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Foreword

Gibbsian probability distributions where introduced in statistical me-
chanics to describe the equilibrium properties of “macroscopic” phys-
ical samples, i.e. infinite-volume systems. In the last decades they
have become widely used in a variety other settings as well (Gibbs
sampling, simulated annealing, hidden Markov processes), and their
theory has become a fertile chapter in probability theory (see for in-
stance the comprehensive book by Georgii [18]). The goal of statistical
mechanics —namely to catalogue and describe the different Gibbsian
distributions admitted by each given system— has, therefore, become
central for all these applications:

The methods used for the description of Gibbsian distributions
can be roughly divided into two (interrelated) groups: (i) methods
to estimate and bound decay properties of the correlation functions,
and (ii) methods to determine the properties of the “typical” or “most
probable” events (families of configurations). The course is intended
as an introduction of a powerful method of this last, and less known,
type.

The techniques to be discussed, globally known as Pirogov-Sinai
theory or contour arguments, though elementary from the mathemati-
cal point of view, remain, unfortunately, well known only to a reduced
clique of practitioners. As a byproduct of this state of affairs, the
theory remains severely under-exploited. It is probably safe to state
that the various known applications of the theory —determination of
phase diagrams, study of interfaces among coexisting pure phases, de-
termination of finite-volume corrections— are only a small fraction of
the potential uses of it. One possible explanation for this situation is
the lack of pedagogical and simplified expositions, free of the heavy
notation and abstract bias that plague most papers on the subject.
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The present course is intended as a modest contribution to revert this
fact.

In consistency with this goal, the presentation will systematically
be made at the simplest possible level so to convey the conceptual basis
of the technique without unnecessary jargon or generality. The theory
will be stated in its most classical and elementary version, and will
be illustrated via the simplest non-trivial examples available. The
course is aimed to a general audience of (potential or actual) users
of Gibbsian theory, not restricted to specialists in rigorous statistical
mechanics. Of course, a number of statistical mechanical notions will
be used, but they will be introduced at the beginning.

In fact, a large part of the course (roughly half of it) is devoted
to prepare the audience for the fundamental result of the theory. An
effort is made to present the big picture in a brief but complete way:
type of phenomena under study, different scenarios, scope of the the-
ory, main tools, tricks of the trade. I attempt a clear exposition, using
words besides formulas, even at the risk of exposing myself to crit-
icism. Words are, by force, imprecise, when compared with a rigid
definition-lemma-theorem-corollary approach. But this has been, pre-
cisely, one of the problems of the papers on the subject: They are
mathematically impeccable, but hard to understand. These notes are
an attempt more or less in the opposite direction.

My personal knowledge of the subject was acquired through many
discussions with enlightened colleagues and through hard work with
industrious coauthors. To my advisor, Joseph Slawny, I owe the cru-
cial basic knowledge of almost everything in these notes: Gibbs states,
Peierls argument, cluster expansions, Pirogov-Sinai theory. Later, my
understanding of the latter benefited immensely from discussions with
Christian Borgs, Roman Kotecký, Charles Pfister and Milos Zahradńık
(in alphabetic order), and my confidence in handling it developed
during collaborations with Aernout van Enter, Nilanjana Datta, Jürg
Fröhlich, Roman Kotecký, Luc Rey-Bellet and Alan Sokal. Of course
they are not to blame for errors in these notes!

I take this opportunity to thank the organizers of the 21 Colo-
quio Matemático Brasileiro for inviting me to give this course and to
the Institute for Theoretical Physics of the Swiss Federal Institute for
Technology in Zürich (ETHZ) and the Instituto de Matemática e Es-
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tat́ıstica of the University of São Paulo for hospitality while these notes
were being written. I especially thank the members of the probability
group at IME–USP for encouragement and support. I also acknowl-
edge the Consejo Nacional de Investigaciones Cient́ıficas y Técnicas
(CONICET), Argentina, for granting me the leave of absence to visit
the Universidade de São Paulo.



vi



Table of Contents

1 Introduction: Plan of the lectures 1

2 Gibbs measures and other notions from statistical me-
chanics 5
2.1 The basic setup . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Configurations . . . . . . . . . . . . . . . . . . . 5
2.1.2 Local events and observables . . . . . . . . . . . 7

2.2 Finite-volume statistical mechanics . . . . . . . . . . . 8
2.2.1 Interactions and Boltzmann-Gibbs weights . . . 8
2.2.2 Zero temperature. Energy . . . . . . . . . . . . 11
2.2.3 Non-zero temperature. Entropy and free energy 12

2.3 Infinite-volume statistical mechanics . . . . . . . . . . . 15
2.3.1 Gibbs distributions . . . . . . . . . . . . . . . . 15
2.3.2 Zero temperature: Ground-state configurations

and energy density . . . . . . . . . . . . . . . . 16
2.3.3 Nonzero temperature: Free energy density . . . 20

3 The basic technology: The Peierls argument and clus-
ter expansions 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 The Peierls argument . . . . . . . . . . . . . . . . . . . 30

3.2.1 Setting and result . . . . . . . . . . . . . . . . . 30
3.2.2 Dissection of the argument . . . . . . . . . . . . 31
3.2.3 The sea-with-islands picture . . . . . . . . . . . 39

3.3 Cluster expansions . . . . . . . . . . . . . . . . . . . . 40
3.3.1 The importance of ratios of partition functions . 40
3.3.2 General contour ensembles . . . . . . . . . . . . 41

vii



viii Table of Contents

3.3.3 The fundamental theorem and its corollaries . . 42
3.3.4 Contour “probabilities” . . . . . . . . . . . . . . 45
3.3.5 Mixing properties . . . . . . . . . . . . . . . . . 47
3.3.6 Summary of properties . . . . . . . . . . . . . . 49

4 Pirogov-Sinai theory 51
4.1 The definition of contours . . . . . . . . . . . . . . . . 52

4.1.1 Aspects to consider . . . . . . . . . . . . . . . . 52
4.1.2 Definition of contours for general models . . . . 54

4.2 The Peierls condition . . . . . . . . . . . . . . . . . . . 57
4.2.1 Contour energies . . . . . . . . . . . . . . . . . 57
4.2.2 The Peierls condition . . . . . . . . . . . . . . . 59

4.3 The general scenario . . . . . . . . . . . . . . . . . . . 61
4.3.1 Procedure to fall into the cluster-expansion frame-

work . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.2 Stable boundary conditions . . . . . . . . . . . 63

4.4 The main result . . . . . . . . . . . . . . . . . . . . . . 65
4.4.1 Criterion for the stability of a phase . . . . . . . 65
4.4.2 Application: Stability of zero-temperature phases 66

5 Proof of the main result 69
5.1 The key lemma . . . . . . . . . . . . . . . . . . . . . . 69
5.2 The inductive proof . . . . . . . . . . . . . . . . . . . . 71
5.3 The final lemma . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Last remarks . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography 79



Chapter 1

Introduction:
Plan of the lectures

Contour arguments rely on the observation that, in many systems
of interest, low-temperature Gibbs distributions are concentrated on
configurations which are basically a single configuration plus a small
fraction of small “fluctuations”, also called “defects”. The boundaries
of these “fluctuations”, define the contours. The contours are simple
objects subjected to geometrical constraints, and the description of
their distribution should be a tractable endeavor if the system is at
“low temperature”, i.e. when the “defects” are few and far-between.
The method to be discussed consists, precisely, in exploiting this fact
through the replacement of the original distributions by distributions
of contours.

This technique was pioneered by Peierls in his study of the Ising
model, later formalized more precisely by Griffiths and Dobrushin [21,
11]. The original argument benefited from the particular symmetries
of the Ising model. The adaptation of the method to the treatment
of non-symmetric models is not trivial, and was developed by Pirogov
and Sinai [35, 36, 38]. Later, a particularly enlightening alternative
version of the argument was put forward by Zahradńık [44]. The most
concise and simple exposition of this version is due to Borgs and Imbrie
[3]. The course will be centered around a bare-bone presentation of
this last work. Actually, there exists by now a new formulation of the
theory due to Zahradńık [46]. But this formulation is too new to me.
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2 1. Introduction: Plan of the lectures

I prefer to stay with the by now classical approach which has been so
prolific in the last decade.

The lectures have two well differentiated parts: Chapters 2 and 3
are preparatory chapters. They are oriented towards the unprepared
reader, with little or no knowledge of statistical mechanics and Gibbs
distributions, and who perhaps never heard of the Peierls argument
and cluster expansions. They are written in some sense as overviews,
hence they are less complete from the mathematical point of view.
The actual Pirogov-Sinai theory is discussed in the last two chapters,
to which the more informed reader can jump right ahead.

In Chapter 2 I introduce and discuss a family of concepts that are
motivated in physics —energy, entropy, free-energy— whose knowl-
edge is not assumed. The presentation is rather informal. The objec-
tive is to help the ignoramus to acquire a minimal intuitive grasp of
the main concepts, so as to be able to read through the mathematics
that follows. Some care is taken to present the general type of prob-
lems to which the theory applies, and to illustrate the limitations and
scope of the theory.

The course continues, in Chapter 3, with the presentation of the
two keystones on which the theory is built: the Peierls argument and
the technology of cluster expansions. The first one is discussed in some
detail, in its simplest version. The theory of cluster expansions is also
presented in a rather complete manner except that I omit the proof
of the main theorem. This proof has been extensively discussed in a
number of references. I hope that, nevertheless, the audience get a
reasonable idea of what can be accomplished with cluster expansions,
and when and how they can be applied.

In Chapter 4, the full-fledged Pirogov-Sinai theory is introduced.
A number of examples, that exhibits the different complications aris-
ing in the general case, is presented to motivate the more abstract
setting of the theory. The main result of the theory is a criterion
to determine when a configuration minimizing the energy function
(ground-state configuration) gives rise to a low-temperature Gibbs dis-
tribution. A simplified proof will be discussed in Chapter 5, following
the Zahradńık-Borgs-Imbrie approach. The goal is to convey the logic
of the argument and a basic understanding of its key elements. Hope-
fully, this will allow the student to access the various generalizations
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available, and even try some of his/her own.
Unfortunately, I have not included any discussion of the many

successful applications of the theory in different directions: Stability of
phase diagrams, completeness of phase diagrams, finite-volume effects,
applications to surface phenomena, extension to quantum mechanical
systems. I leave this for a future opportunity with less scarce (writing)
time.

Throughout the notes I have tried to be fair with the bibliography.
As mentioned in the foreword, pedagogical reviews are not common in
this topic. The review by Slawny [40] is lucid and clear, even when not
totally self-contained, but it relies on the “old” approach of the original
papers of Pirogov and Sinai. The latter, in Chapter 2 of his book [38],
discusses this approach in a terse but mathematically careful manner.
While the original paper of Zahradńık [44], where he introduced the
approach advocated here, is not particularly readable, his notes for
the Cours de Troisième Cycle de la Physique en Suisse Romande [45]
are full of useful comments and details. Unfortunately, they are not
easily available. Recently, Kotecký has written two excellent reviews
[27, 28] unfortunately also with limited distribution. Given that, the
compact paper by Borgs and Imbrie [3] continues to be the clearest
reference the average reader can access.
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Chapter 2

Gibbs measures
and other notions
from statistical mechanics

2.1 The basic setup

2.1.1 Configurations

The starting structure is a space of the form

Ω := ΩZZd

0 (2.1)

where Ω0 is a finite set (eg. Ω0 = {−1, 1}) and ZZd is just the set of
integer-valued d-tuples. The set Ω0 represents possible configurations
of a certain “object” which, according to the applications, is called
spin, molecule, pixel, etc. Let us, for concreteness, use the name
“spin”, in which case Ω0 corresponds to the single-spin space. The
space Ω —the configuration space— is thought as an infinite collec-
tion of copies of the space Ω0, one at each point of ZZd. This set ZZd is
termed the square lattice in d dimensions, and its elements, for which
we shall use letters towards the end of the alphabet (like x, y, u), are
called sites. Other lattices are also used (triangular, honeycomb, etc),
and most of what we shall discuss can be correspondingly adapted.
For future purposes, we shall need a notion of distance in ZZd. In
these notes we shall take “dist(x, y)” to mean the Euclidean distance
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6 2. Gibbs measures and other notions from statistical mechanics

restricted to ZZd, and we adopt the associated notions of distance be-
tween sets and diameters of sets.

We shall use lowercase Greek letters like ω, σ or η for the elements
of Ω, called configurations. A configuration ω ∈ Ω is therefore a
collection of values {ωx}x∈ZZd , each ωx ∈ Ω0, which specify the value
of the spin at each site x of the lattice ZZd. The fast way to say that
our underlying space is of the form (2.1) is to say that we consider a
spin lattice system in d dimensions.

Finite-volume configuration spaces

ΩΛ := ΩΛ
0 , (2.2)

will also be used. Here Λ ⊂ ZZd is a finite set, often an hypercube.
By the way, we shall adopt the traditional notion “| · |” for the car-
dinality of sets. Hence, |Λ| < ∞. Finite-volume configurations will
have the volume in question as a subscript: ωΛ ∈ ΩΛ. Moreover, for
a configuration ω ∈ Ω we shall also denote ωΛ its “projection” (or
“restriction”) to Λ: ωΛ = {ωx}x∈Λ. This is a widely adopted abuse of
notation.

In our examples below, often Ω0 = {−1, 1}. The corresponding
configuration space is referred to as the space of Ising spins. The
value “+1” is interpreted as “spin up” and “−1” as “spin down”.
Alternatively, one can write Ω0 = {0, 1}, in which case Ω is inter-
preted as the space of lattice-gas configurations (“1”=presence and
“0”=absence of a gas particle at the site). This is, in principle, just a
trivial change of symbols. The change may be not so trivial, however,
if used in conjunction with long-range interactions [26, Sections I.4
and III.4], [41]. Other examples to have in mind are spin-1 systems
—Ω0 = {−1, 0, 1}— and q-Potts spins —Ω0 = {1, 2, . . . , q}.

There is a natural notion of translation in configuration space.
Namely, the translate of a configuration ω by a d-tuple a ∈ ZZd is the
configuration

τaω := {ωx−a}x∈ZZd (2.3)

obtained by shifting in block all spins to sites displaced by a. Here
x − a indicates the coordinate-wise difference. A configuration that
is invariant under translations is called translation-invariant. These
are very boring configurations: they are constant, i.e. the spins take
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the same value at all sites. A little less simple are the periodic config-
urations. These are configurations invariant only under multiples of
certain basic translations. More precisely, ω is periodic if there exists
a d-tuple b ∈ ZZd such that ω is invariant under translations with a of
the form

a = (m1b1, m2b2, . . . ,mdbd) , (2.4)

for m1, . . . ,md ∈ ZZ. Such ω is obtained by periodic repetition of a
configuration in the “fundamental cell”

Fb = {[0, b1 − 1]× · · · × [0, bd − 1]} ∩ ZZd . (2.5)

2.1.2 Local events and observables

A local event A is a family of configurations determined only through
conditions involving the spins at a finite number of sites. The archetyp-
ical examples are the cylindrical events, formed by all configurations
having fixed spin values at a certain finite set Λ. More precisely,
given a configuration σΛ ∈ ΩΛ, the cylinder with base σΛ is the set
C(σΛ) ⊂ Ω,

C(σΛ) := {ω ∈ Ω : ωx = σx ∀x ∈ Λ
}

, (2.6)

formed by all configurations agreeing with σ on Λ. All local events
are obtained by (finitely-many) unions and intersections of cylinders.

The notion of local event can be (apparently) generalized to that
of local observables. A function f : Ω→ IR (or C) is a local observable
if it only depends on the spin values at a finite number of sites. More
precisely, there must exist a finite Y ⊂ ZZd such that f(ω) = f(σ)
whenever ωY = σY . I will often emphasize this property with the
notational abuse f(ω) = f(ωY ). In particular each local event E
defines a local observable via its characteristic (or indicator) function:

1l[E](ω) :=

{
1 if ω ∈ E
0 otherwise .

(2.7)

However, each local observable can be written as a linear combina-
tion of characteristic functions of local events. Hence the descriptions
furnished by events and observables are equivalent.



8 2. Gibbs measures and other notions from statistical mechanics

In physical terms, the definition of events and observables corre-
sponds to the specification of experiments or measurements (feasible
or conceivable) for which the theory should account. The local events
and observables are interpreted as microscopic experiments. One may
wonder what types of observables correspond to global experiments,
that is to measurements sensitive only to properties involving an infi-
nite (“macroscopic”) number of sites. Translation invariance may play
a role here. It is natural to define the translate of a function f : Ω→ IR
(or C) by a ∈ ZZd as the function τaf :

τaf(ω) := f(τ−aω) , (2.8)

defined by shifting. A translation-invariant function is a function that
coincides with all its translates. The function is periodic if it is in-
variant only upon translations of the form (2.4). Functions that are
periodic (and satisfy an added technical requirement of measurability)
can be considered as global observables. Indeed, a periodic function
takes the same value for configurations differing only at finitely-many
spins (modulo sets of measure zero, see [18, Proposition 14.9]). This
fact can be interpreted as insensitivity to microscopic changes.

There is an elegant measure-theoretical construction given mathe-
matical consistency to all these definitions: The local events give rise
to a σ-algebra via countably-many unions and intersections. Events
(not necessarily local) are the elements of this algebra, and (not nec-
essarily local) observables are functions measurable with respect to
it. These considerations are largely beyond what is needed for these
lectures, hence will not be pursued. Interested people can consult
the treatise by Georgii [18], or Section 2.1 of [42] for a more concise
exposition.

2.2 Finite-volume statistical mechanics

2.2.1 Interactions and Boltzmann-Gibbs weights

One considers a finite “window”, that is a finite region Λ ⊂ ZZd outside
which the spins are supposed to be frozen in some configuration ηZZd\Λ.
The statistical mechanical description of such a finite-volume system
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amounts to prescribing probability weights for each configuration ωΛ of
the spins inside Λ. The correct form of these weights, from the point of
view of physical applications, was determined by the Austrian Ludwig
Boltzmann and the American Josiah Willard Gibbs towards the end
of last century. The formalization of their prescription requires the
introduction of an interaction. This is a family of functions

Φ = {ΦB}B⊂ZZd finite (2.9)

where each
ΦB: Ω→ IR , (2.10)

depends only on spins in B:

ΦB(ω) = ΦB(σ) if ωB = σB . (2.11)

Once the interaction is given, one constructs the Hamiltonian on
Λ with external condition η. This is the function Hη

Λ: ΩΛ → IR (or C)
defined by:

Hη
Λ(ωΛ) :=

∑
B:B∩Λ6=∅

ΦB(ωΛη) , (2.12)

where we have denoted by ωΛη the configuration coinciding with ω at
the sites in Λ and with η at the sites outside Λ. The key feature of the
Hamiltonians (2.12) is that they are a sum of local contributions ΦB,
each of which becomes independent of the region Λ and the external
condition η once the former is large enough. To make this fact more
explicit, let us write Hη

Λ in the form

Hη
Λ(ωΛ) :=

∑
B:B⊂Λ

ΦB(ωΛ) +
∑

B:B∩Λ6=∅
B:B∩(ZZd\Λ) 6=∅

ΦB(ωΛη) , (2.13)

The boundary of the region Λ is felt only by the last term on the
right-hand side. The value of the Hamiltonian Hη

Λ on a particular
configuration ωΛ is usually called the energy of ωΛ (for the external
condition η outside Λ).

The Boltzmann-Gibbs probability weight for each ωΛ ∈ ΩΛ is then

ρ
(β) η
Λ (ωΛ) :=

exp[−βHη
Λ(ωΛ)]

Z
(β) η
Λ

. (2.14)
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The factor Z
(β) η
Λ is the obvious normalization factor

Z
(β) η
Λ :=

∑
ωΛ∈ΩΛ

exp[−βHη
Λ(ωΛ)] , (2.15)

and the coefficient β is interpreted as the inverse temperature. (In
physical units β = 1/(kT ), where T is the temperature and k the
Boltzmann constant.) It is introduced for physical reasons, and it is a
fact that properties of the systems change a lot when β changes from 0
(high temperature) to∞ (zero temperature). In these lectures we shall
be working in the neighborhood of β =∞. Rigorously speaking, then,
we shall be studying families of probabilistic models parameterized by
a (in our case, very large) parameter β, all of them having the same
interaction.

The interaction is what defines the model. In principle, it is the
only input needed from physics; the rest of the game can be played
strictly as an application of probability theory. This is, of course,
an exaggeration. Physical intuition keeps providing crucial help, and,
indeed, most methods used in the field were developed on the basis
of physical ideas, even when they can a posteriori be restated in ab-
stract probabilistic terms. Nevertheless, from the conceptual point of
view, statistical mechanics can be considered a chapter of probability
theory. It is a very special chapter though, because it has been a con-
tinuous source of concepts, methods and problems that have enriched
the whole field of probability.

Most interactions studied in practice are very simple: The func-
tions ΦB are zero except for sets B involving a not very large number
of sites, often just one and two. The sets B for which ΦB is not zero
are called bonds. One of the most famous examples is the Ising in-
teraction (due, in fact, to Ising’s advisor, Lenz). One considers Ising
spins (σ = +1 or −1), and takes:

ΦB(σ) =


−J σxσy if B = {x, y} nearest-neighbors
−hσx if B = {x}
0 otherwise

(2.16)

This model has, therefore, only two-site bonds, involving nearest-
neighbor sites (that is, sites x, y such that dist(x, y) = 1) , and single-
site bonds. The “−” in front of J and h is an established convention.
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A convenient, less rigorous but also less pedantic, way to give the
information contained in (2.16) is to write

H = −J
∑
〈x,y〉

σxσy − h
∑
x

σx . (2.17)

This is roughly a remainder of the first summand (“bulk contribu-
tion”) in (2.13). The notation 〈x, y〉 indicates dist(x, y) = 1. Ex-
pression (2.17) in itself has no meaning —it is often called a formal
Hamiltonian— but it is clear how to transform it into meaningful
finite-volume Hamiltonians Hη

Λ: Constrain the sums to bonds inter-
secting Λ and assign the value ηy to sites y outside Λ. Other examples
will be presented below.

All the interactions considered in these lectures will be of finite
range. This means that there exists some r ≥ 0 such that ΦB = 0
whenever diam B > r. Moreover, our interactions will be translation-
invariant, i.e.

τaΦB = ΦB+a (2.18)

—where B + a = {x + a : x ∈ B}— or, at least, periodic, that is
satisfying (2.18) form a subgroup of translations of the form (2.4).

Of course, the weights (2.14) yield a prescription to compute av-
erages of observables: If f is a local observable,

〈f〉(β) η
Λ :=

∑
ωΛ

f(ωΛη) ρ
(β) η
Λ (ωΛ) . (2.19)

For the corresponding probability of an event A, we shall use the
notation

Prob
(β) η
Λ (A) := 〈1l[A]〉(β)η

Λ

=
∑

ωΛ: ωΛη∈A

ρ
(β) η
Λ (ωΛ) . (2.20)

[We define
∑

∅ = 0.]

2.2.2 Zero temperature. Energy

The weights (2.14) take a particularly simple form in the limit β →∞.
Such limit is interpreted as the statistical mechanical description of a
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finite window at zero temperature. In this limit, the Boltzmann-Gibbs
weights (2.14) become uniformly distributed over the configurations
attaining the minimum energy value:

Eη
0Λ := min

σΛ
Hη

Λ(σΛ) . (2.21)

Resorting to standard physics terminology, let us call this minimum
the ground-state energy for the region Λ with external condition η.
More precisely, if we denote

Gη
Λ :=

{
ωΛ : Hη

Λ(ωΛ) = Eη
0Λ

}
, (2.22)

then for β →∞ the weights (2.14) become

ρ
(∞) η
Λ (ωΛ) =

{
1/|Gη

Λ| if ωΛ ∈ Gη
Λ

0 otherwise .
(2.23)

The configurations in Gη
Λ are the (local) ground-state configurations

for the region Λ with external condition η. The determination of these
ground-state configurations for general external condition may not be
an easy matter. Let us consider the Ising model (2.17) with h = 0
and J > 0. We see that to minimize (2.17) one should align, as
much as possible, neighbor spins. This is why models with J > 0 are
termed ferromagnetic. If η is chosen as the configuration constantly
equal to +1, then there is a unique ground state for every Λ, namely
the configuration equal to +1 inside Λ too. However, for a square Λ
(d = 2) and η equal to “+” on the top and left sides and “−” on the
right and bottom, Gη

Λ has quite a few different configurations, namely
all possible staircases between the upper right and lower left corners.
The turning on of a magnetic field h renders the system insensitive to
the external condition, if the region has a volume sufficiently larger
than the area of the boundary. In such a case, there is a unique ground
state regardless of the external condition, namely the configuration
with all the spins equal to sgnh (“parallel” to h).

2.2.3 Non-zero temperature. Entropy and free
energy

As we have just seen, the zero-temperature distributions are concen-
trated on a particular set of configurations, in the sense of giving
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zero probability to the event formed by all the other configurations.
This set of configurations —the ground-state configurations— is de-
termined purely on the basis of energy. When temperature is turned
on, energy is no longer enough to determine the set of configurations
where the Boltzmann-Gibbs weights are concentrated. One must con-
sider another factor known as “entropy”. To see this, let us consider
the weight given by (2.14) to the event formed by all configurations
with fixed energy:

ρ
(β) η
Λ (E) := Prob

(β) η
Λ ({ωΛ : Hη

Λ(ωΛ) = E})

=
∑

ωΛ:Hη
Λ(ωΛ)=E

ρ
(β) η
Λ (ωΛ) . (2.24)

But all the configurations in question have the same weight (2.14);
hence

ρ
(β) η
Λ (E) =

Nη
Λ(E) exp[−βE]

Z
(β) η
Λ

, (2.25)

where we have denoted

Nη
Λ(E) :=

∣∣∣{ωΛ : Hη
Λ(ωΛ) = E}

∣∣∣ . (2.26)

It is natural now to denote

Nη
Λ(E) =: exp[Sη

Λ(E)] , (2.27)

so (2.25) becomes

ρ
(β) η
Λ (E) =

exp
{
−[βE − Sη

Λ(E)]
}

Z
(β) η
Λ

=:
exp

{
−β F

(β) η
Λ (E)

}
Z

(β) η
Λ

. (2.28)

The quantity Sη
Λ is known as entropy, while

F
(β) η
Λ (E) = E − 1

β
Sη

Λ (2.29)

is called free energy. Let us point out that there are different notions
of entropy and free energy, tailored to different statistical mechanical
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approaches. The entropy just introduced corresponds to the Gibbs
entropy for the microcanonical ensemble. Likewise, the free energy
F

(β) η
Λ (E) defined in (2.29) corresponds to the Gibbs microcanonical

free energy (for the given Λ, η and β). The lesson of (2.28)–(2.29)
is that, for nonzero temperatures, all energies —not only the lowest
ones— have nonzero probability. This probability, however, depends
on a balance between the value of the energy and its associated en-
tropy.

An increase in energy over ground-state values produces two com-
peting changes in the probability weights: On the one hand, the damp-
ing due to the factor e−βE —the “energy cost”— and, on the other
hand, the growth in the number N(E) —the “entropy gain”. Proba-
bility distributions at nonzero temperatures depend on both factors,
that is, not just on energy but on free energy.

For fixed finite volumes, expression (2.29) shows that the influence
of entropy becomes negligible at low temperatures (β →∞). But, as
we shall see below, in the infinite-volume limit the situation is more
subtle. Nevertheless, the techniques to be discussed in these notes will
work only when the low-temperature dominance of the energy survives
the infinite-volume limit.

More generally, one often deals with sums of the probability weights
of configurations of a certain family. If, for conceptual or technical
convenience, one writes such a sum as exp[−β something], this “some-
thing” is usually called free energy (with the right qualifiers, if one
wants to be precise). This nomenclature can be interpreted as a re-
minder that both energy and entropy effects are being taken into ac-
count. In particular, the finite-volume partition function gives rise to
a finite-volume free energy

exp[−β F
(β) η
Λ ] := Z

(β) η
Λ . (2.30)

The similarity in name and notation between the free energies (2.29)
and (2.30) (note that only the “E” in the argument gives the clue)
can be a source of confusion.
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2.3 Infinite-volume statistical mechanics

2.3.1 Gibbs distributions

Infinite-volume statistical mechanics is obtained by letting Λ → ZZd

(in principle, in the sense of nets) in the theory described in the pre-
vious section. Through imprecise, this statement conveys an essential
ingredient of the standard mathematical approach to infinite-volume
phenomena: Rather than plunging into some abstract infinite-volume
formalism, one humbly studies how things change as volume grows.

Some features, like the ones studied in these lectures, stabilize
—rather quickly— as the volume increases. They are rigorously es-
tablished by proving bounds that hold uniformly in the volume. Other
features —like lack of analyticity in the presence of a phase transition—
truly show up only at infinite volume. But, nevertheless, many rigor-
ous studies of the critical exponents associated to this non-analyticity
are based on correlation inequalities determined already for finite vol-
umes [15]. On the other hand, there exists a genuinely infinite-volume
method to study critical behavior, based on the so-called renormal-
ization transformations (see, eg. [16] for a pedagogical introduction).
This method, while conceptually very useful, is hard to formalize rig-
orously (for a list of rigorous works in this direction, see, for example,
Section 6.1.1 of [42]).

In making precise the opening statement, we notice that we are left
with very little choice if we want to make a sensible infinite-volume
extension of the theory presented in Section 2.2. There is no hope of
extending the notion of Hamiltonian to infinite volumes, as this would
lead to infinite sums that will be almost surely divergent. As a con-
sequence, the infinite-volume limits of the Boltzmann-Gibbs weights
(2.14) are also useless: in most cases they are zero for all configura-
tions ω. The only objects with meaningful infinite-volume limits are
the expectations (2.19) or the measures (2.20).

Definition 2.1 A probability distribution 〈 · 〉 on Ω is called a Gibbs
distribution for an interaction Φ and an inverse temperature β if there
exists a sequence of volumes Λn −→

n
ZZd and a sequence of external



16 2. Gibbs measures and other notions from statistical mechanics

conditions ηn such that

lim
n
〈f〉(β) ηn

Λn
= 〈f〉 (2.31)

for each local observable f . When we need to be precise, we shall
denote the limit distribution 〈 · 〉 in the form 〈 · 〉(β) {ηn}. More generally
a convex combination of distributions of the form 〈 · 〉(β) {ηn} is also
called Gibbsian.

In a more formal language, Gibbs measures are those measures
obtained as weak limits (weak* limits, for functional analysts) of
Boltzmann-Gibbs distributions (considered as measures on the whole
of Ω), or convex combinations thereoff.

The objective of statistical mechanics is to determine all the Gibbs
distributions for a given interaction at each given temperature. This
is usually too big a job, so one settles for more limited objectives, like
determining all translation-invariant (or periodic) Gibbs distributions,
or at least checking whether there is a unique Gibbs distribution or
more than one.

In these lectures we discuss a method to determine periodic Gibbs
distributions at low temperature, using, as starting point, the zero-
temperature Gibbs distributions briefly introduced in the following.

2.3.2 Zero temperature: Ground-state configura-
tions and energy density

Rigid and non-rigid ground-state configurations

Already at zero temperature, the distributions defined by the infinite-
volume limit of (2.19)–(2.20) can give rise to a rich structure of prob-
ability measures. Let us start with the simplest examples. Consider,
for instance, the ferromagnetic (i.e. J > 0) Ising model (2.16) with
h = 0, and take the “+” external condition, that is,

ηx = +1 x ∈ ZZd . (2.32)

Then, it is easy to see that

Gη
Λ = {η} (2.33)
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for all finite Λ ⊂ ZZd. In words, there is a unique way to complete η
inside a finite region Λ so to minimize the energy, namely taking η in
the interior too. Given this lack of flexibility, an η satisfying (2.33)
for Λ sufficiently large is called a rigid ground-state configuration. For
such a configuration one easily concludes that

〈f〉(∞) η
Λ −→

Λ→ZZd
f(η) ; (2.34)

that is,
〈 〉(∞) η

Λ −→
Λ→ZZd

δη (2.35)

as measures. Here δη is the probability distribution concentrated on η
—δη(η) = 1, δη(ω) = 0 ∀ω 6= η. This limit distribution is, in fact, de-
terministic; it does not allow fluctuations. We conclude that each rigid
ground-state configuration defines a deterministic zero-temperature
Gibbs distribution.

There are plenty of examples of rigid configurations. For the fer-
romagnetic Ising model with h = 0, one has: the “−” configuration
(ηx = −1 for all x ∈ ZZd), the “flat-interface” configurations

ωx =

{
+1 for x1 ≥ 0
−1 for x1 < 0

(2.36)

(x1 is the first component of x ∈ ZZd), which is rigid for dimensions
d ≥ 2, and many more examples appearing at higher dimensions (see
[14] for a catalogue).

In fact, these rigid configurations are what most people have in
mind when thinking of zero-temperature statistical mechanics. They
are often called simply ground states. One must keep in mind, however,
that, in general, not everything is deterministic at zero temperature.
Consider, for instance, the antiferromagnetic Ising model —that is an
interaction (2.16) [or (2.17)] with J < 0 — with a positive magnetic
field h = 2d |J |:

H = −J
∑
〈x,y〉

σxσy − 2d |J |
∑
x

σx . (2.37)

After some juggling you can convince yourself that this model has
no rigid ground-state configuration. Indeed, Dobrushin, Kolafa and
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Shlosman [13] showed that this model has a unique zero-temperature
Gibbs distribution which is far from deterministic, being, in fact, dis-
tributed uniformly on all configurations with no two nearest-neighbor
spins equal to −1.

Another example is provided by the model having Ω0 = {−1, 0, 1}
and formal Hamiltonian

H =
∑
〈x,y〉

(ω2
x − ω2

y)
2 . (2.38)

This model has a unique rigid ground-state configuration, namely ωx =
0 for all x ∈ ZZd. On the other hand (see Corollary B.14 in [42]), there is
a non-deterministic translation-invariant zero-temperature Gibbs dis-
tribution supported (equally) on all configurations with no zero at any
site.

For a more detailed account of the zero-temperature zoo, the reader
is referred, for instance, to Section B.2 of [42]. The presence of several
rigid ground-state configurations, and/or of some zero-temperature
distribution supported on non-rigid configurations, is known as “de-
generacy”.

m-potentials

In these lectures we shall only be able to deal with deterministic zero-
temperature distributions. Usually, they are determined by playing
with the different terms of the interaction and seeing how to min-
imize (most of) them. The easiest possible case is when there are
configurations that actually minimize all the terms of the interaction.
Following Holsztynski and Slawny [25], we shall call m-potentials in-
teractions with this property:

Definition 2.2 An interaction Φ = {ΦB} is an m-potential if there
exists a configuration ω simultaneously minimizing all functions ΦB:

ΦB(ω) = min
ω̃∈Ω

ΦB(ω̃) ∀B ⊂ ZZd finite . (2.39)

For m-potentials, it is enough for our purposes to study the set
—to be denoted M(Φ)— of configurations satisfying (2.39). Indeed,
in their article [25] Holsztynski and Slawny establish the following
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Proposition 2.3 If Φ is periodic andM(Φ) is a non-empty finite set,
then the configurations ofM(Φ) are all the periodic rigid ground-state
configurations of the model.

All models considered up to now are defined by m-potentials. Nev-
ertheless, the interactions (2.37) and (2.38) do not satisfy Proposition
2.3 because in both casesM(Φ) is not finite.

Energy density

In the finite-volume case, the Boltzmann-Gibbs distributions are con-
centrated on configurations minimizing the total energy. An analogous
result holds in the infinite-volume case, but in relation with energy
density (total energies are not well defined!).

Given an interaction Φ, the energy density, or specific energy, of a
configuration ω is defined as the limit

eΦ(ω) := lim
Λ→ZZd

1

|Λ|
∑
B⊂Λ

ΦB(ω) (2.40)

whenever the limit exists. In particular, if ω is periodic with funda-
mental cell Fb [see (2.5)], then this limit exists and equals

eΦ(ω) =
1

|Fb|
∑
x∈Fb

∑
B3x

ΦB(ω)

|B|
. (2.41)

If the interaction is just periodic, rather than translation-invariant,
then b must be chosen as a common period for the interaction and the
configuration in question, and one must replace |B| by the number of
periodic translates of B containing x.

It is known [14, 38], that periodic configurations must minimize
the energy density (2.40) to have a chance of being in the support of
zero-temperature Gibbs distributions. In particular, the rigid ground-
state configurations that will concern us must have minimal energy
density.
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2.3.3 Nonzero temperature: Free energy density

Methods of study

At nonzero temperatures, Gibbsian distributions can no longer be de-
terministic. In fact, every local event has nonzero probability. These
distributions are, therefore, nontrivial probability measures on an un-
countable configuration space. Its rigorous study requires, in princi-
ple, the tools and concepts of full-fledged measure theory. In particu-
lar, there are some sets of configurations (“non-measurable sets”) and
some functions (“non-measurable functions”) that can not be included
at all in the formalism. This will not worry us here because we shall
work only with local events and observables, all of which are measur-
able by construction. A more relevant observation, to understand the
purposes of these lectures, is that infinite-volume Gibbs distributions
are not, in general, the product of a density function times a product
measure. [In measure-theoretical terms, Gibbs measures —for nonzero
interactions— are singular with respect to any product measure.]

The study of Gibbs distributions, therefore, can not rely only on
elementary considerations —like those used to study finite-volume dis-
tributions in Section 2.2.3. Most of the techniques developed to un-
derstand (infinite-volume) Gibbs distributions can be classified into
two types: (1) study of correlations, and (2) determination of “typical
configurations”.

The first type of techniques refers to the study of averages of the
form

〈f g〉 (2.42)

—two-point correlation functions— or, more generally,

〈g1 · · · gn〉 (2.43)

—n-point correlation functions. Here the functions f, g, g1, . . . , gn are
local observables —often very local, for instance depending only on
spins at a single site.

The set of all correlations (2.43) uniquely determines the prob-
ability distribution 〈 · 〉. Hence, in principle, the more correlations
one studies, the more one knows about the measure 〈 · 〉. Moreover,
for most practical purposes the necessary information is already con-
tained in the lowest orders of n. Indeed, on the one hand, except



2.3 Infinite-volume statistical mechanics 21

for very particular values of the parameters β, h, etc —defining the
so-called critical points— Gibbs distributions correspond to random
variables with weakly coupled fluctuations. In such a situation, the
2-point functions (2.42) —more precisely the “truncated” correlations
〈f g〉 − 〈f〉 〈g〉— provide crucial data, like whether clustering prop-
erties are present (hence the measure is extremal), or absent (which
implies the existence of more than one Gibbs measure). On the other
hand, at the critical points the behavior of the distributions is char-
acterized by critical exponents whose determination usually requires
only low-order —two- three- and four-point— correlation functions.

The main limitation of the approach based on correlation functions
is not lack of information, but rather its reduced range of applicabil-
ity. Correlations are studied via correlation inequalities that, once
established, yield a plethora of information (see, for instance, [22],
[19, Chapter 4] and [15, Chapters 12 and 13]). But these inequalities
are valid only for very particular families of models —ferromagnetic,
reflection-positive, models with the FKG property, etc.

On the other hand, the techniques of type (2), i.e. aimed to the de-
termination of “typical” configurations, apply to more general interac-
tions and yield a basically complete understanding of the distribution
in question. In this lectures we study the mathematically “softer” ver-
sion of these methods, based on the so-called cluster expansions. The
use of expansions has a price: only regions where the expansions con-
verge are accessible. In particular, usually only either very low or, as in
these lectures, very high values of β can be treated. For intermediate
values of β —where critical points appear— completely different ar-
guments, based on multi-scaling or renormalization ideas, are needed.
These intermediate-temperature techniques are mathematically much
harder and quite beyond the scope of these notes.

Energy versus entropy

By their very definition, the natural way to understand infinite-volume
Gibbs distributions and their typical configurations is by watching the
behavior of the finite-volume averages (2.19) [or the measures (2.20)]
when the region Λ tends to ZZd. As an enlightening guideline, let me
present a simplified heuristic discussion of possible scenarios, based
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on energy-entropy considerations introduced in section 2.2.3.

Let us first place ourselves at zero temperature and consider deter-
ministic zero-temperature Gibbs distributions (i.e. rigid ground-state
configurations). If we turn on (a little) the temperature we expect
Gibbs distributions which, in some sense, do not differ much from the
starting δ-like distributions. The first observation is that in the limit
Λ→ ZZd the probability (2.20) of a single configuration —that is, of the
event formed by only one configuration— converges to zero. There-
fore, the Gibbs distributions at non-zero temperature must include
fluctuations, that is, they must be supported on configurations where
groups of spins are misaligned with respect to the ground-state con-
figuration. Moreover, these spin fluctuations have to be distributed
throughout ZZd: the probability of an event formed by all the con-
figurations which outside a given finite region M are frozen in some
fixed manner, also tends to zero. [Such an event is a finite union of
single-configuration events, each of which has zero probability.]

For high β (low temperature), one may expect the fluctuations
to appear mostly in small groups of spins in widely separated re-
gions. Therefore, we may expect to associate to each rigid (periodic)
ground-state configuration η, a low-temperature Gibbs distribution
〈 〉η whose typical configurations look like a “sea” of spins aligned as
in η with small and far-between “islands” of misaligned spins. If this
is the case, the zero-temperature (deterministic) Gibbs distribution δη

is said to survive at the given temperature, or that one has a stable η
phase (phase = extremal periodic Gibbs measure).

As β decreases (i.e. the temperature increases), the set of stable
phases is expected to change. To understand this —again heuris-
tically— it is enough to consider the effect of fluctuations localized
around the origin. They have an energy cost but also increase en-
tropy. If the sea-with-islands picture holds, similar fluctuations will
be present throughout the whole of ZZd with a certain density. There-
fore, both the finite-volume energy and the finite-volume entropy of
Section 2.2.3 should typically be of the order |Λ| times the changes
due to fluctuations around zero. In other words, the analysis of fluc-
tuations involving the origin should provide us with an estimation of
energy, entropy and (some sort of) free energy densities. These lo-
cal, energy raising, fluctuations are called excitations, or elementary



2.3 Infinite-volume statistical mechanics 23

excitations, of the ground-state configuration of reference. They are
often classified according to their energy, those leading to the smallest
change in energy being called lowest excitations.

Let me illustrate the argument with a concrete example. Consider
the model defined by Ω0 = {−1, 0, 1} and formal Hamiltonian

H =
1

2

∑
〈x,y〉

(ωx − ωy)
2 (2.44)

(spin-1 Blume-Capel model). It has three translation-invariant rigid
ground-state configurations: the all-“+1”, all-“0” and all-“−1”. The
lowest excitations involving the origin consist, precisely, in flipping the
spin at the origin itself. There is a difference, however: The all-“0”
configuration has two elementary excitations

ω0 = +1,
ωx = 0 , |x| = 1

and
ω0 = −1,
ωx = 0 , |x| = 1 ,

(2.45)

both with energy d, while the all-“+1” and the all-“−1” configurations
have only one excitation of such low energy:

ω0 = 0,
ωx = +1 , |x| = 1

(2.46)

and
ω0 = 0,
ωx = −1 , |x| = 1 ,

(2.47)

respectively (the other possibility, namely putting a “−” in a sea
of “+” or vice-versa, has a higher energy cost 4d). Therefore, the
lowest-energy excitation for the all-“0” ground-state configuration has
a higher entropy (log 2 versus 0), and hence a lower “free energy”,
than that of the other two periodic rigid configurations. The precise
definition of this “free energy” will be a central issue in later chap-
ters. The argument suggests, then, that as soon as the temperature is
turned on, the all-“0” configuration is favored, from the point of view
of the “free energy”, and hence is the only one to survive.

If one tries to force either an all-‘+” or an all-‘−” sea by taking the
respective boundary conditions, the corresponding Boltzmann-Gibbs
distributions will tend, as Λ → ZZd, to favor configurations in which
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close to the boundary there is a massive flip into an all-“0”-plus-
fluctuations configuration. Such configurations have an energy cost
of the order of the number of spins in the boundary, but a “free en-
ergy” gain of the order of the volume of the region Λ. This gain takes
over as the volume grows, and the limit yields the “0”-phase distribu-
tion. We shall see, in this lectures, the not-so-trivial steps needed to
make a rigorous proof out of the part of the preceding argument deal-
ing with the stability of the “0”-phase. The proof of the unstability
of the putative “+”- and “−”- phases is an additional development of
the theory that we shall have no time to discuss.

Of course, it can also happens that the number of stable phases
grow at a certain temperature. For example, let me add one more
term to the previous model (2.44):

H =
1

2

∑
〈x,y〉

(ωx − ωy)
2 − g

∑
x

ω2
x . (2.48)

For g > 0 the model has only two rigid ground-state configurations:
the all-“+” and the all-“−”. It turns out that for each g positive but
small, there is a value β(3)(g) such that for β > β(3)(g) both the all-
“+” and all-“−” phases remain stable, at β = β(3)(g) the three phases
—all-“+”, all-“0” and all-“−”— are stable, and for β < β(3)(g) (but
still large enough) only the all-“0” phase is stable. While for g > 0 the
all-“0” ground-state has higher specific energy, the entropic advantage
of its low-lying excitations does decrease the “free energy” and, as
temperature grows, makes it comparable to, and later less than, that
of the other possible phases.

Other possible scenarios

A much more involved scenario takes place in case of infinite degener-
acy —like the one for the antiferromagnetic Ising model (2.37). In the
first place, one has to deal with non-deterministic zero-temperature
Gibbs distributions. In such case, it is not clear, in general, whether
the notion of excitation and the picture of a sea with islands are mean-
ingful or useful. Moreover, in cases of extreme degeneracy, one may
find a very complicated pattern of cascades of low-temperature tran-
sitions to different families of Gibbs distributions
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Another scenario, useful to keep in mind as a reference, is when
entropy so overwhelmingly wins over energy that no deterministic
zero-temperature distribution survives at nonzero temperature. The
archetypical example of this phenomenon is the 1 − d ferromagnetic
Ising model in zero field. The model has exactly two periodic (in fact,
translation-invariant) rigid ground-state-configurations: the all-“+”
and the all-“−”. Let us apply the energy-entropy argument to, say,
the all-“+” configuration. The lowest excitations involving the origin
are obtained by flipping any consecutive string of spins at and around
the origin

ωx =

{
−1 for a ≤ x ≤ b
+1 otherwise

(2.49)

(a ≤ b). All these excitations have an energy cost 4J, independent
of the (finite) volume |Λ| being considered. But there are O(|Λ|) of
them, hence they embody an entropy gain of order log |Λ|. As Λ→ ZZ,
entropy beats energy and long fluctuations become overwhelmingly
probable. The sea-with-island picture breaks down completely; the
all-“+” zero-temperature distribution does not survive the addition of
temperature. By symmetry, the same happens with the all-“−” con-
figuration. Therefore, this heuristic argument indicates that as soon as
the temperature is turned on the ordered zero-temperature distribu-
tions disappear and the system settles in a disordered Gibbs distribu-
tion. This fact can actually be proven, through the proof —by now a
simple exercise for advanced undergraduate students— is not based on
energy-entropy considerations, but rather using transfer-matrix tech-
niques. I propose, as an interesting exercise, the construction of a
rigorous proof of the unstability of both rigid configurations, based on
the previous heuristic argument.

Another aspect that will be totally left out in these lectures is the
fate of non-periodic rigid ground-state configurations, like the flat-
interface configurations (2.36). The lack of periodicity renders its
study considerably more complicated and extremely case-dependent.
Low-temperature Gibbs distributions associated to flat interfaces have
been the object of a number of rigorous studies [12, 1, 24, 34]. Its study
is related to rather subtle aspects of the theory of random surfaces.
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Free energy

To finish this section, let us come back to the issue of the different
notions of free energy. Above I have loosely spoken of a certain “free-
energy” density, associated to families of configurations obtained by
adding local fluctuations to a rigid ground-state configurations. We
have in mind a density that depends of the reference “sea” configura-
tion, and whose minimization is associated to stability. In contrast,
what texts in statistical mechanics usually call free-energy density is
the limit

f(β, . . .) = − 1

β
lim

Λ→ZZd

1

|Λ|
ln Z

(β) η
Λ (2.50)

based on the free energy (2.30). Here “. . .” stands for all other pa-
rameters present in the interaction. As the notation indicates this
limit density does not depend on the external condition η. For spin
models, this free-energy density corresponds to what physicists call
Helmholtz free energy density, while in the case of lattice gas models
—eg. Ω0 = {0, 1}— it is interpreted as minus the pressure.

The limit (2.50) constitutes, therefore, an example of a thermo-
dynamic potential, that is, a quantity that makes the connection be-
tween statistical mechanics and the preexisting, very successful but
essentially phenomenological, thermodynamical approach. Its (one-
sided) derivatives have important physical interpretations (specific
heat, magnetization, magnetic susceptibility). Nevertheless, the in-
sensitivity to external conditions shows that this object can not be
directly used to determine, via minimization, the stability of phases.
It turns out that a variational principle can be set out, in a rather
abstract framework, so that periodic Gibbs distributions emerge as
minimizers, in the space of probability measures, of a free-energy den-
sity like (2.50) considered as a functional on the space of interactions
(see, eg. [26, Chapters I, II and V], [18, Chapters 15 and 16] for a
detailed exposition, and [42, Section 2.6] for a quicker account). Such
an approach is too abstract for our purposes here.

Rather, we shall see below how one can rigorously define (in fact
in a highly non-unique manner) a notion of free-energy density related
with the sea-with-island picture, which depends on the reference “sea”
configuration, and which being minimal implies stability. In this sense,
it could be called metastable free-energy density. Moreover, the mini-



2.3 Infinite-volume statistical mechanics 27

mal metastable free-energy density coincides with the physical density
(2.50).
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Chapter 3

The basic technology:
The Peierls argument
and cluster expansions

3.1 Introduction

The two basic ingredients behind the description of low-temperature
Gibbs distributions via contour ensembles —or, more generally, gases
of defects [17]— are (1) the Peierls argument, and (2) the technique
of cluster expansions.

Peierls introduced his argument in 1936 [33] to show that the 2-
d Ising model does exhibit phase coexistence at low temperature. It
was a crucial contribution, as it confirmed that the comparatively sim-
ple picture proposed by Gibbs and Boltzmann was indeed sufficient
to describe the existence of phase transitions. Before this, Ising had
shown, in his doctoral dissertation, that the one-dimensional version
of the model does not have a phase transition at nonzero tempera-
tures. Ising was under the impression that the same would be true for
higher dimensions, and this fueled the suspicion that perhaps a more
complicated statistical theory —possibly involving multiple Hamilto-
nians, or different Hamiltonians for different temperature regimes—
was necessary to account for phase transitions. Peierls, with his argu-
ment, showed this not to be the case.

Despite its importance, the original argument needed some math-

29
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ematical debugging which was performed, almost 30 years later, in-
dependently by Dobrushin [11] and Griffiths [21]. Our presentation
below is along the lines of the former.

The cluster expansion was introduced by Ursell in 1927, and its
use is also associated with the name Mayer (1937). The form used in
rigorous statistical mechanics is due to Glimm, Jaffe and Spencer [20].
Its theory has undergone the following developments:

(i) The expansion was generalized and systematized by Malyshev
[30] and Seiler [37].

(ii) Cammarota [7] clarified and simplified the key combinatorial
bound showing that there is an underlying identity (tree-graph
identity), explicitly exhibiting the cancellations among different
terms of the expansion. Good references for this new proof are
the monographies of Brydges [6] and of Pfister [34, Section 3].

(iii) A compact and elegant approach was put forward by Kotecký
and Preiss [29]. This approach often yields the best bounds
for the convergence region, but it requires that the clusters be
formed from only a finite number of possible “polymers” . Some
generalizations need to dispense with this limitation [8].

(iv) A further development of the approach of Kotecký and Preiss
has been recently presented by Roland Dobrushin [9]. In partic-
ular I recommend his posthumous work, Perturbation methods
of the theory of Gibbsian fields [10], to all the probabilists in the
audience.

Our presentation below is based on the approach of the references
cited in (ii).

3.2 The Peierls argument

3.2.1 Setting and result

The argument applies to the ferromagnetic Ising model at zero field;
that is, to the model with interaction (2.16) with J > 0 and h =
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0. This model has two periodic (in fact, translation-invariant) rigid
ground-state configurations: the all-“+” and the all-“−” configura-
tions. The argument shows that both deterministic measures survive
at low temperatures giving rise to two different Gibbs distributions.
More precisely, the argument shows that there is a range of inverse
temperatures (∞, βP) such that for each β in this range there are two
different Gibbs distributions, 〈 〉(β)+ and 〈 〉(β)−, which are the
“sea-with-islands” version of the corresponding ground-state configu-
rations. The “+” distribution is characterized by a strictly positive
magnetization:

〈ω0〉(β)+ > 0 , (3.1)

while the “−” distribution has a strictly negative magnetization:

〈ω0〉(β)− < 0 . (3.2)

The argument is not useful to estimate the critical temperature
(the temperature at which both Gibbs distributions cease to be differ-
ent), but it does give an essentially complete characterization of the
configurations typical for each of the distributions. Both, the fact that
the two ground-states configurations survive, and the mathematical
implementation of the argument, rely on symmetry considerations.

3.2.2 Dissection of the argument

Let me now present the argument, clearly distinguishing its different
components.

Step 0. Existence of 〈 · 〉(β)+ and 〈 · 〉(β)−

The (infinite-volume) distribution 〈 · 〉(β)+ is constructed by taking
the limit of finite-volume distributions with “+”-boundary conditions.
The argument assumes that such a limit does exist. This existence can
be proven, indeed rather easily, using correlation inequalities. Let us
denote by ωA, for a finite A ⊂ ZZd, the function

ωA :=
∏
x∈A

ωx . (3.3)
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Then, the 2nd Griffiths inequality [22] implies that

〈ωA〉(β)+
Λ ≥ 〈ωA〉(β)+

∆ whenever Λ ⊂ ∆ . (3.4)

This implies that the limit

lim
Λ→ZZd

〈ωA〉(β)+
Λ =: 〈ωA〉(β)+ (3.5)

exists, by monotonicity, for all finite A ⊂ ZZd. As every local func-
tion is a (finite) linear combination of functions ωA, this proves the
existence of 〈 · 〉(β)+ as a probability distribution. The existence of
〈 · 〉(β)− is proven either analogously or just saying “by symmetry”.
The construction shows that both measures 〈 · 〉(β)+ and 〈 · 〉(β)− are
translation invariant.

Step 1. Definition of contour ensembles

If the sea-with-islands picture is expected, it is mathematically conve-
nient to change variables from spins to something associated with the
islands. Such new objects should have a simpler distribution, as the
islands occur so seldomly at low temperature. These new variables
are the contours which we now introduce.

Our objective is to analyze limits of distributions 〈ω0〉(β)+
Λ . Con-

sider, therefore, the space Ω+
Λ of configurations in ZZd which are equal

to “+1” outside Λ. For each ω ∈ Ω+
Λ , we have that

H+
Λ (ω) = 2JN+−(ω) + E+

Λ , (3.6)

where N+− is the number of misaligned nearest neighbors:

N+− := |{x, y : |x− y| = 1 and ωx 6= ωy}| , (3.7)

and E+
Λ is the energy in Λ of the all-“+” configuration. This term

is independent of ω, and in the present symmetric case will turn out
to be unimportant. In fact, in many elementary presentations this
term is turned off by redefining the Hamiltonian so that both the all-
“+” and the all-“−” configurations get zero energy [that is, taking the
equivalent interaction H = −J

∑
〈x,y〉(σxσy−1)]. This trick ceases to

be useful if one wants to study full phase diagrams (for instance if one
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considers also a magnetic field h). For future reference is opportune
to remark that E+

Λ is of the form

E+
Λ = 2dJ |Λ|+ O(|∂Λ|) (3.8)

= e(+) |Λ|+ O(|∂Λ|) . (3.9)

Here e(+) is the energy density (2.40) of the all-“+” configuration,
∂Λ stands for the internal boundary of Λ (set of sites in Λ with a
nearest-neighbor outside it), and “O(|∂Λ|)” is a correction that does
not grow faster than the number of sites in ∂Λ (for a parallelepiped it
equals |∂Λ|/2).

Peierls realized of the convenience of doing a geometric accounting
of the number N+−(ω) by drawing, in two dimensions, a unit segment
perpendicular to the line joining misaligned nearest neighbors. It is
intuitively obvious that these segments join up to form closed curves
(the curves must be closed because outside Λ all spins are “+”). Its
connected components are called Peierls contours. In three dimensions
one considers plaquettes perpendicular to bonds with misaligned spins,
and the contours are closed surfaces. The rigorous formalization of
these facts is straightforward but tedious. One needs to introduce the
dual lattice whose sites have half-integer coordinates. Contours have
vertices in this lattice. The fact that they are closed —i.e. that each
dual vertex can only be the vertex of an even number of segments
(plaquettes)— also requires a little proof. Let me omit the details;
readers can consult them in [18, Section 6.2] or [10, Section 5B]. I
wish, however, to comment on the notion of connectedness.

Given a configuration ω and the family of segments (plaquettes
in higher dimensions) separating misaligned spins in ω, it is natural
to call two segments connected if they share a vertex. This defines a
notion of connection for finite families of segments. Two families of
segments are disconnected if no dual site can be found that is simulta-
neously a vertex of at least one segment of each family. Each family of
segments (plaquettes) can be divided into maximally connected com-
ponents (that is, on contained in any other connected set). If we
call contours to these connected components, the resulting contours
can include loops. An alternative, loop-free, definition is possible in
two dimensions if we introduce a convention to “chop-off” the corners
where four segments meet. One must be careful here, not every rule is
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possible. See for instance [10, Section 5B] for a rule that works. The
advantage of doing this is that loop-free contours are closed paths,
and hence is much easier to count their number. Nevertheless, for
the general case, and also for Ising in higher dimensions, there is no
similar algorithm. As I am aiming for generality, I will not insist on
the “chopping-off” trick.

Let me use the letter γ for individual contours, and Γ(ω) for the
family of contours corresponding to a configuration ω ∈ Ω+

Λ . What-
ever the definition of connectedness, each contour γ is a closed curve
(surface, d − 1-dimensional manifold). Each γ is closed, hence (Jor-
dan curve theorem) it divides ZZd in several components: one infinite,
called the exterior and denoted Ext γ, and several with finite cardi-
nality (only one if the contour does not intersect itself), collectively
called the interior of γ and denoted Int γ. By construction, there is
a map that to each ω ∈ Ω+

Λ it associates a family of non-intersecting
contours Γ(ω). A less trivial fact is that this map is invertible: Any
family of pairwise disjoint closed curves in (the dual of) Λ is the fam-
ily of contours of some configuration. This configuration is obtained
by starting with “+” on the outside of all contours and flipping each
time a contour is traversed. A little proof is needed to show that this
algorithm does not lead to contradictory requirements (see [10, pp.
25–26]). Hence, if we denote C+

Λ the set formed by families of pairwise
disjoint contours, we have a bijection

Ω+
Λ ←→ C+

Λ

ω ⇀↽ Γ(ω) ,
(3.10)

such that

N+−(ω) =
∑

γ∈Γ(ω)

|γ| , (3.11)

where |γ| is the length (area) of the curve (surface) γ, i.e. the number
of unit segments (plaquettes) comprising it.

Thus, the energy of a configuration ω ∈ Ω+
Λ takes a very simple

expression in terms of contours:

H+
Λ (ω) = 2J

∑
γ∈Γ(ω)

|γ|+ E+
Λ , (3.12)
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We see that the Boltzmann-Gibbs weight factorizes when expressed in
terms of contours:

exp
[
−βH+

Λ (ω)
]

= exp
[
−βE+

Λ

] ∏
γ∈Γ(ω)

W (β)(γ) , (3.13)

where the contour weights are:

W (β)(γ) = exp [−β2J |γ|] . (3.14)

The set C+
Λ of contour configurations endowed with the weights

W (β)(Γ) =

∏
γ∈Γ(ω) W (β)(γ)

Θ
(β)+
Λ

, (3.15)

with
Θ

(β)+
Λ := 1 +

∑
Γ∈C+

Λ

∏
γ∈Γ(ω)

W (β)(γ) , (3.16)

constitutes a probability space —in physicists’ nomenclature an ensemble—
called the (+)-contour ensemble in Λ. It is a much simpler ensem-
ble than the original set of spin configurations with Boltzmann-Gibbs
weights, because contours have no interaction except for being forbid-
den to intersect (volume exclusion). They constitute a gas of particles
with hard-core interactions.

It is now clear how to proceed. We should relate expectations for
the original Ising system with expectations for the contour ensemble,
which look much simpler to evaluate.

A similar construction can be done for configurations in Ω−
Λ , that

is, with “−” external conditions. One obtains in this fashion a set C−Λ
of families of contours. Nevertheless, it is immediate that

C−Λ = C+
Λ (3.17)

and that the (−)-contours get the same weights (3.14). Hence, the en-
semble of (−)-contours coincides with that of the (+)-contours. This
exceptional fact is a consequence of the flipping symmetry of the Ising
model at zero field and of the nearest-neighbor character of the inter-
action.
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Step 2. Bound on the magnetization

The bound is obtained through a number of sub-steps.

Sub-step 2.1. Expression in terms of contour ensembles

The bijection (3.10) implies that any observable g in Λ can be written
purely as a function g̃ of contour configurations. Then equation (3.13)
implies that

〈g〉(β)+
Λ =

∑
Γ∈C+

Λ

g̃(Γ)

∏
γ∈Γ W (β)(γ)

Θ
(β)+
Λ

. (3.18)

[We adopt the convention
∏
∅ := 1.] Let us use this to prove the

inequality (3.1).
The starting point is the simple identity

〈ω0〉(β)+
Λ = Prob

(β)+
Λ (ω0 = +1) − Prob

(β)+
Λ (ω0 = −1)

= 1 − 2 Prob
(β)+
Λ (ω0 = −1) . (3.19)

Given the existence of the limit (3.5), the proposed inequality 〈ω0〉(β)+ >
0 will follow if we can prove that

Prob
(β)+
Λ (ω0 = −1) ≤ ε (3.20)

with ε < 1/2 independent of Λ.
At this point we resort to (3.18):

Prob
(β)+
Λ (ω0 = −1) =

∑
Γ∈C+

Λ

1lodd(Γ)

∏
γ∈Γ W (β)(γ)

Θ
(β)+
Λ

(3.21)

where 1lodd(Γ) assigns the value one to families Γ having an odd num-
ber of contours around the origin, and 0 otherwise. This function is
majorized by the function that takes value one if Γ has some contour
around the origin, and zero otherwise. Therefore,

Prob
(β)+
Λ (ω0 = −1)

≤ 1

Θ
(β)+
Λ

∑
γ0 : Int γ030

W (β)(γ0)
∑

n≥1 ; {γ0,γ1,...,γn} :

{γ0,γ1,...,γn}∈C+
Λ

n∏
i=1

W (β)(γi) .

(3.22)
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Sub-step 2.2. The contour-removal operation

Now, a seemingly obvious but crucial observation is applied:

{γ0, γ1, . . . , γn} ∈ C+
Λ =⇒ {γ1, . . . , γn} ∈ C+

Λ . (3.23)

This is a manifestation of the fact that the map (3.10) is a bijection.
Given a family of contours defining a configuration ω ∈ Ω+

Λ , the fam-
ily obtained by omitting one of them is also the family of contours
of a (different) configuration in Ω+

Λ . In fact, there is an algorithm
—contour-removal operation— to obtain the new configuration: Take
the configuration ω and flip all the spins in the interior of γ0. This
makes γ0 disappear, but leaves intact the other contours (the config-
urations immediately outside and inside the contours in the interior
of γ0 change, but the contours remain present.). The existence of this
simple contour-removal operation is again something particular of the
symmetric nearest-neighbor Ising model. Things are not so immediate
in other cases.

From (3.22) and (3.23) we obtain

Prob
(β)+
Λ (ω0 = −1) ≤

∑
γ0 : Int γ030

W (β)(γ0) . (3.24)

Sub-step 2.3. Energy versus entropy

By (3.14):

W (β)(γ0) = W (β)(|γ0|) = exp [−β2J |γ0|] , (3.25)

hence
Prob

(β)+
Λ (ω0 = −1) ≤

∑
`≥ `min

N` e−β2J` (3.26)

with
N` = |{γ : Int γ 3 0, |γ| = `}| , (3.27)

and `min = 2d is the length (area) of the smallest possible contour
(that is, of a cube with unit sides). The right-hand side of (3.26) has
the typical energy-vs-entropy form. The “entropy”, though, grows at
most linearly with `:

N` ≤ ` c`
d (3.28)
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where cd is a geometrical constant that depends only on the dimension
d. The factor ` is a bound on the number of positions for the intersec-
tions of the contour with the 1st axis. After fixing the position of this
first segment, there are at most c`

d ways to assemble the contour for
a certain number cd. In d = 2, with the “chop-off” prescription, each
contour is a closed path that can be assembled by choosing sequentially
one of the (at most) three available directions for the next segment.
Hence cd = 3. In higher dimensions, or in d = 2 without chopping off
the 4-segment intersections, we can resort to the Königsberg bridge
problem to conclude that there is a number αd <∞ such that for each
contour there is a path that visits all the plaquettes without visiting
each one more than αd times. Hence we have at most (2d−1)αd` =: c`

d

ways to assemble the contour. [Note that we are neglecting the fact
that contours have no dangling ends.]

We conclude that

Prob
(β)+
Λ (ω0 = −1) ≤

∑
` ≥ 2d

` c`
d e−β2J` (3.29)

which converges for

β >
log cd

2J
=: βPP (3.30)

(“PP” = Peierls Percolation, see below). Moreover, the series tends
to zero as β tends to infinity, hence there exists a temperature βPM

(“PM” = Peierls Magnetization), such that

∑
`≥ 2d

` c`
d e−βPM2J` =

1

2
. (3.31)

By (3.19), (3.29) and Step 0:

〈ω0〉(β)+ > 0 for βPM < β <∞ . (3.32)

[I am using the fact that Prob
(β)+
Λ (ω0 = −1) is a non-increasing func-

tion of β. This follows from (3.19) and the second Griffiths inequality.]
We notice that, as cd increases with d, both βPP and βPMP increase

with d. However, the 2nd Griffiths inequality implies that the actual
critical β of the model —i.e. the temperature at which the phases 〈 · 〉+
and 〈 · 〉− cease to be different— decreases with d. The reason why
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the Peierls bound to the critical temperature becomes poorer as the
dimension grows is discussed next.

In an analogous manner one analyzes the probabilities for the “−”-
phase. By symmetry the same βPP and βPM are obtained. In particu-
lar this implies that for βPM < β < ∞ the “+” and “−” phases have
different magnetization, and hence are different. In fact, as we now
discuss, the argument also shows that the phases remain different at
least for β > βPP.

3.2.3 The sea-with-islands picture

A somehow less known aspect of the Peierls argument is that it also
provides a good description of the typical configurations for the “+”
and “−” phases. Indeed, looking back to (3.22)–(3.26) we see that
what really has been proved is that∑

`≥ 2d

Prob(β)+(C`) ≤
∑

`≥ 2d

` c`
d e−β2J` (3.33)

with

C` = {ω : ∃γ ∈ Γ(ω) with |ω| = ` and Int γ 3 0} . (3.34)

Hence the convergence of the last series, that is, the condition β > βPP

implies that the events have summable probabilities. By the first
Borel-Cantelli lemma (see eg. [43, Section 2.7]), this means that

Prob(β)+(infinitely many C` happen) = 0 . (3.35)

In words, at such low temperatures, typical configurations of the mea-
sure 〈 · 〉(β)+ exhibit at most a finite number of contours around the
origin or, by translation invariance, around any other site of the lat-
tice. Thus, every site is always contained in some finite external con-
tour and the minority spins (in this case spins “−”) do not perco-
late. Moreover, as β grows, the lower-order terms dominate the sums
(3.33), hence large (finite!) contours appear with increasingly small
(but nonzero!) probability.

The fact that the Peierls argument is rather an estimation of the
absence of minority percolation explains why it yields bounds for the



40 3. The basic technology: The Peierls argument and cluster expansions

critical β that increase with d: The range of temperatures where mi-
nority spins percolate increases with d, because more connections are
involved and hence percolation becomes easier. The widespread belief
is that already for d ≥ 3 minority percolation stops at a temperature
strictly smaller than the critical one. This fact, however, has been
rigorously proven only at dimensions large enough [2].

3.3 Cluster expansions

3.3.1 The importance of ratios of partition func-
tions

The cluster expansion is the technique par excellence to deal with gases
of hard-core objects, that is, with ensembles of objects interacting only
by volume exclusion. For us, it will be a means to extract the most
from contour arguments. Already the right-hand side of (3.22) gives
the clue of what is needed. This formula can be written in terms of
ratios of contour partition functions:

Prob
(β)+
Λ (ω0 = −1) ≤

∑
γ0 : Int γ030

W (β)(γ0) Θ
(β)+
Int γ0

Θ
(β)+
Λ\Int γ0

Θ
(β)+
Λ

. (3.36)

More generally, the probability of all cylindrical events can be written,
using the inclusion-exclusion principle, as a combination of probabili-
ties of cylinders of the form {ω : ωA = +A}, where “+A” indicates the
configuration in ΩA equal to +1 at each site of A (see [10, pp. 17–18]
for the complete argument). These probabilities take the form

Prob
(β)+
Λ (ωA = +A) = eβE+

Int A

Z
(β)+
Λ\A

Z
(β)+
Λ

=
Θ

(β)+
Λ\A

Θ
(β)+
Λ

. (3.37)

Thus, the contour ensembles can provide us with detailed information
of the spin measure 〈 · 〉(β)+ if we have an efficient way to compute

ratios of partition functions of the form Θ
(β)+
Λ /Θ

(β)+
∆ . This is precisely

what the cluster expansion is designed to do.
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While rather general approaches to the cluster-expansion technol-
ogy have been devised [29, 10], we shall present here the simplest pos-
sible formulation able to deal both with the Ising contours introduced
above and the contours to be used in Chapters 4 and 5.

3.3.2 General contour ensembles

We consider objects γ which we call contours, but are also called
polymers [23] or animals [10]. Each γ has associated a finite non-
empty set denoted supp γ and called the support of γ, contained in
a set L isomorphic to ZZd. For the Peierls contours discussed above,
supp γ is the set of (centers of the) segments or plaquettes forming γ.
For the contours of Chapters 4 and 5 the supports are in fact finite
sets of sites in ZZd.

Two contours γ1 and γ2 are said compatible if supp γ1∩supp γ2 = ∅.
A compatible family of contours is a (possibly infinite) family of pair-
wise compatible contours. Two (not necessarily compatible) families
of contours are mutually compatible if each contour of one family is
compatible with all the contours of the other one. A cluster is a col-
lection of contours that can not be decomposed into two mutually
compatible subfamilies. A cluster may contain the same contour more
than once.

We then consider the set C formed by all compatible families Γ of
contours. The empty family is always an element of every contour
ensemble. We shall call each Γ a contour-family (Dobrushin calls it
a herd). Note that the compatibility requirement implies that each
Γ ∈ C is a countable family. In addition, for each finite Λ ⊂ L let me
denote CΛ the set of compatible contour-families whose contours have
support in Λ. We assume that CΛ is a finite set for each finite Λ ⊂ L.

A contour ensemble is a family C as above plus an assignment of
weights

Γ →
∏
γ∈Γ

w(γ) . (3.38)

If w(γ) ≥ 0, (3.38) makes each CΛ a probability space. However, in
the present formalization, the contour weights ω(γ) are allowed to
be complex numbers because, in any case, the cluster expansion is
required to be absolutely convergent. Thus, the technique exceeds a
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mere probabilistic setting. In this section, except for formula (3.56),
periodicity is not assumed.

3.3.3 The fundamental theorem and its corollar-
ies

The theory is based on an expansion for the contour free-energies

log ΘΛ := log
[
1 +

∑
Γ∈CΛ
Γ6=∅

∏
γ∈Γ

w(γ)
]

. (3.39)

Logarithms are tricky functions, The naive expansion of (3.39) gives a
series with alternating signs. A simple control via term-wise absolute
values is out of question, because the number of terms grows too fast.
Convergence can only be established if cancelations between different
terms are taken into account. This is a laborious task. The end result
is the following:

Theorem 3.1 If

ε := sup
x∈L

∑
γ : supp γ3x

|w(γ)| e|supp γ| < 1 , (3.40)

then, there exists an absolutely convergent expansion of the form

log ΘΛ =
∑
n≥1

1

n!

∑
γ1 : supp γ1⊂Λ

· · ·
∑

γn : supp γn⊂Λ

wT (γ1, . . . , γn) , (3.41)

with

wT (γ1, . . . , γn) = ϕT (γ1, . . . , γn)
n∏

i=1

w(γi) (3.42)

where ϕ is a factor independent of the weights w and symmetric under
permutations of {1, . . . , n} that satisfies

ϕT (γ1, . . . , γn) = 0 if {γ1, . . . , γn} is not a cluster. (3.43)

Moreover, for any x ∈ L we have the bound

sup
x∈L

1

n!

∑
γ1 : supp γ1⊂Λ ,

supp γ13x

∑
γ2 : supp γ2⊂Λ

· · ·
∑

γn : supp γn⊂Λ

∣∣∣wT (γ1, . . . , γn)
∣∣∣ ≤ O(εn) ,

(3.44)
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where O(εn) is Λ-independent. This last formula is valid for any finite
ε in (3.40), not necessarily smaller than one.

A very clear presentation of this theorem is given, for instance, in
[34, Section 3]. It relies on an identity involving certain tree graphs
whose edges join contours with intersecting supports. These trees are
summed using Cayley’s formula (which counts the trees with fixed
incidence numbers), a procedure that introduces exponential factors
at each “vertex” of the tree. This is the genesis of the exponential
that shows up in (3.40).

The version of the expansion due to Kotecký and Preiss [29] yields a
convergence condition that is more generous than (3.40). This version
can be interpreted as a resummation of the series (3.41) which leads
to resummed wT that are no longer multilinear in the original weights
w(γi).

A particularly important expression is

TΛ(A) :=
∑
n≥1

1

n!

∑
γ1 : supp γ1∈Λ ,
supp γ1∩A6=∅

∑
γ2 : supp γ2∈Λ

· · ·
∑

γn : supp γn∈Λ

wT (γ1, . . . , γn)

(3.45)
for finite A ⊂ L. [“T” stands for “touch”.] Its importance derives
from the fact that if ∆ ⊃ Λ and the series log Θ∆ and log ΘΓ converge
absolutely,

log Θ∆ − log ΘΛ = T∆(∆ \ Λ) . (3.46)

Here and in the sequel we denote limΛ→L to symbolize that for
every exhausting sequence of volumes Λn there exists a limΛn→∞ which
is independent of the sequence.

Corollary 3.2 In the regime (3.40),

lim
Λ→L

TΛ(A) =: T (A) (3.47)

exists for all finite A ⊂ L and is given by the absolutely convergent
series

T (A) :=
∑
n≥1

1

n!

∑
γ1 : supp γ1∩A6=∅

∑
γ2

· · ·
∑
γn

wT (γ1, . . . , γn) . (3.48)
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Moreover,
|TΛ(A)|
|T (A)|

}
≤ |A| δ (3.49)

with

δ := sup
x∈L

∑
n≥1

1

n!

∑
γ1 :

supp γ13x

∑
γ2

· · ·
∑
γn

∣∣∣wT (γ1, . . . , γn)
∣∣∣ (3.50)

= O(ε) . (3.51)

Proof. The series (3.48) converges absolutely by (3.44). Moreover, the
series formed by its absolute values:

(i) Majorizes the analogous series but with contours supported in
Λ. This proves (3.47) by dominated convergence and, thus, the
existence and finiteness of δ defined by (3.50).

(ii) Is bounded above by |A| δ. This proves (3.49).

For the sake of consistency with established notation, let me denote

fCx :=
∑
n≥1

∑
{γ1,...,γn} :

sup γ1∪···∪sup γn 3x

wT (γ1, . . . , γn)

|sup γ1 ∪ · · · ∪ sup γn|
(3.52)

= O(ε) . (3.53)

Corollary 3.3 In the regime (3.40), we have the following bound on
finite-volume effects: For every finite Λ ⊂ ZZd,∣∣∣∣log ΘΛ +

∑
x∈Λ

fCx

∣∣∣∣ ≤ δ |∂Λ| . (3.54)

This is proven using the previous corollary for the series TΛ(∂Λ).
The next corollary is the only result of this section on cluster ex-

pansions where we assume periodicity. Let us call the contour ensem-
ble periodic if

(i) Translations act on the collection of contours, that is, for each
contour γ and a ∈ L there is another contour τaγ with supp τaγ =
τa supp γ.
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(ii) The assignment (3.38) is periodic:

w(τaγ) = w(γ) ∀γ ∈ C ; ∀a ∈ Fb , (3.55)

for some fundamental cell Fb [see (2.5)].

Corollary 3.4 For a periodic contour ensemble in the regime (3.40):

(i) The contour free-energy density, that is, the limit

fC := − lim
Λ→ZZd

1

|Λ|
log ΘΛ (3.56)

exists and is given by the absolutely convergent expansion

fC =
1

|Fb|
∑
x∈Fb

fCx

= O(ε) . (3.57)

(ii) For every Λ ⊂ ZZd that is a disjoint union of translates of Fb,∣∣∣∣log ΘΛ + |Λ| fC
∣∣∣∣ ≤ δ |∂Λ| . (3.58)

This is basically a rewriting of the previous corollary.

3.3.4 Contour “probabilities”

The original goal of controlling rates of partition functions is accom-
plished via (3.46):

ΘΛ\A

ΘΛ

= eTΛ(A) . (3.59)

By Corollary 3.2 this ratio has a limit as Λ→ L. For the Ising model
(ensemble C+ of Peierls contours), this observation implies that if β
has a real part large enough so that (3.40) is satisfied, each of the
limits

lim
Λ→ZZd

Prob
(β)+
Λ (ωA = σA) =: Prob(β)+(ωA = σA) (3.60)
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exists. Moreover, given the exponential dependence of the weights in
β, one concludes that these limits are analytic in β, for β in this re-
gion. This example shows that the cluster-expansion technology can
be used actually to show the existence of the infinite-volume mea-
sures of spin systems. While for systems like the Ising model this
is nothing new (except for the additional insight on analyticity), the
construction may be the only way available to prove the existence of
infinite-volume expectations if the weights are complex valued, as in
quantum statistical mechanical systems [8, 5].

In general, the basic objects evaluated via contour ensembles are
the “probabilities” of occurrence of a fixed family of contours:

“Prob”CΛ
({Γ ∈ CΛ : γ1, . . . , γn ∈ Γ})

= w(γ1) · · ·w(γn)
ΘΛ\(supp γ1∪··· supp γn)

ΘΛ

= w(γ1) · · ·w(γn) exp[TΛ(supp γ1 ∪ · · · supp γn)] . (3.61)

The quotation marks are a reminder that these can be complex-valued
“probabilities”. Corollary 3.2 implies the existence of the Λ → ZZd

limit of this expression, which, by (3.49) satisfies the bound

|“Prob”C({Γ ∈ C : γ1, . . . , γn ∈ Γ})|

≤ |w(γ1)| e|supp γ1| δ · · · |w(γn)| e|supp γn| δ . (3.62)

For the Ising case, this inequality is weaker than the bound behind
(3.24). The latter corresponds to replacing each exp[|supp γi| δ] by 1.
But in general non-symmetric cases, or with signed or complex-valued
weights, the previous bound is the best one can expect.

In the present general discussion I adopted the word “contours”
—rather than polymers or animals— to emphasize the fact that each
supp γ can be associated to a (possibly “thick”) closed boundary. More
precisely, each supp γ divides ZZd into disjoint components: one with
infinite cardinality — the exterior, Ext γ,— and the remaining one
involving only finitely-many sites. The union of these finite-cardinality
components is called the interior of γ and denoted Int γ. In this case,
it makes sense to evaluate

“Prob”C({Γ : ∃γ ∈ Γ with |supp γ| = ` and Int γ 3 0})
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≤ ` sup
x∈L

“Prob”C({Γ : ∃γ ∈ Γ with |supp γ| = ` and supp γ 3 x}) .

(3.63)

The factor ` counts, as in the Peierls argument, the number of sites
where the contour can intercept the 1st axis. Thus, from (3.62) and
(3.50),

“Prob”C({Γ : ∃γ ∈ Γ with Int γ 3 0})

≤ sup
x∈L

∑
γ : supp γ3x

|supp γ| |w(γ)| e|supp γ| δ

≤ ε

(1− δ) e
, (3.64)

where we used the fact that max`≥0 `e−(1−δ)` = 1/[(1 − δ)e] and as-
sumed that ε is small enough so δ < 1 [recall that δ = O(ε)].

When applied to the C+ ensemble of the Ising model, this implies
that for an observable g with g(ω) = g(ωB)∣∣∣〈g〉(β)+ − g(+)

∣∣∣ ≤ ‖g‖∞ |B| O(ε) (3.65)

for (real part of) β large enough. This is an explicit estimation of
“closeness” between the low-temperature “+”-phase and the deter-
ministic zero-temperature distribution δ+. Estimations like this re-
main valid even for complex-valued weights.

On the other hand, if the contour ensemble has real non-negative
weights, i.e. it is an honest probability space, we can combine (3.64)
with the first Borel-Cantelli lemma to conclude, as in Section 3.2.3,
that typical configurations exhibit only a finite number of contours
around each site.

3.3.5 Mixing properties

Let us now consider families of contour ensembles parameterized by
a certain τ > 0 —the Peierls constant— satisfying the Peierls bound :∣∣∣w(τ)(γ)

∣∣∣ ≤ e−τ |supp γ| . (3.66)

Under this condition, if τc = τc(ε) is the solution of

sup
x∈L

∑
γ : supp γ3x

e−(τc−1)|supp γ| = ε , (3.67)
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then for a given ε < 1 the fundamental Theorem 3.1 holds for all
models with

τ ≥ τc . (3.68)

In particular, the contour “probabilities” enjoy the properties dis-
cussed above.

If we combine (3.67) with the multilinear dependence (3.42) on the
weights and the bound (3.44), we obtain

sup
x∈L

1

n!

∑
γ1 : supp γ13x

∑
γ2

· · ·
∑
γn

∣∣∣w(τ) T (γ1, . . . , γn)
∣∣∣

× 1l[|supp γ1 ∪ · · · ∪ supp γn| ≥ D] ≤ e−(τ−τc)D O(εn) .

(3.69)

As a consequence, the sum

T
(τ)
Λ (A, B) :=∑

n≥1

1

n!

∑
γ1 : supp γ1⊂Λ

· · ·
∑

γn : supp γn⊂Λ

w(τ) T (γ1, . . . , γn)

× 1l
[

(supp γ1 ∪ · · · ∪ supp γn) ∩ A 6= ∅ ,
(supp γ1 ∪ · · · ∪ supp γn) ∩B 6= ∅

]
(3.70)

converges for ε < 1 and satisfies the bound

|T (τ)
Λ (A, B)| ≤ |A| |B| O(ε) exp[−(τ − τc)dist(A, B)] . (3.71)

As before,
lim
Λ→L

T
(τ)
Λ (A, B) =: T (τ)(A, B) (3.72)

exists.
The relevance of (3.71) is explained in the following proposition,

where we omit the superscript “(τ)” to simplify the notation.

Proposition 3.5 Consider contour ensembles satisfying the Peierls
bound (3.66) and a value τ > τc, and let γ1 and γ2 be two compatible
contours. Then, for Λ large enough∣∣∣“Prob”CΛ

({Γ : γ1, γ2 ∈ Γ})

− “Prob”CΛ
({Γ : γ1 ∈ Γ}) “Prob”CΛ

({Γ : γ2 ∈ Γ})
∣∣∣

≤ |w(γ1)| e|supp γ1| δ |w(γ2)| e|supp γ2| δ O
[
e−(τ−τc) dist(supp γ1,supp γ2)

]
.

(3.73)
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Proof. By (3.62)

LHS = |w(γ1)| |w(γ2)|
∣∣∣eTΛ(supp γ1∪supp γ2) − eTΛ(supp γ1) eTΛ(supp γ2)

∣∣∣
= |w(γ1)| |w(γ2)| e|TΛ(supp γ1)| e|TΛ(supp γ2)|

∣∣∣e−TΛ(supp γ1 , supp γ2) − 1
∣∣∣ .

(3.74)

Now use Corollary 3.2 and inequality (3.71).

Of course the mixing property (3.73) implies, via the limit Λ →
ZZd, a similar inequality for the “probabilities” on the whole of C.
Analogous results, with analogous proofs, hold when γ1 and γ2 are
replaced by mutually compatible families of contours {γ(1)

1 , . . . , γ(1)
n1
}

and {γ(2)
1 , . . . , γ(2)

n2
}.

When applied to the ensemble C+ for the Ising model, the previous
proposition shows that the +-phase is exponentially mixing (at least
at low temperature) and gives a (rough) estimation of the correlation
length.

3.3.6 Summary of properties

For future quick reference, let me summarize the properties proven for
contour ensembles in the regime (3.40), and advance their implications
when the ensemble is associated to the η-phase of a spin system.

(P1) Existence of the free-energy density (for periodic ensem-
bles, see Corollary 3.4). The resulting expression is a series expansion
for the free energy density of the associated spin system, which is
useful, for instance, to exhibit analyticity properties.

(P2) Existence of the infinite-volume limit of the contour
probabilities [see (3.60)]. This implies the existence of the η-Gibbs
distribution of the associated spin system.

(P3) Absence of infinite sequence of nested contours (for con-
tours with a notion of interior and non-negative weights). This follows
from (3.64) and Borel-Cantelli. For an associated spin system this im-
plies the validity of the sea-with-islands picture for the η-phase: Each
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site is surrounded at most by finitely many contours and (groups of)
spins not configured as in η do not percolate.

(P4) The probability of occurrence of contours around a site
is O(ε) (for contours with a notion of interior). Again, this follows from
(3.64). For an associated spin system this means that each expectation
〈g〉η is O(ε)-close to the value g(η). [This O(ε) depends on g.]

(P5) Exponential mixing [for ensembles satisfying the Peierls bound
(3.66), see Proposition 3.5]. It implies the same property for the as-
sociated η-phase of the spin system, which, in turns, implies that the
η-Gibbs distribution is extremal.



Chapter 4

Pirogov-Sinai theory

Let us now discuss how to extend the Peierls argument to more general
situations. In principle, our goal is simply stated: Given a system we
should find contour ensembles such that:

1. For each rigid ground-state configuration η, there is a one-to-
one correspondence between configurations in Ωη

Λ and families
of contours with support in Λ.

2. We can apply the cluster expansion technology of Section 3.3 to
the contour ensemble(s).

Both aspects will turn out to be rather subtle, and usually impos-
sible to satisfy simultaneously, as we shall illustrate with a number of
examples. We shall see that each rigid η will require its own contour
ensemble, and that the cluster expansion will be applicable at the ex-
pense of loosing the one-to-one correspondence. For the Ising model,
the contour ensembles C+ and C− coincide, so we can think of them
as a single ensemble for which both requirements above are cleanly
satisfied. This is a consequence partially of the flipping symmetry and
partially of the nearest-neighbor character of the interaction. We can
not expect being so lucky in the general case. In a sense, the Ising
model may be misleading in its simplicity.

51
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4.1 The definition of contours

4.1.1 Aspects to consider

Let me motivate, via examples, the definition of contours to be pre-
sented below. The discussion here will be a little imprecise. Precision
will come in Section 4.1.2

Aspect 1: The need for labels

Let me go back to the Blume-Capel model (2.44). We can proceed
by analogy with the Ising case and draw segments (plaquettes) per-
pendicular to pairs of misaligned nearest neighbors. If one of the rigid
ground-state configurations —all-“+1”, all-“0” or all-“−1”— is chosen
as external condition, the resulting contours are closed circuits (sur-
faces) separating regions where spins are aligned in one of the three
energy-minimizing possibilities. However, it is obvious that to recon-
struct univocally the configuration we need to specify what type of
misaligned pairs are separated by each contour. In fact, it is enough
to add to each contour labels that indicate which configuration is
present immediately outside the contour, and immediately inside each
component of its interior.

Moreover, contours with different labels have, in general, different
weights. Indeed, a (+,−) nearest-neighbor pair raises the energy four
times more than either a (+, 0) or a (−, 0) pair. This dependence
of the weights on the set of labels is typical of situations in which,
unlike the Ising model, there is no symmetry operation connecting
the different ground-state configurations.

Aspect 2: The need for thickness

The other feature of Ising contours, namely their being “thin” ethereal
circuits living in the dual lattice, is obviously specific to the nearest-
neighbor character of the interaction. For interactions of larger range
one needs to regard simultaneously groups of spins within the range, to
determine the different contributions to the energy. A simple example
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could be a range-2 Ising model

H = −J
∑

(x,y) :
dist(x,y)≤2

σxσy . (4.1)

This model has the same all-“+1” and all-“−1” rigid ground-state
configurations as the nearest-neighbor version. But if we want to as-
sociate excess energy to contours we have to consider them formed by
plaquettes of sides 2 where the spins are not aligned. Note that these
“thick” contours can have in (one of the components of) the interior
the same rigid configuration as in the exterior. Thus, labels are still
necessary, or some other means to identify the configurations in the
exterior and in the different components of the interior. The flipping
symmetry of the model implies that every contour has a flipped ver-
sion with the same energy. Therefore, the symmetry extends to the
partition function

Z+
Λ = Z−

Λ . (4.2)

Another model lacking a similar symmetry and requiring “thick”
contours is the Fisher antiferromagnet (I have tuned out the parame-
ters):

H =
∑

<x,y>

ωxωy −
∑

(x,y) :

dist(x,y)=
√

2

ωxωy − 2d
∑
x

ωx . (4.3)

This model has three rigid ground-state configurations: The all-“+1”
and the two alternating “+−” configurations (in physics nomencla-
ture, ferromagnetic and Neél ordered ground states.). While in the
previous model the thickness in the contours was needed for a cor-
rect account of the energy, in this model the plaquettes are needed to
determine boundaries of excitations. Looking just to a nearest neigh-
bor pair, one can not in general decide whether the pair is part of an
excitation (except if both spins are “−”) or not. One needs to look
to plaquettes of side (at least) 2. In d = 2, the energy minimizing
plaquettes are

η+ =

(
+ +
+ +

)
, η+− =

(
+ −
− +

)
, η−+ =

(
− +
+ −

)
, (4.4)

other plaquette configurations correspond to excitations.
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Aspect 3: The need for reference configurations that are not
ground-state

Consider the Ising model with (2.17) with h > 0. Such model has a
single rigid ground-state configuration, namely the all-“+1”. Having
accepted the possibility of “thick” contours, we could be tempted to
define as part of them all sites that are “−”. Many such contours
will then have very thick supports, and the dominant contribution to
their energy will come from the misalignment of the spins with the
magnetic field. That is,

w(ω) ' e−βh|supp γ| . (4.5)

This means that the estimations made via cluster-expansion meth-
ods will get worse as h → 0. This is certainly not desirable, because
the vicinity of h = 0 is the most interesting region of the model (co-
existence of phases!). It is therefore preferable to come back to the
original policy of associating contours with pairs of misaligned spins,
so the exponential damping is proportional to J . The contribution of
h is then taken into account by the difference in energy densities [see
(3.9)]. In other words, it is convenient to consider two possible exter-
nal configurations —all-“+1” and all-“−1”— even when the latter is
not a ground state configuration.

This example shows that, specially if one wants to study the effect
of varying parameters (phase diagrams), one must include external
conditions that are not ground-state in the region under study (they
usually are ground-state in some other region). So contours will, in
general, be defined considering some set of reference configurations not
necessarily associated to energy minimizers. The condition to be dis-
cussed in Section 4.2.2 will fix univocally (albeit not in a constructive
manner) what configurations should be chosen.

4.1.2 Definition of contours for general models

After the preceding detailed motivation, let us plunge into the right
general definition of contour, as presented by Pirogov and Sinai in
their original work [35, 36]. From now on, the rest of these notes are
a minor adaptation of parts of [8].
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We start with a set of periodic reference configurations K = {η1, . . . , ηP}
and a number r. This number will represent the range of the interac-
tion, but, except for this r, the definition of contour makes no refer-
ence to a particular interaction. (When studying phase diagrams, one
chooses a definition suited to all the interactions being considered). We
fix sampling plaquettes Wa(x) = {y ∈ ZZd: |xi− yi| ≤ a for 1 ≤ i ≤ d}.
The size a must be strictly larger than (i) the periods of the reference
configurations η1, . . . , ηP , and (ii) the given number r (in practice, the
range of the interaction).

Condition (i) implies the following extension property :

If ω coincides with the configuration ηp on a plaquette Wa(x)
and with ηq on Wa(y) with dist(x, y) ≤ 1, then ηp = ηq.

(4.6)

Two sets, A and B, in ZZd are said to be connected if dist(A, B) ≤ 1
in lattice units. A subset M of a set A ⊂ ZZd is called a component of
A if M is a maximal connected subset of A, i.e., M is connected and
M ⊂M ′ ⊂ A, M 6= M ′ imply that M ′ cannot be connected.

Contours are constructed out of “incorrect” plaquettes. A site x is
said to be p-correct, for a configuration ω, if the latter coincides with
ηp on every sampling plaquette that contains x. The set of sites that
are not p-correct for any p, 1 ≤ p ≤ P , are referred to as “incorrect”.
If all the reference configurations ηi are translation-invariant, then
we define the defect set of ω as the set of plaquettes for which at
least one site is “incorrect”. If some of the ηi are only periodic, it is
necessary to consider regions that respect this periodicity, so formulas
like (3.58) can be directly applied. To this end, we first choose a set
Fb which is a fundamental set for all the reference configurations ηi

(this is possible because there are only finitely many) and pave ZZd

with disjoint translates of this Fb. This pavement is fixed once and for
all. At this point we can choose:

Choice 1) We “collapse” the systems so that each translate of Fb

becomes a point. This amounts to rewriting the interaction in a
suitable (equivalent) manner. The new system has all reference
configurations translation-invariant and we define the defect set
of each ω as above.

Choice 2) We agree to work only with sets that are union of the tiles
of the pavement. In particular, we define the defect set of ω as
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the smallest covering of its set of incorrect points by tiles of the
pavement.

Both choices are equivalent. In fact, all the formulas that follow
look identical in both cases if, for the second choice we agree on the
following

• (i) All volumes Λ, ∆, etc, are understood to be formed by disjoint
union of Fb-tiles.

• (ii) The cardinality of sets of sites is measured in units of fun-
damental cells:

|Λ| :=
card Λ

cardFb

. (4.7)

A contour of a configuration ω is a pair γ = (supp γ, ωsupp γ) where
supp γ —the support of γ — is a component of the defect set of ω. To
abbreviate the long formulas of next chapter, let us agree on denoting

|γ| := | supp γ| . (4.8)

[Where the right-hand side is understood as in (4.7).] An alternative,
more physically sounding, name for these contours is excitations, and
plaquettes belonging to a contour are said to be excited .

Henceforth, we shall only consider finite contours (i.e., | supp γ| <
∞). For each such contour, γ, the space ZZd \ supp γ is divided into
a finite number of components. By the extension property (4.6), we
can extend the configuration on a single plaquette in a component
to a unique configuration of K in that component. In this way we
can label each connected component of ZZd \ supp γ by a particular
reference configuration. Thus, we obtain the unique configuration ωγ

that has γ as its only contour. We shall refer to such a configuration
as a one-contour configuration. The only infinite component of ZZd \ γ
is called the exterior of the contour, Ext γ, and the union of the other
components constitute the interior , Int γ. The union of components
of Int γ labeled by a reference configuration ηq is called the q-interior,
Intq γ. The contour is called a p-contour if its exterior is labeled by the
configuration ηp ∈ K. When necessary, we shall write γp to explicitly
indicate that γ is a p-contour.
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Each configuration defines a unique family of contours from which
it can be reconstructed, but not all families of contours correspond to
configurations. The situation is more complicated than for the Peierls
contours of Section 3.2. Besides having disjoint supports, nested con-
tours must have matching internal and external labels. A family of
contours which corresponds to a configuration will be called admissi-
ble.

A contour γ of a configuration ω is called an exterior contour of ω
if its support is not contained in the interior of any other contour of
ω, i.e., if γ ⊂ Ext(γ′) holds, for any other contour γ′ of ω.

4.2 The Peierls condition

4.2.1 Contour energies

Consider an interaction {Φcl
B} of range not exceeding r. The functions

ΦB can be complex-valued. Let us see how the energy of a configura-
tion can be written in terms of contours. Following the pattern set by
the Peierls argument, we should fix an external configuration ηp and
assign to the contours the excess energy with respect to it. Let us first
consider one-contour configurations.

Let ωγ be a one-contour configuration which has the p-contour γ
as its only contour. To compute the energy cost of γ, relative to its
exterior configuration ηp, we write

H
ηp

Λ (ωγ) =
∑

B∩(Int γ∪supp γ) 6=∅
[ΦB(ωγ)−ΦB(ηp)]+

∑
B∩Λ6=∅

ΦB(ηp) , (4.9)

where Λ is large enough to contain supp γ. It is convenient to use the
decomposition [44]∑

B∩(Int γ∪supp γ) 6=∅
[ΦB(ωγ)− ΦB(ηp)] =

∑
B

|B ∩ supp γ|
|B|

[ΦB(ωγ)− ΦB(ηp)]

+
∑
B

|B ∩ Int γ|
|B|

[ΦB(ωγ)− ΦB(ηp)]
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+
∑

B∩(Int γ∪supp γ) 6=∅

|B ∩ Ext γ|
|B|

[ΦB(ωγ)− ΦB(ηp)] ,

(4.10)

and, analogously,

∑
B∩Λ6=∅

ΦB(ηp) = e(ηp) |Λ| +
∑

B∩Λ6=∅

∣∣∣B ∩ (ZZd \ Λ)
∣∣∣

|B|
ΦB(ηp) . (4.11)

In this fashion, (4.9) becomes

H
ηp

Λ (ωγ) = E(γ) +
P∑

u=1

[e(ηu)− e(ηp)] |Intu γ|+ e(ηp) |Λ|+ RΛ(ηp) ,

(4.12)
where

E(γ) =
∑
B

|B ∩ supp γ|
|B|

[
ΦB(ωγ)− ΦB(ηp)

]
(4.13)

is the contour energy of γ relative to the energy of its exterior config-
uration, and RΛ(ηp) is a boundary term which is independent of the
configuration ω. This term will be omitted from our analysis. More
precisely, we shall work with

Zp(Λ) := eβRp
Λ Z

ηp

Λ . (4.14)

[The notation is purposely similar, it is not worthwhile to keep track of
the difference between both objects.] The free energy density obtained
with either of both partitions is the same, but the left-hand side is
what enters in the argument.

In obtaining (4.13) we have profited from having chosen the pla-
quette size a larger than the range r, so that

(ωγ)B = (ηu)B, if B ∩ Intu γ 6= ∅, (4.15)

for any B with ΦB 6= 0, and, since γ is a p-contour,

(ωγ)B = (ηp)B if B ∩ Ext γ 6= ∅. (4.16)

Hence the latter bonds do not contribute to the contour energy E(γ).
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If all the reference configurations ηp ∈ K are rigid ground-state
configurations, they all have the same specific energy and hence, from
(4.12), the energy cost of a contour γ is simply given by E(γ).

The reader can now convince him/herself that if a configuration ω
is characterized by a family of contours Γ = Γ(ω), the corresponding
energy can be written as

H
ηp

Λ (ω)− Sp
Λ = e(ηp) |Λ|+ E(Γ) +

P∑
u=1

[
e(ηu)− e(ηp)

]
|Iu| , (4.17)

where
E(Γ) =

∑
γ∈Γ

E(γ), (4.18)

and Iu is the set of sites in Λ that are either u-correct or belong to a
u-contour.

Let me remark that the contours γ may extend outside Λ. This
happens if ω has some incorrect site on the internal boundary of Λ.
In this case all those plaquettes which contain this site, but extend
outside Λ, also belong to a contour. Hence, in general, the contours
are contained in the larger set formed by the plaquettes that touch Λ:

Λ̂ :=
⋃
{Wa(x) : Wa(x) ∩ Λ 6= ∅} . (4.19)

This means that in E(γ) one may be counting bonds B ⊂ ZZd \Λ that
are not counted in HΛ(ω|ηp). However, the identity (4.17) remains
valid, because these bonds do not contribute to the energy of a contour,
[see sentence following (4.16)].

4.2.2 The Peierls condition

The very least we need to reproduce the Peierls argument in the
present general setting is that the energy of each contour be propor-
tional to the cardinal of its support. This requirement is called Peierls
condition:

Definition 4.1 An interaction Φ satisfies the Peierls condition, re-
spect to a finite family of reference configurations {η1, . . . , ηP}, with
Peierls constant J if

Re E(γ) ≥ J |γ| , (4.20)
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where E(γ) is the contour energy defined through (4.13).

In many examples, the Peierls condition is verified very easily, al-
most by inspection. These are cases in which one can show that the
excess energy of each excited plaquette is nonzero, irrespective of the
particular configuration on the plaquettes surrounding it. The situa-
tion could, conceivably be more difficult. For instance, certain config-
urations of an excited plaquette may have no excess energy there, but
they can not be extended without paying some extra energy some-
where (tilings). In those cases, to prove the Peierls condition one
must show that this energy cost is payed within a bounded distance
of the excited plaquette for all possible extensions. This fact has been
established by Holsztynski and Slawny [25] for general m-potentials
(Definition 2.2). They showed:

Proposition 4.2 If Φ is periodic and M(Φ) is a non-empty finite
set, then the system with reference configurations K =M(Φ) satisfies
the Peierls condition.

[Recall thatM(Φ) is the set of configuration minimizing all functions
ΦB.]

The case in which the reference configurations are not ground-state
usually corresponds to an interaction with some parameters µ (like the
field h for the Ising model) introduced to break the degeneracy of the
ground-state configurations. One is interested in studying stability of
phases when the parameters are varied from a certain value µ

0
(h = 0

in the Ising model). The condition imposed on the size of the sampling
plaquettes, namely a > r, simplifies the situation, since it permits us to
resort to some perturbative results (discussed for instance in [42, pages
1126–1127]) which can be summarized in the following statement:

Proposition 4.3 Consider a family of interactions {Φµ B} differ-
entiable in µ. Assume that, for some value µ

0
of the parameters,

the interaction {Φµ
0

B} has a finite number of periodic ground states

K = {η1, . . . , ηP} and that it satisfies the Peierls condition, having
them as reference configurations, with Peierls constant J0. Then, for
α > 0 small enough, there exist open neighborhoods Oα 3 µ

0
such

that all the interactions {Φµ B} with µ ∈ Oα satisfy the Peierls con-
dition with Peierls constant J0 − α and for the same set of reference
configurations K.



4.3 The general scenario 61

The violation of the Peierls condition for a given set of reference
configurations may be an indication that we are forgetting some other
important configurations [45]. Indeed, if for instance a ground-state
configuration has been left out, plaquettes so configured will not raise
the energy and will lead to arbitrarily thick contours with little energy
cost. In some sense, this observation determines a criterion to decide
the set of reference configurations: choose exactly what you need to
satisfy the Peierls condition. This is the criterion referred to at the end
of the paragraph “Aspect 3” above. It is not a constructive criterion,
and there may be situations in which it can not be fulfilled at all, but
it is the best we’ve got.

4.3 The general scenario

4.3.1 Procedure to fall into the cluster-expansion
framework

As illustrated extensively in Chapter 3, contour arguments are decided
at the level of partition functions. Let us consider an interaction
satisfying the Peierls condition. With the decomposition (4.17), we
can write Zp(Λ) [defined in (4.14)] in the form

Zp(Λ) = e−βe(ηp)|Λ| ∑
{γk}⊂Λ̂

admissible

[∏
k

w(γk)
][ P∏

u=1

e−β [e(ηu)−e(ηp)] |Iu|
]

,

(4.21)
where the exterior contours of each compatible family are p-contours.
The contour weights,

w(γ) = e−βE(γ) , (4.22)

are parameterized by β (omitted from the notation for simplicity) and
satisfy the Peierls bound

|w(γ)| ≤ e−βJ . (4.23)

This bound encourages us to apply the cluster-expansion technol-
ogy of Section 3.3, except that we now have a problem: The require-
ment of admissibility is a highly nonlocal condition (two far away con-
tours can be rendered inadmissible by a mismatch of labels). This puts
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the expression out of reach of cluster-expansion methods, which only
work under very local conditions, like volume exclusion. In particular,
we do not have a simple “contour-removal operation” granting that,
once a contour is taken out, the remaining contours correspond to an-
other configuration. There exists, however, a procedure, introduced
by Minlos and Sinai [31, 32], to eliminate the inconvenient admissibil-
ity condition in (4.21). First, (4.21) is resummed (all sums here are
finite!) over the contours in the interior of the exterior contours,

Zp(Λ) = e−βe(ηp)|Λ| ∑
{γp

k
}⊂V̂

exterior
non−intersecting

∏
k

[
w(γp

k)
P∏

u=1

Zu

(
Intu γp

k

)
eβe(ηp)|Intu γp

k|
]

.

(4.24)
Then, in the right-hand side the different partition functions are mul-
tiplied and divided by Zp

(
Intu γp

k

)
to obtain

Zp(Λ)eβe(ηp)|Λ| =
∑

{γp
k
}⊂V̂

exterior
non−intersecting

∏
k

[
W (γp

k)
P∏

u=1

Zp

(
Intu γp

k

)
eβe(ηp)|Intu γp

k|
]

.

(4.25)
with the new weights

W (γp) := w(γp)
P∏

u=1

Zu

(
Intu γp

)
Zp

(
Intu γp

) . (4.26)

One can now repeat the same procedure for each factor,

Zu

(
Intu γp

k

)
eβe(ηp)|Intu γp

k| (4.27)

in (4.25). This iteration finally yields the expression

Zp(Λ) = e−βe(ηp)|Λ| ∑
{γp

k
}⊂V̂

non−intersecting

∏
k

W (γp
k)

(4.28)
:= e−βe(ηp)|Λ| Θp

Λ . (4.29)

As we’ve gone through external contours, the final condition only in-
volves non-intersection.
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Let us pause to analyze what has been done. The partition func-
tion has finally been written in terms of non-intersecting contours, but
at the cost of introducing an artificial contour ensemble: All contours
in (4.28) are p-contours. The contour families obtained do not corre-
spond, in general, to any spin configuration. In other words, in the
absence of a clean contour-removal operation the procedure advises
us to sacrifice the one-one correspondence with configurations and to
adopt, instead, an unphysical ensemble of contours. Note that, never-
theless, the exterior contours are the same as for the original physical
spin system, because the resummation procedure started from the
physical exterior contours down. Let me summarize the procedure so
far:

• P different contour ensembles are introduced, one for each refer-
ence configuration. The p-contour ensemble Cp—corresponding
to the reference configuration ηp— is formed by all families of
non-intersecting p-contours with weights (4.26).

• For each finite Λ ⊂ ZZd, the ensemble Cp
Λ has the same distribu-

tion of external contours as the measure 〈 · 〉(β) ηp . Therefore, if
the cluster-expansion technology is applicable, it will yield in-
formation on probabilities of events determined by exterior con-
tours. This, however, is enough to conclude about the existence
and mixing properties of the ηp-phase of the spin system.

There is a big “if” in the previous statement: At this point we do
not know whether cluster expansions will converge for these artificial
contour ensembles. Whereas the original weights w(γp) satisfied the
Peierls condition (4.23), there is no a priori bound on the new weights
W (γp), defined in (4.26). This is an essential obstruction and it arises
for a good reason. As we shall see, the convergence of the cluster
expansion is associated to a stable ηp-phase.

4.3.2 Stable boundary conditions

To motivate the definitions to come, let us reflect on what is expected.
In general, we expect that some of the configurations ηp gives rise to
stable phases and others do not. Moreover, the stable ones should ex-
hibit the sea-with-island picture. If so, for ηp stable we expect that the



64 4. Pirogov-Sinai theory

new weights W of the ensemble Cp be exponentially decreasing with
|ωp|. On the other hand, if ηq is not stable we expect that whenever
we force the ηq external conditions for an arbitrarily large Λ, typically
there will be a large contour, close to the boundary of Λ, where the
system flips into one of the stable ηp’s. Therefore, we expect that the
new weights of Cq favor large contours.

In other words, we expect that for stable ηp the additional factors
Zu(∆)/Zp(∆), contributing to the new weights, either decrease or at
least do not grow much with |∆|, while for ηq not stable these factors
are expected to grow exponentially fast with |∆| to beat the Peierls
bound of the original weight w. Therefore, stability can be detected
by imposing a suitable cutoff over the growth of these quotients of
partition functions that can not possibly be satisfied by non-stable
ηq’s. A convenient form of this cutoff has been propossed by Zahradńık
[44] (I use the constants adopted by Borgs and Imbrie [3]).

Definition 4.4

(i) A region Λ ⊂ ZZd is p-stable if Zp(Λ) 6= 0 and∣∣∣∣∣Zu(Λ)

Zp(Λ)

∣∣∣∣∣ ≤ exp[4 |∂Λ|] (4.30)

is satisfied for all u.

(ii) A p-contour γp is stable if each Intu(γ
p) is p-stable, for 1 ≤ u ≤

P .

For β large enough, the weights W (γp) of stable contours γp satisfy
the crucial condition (3.40) and we can apply the cluster expansion
technology of Section 3.3. Hence we can define the truncated contour
partition functions [44]:

Z ′
p(Λ) := e−βe(ηp)|Λ| ∑

{γp
k
}⊂V̂

stable
non−intersecting

∏
k

W (γp
k)

(4.31)
:= e−βe(ηp)|Λ| Θ′p

Λ .
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By Corollary 3.4 we have that for β large the truncated contour free
energies

f ′p := − lim
Λ→ZZd

1

|Λ|
log Z ′

p(Λ) (4.32)

exist, and are of the form

f ′p = β e(ηp) + fC
′
p , (4.33)

where fC
′
p is given by the cluster expansion (3.57), with w replaced

by the new weights W and only accepting stable contours. Physicists
would like a factor 1/β in the right-hand side of (4.32)–(4.33). For
the expressions in the proof of the main theorem (Chapter 5) such
factor would be a bit of a nuisance, so I omit it. In most references
on Pirogov-Sinai, the inverse temperature is absorbed as part of the
interaction, what amounts to set β = 1. I prefer to exhibit β explicitly
and to juggle between physical tradition and notational convenience.

The key observation of Zahradńık [44], is that these truncated free
energies f ′p are the objects promised at the end of Chapter 2: Its
minimization decides which phases are stable.

4.4 The main result

4.4.1 Criterion for the stability of a phase

Let
ap(β) := Re f ′p(β)− min

ηu∈K
Re f ′u(β) . (4.34)

Then the main result of Pirogov-Sinai theory, in the formulation due
to Zahradńık [44] is the following

Theorem 4.5 Consider a finite-range complex-valued interaction sat-
isfying the Peierls condition with respect to a finite number of periodic
reference configurations {η1, . . . , ηP}, and consider β large enough.
Then, ap(β) = 0 implies that for such β the ηp-phase is stable. More
explicitly:

(i) The truncated free-energy density f ′p coincides with β times the
actual free-energy density.
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(ii)

lim
Λ→ZZd

〈g〉(β) ηp

Λ =: 〈g〉(β) ηp (4.35)

exists for each local observable g. Moreover∣∣∣〈g〉(β) ηp − g(ηp)
∣∣∣ ≤ ‖g‖∞ |B| O(e−βJ̃) (4.36)

for some constant J̃ > 0.

(iii) The ηp-phase is exponentially mixing: If g1(ω) = g1(ωA1) and
g2(ω) = g2(ωA2):∣∣∣〈g1 g2〉(β) ηp − 〈g1〉(β) ηp〈g2〉(β) ηp

∣∣∣
≤ ‖g1‖∞ ‖g2‖∞ |A1| |A2| O(e−dist(A1,A2)/ξ(β)) , (4.37)

for some ξ(β) > 0.

(iv) If the interaction is real valued, then the sea-with-island picture
is valid for 〈g〉(β) ηp:

– Infinite sequences of nested contours have probability zero.

– Defects and other reference configurations do not percolate.

– The probability of occurrence of contours around a given

site is O(e−βJ̃).

4.4.2 Application: Stability of zero-temperature
phases

In the large β limit the lowest-order terms dominate the truncated
contour free-energy densities f ′p. These are terms involving clusters
formed by a single contour with the lowest possible energy cost. Such
contours are always stable because they have empty interior. If at that
order some f ′q are already larger than the others, the corresponding
boundary conditions can be disregarded as unstable, and the analysis
proceeds with clusters with higher-order contributions. Such a scheme
was in fact systematized by Slawny [39] on the basis of the original
Pirogov-Sinai theory.
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As an illustration, let me formalize the discussion on the stability
of the rigid configurations of the Blume-Capel model (2.44). The
excitations (2.45)–(2.47) define precisely the contours with the lowest-
possible energy cost, thus

f ′0 = −2e−2dβ + O(e−(4d−2)β) (4.38)

f ′+ = f ′− = −e−2dβ + O(e−4dβ) . (4.39)

We see that f ′0 < f ′+, f ′− for β large enough, which proves that the
all-“0” configuration is stable. The discussion of Section 2.3.3 was
perfectly accurate, the only step missing was the identification of the
truncated f ′p as the “free-energy densities” vaguely introduced there.
Rigorously speaking, nowhere in this notes the unstability of the other
two configurations is proven. Such a result is the object of the studies
of “completeness of the phase diagram” [44], not discussed here.

On the other hand, the addition of the “g”- term of (2.48) changes
the truncated free energies to

f ′0 = −2e−(2d−g)β + O(e−[(4d−2)−2g]β) (4.40)

f ′+ = f ′− = −βg − e−(2d+g)β + O(e−4dβ) . (4.41)

Hence, for g small enough, the value β(3)(g) where the three phases
are stable is the solution of

−βg − e−(2d+g)β + 2e−(2d−g)β = O(e−[(4d−2)−2g]β) . (4.42)

I leave to the reader the analogous verification that for the Fisher’s
antiferromagnet (4.3) the ferromagnetic phase [η+ in (4.4)] is stable,
and the determination of the tuning of the field [coefficient of the last
term in (4.4)] that keeps the three phases stable at very low temper-
atures.
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Chapter 5

Proof of the main result

In this chapter I closely follow the excellent presentation of Borgs and
Imbrie [3]. The proof is just a transcription of the proof of Theorem
3.1 in [3], except that I do not aim at the detailed description provided
by their formulas (3.10)–(3.12). Hence I can allow myself some small
simplifications.

5.1 The key lemma

Given the discussion at the end of Section 4.3.2 and the bounty offered
by the cluster-expansion technology (see summary in Section 3.3.6),
we conclude that Theorem 4.5 is a consequence of the following key
lemma:

Lemma 5.1 The following statements are equivalent:

(i) ap = 0.

(ii) All regions Λ are p-stable.

Proof. We first prove that (ii)=⇒(i), assuming that (i)=⇒(ii) holds.
For this purpose, we consider a boundary condition ηv for which av =
0. For each Λ, we have that Zp(Λ) = Z ′

p(Λ), by assumption, and
Zv(Λ) = Z ′

v(Λ) holds because (i)=⇒(ii). Therefore

exp
[
4 |∂Λ|

]
≥

∣∣∣∣∣Zv(Λ)

Zp(Λ)

∣∣∣∣∣ = exp
[
ap |Λ|+ O(e−βJ̃) |∂Λ|

]
. (5.1)

69
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The leftmost inequality expresses p-stability of the region Λ, while the
equality on the right is a consequence of the bound (3.58) on finite-
volume effects for the contour ensemble. If ap > 0 the equation in
(5.1) leads to a contradiction for regions Λ with diverging volume-to-
surface-area ratio. Thus we conclude that ap = 0.

Proof of (i)=⇒(ii). In order to understand the steps and definitions
that follow, it is useful to inspect the ratio of partition functions corre-
sponding to different boundary conditions. From (3.58) we have that,
for any ηv, ηq ∈ K,∣∣∣∣∣Z ′

v(Λ)

Z ′
p(Λ)

∣∣∣∣∣ = exp
[
−(av − ap) |Λ|+ O(e−βJ̃) |∂Λ|

]
. (5.2)

From (5.2) we conclude that if ap = 0 then∣∣∣∣∣Z ′
v(Λ)

Z ′
p(Λ)

∣∣∣∣∣ ≤ exp(|∂Λ|), (5.3)

for large β. Hence, in this case, the proof would be complete if the
truncated partition functions in (5.3) could be replaced by the untrun-
cated ones and ∣∣∣∣∣Zv(Λ)

Zp(Λ)

∣∣∣∣∣ ≤ exp(const|∂Λ|). (5.4)

More generally, for regions Λ for which

ap |Λ| ≤ |∂Λ| , (5.5)

we have from (5.2) that, for large β,∣∣∣∣∣Z ′
v(Λ)

Z ′
p(Λ)

∣∣∣∣∣ ≤ exp(2 |∂Λ|). (5.6)

As a first step, we would like to show that the primes in (5.3) and
(5.6) can be removed for regions satisfying (5.5). If condition (5.5)
were inherited by subregions of Λ then we could prove inductively,
from (5.6), that Zp(Λ) = Z ′

p(Λ). However, it is not true that the
bound (5.5) remains valid for arbitrary subregions of Λ. Therefore it is
convenient to resort to a sufficient condition that has this hereditarity
feature. For this purpose, we introduce the notion of small regions
and small contours, adopting the definitions of [3].
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Definition 5.2

(i) A region Λ is q-small if

aq diam Λ̂ ≤ 1 . (5.7)

[where Λ̂ is defined in (4.19)].

(ii) A contour γ is q-small if

aq diam supp γ ≤ 1 ; (5.8)

otherwise the contour is called q-large.

It is clear that smallness is inherited by subregions. Moreover, the
bound (5.5) is valid for q-small regions, because

aq |Λ| ≤ aq diam Λ |∂Λ|
≤ |∂Λ| . (5.9)

In particular, all contours inside a q-small region are q-small contours.
[It is for the sake of this property that we used Λ̂ in (5.7)]. The
hypothesis that ap = 0 implies that all regions are p-small. As a
consequence, the proof of the implication (i)=⇒(ii) is completed by
proving the following lemma [44].

5.2 The inductive proof

Lemma 5.3 For all q, q-small regions are q-stable. As a consequence,
all q-contours contained in q-small regions are stable.

Proof. The proof is by induction on the diameters of the regions.
Let us assume that, for all u, au diam Λ ≤ 1 implies that Zu(Λ̃) 6= 0

and ∣∣∣∣∣Zv(Λ̃)

Zu(Λ̃)

∣∣∣∣∣ ≤ exp(4|∂Λ|), (5.10)

for all v and for all regions Λ̃, contained in Λ, with diameter less than
or equal to m. We pick some ηq ∈ K and some q-small region Λ̂ of
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diameter m+1, and prove the bound (5.10), with u = q. All contours
γq in this region are q-small, hence their interiors are q-small and of
diameter strictly smaller than m+1. By the inductive hypothesis such
interiors satisfy (5.10), and hence these contours are stable, yielding

Z ′
q(Λ) = Zq(Λ) . (5.11)

We remark that if av = 0 then the proof is complete. This is because
if av = 0 all regions are v-small, and, consequently, all v-contours in
Λ̂ are stable. This implies that Z ′

v(Λ) = Zv(Λ), which, along with
(5.11) and (5.6), implies that (4.30) is true.

Let us now consider a boundary condition ηv for which av 6= 0. To
estimate Zv(Λ)/Zq(Λ) we write the numerator as in (4.24) and resum
the contribution of v-small exterior contours . This yields

Zv(Λ)

Zq(Λ)
=

∑
{γv

k}⊂Λ̂
v−large
exterior

Zsmall
v (Ext)

Zq(Λ)

∏
k

w(γv
k) e−βe(ηv)|γv

k| Z
(
Int γv

k

)
. (5.12)

Here “Ext” is the region outside the v-large exterior contours {γv
k},

the label “small” indicates a restriction to configurations where all the
exterior contours are v-small, and Z(Int γv) :=

∏
ṽ Zṽ(Intṽ(γ

v)). If we
multiply and divide the right-hand side of (5.12) by

Zq(Int) :=
∏
k

∏
ṽ

Zq(Intṽ(γ
v
k)) , (5.13)

we obtain

Zv(Λ)

Zq(Λ)
=

∑
{γv

k}⊂Λ̂
v−large
exterior

Zsmall
v (Ext) Zq(Int) e−βe(ηv)|γv

k|

Zq(Λ)

∏
k

Y (γv
k) , (5.14)

with

Y (γv
k) := w(γv

k)
∏
ṽ

Zṽ(Intṽ γv
k)

Zq(Intṽ γv
k)

. (5.15)

We observe that, by the inductive hypothesis,

Z ′
v
small

(Ext) = Zsmall
v (Ext) (5.16)
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Identities (5.11) and (5.16) allow us to apply the finite-volume bound
(3.58) to all the factors in (5.14), except

∏
k Y (γv

k). We then obtain∣∣∣∣∣∣Z
small
v (Ext) Zq(Int) e−βe(ηv)

∑
k|γv

k|

Zq(Λ)

∣∣∣∣∣∣
≤ exp

[
−Re (f ′v

small − f ′q) |Λ \ Int | + 2 |∂Λ|
] ∏

k

e(2d+1)|γv
k | .

(5.17)

We have used the geometrical bound |∂ Ext |+|∂ Int | ≤ |∂Λ|+2d
∑

k |γv
k |.

We now resort to the q-smallness of Λ, inequality (5.9), to bound

−Re (f ′v
small − f ′q) |Λ \ Int | = (−asmall

v + aq) |Λ \ Int |
≤ −asmall

v |Λ \ Int |+ |∂Λ| . (5.18)

Furthermore, the Peierls condition (4.23) and the inductive hypothesis
(5.10) for u = q (combined with the bound |∂ Int γv

k | ≤ 2d|γv
k |) imply

that
|Y (γv

k)| ≤ e−βJ |γv
k | e8d|γv

k | . (5.19)

Substituting (5.17), (5.18) and (5.19) in (5.14), we get the bound∣∣∣∣∣Zv(Λ)

Zq(Λ)

∣∣∣∣∣ ≤ e3|∂Λ| ∑
{γv

k}⊂Λ̂
v−large
exterior

e−asmall
v |Λ\Int | ∏

k

e−βJ |γv
k | e(10d+1)|γv

k |

=: e3|∂Λ| ∑
{γv

k}⊂Λ̂
v−large
exterior

e−asmall
v |Λ\Int | ∏

k

w∗(γv
k) . (5.20)

To show that e4|∂Λ| is an upper bound for (5.20), and hence com-
plete the proof of the lemma, it is convenient to follow [44] and consider
the quantity

Z̃ large
v (Λ) :=

∑
{γv

k}⊂Λ̂
v−large

non−intersecting

∏
k

w∗(γk) e2d|γk| . (5.21)
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[Note that w∗(γ) ≥ 0.] This quantity can be interpreted as the parti-
tion function of an ensemble of contours having weights

w̃(γ) := w∗(γ) e2d|γ| (5.22)

and confined to a volume Λ̂. It is evident that, for β large enough, the
contour weights w̃(γ) satisfy condition (3.40), and hence the cluster
expansion converges. Moreover, if f̃ large

v is the corresponding contour
free-energy density, it follows from (3.58) that

[Z̃ large
v (Λ)]−1 ≤ ef̃ large

v |Λ| exp
[
O(e−βJ̃) |∂Λ|

]
, (5.23)

We claim that

asmall
v ≥ −f̃ large

v . (5.24)

Indeed, for every v-large contour

av diam γ > 1 . (5.25)

Hence, by (3.57)

asmall
v = av + O

(
e−βJ̃/av

)
. (5.26)

By the same argument,

f̃ large
v = O

(
e−βJ̃/av

)
. (5.27)

Hence

asmall
v + f̃ large

v ≥ av + O
(
e−βJ̃/av

)
(5.28)

which is non-negative for β large and λ small, proving (5.24).

The rest of the argument can be presented as a lemma of indepen-
dent interest. The lemma shows that (5.24) causes the sum in (5.20)
to yield at most a contribution exponential in the boundary. By sub-
stitution of the bound (5.30), shown below, into the right-hand side
of (5.20), we obtain the bound (5.10). This completes the inductive
proof.
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5.3 The final lemma

Lemma 5.4 Consider weights w∗(γ) satisfying a Peierls bound

0 ≤ w∗(γ) ≤ e−βJ (5.29)

and let f̃ denote the contour free-energy density for the weights w̃(γ) =
w∗(γ) e2d|γ| (well defined if β is small enough). Then, for g ≥ −f̃ ,

∑
{γk}⊂Λ
exterior

e−g|Λ\Int | ∏
k

w∗(γk) ≤ exp
[
O(e−βJ̃)|∂Λ|

]
. (5.30)

Proof. (This is Lemma 3.2 of [3], and the proof given there.) Multiply
and divide the left-hand side of (5.30) by Z̃v(Int). Using the analogue
of (5.23) for the region Int :=

⋃
ṽ,k Intṽ γk, and the bound |∂ Int | ≤

2d
∑

k |γk| we obtain

[Z̃(Int)]−1 ≤ ef̃ | Int | ∏
k

e2d
∑

k
|γk| (5.31)

for β small enough. Thus the left-hand side of (5.30) satisfies

LHS ≤
∑

{γk}⊂Λ̂
exterior

e−g|Λ\Int | ef̃ | Int | Z̃(Int)
∏
k

w̃(γk) , (5.32)

and, since −g ≤ f̃ , we have that

LHS ≤ ef̃ |Λ| ∑
{γk}⊂Λ̂
exterior

Z̃(Int)
∏
k

w̃(γk)

≤ ef̃ |Λ| Z̃(Λ) . (5.33)

Hence, by (3.58) for the region Λ,

LHS ≤ exp
[
O(e−βJ̃) |∂Λ|

]
. (5.34)
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5.4 Last remarks

Expectations and probabilities

Let me briefly comment how Lemma 5.1 and the resummation proce-
dure of Section 4.3.1 are used to show that expectations of the form

〈g〉(β) ηp

Λ (g local) admit, if ap = 0 and β is large enough, an absolutely
convergent cluster expansion with a well defined infinite-volume limit.
If g is a local observable, for instance g(ω) = g(ωA), then

g(ω) = g(ΓA(ω)) , (5.35)

where ΓA(ω) represents all the contours of Γ(ω) whose support inter-
sects A. Such family has a well defined exterior configuration, say ηq,
that I will make explicit by writing Γq

A. It may happen that ΓA = ∅,
in which case A must be contained in the set Cu of u-correct sites for
some 1 ≤ u ≤ P . Therefore, we have

〈g〉(β) ηp

Λ =
p∑

q=1

{
g(ηq) exp

(∑
B⊂A

ΦB(ηq)
)

Zp,q(Λ \ A)

Zp(Λ)

+
∑

Γq
A admissible

g̃(Γq
A)
[ ∏
γ∈Γq

A

w(γ)
]
Zp,q(Λ \ supp ΓA)

Zp(Λ)

}
.

(5.36)

Here Zp,q(Λ \ D) is the partition function in Λ \ D with boundary
conditions ηp in the exterior of Λ and ηq in the interior of D (D is
assumed to be strictly contained in Λ); supp ΓA is the union of the
supports of the contours of the admissible family ΓA, and g̃ is just g
expressed as function of contour configurations.

Via the resummation described in Section 4.3.1 all the partition
functions involved can be written purely in terms of non-intersecting
p-contours with new weights W [each term Zp,q(Λ \ D) with p 6= q
must have at least one contour surrounding D]. Whenever ap = 0
Lemma 5.1 and the stability condition (4.30) imply that the new
weights obey a Peierls bound and the different cluster expansions con-
verge absolutely and uniformly in Λ. This guarantees the existence of
the Λ→ ZZd limit. This expansion yields the other stability properties
listed in Theorem 4.5. I leave the details to the reader.
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On the definition of stable regions

The proof presented in this chapter clearly shows that there is consid-
erable freedom in the definition of stable regions. On the one hand the
constant “4” in (4.30) can be replaced by any other constant. More-
over, instead of brutally suppressing contours with large new weights
W , one could devise some sort of smooth counter-weights to scale the
weights down to convergence levels. In this manner one could, for
instance, construct alternative truncated free-energy densities with
certain desirable smoothness properties respect to some of the param-
eters of the interaction. Such possibility has indeed been exploited
and put to good use [4].
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