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We study the effects of stochastic thermal fluctuations on the instability of the free surface of a flat liquid
metallic film on a solid substrate. These fluctuations are represented by a stochastic noise term added to the
deterministic equation for the film thickness within the long-wave approximation. Unlike the case of polymeric
films, we find that this noise, while remaining white in time, must be colored in space, at least in some regimes.
The corresponding noise term is characterized by a nonzero correlation length, �c, which, combined with the
size of the system, leads to a dimensionless parameter β that accounts for the relative importance of the spatial
correlation (β ∼ �−1

c ). We perform the linear stability analysis (LSA) of the film both with and without the
noise term and find that for �c larger than some critical value (depending on the system size), the wavelength
of the peak of the spectrum is larger than that corresponding to the deterministic case, while for smaller �c this
peak corresponds to smaller wavelength than the latter. Interestingly, whatever the value of �c, the peak always
approaches the deterministic one for larger times. We compare LSA results with the numerical simulations of the
complete nonlinear problem and find a good agreement in the power spectra for early times at different values of β.
For late times, we find that the stochastic LSA predicts well the position of the dominant wavelength, showing that
nonlinear interactions do not modify the trends of the early linear stages. Finally, we fit the theoretical spectra to
experimental data from a nanometric laser-melted copper film and find that at later times, the adjustment requires
smaller values of β (larger space correlations).
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I. INTRODUCTION26

The breakup of a flat thin liquid film on a solid substrate is27

a fundamental issue in the study of free surface instabilities.28

The phenomenon is determined by partially understood effects29

acting at the nanometric scale. These effects can be studied, in30

some detail, through simulations of molecular dynamics but at31

the cost of heavy computational resources and severe limita-32

tions on the thickness of the films. An alternative approach33

resorts to stochastic descriptions of relevant intermolecu-34

lar interactions through appropriate “noisy” hydrodynamical35

equations. This type of description was pioneered by Landau36

[1], who proposed additional phenomenological fluctuation37

terms that were exploited, for instance, by Uhlenbeck and Fox38

[2] for Brownian particles. The terms were later justified, from39

the microscopical point of view, as corresponding to a long-40

wave approximation applied to the deterministic Boltzmann41

equation [3]. The resulting equations have been used in the42

study of bulk instability phenomena, such as turbulence in43

randomly stirred fluids [4], Rayleigh–Benard convection [5],44

and Taylor-Couette flow [6].45

In general, approaches based on hydrodynamic Navier-46

Stokes equations supplemented by stochastic fluctuation terms47

have been found to be valid to describe the instability of bulk48

matter [7] but to fail for thin-film phenomena. This is because49

the framework does not properly account for the thermal50

agitation of molecules, known to be relevant for the behavior of51

open surfaces at small scales [8–10]. The failure is particularly52

evident in thermally triggered phenomena, such as the breakup53

of nanojets [9,11] or the glass transition of polymer films54

[12]. Nevertheless, the continuum hydrodynamic approach55

can be extended to phenomena driven by thermal agitation 56

by using stochastic differential equations [9]. These equations 57

are obtained by adding a contribution involving a stochastic 58

process or field describing the noise, usually assumed to 59

be uncorrelated (white) noise both in space and time. The 60

lack of correlations in time is associated with the absence of 61

memory effects due to thermal fluctuations. The validity of the 62

hypothesis of no spatial correlation of thermal noise is, in our 63

opinion, less clear. 64

In this paper, we apply the noisy hydrodynamic approach 65

to study the effect of thermal noise on metallic films laterally 66

much larger (up to microns) than their thicknesses and show 67

that, at least in some regimes, the noise must be considered 68

spatially correlated. Our paper has a double objective: On 69

the one hand, we contribute to the understanding of breakup 70

instabilities in films used in the design of microfluidic devices. 71

On the other hand, we present a case study that shows the 72

limitations of the spatial white noise assumption, together with 73

a slightly generalized mathematical formalism that can be of 74

use in other systems with spatially correlated noise. 75

Thin-film instabilities have been studied mostly for poly- 76

meric films [13–15]. In particular, pattern analysis procedures 77

have been proposed—based in Minkowsky invariants—to 78

compare experiments with theoretical and simulation results 79

for these films [16] and to test whether patterns correspond 80

to a Gaussian field [17]. These procedures show satisfactory 81

agreement between observations and theoretical studies as- 82

suming space-time white thermal noise. In contrast, unstable 83

liquid metal films have not been the object of comparably 84

thorough studies. In these films, the solid coating is melted by 85

laser and, since the deposition of energy is not strictly uniform 86
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throughout the illuminated spot, the thermal fluctuations—and87

thus the liquid lifetime—may not be the same for all regions. In88

such a context, thermal correlations can be expected to become89

spatially extended.90

Our paper is a contribution towards filling the gap in91

the understanding of metallic thin-film breakup. We address92

the issue at three different levels. At the theoretical level,93

we propose a stochastic version of the thin-film equation—94

based on the lubrication approximation for incompressible95

hydrodynamic equations [8]—with spatially extended noise96

(see Sec. II). In Sec. III, we perform a linear stability analysis of97

the film under perturbations with normal modes. This analysis98

allows us to compare the influence of the correlation length99

of spatial fluctuations on the spectra of unstable modes. In100

particular, the amplitudes of these modes are seen to increase101

with decreasing correlation length, while the wave number of102

the mode with maximum amplitude can be lower or larger than103

the deterministic one depending on this length.104

In Sec. IV we solve numerically the stochastic thin-film105

equation and compare the results with the linear solution106

obtained previously. As expected, fluctuations accelerate107

breakups and rupture times decrease with the correlation length108

of the fluctuations. Fourier spectra of profile thickness are109

reasonably well described by the linear stability predictions110

both at early and late times. And, finally, in Sec. V we111

compare the predictions of our stochastic differential equations112

with experimental Fourier spectra previously obtained [18]113

from scanning electron microscope (SEM) images of the114

instability of a melted copper film. We find that optimal fitting115

is not achieved through white spatial noise; rather, it requires116

fluctuations of increasing correlation length as the center of the117

spot is approached (that is, as the liquid lifetime increases).118

II. THIN-FILM EQUATIONS WITH STOCHASTIC NOISE119

In order to somehow include the thermal agitation in the120

framework of the continuous mechanics, it is considered that121

the film molecules modify the surface forces that describe122

the interaction between the fluid inside a volume element and123

its surroundings. We adopt the lubrication approximation of124

the stochastic Navier-Stokes equation [8,19] and introduce an125

additional random symmetric term, S, in the expression of the126

Newtonian stress tensor. The most relevant component of S127

is Siz, where i can be either x or y and indicates a direction128

parallel to the substrate while z stands for the normal one.129

These components have zero mean,130

〈Siz(�x,t)〉 = 0, (1)

and correlations131

〈Siz(�x,t)Sjz(�x ′,t ′)〉 = 2μkBT F (�x − �x ′) δ(t − t ′) δi,j , (2)

where i,j = x,y, μ is the fluid viscosity, δ is the Dirac delta132

function, and �x = (x,y). Here kB and T are the Boltzmann133

constant and fluid temperature, respectively. F stands for134

a translation-invariant (generalized) function; the standard135

choice of spatial white noise corresponds to F (�x − �x ′) =136

δ(�x − �x ′). The form (2) is consistent with the fluctuation-137

dissipation theorem which relates the fluctuations of physical138

quantifies to the dissipative properties of the system. The theo-139

rem assumes the existence of some form of local equilibrium,140

hence the resulting hydrodynamical equations are only valid 141

at scales much larger than the molecular scale. This is a further 142

argument in favor of considering functions F with extended 143

support (“colored” space noise). In the same approximation, 144

the pressure terms in the isotropic part of the stress for a film 145

of local thickness h(�x,t) are given, as usual, by the capillary 146

pressure, −γ∇2h (where γ is the surface tension), and the 147

disjoining-conjoining pressure (van der Waals force), �(h). 148

Thus, the reduction of the Navier-Stokes equations under the 149

lubrication approximation leads to [19]: 150

3μ
∂h

∂t
+ �∇ · [h3 �∇(γ∇2h + �(h))]

−�∇ ·
[∫ h

0
(h − z)S||z(z)dz

]
= 0, (3)

whereS||z = (Sxz,Syz). Note that the new noise term in Eq. (3), 151

while complicated, has the advantage that it maintains the 152

conservative form of the equation, incorporating a random 153

current which acts as another driving force. 154

Since we can assume that the process is Markovian, the 155

usual procedure of making a Krammers-Moyal expansion of 156

the master equation and retaining the first significant terms 157

leads to a Fokker-Planck equation that is easier to solve but 158

retains all the meaningful features of the problem [20,21]. The 159

function h is, in fact, a stochastic process whose distribution 160

evolution follows the appropriate Fokker-Planck equation [19], 161

corresponding to the Langevin equation, 162

3μ
∂h

∂t
+�∇ · [h3 �∇(γ∇2h + �(h))]−�∇ · [

√
3h3�ξ (�x,t)] = 0,

(4)
with a single multiplicative conserved noise vector �ξ (�x,t) 163

satisfying [2,19] 164

〈�ξ (�x,t)〉 = 0,

〈ξi(�x,t) ξj (�x ′,t ′)〉 = 2μkBT F (�x − �x ′) δ(t − t ′) δi,j . (5)

The δ-correlated noise in time ensures that the results of 165

studying of the Fokker-Planck equation are equivalent to those 166

of the Langevin equation [21]. Assuming symmetry along y 167

axis, the one-dimensional version of Eq. (4) for h(x,t) is 168

3μ
∂h

∂t
+ ∂

∂x

[
h3

(
γ

∂3h

∂x3
+ ∂�

∂x

)]
− ∂

∂x
[
√

3h3ξ (x,t)] = 0,

(6)
where, for brevity, ξ (x,t) stands for ξx(x,t). 169

Since the only characteristic length scale of an infinite film 170

is its thickness, h0, we define the following dimensionless 171

variables: 172

x̃ = x

h0
, ỹ = h

h0
, t̃ = t

t0
, �̃ = h0

γ
�, 	 = ξ√

T 	0

,

(7)
where the scales of time, t0, and noise, 	0, are to be determined 173

in terms of the characteristic parameters of the problem. Here 174

we take the capillary pressure, γ /h0, as the scale for the 175

disjoining pressure, and we have considered the temperature 176

dependence of the noise amplitude as given by Eq. (5). Thus, 177
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the dimensionless version of Eq. (6) is as follows:178

∂h̃

∂t̃
+ ∂

∂x̃

[
h̃3

(
∂3h̃

∂x̃3
+ ∂�̃

∂x̃

)]
−

√
2σ

∂

∂x̃
[h̃3/2	(x̃,t̃)] = 0,

(8)
where179

t0 = 3μh0

γ
, σ = kBT

γ h2
0

, 	0 = γ

√
2σ

3h0
, (9)

and180

〈	(x̃,t̃)	(x̃ ′,t̃ ′)〉 = F̃ (x̃ − x̃ ′) δ(t̃ − t̃ ′), (10)

with F̃ = F/h2
0 a dimensionless correlation [for white noise181

F̃ (̃�x) = δ(̃�x)]. Note that σ measures the relative importance182

of the stochastic term (thermal noise) with respect to the183

deterministic part, and it is given by the ratio between the184

thermal and surface energies of the system. Since typical185

experimental data yield σ of the order of 10−4 (or even less) we186

will consider here this parameter within this range of values in187

order to look for effects on the film instability.188

As regards to the form of �, we take into account both the189

attractive and repulsive intermolecular liquid-solid forces, so190

it includes both the disjoining and conjoining pressure terms191

in the form [22]192

�(h) = κf (h) = κ

[(
h∗
h

)3

−
(

h∗
h

)2]
, (11)

where h∗ is the dimensional equilibrium thickness and κ (with193

units of pressure) is given by194

κ = A
6πh3∗

(12)

with A being the Hamaker constant. Alternatively, it is also195

useful to define κ in terms of the contact angle, θ , as [22]196

κ = 2γ (1 − cos θ )

h∗
. (13)

In dimensionless variables, κ becomes K = κh0/γ , and then197

the final version of Eq. (8) is198

∂h

∂t
+ ∂

∂x

[
h3

(
∂3h

∂x3
+ Kf ′(h)

∂h

∂x

)]
−

√
2σ

∂

∂x
[h3/2	(x,t)]

= 0, (14)

where we omit the tilde ( )̃ for brevity here and from now on.199

As said before, the stochastic term 	(x,t) is considered to200

be white noise with respect to time. Formally, this means that201

it is of the form202

	(x,t) = ∂W (x,t)

∂t
, (15)

where, for each x, the process W (x,·) is a standard Brownian203

motion, namely the translation-invariant continuous process204

with independent increments, each of which is normally205

distributed:206

W (x,t + �) − W (x,t) ∼ N (0,�). (16)

Here N (0,�) is a normal distribution with zero mean and207

variance �, and “∼” stands for equality of distributions.208

III. LINEAR STABILITY ANALYSIS (LSA) OF 209

THE STOCHASTIC THIN-FILM EQUATION 210

A. Linearized equation in Fourier space 211

The linearized equation is expected to hold at the beginning 212

of the instability process, when the deviations, δh(x,t) = 213

h(x,t) − h̃0, from the initial average film height are small (even 214

if h̃0 = 1, we keep this notation for clarity). By expanding 215

Eq. (14) up to first order in δh and 	 (assuming that the noise 216

amplitude is small as well) we obtain the linear stochastic 217

equation, 218

∂δh

∂t
+ h̃3

0

[
∂4δh

∂x4
+ Kf ′(h̃0)

∂2δh

∂x2

]
−

√
2σ h̃3

0

∂	

∂x
= 0.

(17)
It is convenient to look for its solution in the Fourier space, so 219

we use the spatial transform by 220

δ̂h(q,t) =
∫ ∞

−∞
δh(x,t) e−iqx dx. (18)

Therefore, Eq. (17) becomes 221

∂δ̂h(q,t)

∂t
= ω(q) δ̂h(q,t) + i

√
2σ h̃3

0 q 	̂, (19)

where we define 222

ω(q) = 4ωm

[(
q

qc

)2

−
(

q

qc

)4]
(20)

that corresponds to the dispersion relation of the deterministic 223

case [22]. Here 224

qc =
√

Kf ′(h̃0), ωm = h̃3
0q

4
c

4
(21)

are the critical (marginal) wave number and the maximum 225

growth rate, respectively. The wave number of maximum 226

growth rate is 227

qm = qc/
√

2. (22)

Since Eq. (19) is an equation of the Langevin type, its 228

solution is given by [23,24], 229

δ̂h(q,t) = eω(q)t δ̂h(q,0) + i

√
2σ h̃3

0q

∫ t

0
eω(q)(t−s)dŴ (q,s).

(23)
The process Ŵ (q,·) is the primitive Brownian process of the 230

time white noise 	̂(q,·) [see (16)]: 231

	̂(q,t) = ∂Ŵ (q,t)

∂t
. (24)

By (10), the autocorrelation of the Fourier transformed noise 232

is 233

〈	̂(q,t)	̂(q ′,t ′)〉

=
∫ ∞

−∞

∫ ∞

−∞
〈	(x,t)	(x ′,t ′)〉e−iqxe−iq ′x ′

dxdx ′

=
∫ ∞

−∞

∫ ∞

−∞
δ(t − t ′)F (x − x ′)e−i(qx+q ′x ′)dxdx ′

= 2πδ(q + q ′)δ(t − t ′)F̂ (q), (25)
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where234

F̂ (q) =
∫ ∞

−∞
F (u)e−iqudu (26)

is the Fourier transform of the correlation function F and we235

have applied the identity
∫ ∞
−∞ e−iqxdx = 2π δ(q). From (24)236

and (26) we obtain that Ŵ has autocorrelations237

〈Ŵ (q,t) Ŵ (q ′,t ′)〉 = 2π δ(q + q ′) F̂ (q)(t ∧ t ′), (27)

where t ∧ t ′ stands for the minimum of t and t ′. Here the238

symbol ∧ is employed as it is usual in mathematics since it239

is consistent with the set theoretical symbol for intersections240

(see, e.g., Ref. [25]).241

To study the instability evolution in the spectral space we242

calculate the autocorrelation243

〈 δ̂h(q,t) δ̂h(q ′,t ′) 〉 = C1 + C2 + C3 + C4, (28)

where the terms on the right-hand side are defined as follows:244

C1 = 〈 δ̂h(q,0) δ̂h(q ′,0) 〉 eω(q)t eω(q ′)t ′ , (29)

C2 ∝ 〈δ̂h(q,0) dŴ (q ′,t ′)〉, (30)

C3 ∝ 〈δ̂h(q ′,0) dŴ (q,t)〉, (31)

C4 = −2σ h̃3
0q

2

〈 ∫ t

0
eω(q)(t−s)dŴ (q,s)

×
∫ t ′

0
eω(q ′)(t ′−s ′)dŴ (q ′,s ′)

〉
. (32)

To calculate C1 we determine the initial height-height correla-245

tion:246

〈δĥ(q,0) δĥ(q ′,0) 〉 =
∫ ∞

−∞

∫ ∞

−∞
〈 δh(x,0) δh(x ′,0) 〉

× e−iqxe−iq ′x ′
dx dx ′

=
∫ ∞

−∞

∫ ∞

−∞
F0(u) e−iqu e−i(q+q ′)x ′

dx ′ du

= 2π F̂0(q) δ(q + q ′). (33)

Hence,247

C1 = 2π F̂0(q) δ(q + q ′) eω(q)(t+t ′), (34)

where we have considered the symmetry ω(−q) = ω(q). The248

two subsequent terms in (28) do not contribute,249

C2 = C3 = 0, (35)

because the the initial condition is a random variable indepen-250

dent of the Brownian process, W . For the term C4, given in251

(32), we note that since a Brownian evolution up to a certain252

time is independent of later increments, only the common253

interval [0,t ∧ t ′] contributes to the correlation of the product254

of the integrals. Besides, due to Eq. (27), only the terms with255

q ′ = −q have nonzero correlation. Thus, we obtain256

C4 = −2σ h̃3
0q

22πδ(q + q ′)E

×
[∫ t∧t ′

0
eω(q)(t−s)dŴ (s)

∫ t∧t ′

0
eω(q)(t ′−s ′)dŴ (s ′)

]

= −2σ h̃3
0q

2δ(q + q ′)F̂ (q)
∫ t∧t ′

0
eω(q)(t−s)eω(q)(t ′−s)ds.

(36)

The last line above is a consequence of a well-known property 257

of Ito’s integral [23,24]. Performing the integral and using 258

t + t ′ − 2(t ∧ t ′) = |t − t ′|, we have 259

C4 = σ h̃3
02πδ(q + q ′)

q2F̂ (q)

ω(q)
[eω(q)(t+t ′) − eω(q)|t−t ′ |]. (37)

Finally, by replacing Eqs. (34), (35), and (37) in Eq. (28), we 260

obtain 261

〈δĥ(q,t)δĥ′(q ′,t ′)〉 = 2πδ(q + q ′)S(q; t,t ′), (38)

where 262

S(q; t,t ′) = F̂0(q)ew(q)(t+t ′) + σ h̃3
0
q2F̂ (q)

ω(q)

× [eω(q)(t+t ′) − eω(q)|t−t ′ |]. (39)

For the case of noncorrelated noise, we have F̂ (q) = 1, in 263

which case we obtain the relation given in Ref. [8]. 264

The first term of Eq. (39) corresponds to the spectra 265

predicted by the deterministic model (σ = 0). In the following 266

we shall compare the evolution of films with (σ > 0) and 267

without the stochastic term. In the later case, the film has to 268

be perturbed at t = 0, otherwise no evolution is triggered. We 269

shall assume that the originally flat free surface of the film 270

is slightly modified by a perturbation adding no flow at the 271

boundaries of a space domain chosen to be the interval [0,L]. 272

Such a perturbation admits a sine Fourier transform 273

δh(x,0) =
N∑

k=1

Bk sin(2πxk/L), (40)

whence we obtain F0(q) = δ̂h(q,0). The (small) amplitudes Bk 274

are chosen as random numbers with |Bk| < Bmax = 10−3h̃0. 275

As a typical case, in the following calculations we 276

choose a film with h∗ = 0.1 and θ = 30◦, which yields 277

[22] qm = 0.151, qc = 0.213, and ωm = 5.1910−4. Even if 278

only a few terms of Eq. (40) are expected to be relevant, 279

we take N = 50. The quantities λm = 2π/qm = 41.6 and 280

τm = (1/ωm) ln[(h̃0 − h∗)/Bmax] = 13113.5 give a rough idea 281

of the spatial extension and time duration of the film breakup 282

process. We find that L = 500 ≈ 12λm is large enough to 283

produce results that are independent of the domain size. The 284

consequences on the stochastic process of using a correlated 285

noise on a finite domain is analyzed in the next section. 286

B. Correlated stochastic noise in a finite domain 287

Here we will assume that the correlation function F in 288

Eq. (5) is L periodic. Note that it is a matter of convention 289

whether an L-periodic domain is considered a finite torus or 290

an infinite domain obtained by subsequently pasting copies of 291

the fundamental L cell and considering only solutions invariant 292

under L translations. We prefer the latter visualization. 293

003100-4



EF11613 PRE January 8, 2016 22:24

METALLIC-THIN-FILM INSTABILITY WITH SPATIALLY . . . PHYSICAL REVIEW E 00, 003100 (2016)

In this case the stochastic process 	(x,t) can be expanded294

[19] in terms of functions of separated variables in the form295

	(x,t) = ∂W (x,t)

∂t
=

+∞∑
k=−∞

χkċk(t)gk(x), (41)

where the coefficients ċk correspond to white-noise processes296

obtained as (weak) time derivatives of mutually independent297

Brownian motions ck , and the functions gk form the complete298

set of orthonormal eigenfunctions299

gk(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

2
L

cos (2πkx/L), k > 0√
1
L
, k = 0√

2
L

sin (2πkx/Lx), k < 0

(42)

of the Hilbert-Schmidt operator Q defined by300

Qf (x) =
∫ L/2

−L/2
F (x − x ′)f (x ′)dx ′. (43)

The constants χk are the eigenvalues corresponding to each301

gk:302

Qgk(x) = χkgk(x). (44)

In fact,303

χk =
∫ L/2

−L/2
F (u)e−i2πku/Ldu. (45)

Equations (43)–(45) are a consequence of the following simple304

calculation. If Gk(x) = e−iqkx with qk = 2πk/L, then305

QGk(x) =
∫ L/2

−L/2
F (x − x ′)e−iqkx

′
dx ′

= e−iqkx

∫ L/2−x

−L/2−x

F (u)e−iqkudu = χkGk(x) . (46)

The second equality uses the symmetry property F (u) =306

F (−u) and the last one the fact that, by L periodicity, the307

x dependence at the limits of integration can be omitted. Note308

that Eq. (45) is the finite-size domain version of Eq. (26) for a309

discrete spectrum, so the correlated noise effect is embedded310

in the discrete spectrum of the Hilbert-Schmidt operator Q.311

We choose the particular correlation function [19]312

F (u,�c) =
{

Z−1 exp
[− 1

2

(
L
�c

sin
(

πu
L

))2]
, �c > 0

δ(u), �c = 0,
(47)

where �c is the correlation length and Z is such that313 ∫ L

0 F (u,�c)du = 1. This function represents the equilibrium314

distribution of the height of an oscillating surface subjected315

to a (linear) surface tension L/�c. For this correlation, the316

eigenvalues in Eq. (45) (see Appendix) are317

F̂ (qk) = χk = Ik(α)

I0(α)
, (48)

where318

α =
(

L

2�c

)2

=: β2. (49)
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FIG. 1. Linear spectrum of eigenvalues for several values of β

obtained from Eqs. (48) and (49). The vertical lines indicate the values
of qc and qm, while the dashed curve corresponds to the deterministic
dispersion relation, ω(q), given by Eq. (20). Here we take L = 500
to evaluate k = qL/(2π ).

We show in Fig. 1 this eigenvalue spectrum for several values 319

of β = L/(2�c). Note that for β → ∞ (i.e., �c → 0), we have 320

χk → 1 for all k, which leads to the limiting case of white 321

(uncorrelated) noise. For decreasing β (larger �c’s) the width 322

of the spectrum curve diminishes monotonically. The effect of 323

the correlation region (i.e., not negligible values of χk) on the 324

film instability can be put in evidence by comparing it with 325

the dispersion relation ω(q) as given by the deterministic LSA, 326

Eq. (20) (see dashed line in Fig. 1). For β � 8, all modes (stable 327

and unstable ones) are affected by the noise with increasing 328

effect on stable ones as β increases. On the other hand, for 329

β � 8 only unstable modes are affected by the thermal noise. 330

Note that this limiting value is related to the value of �c, so 331

both the periodicity of the problem, L, and the wavelength of 332

maximum growth, λm, play a role in the determination of these 333

regions. 334

The actual effect of �c on the evolution of the instability 335

is clearly observed in the power spectrum of the perturbation, 336

S(q,t), as predicted by the linear stability analysis in Sec. III. 337

Figure 2 shows S versus q at t = 200 and t = 2000 as given by 338

Eqs. (39) (t = t ′) and (40). As expected from the analysis of 339

Fig. 1, the inclusion of stochastic noise increases the amplitude 340

of the modes with q > qc (dotted vertical line) which are 341

otherwise stable in the deterministic case. This effect increases 342

with β, as the noise becomes closer to a white noise (�c → 0). 343

In Fig. 3 we show the time evolution of the wave number 344

of the maximum of the spectra, qmax(t), for different values 345

of β. Note that for β � 9, we find qmax < qm, while we have 346

qmax > qm for larger β. Therefore, qmax approaches qm from 347

below for β � 9 and from above for larger β. 348

In order to understand this behavior, we first analyze what 349

determines the value of qmax0 = qmax(t = 0). To do so, we 350

consider the derivative of Eq. (39) with respect to q for small 351

times (i.e., ωt � 1) and find that qmax0 is given simply by the 352

maximum of q2χ (q). By using the approximate expression 353

Ik(α) ≈ eα

√
2πα

(
1 − 4k2 − 1

8α
+ . . .

)
(50)
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FIG. 2. Power spectrum at two different times for σ = 5 × 10−5, and several values of β as given by the linear prediction in Eq. (39) and
the initial perturbation in Eq. (40). The vertical dashed and dotted lines correspond to the wave number of maximum growth rate (qm = 2π/λm)
and marginal stability (qc = 2π/λc), respectively.

for large α, we find354

qmax0 = 2
√

2π
β

L
. (51)

Thus, the condition qmax0 = qm yields βc = 8.492 for L =355

500, as shown in Fig. 3. Interestingly, this expression points356

out that this condition occurs when �c = λc for any value of357

L. Therefore, the maximum of the spectrum S(q,t), qmax(t),358

remains below qm when the correlation length, �c, is less than359

the critical wave number and vice versa. In the white-noise360

case, this maximum is always above qm, and qmax0 = ∞.361

IV. NUMERICAL IMPLEMENTATION IN A362

FINITE DOMAIN363

In order to understand the nonlinear effects in the film364

instability, we perform numerical simulations of the evolution365

of the film governed by the nonlinear Eq. (14). The calculations366

are carried out in a computational domain defined by 0 � x �367

L, which is divided into cells of size �x. Typically, we use368

�x = 0.1 = h∗, which assures convergence of the numerical369
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FIG. 3. Time evolution of the wave number of the maximum of
the spectra, qmax, for different values of β. Note that all the stochastic
timelines of qmax asymptote the deterministic value qm for long times.

scheme [26], and by setting L = 500 as mentioned above, we 370

have 5000 cells. 371

Equation (14) is discretized in space using a central finite 372

difference scheme with periodic boundary conditions. Time 373

discretization is performed using implicit Crank-Nicolson 374

scheme with relaxation factor equal to 1/2. Thus, the time 375

evolution of the stochastic term is performed according to 376

Stratonovich rules. In fact, symmetry considerations imply that 377

Ito and Stratonovich calculus are equivalent for the integration 378

of Eq. (14) [19]. We note that all the results presented in this 379

paper are fully converged, as verified by grid refinement; more 380

details about numerical issues can be found in Ref. [27]. Note 381

that the minimum possible value of the correlation length is 382

�c = �x (=0.1 in our case), since the discretized equations 383

cannot distinguish any correlation below this length scale. 384

Thus, the limiting case of white noise, which corresponds 385

to �c = 0 (i.e., β = ∞ and χk = 1), cannot be calculated 386

numerically with accuracy, and, consequently, this limit is 387

studied by observing the trends as β increases. 388

To represent the time-Wiener processes in the framework 389

of Ito calculus using a discrete form, we replace ċk(tn) at a 390

time step tn by the forward difference quotient 391

ċk(tn) ≈ �c

�tn
= ck(tn+1) − ck(tn)

tn+1 − tn
. (52)

The difference �c is normal distributed and the variance 392

is given by the time increment �tn. Thus, we approximate 393

Eq. (52) by 394

�c

�tn
= N n

k√
�tn

, (53)

where N n
k is a computer-generated random number which is 395

approximately N (0,1) distributed, i.e., its histogram is close 396

to a Gaussian with mean zero and unity standard deviation 397

(we used the GASDEV routine from Ref. [28]). Altogether, the 398

space-time discrete noise term, Eq. (41), is given by 399

	(x,t) = 1√
�tn

N−1
2∑

k=− N−1
2

χkN n
k gk(x), (54)
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FIG. 4. Space-time plot of h(x,t) for (a) the deterministic case (σ = 0) and stochastic cases (σ = 5 × 10−5) with spatially correlated noise
(b) β = 4, (c) β = 6, and (d) β = 12 (very close to white noise). Darker regions correspond to smaller thicknesses.

where χk is given by Eq. (48) and gk(x) by Eq. (42).400

Thus, Eq. (54) is used to calculate the noise term in401

Eq. (14).402

Each realization of the stochastic process requires a given403

seed for N . Then some of the numerical results presented404

below correspond to a single realization and others to the405

average of 60 realizations (different seeds). A typical example406

of the evolution of a film for a single realization (i.e., a given407

seed) is shown in the space-time plots shown in Fig. 4 for408

σ = 0 and increasing values of β for σ = 5 × 10−5. Here409

darker regions correspond to smaller thicknesses. Even for 410

these single realizations, some effects of the noise can be 411

observed. For instance, we notice that an important effect is to 412

decrease the duration of the breakup process with respect to the 413

deterministic case (σ = 0). Note also that the final number of 414

drops is reduced when spatially correlated noise is important, 415

i.e., β < βc (=8.492 in our case). This reduction is due to 416

merging of thickness peaks as the instability evolves, and this 417

effect is more frequent as σ increases (not shown for brevity). 418

The final pattern for β > βc is very similar to that shown 419
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FIG. 5. (a) Average maximum, hmax, and average minimum, hmin, of film thickness versus time for several values of �c and σ = 5 × 10−5

over 60 realizations. (b) Average maximum thickness, hmax, versus the shifted time t − tb, where tb = 8250, 9062, and 10 020 for β = 12, 8,
and 6 (�c = 4.16, 6.25, and 8.33.)

in Fig. 4(d) for β = 12, so this case is representative of the420

white-noise limit.421

In order to study how the correlated noise affects the time1 422

evolution of the instability we first concentrate on the time it423

takesfor the first rupture of the film to appear. By first rupture424

time, we mean the moment when the film first reaches its425

possible smallest value, which is h∗. Figure 5(a) shows the426

time evolution of the average of the minimum of h(x,t), namely427

hmin(t). Clearly, as β decreases the breakup time, tb, increases,428

such that as β → 0 (�c → ∞) tb tends to the value given by429

the case without noise (σ = 0), which has the largest time. On430

the contrary, tb decreases as β → 0, and the noise becomes431

less correlated and tends to white noise in space. For σ > 0,432

this time decreases for increasing σ .433

A parameter of interest for the drop formation problem after434

the first breakup is the evolution of the maximum thickness as435

the final static configuration is reached. In Fig. 5(a) we show436

the average of hmax(t) for different values of β. We also plot437

hmin(t) for reference and define the corresponding breakup438

times, tb, as h(tb) = 1.05h∗ = 0.0105. Figure 5(b) shows that439

in fact the evolution of hmax(t) is very weakly dependent on440

β (i.e., �c), since the curves hmax versus t − tb are practically 441

superimposed. This result implies that the noise does not have 442

any effect on the drop formation process after the breakup of 443

the film, that is, during the dewetting stage following the pinch 444

off. 445

Now we aim to study the effects of the correlation length 446

in both linear (early) and nonlinear (late) stages of the 447

instability. To do so, we calculate the Fourier spectra of 448

the thickness profiles for different times. In Fig. 6 we show 449

the evolution of the spectra with β = 12 (�c = 4.16) for both 450

early and late times. All spectra correspond to an average 451

over 60 realizations, and no adjusting parameter has been 452

used (the scales for S differ from those used in previous 453

sections because a different normalization was employed in 454

the Fourier transform of the numerical results). For early 455

times, the agreement between numerics and the linear stability 456

prediction, Eq. (39), is very good. For larger times, the peaks 457

of both spectra approach qm though the numerics show higher 458

and a bit wider spectra than those predicted by LSA. A similar 459

situation is observed for smaller values of β as shown in 460

Fig. 7. 461
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FIG. 6. Numerical power spectra, S(q,t) (solid lines), for (a) early and (b) late times for σ = 5 × 10−5 and β = 12 (�c = 4.16) averaged
for 60 realizations of the problem defined in Fig. 4(d). The dashed lines are the corresponding predictions of the LSA, and the error bars show
the standard deviation of the mean. The vertical dashed line corresponds to the wave number of maximum growth in the deterministic case,
qm = 0.151, while the dotted one corresponds to the marginal value, qc = 0.215.
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FIG. 7. Numerical power spectra, S(q,t) (solid lines), for σ = 5 × 10−5 and (a) β = 6 (�c = 8.33) and (b) β = 8 (�c = 6.25) averaged for
60 realizations. The thick red lines correspond to moving average curves of the gray lines (raw data). The dashed lines are the corresponding
predictions of the LSA, and the error bars show the standard deviation of the mean. The vertical dashed line corresponds to the wave number
of maximum growth in the deterministic case, qm = 0.151, while the dotted one corresponds to the marginal value, qc = 0.215.

V. COMPARISON WITH EXPERIMENTS462

Previous comparisons between experiments and stochastic463

models have studied the instability of polymeric films on464

silicon oxide substrates [15,16]. However, these comparisons465

were made without considering spatial correlation, i.e., assum-466

ing both spatial and temporal white noise. Also, they mainly467

employed the integration of the spectra S(q) for all possible468

values of q and derived quantities from it. Here, instead, we469

apply the theoretical model described above to experimental470

results for unstable liquid metal films to evaluate the im-471

portance of spatial correlations when considering stochastic472

instabilities. In order to do this, we do not restrict ourselves473

to some integrals of the spectra but employ their complete474

profiles as a function of the wave number, q.475

Our experimental data correspond to copper thin films of a476

few nanometers thick that are melted by the illumination with477

pulses of an excimer laser that last some tens of nanoseconds.478

During these pulses, the metal is in a liquid state, and thus479

the present hydrodynamic model can be applied. In this480

configuration, the liquid lifetime of the melted copper is481

related with the local temperature of the film, i.e., with the482

spatial distribution of the laser intensity, which spans in a483

radially symmetric Gaussian profile. After the pulse, the metal484

solidifies, leaving a distinct pattern of holes, drops, and/or485

ridges depending on how long the metal has been in the liquid486

state. More information about this setup configuration and487

details on the technique can be found elsewhere [29–33].488

Since the outer regions of the laser spot have shorter liquid489

lifetimes, one can associate these regions with earlier times490

of the evolution and, consequently, central regions with later491

times. Since the laser spot is relatively large, the SEM images492

of these experiments have the advantage of offering more493

spatial information than other setups [15]. Nevertheless, they494

have the drawback that the times corresponding to every495

stage of the evolution are unknown, even if it is possible496

to order the time sequence in connection with the distance497

of the image respect to the center of the laser spot [18].498

The goal of the following comparison is to show that the499

experimental observations represented by the spectra require500

not only a stochastic temporal evolution but also some spatial501

correlation in the thermal noise in order to reproduce the full 502

results. 503

In particular, we will concentrate here on the data reported 504

in Ref. [18], where the SEM images of the evolving melted 505

metal were analyzed by using bidimensional (2D) discrete 506

Fourier transform (DFT). Since the 2D spectra turned out to 507

be radially symmetric in the wave-number space, (qx,qy), the 508

results in Fig. 5 of Ref. [18] were reported as amplitudes 509

A2D versus k = (q2
x + q2

y )1/2. Therefore, the corresponding 510

1D correlation is obtained as S = kA2
2D (see the symbols 511

in Fig. 8). The symbols for both small k and amplitudes 512

(S < 0.15) are an artifact of the finite length of the sample in 513

the Fourier calculation. Note that this effect does not change 514

in time. Its importance decreases when the evolution of the 515

instability yields a peak with a characteristic length and, as a 516

consequence, this part of the spectrum close to q = 0 becomes 517

less relevant. Therefore, the fittings can be done without taking 518

into account these data for very small k, since the main peaks 519

are not affected in any meaningful way by them. 520

The parameters for liquid copper are γ = 1.304 N/m 521

and μ = 4.38 mPas. Assuming T = 1500 K as a typical 522

temperature of the film with thickness h0 = 8 nm, we have 523

σ = 2.48 × 10−4 and t0 = 0.08 ns. Regarding the intermolec- 524

ular interaction with SiO2 we use h∗ = 0.1 nm and A = 525

2.58 × 10−18 J (as suggested in Ref. [18]). Thus, we have 526

qc = 63.4 μm−1 and qm = 44.8 μm−1 (dotted and dashed 527

lines in Fig. 8). 528

In order to perform the comparison of the experimental and 529

theoretical spectra [see Eq. (39)] we choose a constant value 530

for the unknown F̂0(q), namely F̂0(q) = 2 × 10−4, and use the 531

same normalization factor for the DFT as in Ref. [18]. Thus, we 532

are left only with t and β as adjustable parameters. The fitting 533

values for the spectra in Fig. 8 are given in Table I. The low 534

local maximum for k ≈ 100 μm−1 is related to the size of the 535

drops, which is smaller than the distance between them [18]. 536

Interestingly, we find not only increasing values of time 537

as one moves from inner to outer regions (as expected) but 538

also a decrease of the corresponding values of β required for 539

the fitting. This implies that the stochastic noise somehow 540

differs at the sampled regions which, in turn, correspond to 541

distinct liquid lifetimes. However, the relatively large values of 542
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FIG. 8. Experimental power spectra, A1D(k,t), (symbols) from Fig. 5 of Ref. [18], and theoretical spectra (solid lines) obtained with the
present stochastic model with spatial correlation. The experimental spectra are organized in decreasing order of their distance to the center of
the laser spot.

β for the first three images suggest that the noise is practically543

white at the beginning and that spatial correlation becomes544

important only for larger times when β decreases significantly.545

In general, it is then expected that the spectrum for earlier546

times (i.e., near the outer borders of the laser spot) correspond547

to a quasi-white noise, but the noise becomes more and more548

spatially correlated as one goes to the center of the spot (i.e., as549

the liquid lifetimes increase). In fact, the correlation length, �c,550

can be estimated considering the value of β and the length of551

the image, which can be assumed as the periodicity length, L.552

For the images corresponding to Fig. 8 we have L = 2.13 μm,553

so we obtain �c = L/(2β) as shown in Table I. Moreover, note554

that �c finally approaches λm (= 144 nm), which is also very555

close to λ
exp
m (=165 nm). Thus, �c turns out to be very close to556

the average distance between drops.557

TABLE I. Best fit values from the comparison of the stochastic
model with spatial correlation with experimental spectra of unstable
liquid metal films. Here we have λm = 144 nm.

Fig. 8 t (ns) β �c (nm) λm/�c λexp
m (nm) λexp

m /�c

(a) 0.08 175 6.1 22.9 62.8 10.3
(b) 0.48 160 6.6 21.0 99.7 14.9
(c) 0.97 140 7.6 18.4 125.6 16.5
(d) 6.21 7.4 144.1 0.97 165.3 1.15

VI. SUMMARY AND CONCLUSIONS 558

In this work we have considered the effect of correlated 559

thermal noise on the instability of a liquid thin film under 560

the action of viscous, capillary, and intermolecular forces 561

by adding a stochastic term in the lubrication approximation 562

equation for the film thickness. This term depends on the noise 563

amplitude that is spatially self-correlated within a characteris- 564

tic microscopic distance, �c. The LSA of the resulting equation 565

shows that this yields a new factor in the stochastic part of the 566

instability spectrum [or dispersion relation, ω(q)], which is 567

given by the Fourier transform of the correlation function that 568

can be expressed in terms of the eigenvalues of the Hilbert 569

operator associated with it. 570

In order to observe the nonlinear effects on the evolution of 571

the instability, we also perform numerical simulations of the 572

full lubrication equation using different seeds to generate the 573

random sequence of amplitudes for the stochastic term (so a 574

realization corresponds to each seed) and average the resulting 575

power spectra to obtain a representative spectrum to be 576

compared with the one predicted by the LSA. As expected, we 577

find a good agreement with LSA for early times. Interestingly, 578

for late times we obtain that the wave number of the maximum 579

of the spectra tends to approach the deterministic value, qm, 580

corresponding to the LSA without stochasticity. Since the LSA 581

with stochasticity also tends to qm, we can conclude that 582
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the typical lengths of the patterns in advanced stages of the583

instability with stochasticity seem to be close to the length of584

maximum growth rate of the linear deterministic modes.585

Encouraged by this result we also compare the LSA586

prediction with the experimental data from the instability of587

laser-melted copper films on a silicon oxide substrate. These588

data correspond to the early stages, where the holes start589

to grow, as well as to the stages of drop formation, i.e.,590

after having passed through the processes of film breakup591

and dewetting. A special feature of these data is that they592

come from different spatial regions of the laser spot and thus593

received distinct illuminations. Thus, different times of a single594

evolution can be attributed to each region. These times were595

estimated here by fitting each experimental power spectrum to596

the corresponding LSA prediction. As a result, we found that597

the early stages of this experiment evolved with a noise that598

was almost white in space, while a strong spatial correlation599

appeared in the spectra for later times. Thus, correlated noise600

seems to be an important factor in the central regions of the601

laser spot, i.e., those with larger liquid lifetimes.602

Taken together, our results provide a clear indication that603

the stochastic differential framework for metallic thin-film604

phenomena at the nanometric scale requires the inclusion of605

thermal noise with extended spatial correlations. We consider606

the present study only a first step towards the understanding607

of thermal noise in nonpolymeric films. We believe that our608

results justify further testing with more detailed experimental609

data and for a variety of film material.610
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APPENDIX: EIGENVALUES OF THE623

CORRELATION FUNCTION624

Here we calculate the eigenvalues of the Hilbert-Schmidt625

operator Q as defined by Eqs. (45) and (47). By using626

the variable v = πu/L, the eigenvalues can be written 627

as 628

χk = A(α,k)

A(α,0)
, (A1)

where 629

A(α,k) =
∫ π

0
e−2α(sin v)2−2ikvdv, (A2)

and α is given by Eq. (49). In order to perform the above 630

integral, we make the change of variables 2v = θ + π
2 , which 631

leads to the following expression: 632

sin2 v = 1
2 (1 − cos 2v) = 1

2 (1 + sin θ ).
This one allows us to write Eq. (A2) in terms of sin θ , as 633

A(α,k) = 1

2
e−αe−ıkπ/2

∫ 3π
2

− π
2

e−α sin θ e−ıkθ dθ

= (−ı)k

2
e−α

∫ 3π
2

− π
2

e−α sin θ e−ıkθ dθ. (A3)

The above substitution is convenient in view of the relation 634

eıx sin θ =
∞∑

−∞
eımθJm(x), (A4)

which becomes useful here on defining x = iα. Thus, we have 635

e−α sin θ =
∞∑

−∞
eımθJm(ıα), (A5)

where Jm(ıα) is the Bessel function of order m. Now, we can 636

also use the property 637

Jm(ıα) = ımIm(α), (A6)

where Im(α) is the modified Bessel function of order m. By 638

replacing Eqs. (A5) and (A6) into Eq. (A3), we obtain 639

A(α,k) = (−ı)k

2
e−α

∞∑
−∞

ımIm(α)
∫ 3π

2

− π
2

eı(m−k)θdθ. (A7)

Since the above integral yields 2πδkm, we finally have 640

A(α,k) = πe−αIk(α), (A8)

so the eigenvalue in Eq. (A1) becomes 641

χ (qk) = χk = Ik(α)

I0(α)
, (A9)

which is the expression in Eq. (48). 642
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