of this proposition can be found in Ref. 3 (Proposition 7.1). 
We now turn to the proof of the inequality (C.1). 

Proof  o f  T h e o r e m  C.1. The proof follows the same basic 
guidelines as that of Theorem 5.6 except that some conditions related 
with sites are replaced by conditions over blocks. For  
M= (r Q~(a(o,~)) we have an expression analogous to (5.21) but 
involving the coupling constants of the Hamiltonian (C.5): 

3M 1 { I  W ( ~  1)  W(- / ' / 2 )  

Off - 2  ~ J"vQ~ Z ~ ~ _.,_~ a n~ = {(o,~)}.~ {~} 
a O n  2 = 

xIE_nl+_n2:(O,~)~h](cr~)c;,+.2(o.~)]+Eu~,~v]} (C.8) 

At this point we substitute the cluster C~ +,2(0, e), whose bonds end in 
a site connected to 0, by the larger cluster 

C,(O)={{_y_z} I_n:9-,Byorn:O--,Bz}w{{s (C.9) 

formed by bonds ending in a block connected to _0. By Griffiths (II): 

( ~ )  c~ § r > / ( ~  ) e_; 1 +:,2~o,~) (C.lO) 

We now use (C.10) in the RHS of (C.8) and then Lemma 5.5 to 
obtain, as in (5.23), 

0M 
- - ~ M  IJI z -  I I -  III (C.11) 
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with 

W(Vl) W(_H2) 
II = ~ Q~ tanh(flhk) K(v, _k) J~_~ y, Z Z 

~,~,k a_n~ = {(o,~)}z {_~} 
a On2 = 

xI [n~  +n2:  (0, a) ~ h] I [ n l + n  2" (0, :r  (C.12) 

and 

III~< ~ Q~K(_v,_k)Ju~flJk, E W(~I) W(-n2) 
Z Z _~,_v,_k,_l @~ = {(o,~)}~ {~} 

a 8n2 = 

X I [ y l  + y2 " (0, ~)  -/--~ h i  I [-01 + 02 : (0, (~) ---~ B k ]  (0"l> c;1+_.2(0,a) (C.13) 

Let us work with II. We must separate the terms for k # 0, for which 
we use (C.7), and the terms for k = 0. 

II(k # O) ~< 

II = II(k # O) + II(k = O) 

Q~ tanh(flhk) K(v,_k) J~_,~ ~ fiJ~_,(k,S) 
u,V W: W 7 r k 

k : k # O  6 
o~ 

W(-/"/1) W(-H2) [ I--H1 +-//2: (0, 0{) 5/~ h ]  
• E z 
~I = {(0,~) }At {w} 
@2= {_~}J{(k,a)} 

u_,g w: w # k  
k : k # O  g 

= ~ flhJuv<~k>h=OflJwk<~uq)k>h=O <~o, q~w> 
u,v 

k~0 
w # k  

In the inequality we used (4.22), Griffiths (II) as explained immediately 
after (5.25), and the fact that tanh x ~< x. We relax the restrictions on _k and 
_w and use Schwartz inequality (5.26) and translation invariance to obtain 

II(k # O) ~< (fl IJI )2 Boh)~ (C.14) 

On the other hand, the part of the sum in (C.12) with k = 0 is: 

II(k = 0) = ~ Q~ tanh(flh(o,~)) K(v, (0, ~)) J~v(a(o,~), rG> 

Y,/ h<Ovr Juo<r > 
u , v  
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The inequality follows from (4.22) and the bound tanhx~<x. Using 
Schwartz inequality and translation invariance we obtain 

II(k = 0) ~/~ IJI B~/2hz (r 

(C.14) and (C.15) can be combined, for instance, by resorting to the 
elementary inequality x ~< x2+ 1/4. The result is: 

II ~< [(/~ IJI )2 Bo + �88 hz (C.16) 

The work with III is very similar, except that we first replace C by C 
in the RHS of (C.13), which gives an upper bound by virtue of (C.10). We 
use (C.7) for the terms with k C0 and operate with the resulting 
expressions in a way almost identical to the one used for the Ising Model. 
The result is: 

8M 
III~<2[(/~ IJI) 2 Bo+�88 8/3 (C.17) 

The proposed bound (C.1) follows by the substitution of (C.16) and (C.17) 
in (c.11). I 
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