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We compare a recent result of Dobrushin and Martirosyan with previous results 
by Gallavotti and Miracle-Sole and by Israel and point out that the analytic 
behavior at high temperatures for many-particle interactions is different 
depending on whether the interactions are weighted with a lattice-gas or Ising 
norm or, on the other hand, with the supremum norm. 
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In a recent paper, Dobrushin and Martirosyan (~) proved that at high 
temperature, lattice systems can be analytic in spaces containing many- 
particle interactions only if the many-particle terms are exponentially 
suppressed. At first sight this result seems to contradict earlier analyticity 
results(3 s) which do not need such an exponential factor. Here we clarify 
this apparent contradiction by pointing out that these results use different, 
inequivalent, norms. 

For  general classical lattice systems with configuration space S ~,  an 
interaction is a family of functions q~ = {q~x}, where X runs over the finite 
subsets of the lattice 7/d and each function q~x: SX--* C is continuous (here 
the space S is assumed to have some natural topology and S zd is equipped 
with the product topology). This description contains a great deal of 
redundancy because many interactions describe the same physics. Such 
interactions, which have Hamiltonians differing at most in a constant and 
a boundary term, are called physically equivalent. They define the same 
equilibrium states. One can factor out this physical equivalence by iden- 
tifying all equivalent interactions and looking only at the equivalence 
classes. (16'17) However, such a quotient space is a little abstract and not 
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easy to visualize or to handle. An alternative solution is to try to find a 
linear "section," that is, a subspace of the vector space of all interactions 
containing exactly one representative of each class, chosen according to a 
well-defined prescription. 

If the one-particle space S has only two elements--we will consider 
S =  { - 1 ,  1}--there are two popular choices of such sections, which are 
generally considered special cases, in both of which the interactions are 
defined by functions jspin(. ) ("coupling constants") on the finite subsets of 
the lattice: the "Ising spin language," in which qs~in(~r)= Jsvin(x)aX; and 
the "lattice-gas language," where q>~as(a)= Jgas(x)((a + 1 )/2) x. [We adhere 
to the standard notation (a + ba) x= I-Ii~x (a + bai) for constants a and b 
and each o-it { - 1 ,  1}.] 

For finite-range interactions--that is, when the q~x are zero if the 
diameter of X exceeds a certain value--there is exactly one cspin or ~gas for 
each class of physically equivalent interactions. Hence it is equivalent to 
work with the big general space of interactions or with the more econo- 
mical spin or lattice-gas formulations. This equivalence is no longer true if 
many-particle interactions are included. However, it was somehow tacitly 
assumed (or at least the possibility of this not being so was never 
emphasized) that the main thermodynamic properties of an interaction did 
not depend on the type of "language." We point out here that the recent 
result of ref. 1 implies that for many-particle models the existence of one of 
these major properties--analyticity at high temperature or low density--  
strongly depends on the space of interactions considered. 

To be more precise, let us denote by ~ ,  ~spi,, and ~gas the vector 
spaces of general interactions, spin interactions, and lattice-gas inter- 
actions, respectively, and let 5e and ~q be the canonical injections of ~pin 
and ~gas into N: 

(~.~Pt~bspin)x (0") = jspin(x)t~x 

This defines a natural "translation" between spin and lattice-gas languages, 
namely the map ~-- that makes commutative the diagram 

~spin ( ~gas  
9- 
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This map is defined (6) by transforming the coupling constants in the form: 

(ff ' jgas)(x)= ~ 2-1YIjgas(y) 
Y ~ X  

([. stands for "cardinal of"). (This map is defined, for instance, for finite- 
range interactions, or in the spaces ~g"~ defined below, if g >7 1.) 

Restricted to finite-range interactions, both 5P and ff have left inverses 
~'spin and 7~gas and 3- has an inverse J - - 1  defined as follows. The projec- 

constantb tion ~pi, is defined by the spin coupling -~(6) 

(~sP i n ~ ) ( X )  = 2 [Tr q~v(a)a x] (1) 
Y ~ X  

where T r = [ L  1 [:Z~,=_+I]. The map 9 --~ is defined by the lattice-gas 
coupling constants (6) 

(J ~jspi~')(X)=21xl ~ (--1)]Y\X]jspin(y) (2) 
Y ~ X  

Finally, the projection /[gas follows from the composition of these two 
maps: 

(7~gas(P)(X) = (~-'- 17~spin~)(X ) 

= 2  Ixi ~ Yr[~v(a)  ax(1-a) r~x] (3) 
Y ~ X  

If the interactions are allowed to involve arbitrarily many particles, 
norms must be introduced to handle convergence problems. Several norms 
are usually considered, characterized by a function g: ?Y+ --, ~+\{0}.  Let 
us, for simplicity, concentrate on translation-invariant interactions. For 
general interactions, let ~g denote the Banach space of interactions for 
which the norm [[q~Hg=~x~o IlCbx[Ioo g(IX[) is finite. For the spin and 
lattice-gas formulations, Banach spaces ~)gpin and ~3 g"Sg are defined through 
the norms [[q~spin spin g = Zx~o IJspin(x)[ g(tX[) and its analog for the lattice 
gas, so the inclusions 5 ~ and ~q become isometries. The corresponding 
spaces of finite-range in te rac t ions~eno ted  ~og, ~spin and ~g,s respec- J~ Og ' ~ Og 
tively--are dense subspaees. The map ~-- becomes a bounded map from 
~ s  to ~p in  for the usual choices of g: []~-[[g--1 = 1/2, ][3-[]g<~e;~/(1 +e;') 

2t for g(t)=e with 2>~0--in general I[Y [[g~-]/2 for g increasing--and 
[]J-[]g<~ 1 for g ( t )=  l/t. (6) 

2 Note that we use the same symbol for a map between interactions and for the corresponding 
map between coupling constants. 
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The inverse maps ~spin, ~gas, and Y 1 make the diagram 

Cog 

~ s p i n  ~ g a s  
Og 3---1 ) ~ Og 

commutative, but, as shown in ref. 6 and in the examples below, they are unbounded--at least for the weights g of interest here. Therefore, even when 
the formulas (1) and (3) make sense for g 1> 1, the projections ~spin and TOgas 
cannot be extended continuously to the whole ~g; in fact, as shown below, 
they map a dense set of interactions in Me outside of ~gpin and MggaS respec- 
tively. In other words, for many-particle interactions the spaces of lattice- 
gas and spin interactions are not sections of ~g. They do not contain repre- 
sentatives of all the classes of physically equivalent interactions, and for 
those classes represented, the selected representative may have an extremely 
large norm. A natural question that arises is whether there are better 
choices for linear sections (or a choice at all). The obvious thing to do 
would be to take for each class the representative with minimum norm 
(which exists by completeness), but on the one hand such interactions 
could not be defined algorithmically as the spin or lattice-gas ones, and on 
the other hand, the section so obtained would not be a subspace. (A 
ferromagnetic and an antiferromagnetic spin interaction are both of mini- 
mal norm, but their sum in general is not so, due to frustration.) Likewise, 
the function y - 1  defined in (2) makes sense for g~> 1, but maps some 
interactions on __g.~SP~ (in fact, a dense set) outside ~ggaS This means that 
Mgpin is closer to being a section in the sense that it contains representatives 
of more classes of equivalent interactions than d~gas 

TO sum up the previous discussion, let us denote [Mg] the quotient 
space modulo physical equivalence, that is, the Banach space of classes of 
equivalent interactions with norm equal to the minimal norm within each 
class. Then all the above maps are well defined if Mg is replaced by [ ~ g ] ,  

and the unboundedness of the inverse maps implies, with obvious iden- 
tifications, 

1 - ~  -] :D ~cAspin ~ ~ g a s  
g-I =g= ~ g  :~ V~g 

For completeness, let us present here examples showing the 
unboundedness of the inverse maps. Examples for 9 --1 are well known(6); 
in particular, if D,  denotes the cube [0, n -  1 ]dc~ Z d, the spin interactions 
defined by 

( (--1)rD"l if Yis a translate of On 

j~pin(y)=l~,l g(lD, I) otherwise (5) 
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have norm 

s p i n  s p i n  lien II 1 g - -  (6) 

and, on the other hand, 

( ~ - ' -  - -  1 s p i n  21xl(- 1) Ixl 
J,, ) (X)=ID.I  g ( I D , , l ) l { s ' D ~ + s ~ X } [  

Hence 

H ~ ' -  - -  1 ( ] j s p i n  [l g a s  - -  
- - n  u g 

>>. 

1 

ID,,I g( D, ) xs 
E{s:D~+s~X}I 

IDn 
1 21Xt g([X[) 

g(lD.I) x~o 
X ~  Dn  

- I D . I  g(lD.I)IZI= 
(2e~(1 + 2e2)lD, i 1 

~" ) 3  bD'l- 1 

if g(t) = e2"t[ 
n ~ o v  > ( 3 0  (7) 

which shows that ~- 1 is unbounded. 
Regarding the unboundedness of nspi,, there is a probabilistic 

argument in ref. 6 for g(t)= lit that can be extended almost verbatim to 
g(t) = e ~t for 2 ~> 0 small enough. Let us give here a concrete example for 
g = 1. Consider the (complex) potentials q~, ~ ~o defined by 

i 
exp [ID][ 

(~),. (~) = 
,/2j~r aj] Y is a translate of D~ 

otherwise 

(8) 

which have g = 1 norm 

[ l~nllg=l= 1 (9) 

On the other hand, the corresponding projections on the space of spin 
interactions have coupling constants 
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(~spin ~n)(  x ) 

' frH (~  = Z I D.~ Tr ~rj exp 
s :Dn+s~X k k j ~ X  

(10) 

whose norms satisfy 

g=' ~ go  sin rD~ cos 
Y ~  Dn 

-- ,~ ~ , ,  ~ [sxn ~ ]  ,=1 - L C ~  

1 [ s i n , ~ l / 2 ~ [ 2 m s i n (  1 rc)]iD"'-I 
=ID.IL ID.I j j  ~ + 4  

n~oo} exp[ O( IDnlX/2) ] --+ ct3 (11) 

Expressions (9) and (11) prove that rCspin is unbounded, and a forteriori 
they also show that ng~s is unbounded because YZ%a s ~b, = rqp~n ~b, and Y-- 
is a bounded map. 

Moreover, these examples prove that 

spin gas spin (12) 

[ ~ ] \ ~ 7  ~n = ~ (13) 

and 

F~] \ ,~gas  = ~ (14) 

{For instance, the interactions ( P ( N ) =  ~,n>~N qS./lDn[ 2 are i n  ~ g \ ~ g p i n  [by 
(11)], and 

IIg ~ 0 
I~(N) N ~  oo 

spin __ ~ spin 2 by (9). Similarly, (N)--~n>~N~n /[DnI 

~sp in  [[ [[~pin 
(N) N ~ oo 

spin gas are in Ng \Ng [by (7)], and 

>0 

by (6).} 
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The inequivalence of the different formulations implied by the 
unboundedness of the maps gspin, ~gas, and y - l ,  is seldomly mentioned in 
the literature. One reason for this is that some general results are already 
valid in the biggest spaces ~g and they are inherited by the subspaces ~);pin 
and NggaS. Among these, we cite the existence of the pressure (and therefore 
of invariant equilibrium states) for g(t)= 1/t, and the existence of Gibbs 
states (DLR conditions) for g(t) = 1 (see, for example, ref. 6). The situation 
is, however, more delicate for results regarding the analyticity of the free 
energy and correlation functions. Such analyticity (with respect to a finite 
number of parameters of the interaction, such as temperature or density), 
is physically interpreted as the absence of phase transitions. Initially, it was 
proven (3) that in the smaller lattice-gas space ~ g ~ l ,  such analyticity holds 
for interactions q~gas with []~bgasllg~l small enough. In view of (12) this 
result could, in principle, fail to be true if the larger spin space ~spin were g = l  
considered. A small change in the parameters of an interaction could 
produce an interaction outside ~ g ~  where analyticity is questionable. 
However, such a generalization was later proved in ref. 5: within ~pin g = l  
small interactions are analytic with respect to finitely many parameters. 

On the other hand, analyticity in the largest spaces ~g was proven 
only for the more restrictive norms defined by g(t)=e ~' with 2~> 0 (2,5) (in 
fact, for systems with a very general compact one-particle space; and also 
for the quantum case (1~ ~5)). The result of ref. 1 shows that this cannot be 
improved: if g grows more slowly than an exponential, there is no 
analyticity result in ~g. 

It seems worthwhile to stress this different analytic behavior with 
spin gas The possibility of such respect to the norms II g=l, II" g=l, and [I "[[g=l. 

a difference has not been remarked upon in the literature; in fact, the 
behavior has been (implicitly or explicitly) assumed to be the same. (5"7 lo) 
(In fact, at first, we, too, suspected that ref. 1 contradicted ref. 3 or ref. 5.) 
The reason for this different behavior is contained in (13): the lack of 
analyticity in a neighborhood--in Ng--of a given "small" interaction in 
~spin  g=l (e.g., zero!) is due to interactions not in ~spin In fact, the process g = l '  
devised in ref. 1 to construct a (complex) interaction ~EMg=~ with 
[[qb[lg=~<2~ for which the pressure in not analytic (in fact not even 
defined) starts with an interaction of the form 

if X =  {j) 

for X translate of A 

otherwise 

(15) 
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where A c Z d is big enough so that 

IAI (cos e)IAI < e/4 (16) 

[such an interaction satisfies ZA (qs)= 0, where ZA is the partition function 
in A with free boundary conditions]. The interaction (15) is very similar to 
our example (8) and it is not hard to see that HT-t~iO(2)[[ spin g =  t - - ' ~ e ~ 0 0 0 ~  a s  

it should do in view of the results of refs. 3-5. 
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