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We reconsider the conceptual foundations of the renormalization-group (RG) 
formalism, and prove some rigorous theorems on the regularity properties and 
possible pathologies of the RG map. Our main results apply to local (in position 
space) RG maps acting on systems of bounded spins (compact single-spin space). 
Regarding regularity, we show that the RG map, defined on a suitable space of 
interactions (=formal Hamiltonians), is always single-valued and Lipschitz con- 
tinuous on its domain of definition. This rules out a recently proposed scenario 
for the RG description of first-order phase transitions. On the pathological side, 
we make rigorous some arguments of Griffiths, Pearce, and Israel, and prove in 
several cases that the renormalized measure is not a Gibbs measure for any 
reasonable interaction. This means that the RG map is ill-defined, and that the 
conventional RG description of first-order phase transitions is not universally 
valid. For decimation or Kadanoff transformations applied to the Ising model 
in dimension d~>3, these pathologies occur in a full neighborhood {fl>/~0, 
Ihl < ~(/~)} of the low-temperature part of the first-order phase-transition surface. 
For block-averaging transformations applied to the Ising model in dimension 
d~>2, the pathologies occur at low temperatures for arbitrary magnetic field 
strength. Pathologies may also occur in the critical region for Ising models 
in dimension d>~4. We discuss the heuristic and numerical evidence on RG 
pathologies in the light of our rigorous theorems. In addition, we discuss 
critically the concept of Gibbs measure, which is at the heart of present-day 
classical statistical mechanics. We provide a careful, and, we hope, pedagogical, 
overview of the theory of Gibbsian measures as well as (the less familiar) non- 
Gibbsian measures, emphasizing the distinction between these two objects and 
the possible occurrence of the latter in different physical situations. We give a 
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rather complete catalogue of the known examples of such occurrences. The main 
message of this paper is that, despite a well-established tradition, Gibbsianness 

should not be taken for granted. 
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1. I N T R O D U C T I O N  A N D  S U M M A R Y  OF R E S U L T S  

1.1. General  I n t roduc t ion  

A principal tenet of  the renormal iza t ion-group (RG)  theory of phase 
transitionsi375, ,_82, 258, 120)is that  the R G  map, defined on a suitable space of 

Hamil tonians,  is smooth (i.e., analytic or  at least several-times differen- 
tiable), even on phase-transi t ion surfaces. The singularities associated with 
critical points (375'282' 258, 120) and first-order phase transitions ~285'22~ 121) 

are then explained in terms of the behavior  of  the R G  map  under infinite 
iteration. 

This picture of a smooth  R G  map  has, however, been questioned, par- 
ticularly as regards the behavior  at or near a first-order phase transition. 
On  the one hand, the existence of  several phases raises the possibility that 
the R G  map  may  be discontinuous or multivalued (176'2~176 310) on the first- 
order  transit ion surface, as the numerical evidence reported by several 
groups(34, 236, 74. 166, 382) seems to suggest. On  the other  hand, Griffiths and 

Pearce(174 176) have pointed out  some "peculiarities" of the commonly  used 
discrete-spin posit ion-space R G  transformations (decimation, majori ty 
rule, etc.); in particular, they suggested that the R G  map for the two- 
dimensional  Ising model  must  have singularities (or other  strange 
behavior)  in a rather  large part  of  the (13, h) plane (see also refs. 55 and 
343). 1 In an impor tan t  but apparent ly  l i t t le-known paper, Israel ~21~ 
clarified the nature of the Griff i ths-Pearce peculiarities: he showed that  in 
at least one case the renormalized system cannot  be described by a 
Bo l t zmann-Gibbs  prescription for any reasonable Hamil tonian,  i.e., the 
renormalized measure is non-Gibbsian. 

i Similar peculiarities, and also different ones, have been found by Hasenfratz and 
Hasenfratz. (agz) The phenomena found in Section 4 of their paper are very closely related to 
those of Griffiths and Pearce, while those in Sections 2 and 3 seem to he quite different. 
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In this paper 2 we reconsider the conceptual foundations of the RG 
formalism, and prove some rigorous theorems on the nature of the RG map. 
On the one hand, we prove two Fundamental Theorems on the single- 
valuedness and continuity of the RG map; these theorems rule out the 
discontinuous-flow scenario proposed in refs. 34, 236, 74, 166, 200, 310, and 
382. On the other hand, we prove, completing and extending Israel's 
argument, that in several cases the RG map is ill-defined for a much more 
basic reason: the renormalized Hamiltonian may fail  to exist altogether. 
This implies that the conventional RG description of first-order phase 
transitions~ZSS,220, 121) is not valid either (at least in these models and for 
these RG transformations). Moreover, this pathology can occur in the 
vicinity of- -not  only at- -a  first-order phase transition: for the Ising model 
in dimension d>~ 3 it occurs in a full neighborhood {/~ >/~0, Ihl < e(fl)} of 
the low-temperature part of the first-order phase-transition surface. Indeed, 
for certain block-averaging transformations we are able to show that the 
pathology occurs at low temperature and all magnetic fields h. 

Our point of view is the following: An RG map is defined initially as 
a rule (which may be either deterministic or stochastic) for generating a 
configuration co' of "block spins" given a configuration co of "original 
spins." Mathematically, this is given by a probability kernel T(co ~ co'). 
Using such a map, one can immediately define a probability distribution 
/~'(co') of block spins from any given probability distribution #(co) of 
original spins, namely 

S(co') = (uT)(co') - ~  ~(co) T(co -~ co') (1.1) 
60 

In other words, the RG map is easily defined as a map f rom measures to 
measures. On the other hand, most applications of the renormalization 
group assume (and in fact need) that the RG map is defined as a map from 
Hamiltonians to Hamiltonians. That is, if /~ is the Gibbs measure for a 
statistical-mechanical system with Hamiltonian H, then one usually- 
assumes that #' is the Gibbs measure for a system with some Hamiltonian 
H';  this is taken to define an RG map ~ on some suitable space of 
Hamiltonians, by the diagram 

r #, 
u ~ = # T  

H ~ , H '  

(1.2) 

2 Brief summaries of our results have appeared previously. 136t-364) 
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Formally, the relation between a Hamiltonian and its corresponding Gibbs 
measure is given by/z  = const x e H, and hence the RG map on the space 
of Hamiltonians is defined formally by 

H ' ( c o ' )  = ( ~ H ) ( c o ' )  = --log[Y'e-H(~ 
t - -CO 

(1.3) 

However, this formula is valid only in finite volume; in infinite volume, the 
Hamiltonian H(co) is ill-defined (its value is almost surely _+ ~ ) ,  and the 
connection between a formal Hamiltonian (more precisely, an interaction) 
and its corresponding Gibbs measure(s) is much more complicated. We 
emphasize that this is not a mere mathematical nicety, but contains the 
fundamental physics of phase transitions. In finite volume, where the 
formula # = const x e -H makes sense, all thermodynamic functions are 
manifestly analytic functions of the parameters in the Hamiltonian, so a 
phase transition is impossible. Phase transitions occur only for infinite- 
volume systems. Now, one feature of the infinite-volume limit is the 
possibility that the Gibbs measure may be nonunique: corresponding to a 
given formal Hamiltonian (=interaction),  there may exist several distinct 
Gibbs measures, each one corresponding to a distinct thermodynamically 
stable "pure phase" of the system. Indeed, such a multiple-phase coexistence 
can serve as one definition of a first-order phase transition. Therefore, for 
Hamiltonians H with a nonunique Gibbs measure (=  Hamiltonians lying 
on a first-order phase-transition surface), the upward vertical arrow in (1.2) 
may well be a multivalued map; and one might fear that this could cause 
the putative RG map ~ to become multivalued as well. (We shall see later, 
however, that this pathology cannot occur.) Even more subtle problems 
arise from the downward vertical arrow in (1.2): though at most one H '  
can correspond to a given #,,(177) it can happen that no H' corresponds to 
the given ~ ' - - tha t  is, it can occur that the image measure t~' is not a Gibbs 
measure for any reasonable Hamiltonian. In Section 3 we shall show that 
such non-Gibbsianness is the only way that the RG map can become 
grossly "pathological." In Section 4 we shall show that this pathology does 
in fact occur in a rather wide variety of examples. 

[Of  course, we must make precise what we mean by a "reasonable" 
Hamiltonian, and convince the reader that our class is suff• wide to 
capture fully the intuitive notion of "physical reasonableness." This will be 
discussed in detail in Section 2 (especially Sections 2.3.3, 2.4.4, and 2.6.7) 
and 6.1.2. Suffice it to say now that we allow interactions of arbitrarily long 
range and involving arbitrarily many spins, subject only to the condition of 
absolute summability. ] 

These results leave RG theory in roughly the following situation: The 
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RG map has been proven to be well-defined and analytic at high tem- 
perature(57, 21o, 215) and, in some cases, at large magnetic field(176)--regions 
in which phase transitions are absent, and RG theory is unnecessary. 
The RG map has been proven in some cases to be ill-defined at low 
temperature (Section 4). Near the critical point--where RG theory is 
of the most interest--very little is known about the behavior of the 
RG map, but there are some indications of possible pathologies in 
dimensions d(>~4 (Sections 4.4 and 5.2). Nevertheless, RG ideas have 
been of great value even in situations in which the strict Wilson 
prescription (1.2) has not been--and maybe even cannot be--imple- 
mented.(148 154, 184 191, 54, 137, 138, 140, 5, 3, 114, 45, 531 W e  discuss these issues 

further in Section 6.1. 

1.2. Plan of This Paper (Or, What to Read and What  to Skip) 

We hope that this paper will be read (and readable) both by theoreti- 
cal physicists--particularly those doing real-space RG and Monte Carlo 
RG calculations--and by mathematical physicists interested in the statis- 
tical mechanics of lattice systems. For this reason we have given in 
Section 2 a rather detailed (and, we hope, comprehensible) summary of 
the general theory of infinite-volume lattice systems, in which we make 
precise the concepts of "interaction," "Hamiltonian," "Gibbs measure," and 
"equilibrium measure" and the connections between them. As we have 
argued, a careful treatment of the infinite-volume problem is essential for 
a correct physical understanding of phase transitions in general, and of the 
renormalization group in particular. We hope that Section 2 will be useful 
to physicists who may not be familiar with these ideas. Some abstract 
mathematics is of necessity involved; we have tried hard to minimize 
"mathematics for the sake of mathematics" and to introduce only those 
mathematical objects that correspond to clear physical concepts. The 
reader can judge whether we have succeeded. 3 

In Section 3 we define our general framework for studying renor- 
malization transformations, and prove the two Fundamental Theorems on 
single-valuedness and continuity of the RG map. These theorems show that 
the RG map N? can never become multivalued or discontinuous; but it can 

3 The "experts" will notice a few innovations and new results in Section 2 and the associated 
Appendix A: the extensive discussion of physical equivalence (Sections 2.3.5, 2.4.3, 2.4.5, 
2.4.6, A.3.4, A.3.5, and A.3.7); some precise estimates on bulk vs. surface effects (Sections 
2.4.7, 2.4.8, and A.3.8); a consistent use of van Hove convergence and complete subadditivity 
(Sections 2.4.1, A.3.3, A.3.4, and A.3.5); and some interesting counterexamples concerning 
the pressure and entropy (Appendix A.5.2). The first two of these innovations play a crucial 
role in our proof of the Second Fundamental Theorem (Section 3.3). 
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become nonvalued, which occurs if the image measure/~' is non-Gibbsian. 
This focus on non-Gibbsianness--which is the real message of our paper-- 
is a profound insight due to Israel. (21~ In Section 4 we complete and 
extend Israel's argument, and show that in a large class of examples 
(always at low temperature, but not only on phase-transition surfaces) the 
image measure #' is indeed non-Gibbsian. We also discuss some other 
operations that can lead to non-Gibbsian measures, including one which is 
relevant to "large-cell" majority-rule maps; and we give a rather complete 
catalogue of the known examples of non-Gibbsianness. In Section 5 we 
discuss the heuristic and numerical evidence on RG pathologies in the light 
of our rigorous theorems. We also discuss some heuristic arguments for the 
possible existence of RG pathologies in the critical region for Ising-to-Ising 
RG maps in dimension d (>~ 4. In Section 6 we summarize our results and 
discuss their implications. We conclude with a list of open questions. 

In Appendix A we supply the proofs of some theorems that are stated 
without proof in Section 2. In Appendix B we provide a brief summary of 
Pirogov-Sinai theory, which is needed as a technical tool in Section 4. 4 In 
Appendix C we solve a Diophantine equation arising in our study of the 
majority-rule map. 

Let us again express our hope that the reader will at least peruse 
Section 2. (Hey, we spent a long time on it, and we think it is rather 
good pedagogy.) However, for the reader who is truly allergic to abstract 
mathematics, we offer the following advice: read the remainder of this 
Introduction, followed by Sections 3 (skipping the proofs), 4.1.1, 4.4 
(skipping the proofs), 5.2, and 6. Finally, for the reader who is allergic both 
to abstract mathematics and to 289-page papers, we offer "RG lite": read 
the remainder of this Introduction, and then skip to the Conclusion 
(Section 6.1 ). 

1.3. Summary of First and Second Fundamental Theorems 

We would like next to summarize the two Fundamental Theorems and 
give the physical intuition behind their proofs. Consider, for concreteness, 
the Ising model in dimension d~> 2 at low temperature (/~ ~>/~c) and zero 
magnetic field. At such a point there are precisely t w o  (144) pure phases 
(extremal translation-invariant Gibbs measures): the positively magnetized 
(or " + " )  phase #+, and the negatively magnetized (or " - " )  phase # . 
These pure phases can be obtained by taking the infinite-volume limit using 

4 The "experts" will notice some small innovations in our presentation of Pirogov-Sinai 
theory, notably our emphasis  on questions of uniformity. This plays an important  role in our 
application to the Kadanoff  transformation: see Section 4.3.3 and Appendix B.5.4. 
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" + "  or " - "  boundary conditions, respectively. Both of these phases have 
a large magnetization _ M  0 and a small correlation length 3. Now let 
us apply some block-spin transformation T, such as the majority-rule 
transformation on blocks of size 2 a. Then the image measures #'+ = # + T 
will have a yet larger magnetization + M ~  (since minorities tend to get 
"outvoted") and a yet smaller correlation length ~' (we expect roughly 
~ ' ~  3/2, since distances are being scaled by a factor of 2). We now ask: 
These image measures #'+ are typical of what kind of Hamiltonian (if 
any)? 

One possibi l i ty--and the one conventionally assumed(285'22~ 
that the RG flow is toward lower temperatures along the h = 0 line. 5 This 
picture is certainly consistent with the intuitive idea that magnetization 
increases and correlation length decreases under the R G  map. In this 
scenario (Fig. la),  the two image measures #'+ would be Gibbsian for the 
same  Hamiltonian H ' ,  and this Hamiltonian would be invariant under the 
a ~ - a symmetry. 

A different possibility was advocated by Decker et al. (74) In this 
scenario (Fig. lb), the RG flow is discontinuous at the phase-transition line 
h = 0 :  Hamiltonians H with an infinitesimal positive (resp. negative) 
magnetic field h get mapped by a single RG step to renormalized 
Hamiltonians H '  having a strictly positive (resp. strictly negative) magnetic 
field h'. Furthermore,  at h = 0 the renormalized Hamiltonian H '  depends 
on which pure phase, /~+ or # _ ,  one uses in the top left corner of (1.2): 

t t the image measure /~+ would be Gibbsian for some Hamiltonian H +  
having (among other couplings) a strictly positive magnetic field, while the 
image measure # '  would be Gibbsian for some Hamiltonian H "  having 
a strictly negative magnetic field. (Obviously H '  and H'_ would be related + 

by the a ~ - a symmetry, i.e., by reversing the signs of all odd couplings.) 
In this scenario, therefore, the R G  map ~ is discontinuous as one 
approaches the phase-transition line, and mult ivalued on that line. 6 This 
picture is also consistent with the intuitive idea that magnetization 
increases and correlation length decreases under the RG map. 

How can we distinguish between these two scenarios ? Otherwise put: 
Suppose we are given a measure/~'  with a large positive magnetization and 

5 More precisely, the flow would take place in an infinite-dimensional space of couplings, but 
would respect the a ~ --a symmetry. That is, second-nearest-neighbor and longer-distance 
pair couplings, four-spin couplings, six-spin couplings, and so forth would certainly be 
induced; but no magnetic fields, three-spin couplings, or other odd interactions would arise. 

6 This possibility was suggested earlier, in the context of the three-state Potts model in three 
dimensions, by B16te and S w e n d s e n  134) and with especial clarity by Rebbi and Swendsen 
(ref. 310, p. 4099). It was also suggested, in the context of a mean-field computation, by 
Hudfik.~2~176 
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a small (but nonzero) correlation length. Does this measure come from 
a Hamiltonian H '  with /~ large and h = 0 ,  or does it come from a 
Hamiltonian with fl not so large (possibly even small) and h large and 
positive? Both of these regions in the (//, h) plane correspond to a large 
positive magnetization and a small correlation length. How can we 
distinguish between the two? 

The answer has to do with the large-deviation properties of the 
measure/~'. Let A be a large cubical box of side L, and let ~A -= ~2x ~ A ~x 
be the total spin in A (a random variable). Clearly there is an over- 
whelming probability that ~A will be positive (and in fact very close to its 
mean value LdM'o=La(~r),,); but how rare is it to have tilt A negative? 
If/~' is a Gibbs measure for some Hamiltonian with h > 0, then the event 
JgA < 0 is suppressed by the bulk magnetic field: 

Prob~,(Jg A < 0 ) ~ e  O(Ld/ (1.4) 

h=0 

h=- oo 
(a) 

h =+co 

O(3 

/ I = + O O  A 

h=0 I 

h=-oo [~I 0 

(b) 

Fig. 1. Two possible scenarios for the RG flow in the Ising model at low temperature. 
(a) RG map is continuous and single-valued on the phase-transition line. (b) RG map is 
discontinuous and multivalued on the phase-transition line. 
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On the other  hand, if # '  is a Gibbs measure for some Hamil tonian  with 
h = 0 and /3 >/~c, then the event J/r < 0 is suppressed only by a surface 
energyT: 

Prob , ,  (alga < 0) ~ e o(zd-l) (1.5) 

It  is now easy to decide between the two scenarios for the R G  flow. 
In the starting measure # +, the occurrence of  a large region with negative 
total spin is suppressed only like e-~ roughly speaking, the measure 
#+  "knows" that  it is degenerate with the measure # _ .  But then in the 
block-spin measure p'+ =/~ + T, there must  also be a probabil i ty > e o(L~-l) 
of observing a negative total spin (since a net negative original spin implies, 
with high probabil i ty,  a net negative block spin). Since this contradicts 
(1.4), we conclude that  #'+ cannot be the Gibbs measure of a Hamil tonian  
with strictly positive magnetic  field. Picturesquely, the image measure p'+ 
"remembers"  that  it arose from an original Hamil tonian  H with coexisting 
phases. Therefore, the discontinuous-flow scenario is impossible; the R G  
map cannot be multivalued or  discontinuous.  

It  is a relatively short  step from these intuitive ideas to a r igorous 
proof. In  Section 3 we prove, in great generality, the following two 
theorems: 

First F u n d a m e n t a l  Theorem.  If/~ and v are Gibbs measures for 
the same interaction, then ei ther/~T and vT are both  non-Gibbsian,  or else 
there exists an interaction for which both  ~tT and vT are Gibbs measures. 
In the latter case, this is the only interaction for which either # T  or vT is 
a Gibbs measure. Therefore, the renormal iza t ion-group map ~ cannot  be 
multivalued. 

7 While expressions (1.4) and (1.5) provide useful heuristic guidelines, their status from the 
rigorous mathematical point of view is, at present, rather subtle. Expression (1.4) can be 
rigorously justified with great generality (see Section 2.6.3 below), but (1.5) has been verified 
only for nearest-neighbor ferromagnetic Ising models at low temperature. (326) [-More 
precisely, the theory of ref. 326 applies at any temperature where the configurations of the 
"+" phase do not exhibit an infinite cluster of " - "  spins. For the two-dimensional model 
this holds everywhere below the critical temperature, but in sufficiently high dimension (and 
probably for all d~> 3) it holds only below a temperature Tp strictly smaller than the critical 
temperature. See the discussion in ref. 4,] In any case, the proofs of our Fundamental 
Theorems on the RG map use only a much weaker version of (1.5), namely that the 
probability decreases subexponentially with the volume, i.e., o(L d) in place of O(L d-l) 
(Section 3.2), This subexponential decay is a well-known property of Gibbs measures, 
and is in fact the crucial result showing the equivalence of the thermodynamic (variational- 
principle) and statistical-mechanical (Gibbs-measure) approaches (Section 2.6.6). We have 
introduced (1.5) for heuristic purposes only. 
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Second Fundamental Theorem. The renormalization-group 
map N is continuous (in fact, Lipschitz continuous) on the domain where 
it is defined. 

Of course, these summaries of the theorems are not quite precise: 
we need to make clear, for example, in what space of interactions we are 
working, and in what norm we are defining continuity. The detailed state- 
ment of the Fundamental Theorems can be found in Sections 3.2 and 3.3, 
respectively. The proofs of the Fundamental Theorems are based on the 
general theory of infinite-volume lattice systems developed in Section 2. 
These two theorems make clear that the only way in which the RG map 
can become grossly pathological is for it to be undefined, i.e., for the image 
measure #' to be non-Gibbsian. 

1.4. Summary of Griffiths-Pearce-lsrael Pathologies 

This is not, however, the end of the story: although the discontinuous- 
flow scenario for the RG map in the low-temperature Ising model is not 
correct, the traditional scenario is in many cases not correct either! The 
First Fundamental Theorem leaves open the possibility that the image 
measure # ' =  #T  may be non-Gibbsian, in which case the RG map ~ would 
be undefined. It turns out that this pathology does in fact occur in a rather 
wide variety of examples. The occurrence of non-Gibbsianness for the 
image measure #' was first pointed out by Israel (2'~ in one of the cases 
suggested by Griffiths and Pearce. (176' 174) In Section 4 we complete and 
extend Israel's argument, and show that in a large class of examples 
(always at low temperature, but not only on phase-transition surfaces) the 
image measure #' is non-Gibbsian. 

The. non-Gibbsianness arises from the fact--already noted by Griffiths 
and Pearce-- that  the "internal spins" (the variables being integrated over 
in the RG transformation) may undergo a first-order phase transition for 
some fixed block-spin configuration CO'~pecia,. Moreover, in some cases the 
different phases (=Gibbs  measures) of the internal-spin system can be 
selected by an appropriate choice of block-spin boundary conditions. 
In this way, information can be transmitted from distant block spins to the 
block spin at the origin via the internal spins in the intermediate region, 
even when the block spins in the intermediate region are fixed. As a 
consequence, the renormalized measure #' violates a very weak locality 
condition--quasilocality, see Section 2.3.3--which is obeyed by every Gibbs 
measure coming from a reasonable interaction. It follows immediately that 
the renormalized measure #' must be non-Gibbsian. 

822/72/5-6-3 
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It is at first surprising that the existence of pathologies for a single 

block-spin configuration o'~pecial--which has, of course, probability zero-- 
can nevertheless cause the non-Gibbsianness of the renormalized measure; 
and indeed, this fact alone is not  sufficient for concluding non-Gibbsianness. 
Rather, what happens in these examples is that for block-spin configurations 
which are near (in the product topology) to cO'~pecial--namely , those which 
agree with fDtspecial in a large cube and differ from it outside--the internal- 
spin phase depends sensitively on the block spins outside the cube. These 
configurations have a small but nonzero probability, and this turns out to be 
sufficient for proving non-Gibbsianness. The details of the proof are given in 
Sections 4.1-4.3. 

We prove non-Gibbsianness at low temperature and zero magnetic 
field in the following examples: 

1. Decimation with any spacing b >i 2, for the Ising model in any 
dimension d~> 2. 

2. The Kadanoff transformation with finite p and arbitrary block size 
b I> 1, for the Ising model in dimension d>~ 2. 8 

3. The majority-rule transformation with 7 • 7 (or 41 x 41, 
239 x 239,...) blocks for the two-dimensional Ising model. 

4. Averaging transformation with any even block size b >/2, for the 
Ising model in any dimension d>~ 2. 

Moreover, in several cases we can prove that these pathologies are present 
also at nonzero magnetic field. For the first two examples, we prove 
non-Gibbsianness in dimension d>~3 in a full neighborhood {/~>/3o, 
Ihl < e(fl)} of the low-temperature part of the first-order phase-transition 
surface. In the last example, the pathologies can be proven in any dimen- 
sion d>~ 2 and for arbitrary values of the magnetic field, again at low 
temperature. These latter results make clear that the Griffiths-Pearce-Israel 
pathologies are not  associated with the fact that the original model is si t t ing 

on a phase-transition surface. Rather, it suffices that a first-order phase 
transition can be induced in the internal-spin system by choosing an 
appropriate block-spin configuration. For this we need to work at low 
temperature, but not necessarily close to the phase-transition surface. 

Though we have not yet been able to demonstrate non-Gibbsianness 
for the majority-rule transformation on 2 x 2 or 3 x 3 blocks, or for any 
block size in dimension d~> 3, we feel that the obstacles are technical 
rather than fundamental. Indeed, the results in Section 4 suggest that non- 

8 In earlier versions of this work (361' 362) we claimed this result only for smallp. Subsequently 

we found a proof valid for all 0 < p  < 0% which we present here. 
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Gibbsianness may be the normal situation for RG maps at low temperature 
and/or near a first-order phase transition. 

The reader will probably not be surprised that the decimation 
transformation is "pathological": this transformation, unlike other RG 
transformations, does not in any sense integrate out the "high-momentum 
modes" and leave the "low-momentum modes"; it merely integrates out 
one sublattice and leaves another. In particular, if the sublattice of internal 
(integrated-out) spins is connected, it is hardly surprising that the internal- 
spin system can exhibit a phase transition, and that this can give rise to 
RG pathologies. We therefore want to stress that the same pathology--  
non-Gibbsianness after one renormalization step--is also present at low 
temperature for at least some Kadanoff, majority-rule, and block-averaging 
transformations. These latter transformations do (at least seemingly) 
integrate out the "high-momentum modes" and leave the "low-momentum 
modes," and they have been generally considered to be well-behaved. 
Indeed, nearly all real-space RG studies of Ising models have used some 
variant of these transformations. It is thus a highly nontrivial fact that 
these RG maps can be ill-defined at low temperature. 

2. I N F I N I T E - V O L U M E  LATTICE SYSTEMS:  
GENERAL F O R M A L I S M  

Consider a classical statistical-mechanical system with configuration 
space /2, Hamiltonian H and a priori measure /to. The Boltzmann-Gibbs 
distribution /tB~ for this system in the canonical ensemble at inverse 
temperature fi can be characterized in either of two ways: 

(a) Explicit formula: 

where of course 

d/tgG((~) ) = Z le-~"(~') d/to(On) 

Z = f e-B/t(~) d/to(O)) 

(2.1) 

(2.2) 

(b) 
maximizes entropy minus fi times mean energy: 

where 

Variational principle. #BG is that probability measure which 

/tBG maximizes S(#[/to) - fiE(H, #) (2.3) 

(2.4) 
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and 

E(H, #) = ( H ) ,  =- f H(co) d#(o9) (2.5) 

The equivalence of these two characterizations is a simple computation in 
the calculus of variations. 

Unfortunately, this elementary theory does not apply to infinite-volume 
systems, because the Hamiltonian H(e)) is ill-defined: for almost any 
configuration e) we have H(e))= + oe. Nevertheless, nontrivial analogues 
of these two characterizations can be developed for infinite-volume systems. 
The analogue of the explicit formula is the theory of specifications and 
Gibbs measures: an infinite-volume Gibbs measure is one whose conditional 
probabilities for finite subsystems are given by the Boltzmann-Gibbs for- 
mula. The analogue of the variational approach is the theory of equilibrium 
measures: an equilibrium measure is a translation-invariant measure that 
maximizes entropy density minus fl times mean energy density. These 
approaches are reviewed in Sections 2.3 and 2.5-2.6, respectively. The 
fundamental feature of infinite-volume systems, which distinguishes them 
from finite-volume systems, is that the map between "Hamiltonians" (more 
precisely, interactions) and Gibbs measures (or equilibrium measures) is 
neither single-valued nor onto: some interactions have multiple Gibbs 
measures, while some measures are not Gibbsian for any interaction. 
These facts are at the heart of the theory of phase transitions, and of the 
renormalization group. 

The standard references for the material in this section are the books 
of Georgii, (16~ Preston, (3~ and Israel. (2~ Georgii and Preston deal 
principally with the theory of Gibbs measures, while Israel deals principally 
with the theory of equilibrium measures. 

We assume in this section that the reader has some knowledge of 
metric spaces and Banach spaces, ideally at the level of Royden (314) or Reed 
and Simon, (3n) and of measure theory and probability theory, ideally at 
the level of Bauer (26) or Krickeberg. (=7) However, we realize that for many 
readers these theories belong to only faintly remembered mathematics 
courses and are rather distant from their day-to-day work in theoretical 
physics. Nevertheless, we urge such readers not to be discouraged by the 
abstract jargon, and to use the examples we provide as a means to grasp 
the essential physical ideas underlying the mathematics. 

In this section the emphasis is on concepts and ideas (both physical 
and mathematical), not on techniques of proof. Therefore, all definitions 
and theorems are stated precisely, but proofs are omitted. In Appendix A 
we provide, for each theorem, either a published reference (if the result is 
known) or a proof (if it is new). 
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Henceforth we absorb /3 into the Hamiltonian H; this simplifies the 
notation. Let us also remark that although our exposition is couched in the 
language of the canonical ensemble, the formalism is equally applicable to 
the grand canonical ensemble: it suffices to interpret our H to mean 
" /~H-~#N."  In fact, this formalism applies to an arbitrary "generalized 
(grand) canonical ensemble" with parameters /~1,...,/~, conjugate to 
observables H1 ..... H n. 

2.1. Conf igurat ions,  Events, Functions, Measures 9 

Classical statistical mechanics is a branch of probability theory. The 
basic structures of probability theory are: 

1. A configuration space ~2--this is the set of all possible (micro- 
scopic) configurations of the system under study. 

2. A 0--field Y of subsets of ~2--this is the set of all events (=  yes-no 
questions) that are measurable by some conceivable (possibly 
extremely idealized) experiment. Various sub-a-fields .A c ~ may 
correspond to restricted classes of experiments (e.g., experiments 
performed within a specified region of space). 

3. Observables (=  random variables -- real-valued ~-measurable 
functions on g2)--these correspond to experiments which give a 
real number as an answer. Various subclasses of observables (e.g., 
those measurable with respect to a specified sub-o--field ~ )  may 
correspond to restricted classes of experiments (e.g., experiments 
performed within a specified region of space). 

4. A probability measure (=  probability distribution) # on (D, Y ) - -  
this describes either our state of partial knowledge of the system (if 
we take a "subjective" interpretation of probability theory) or an 
ensemble of "identically prepared" random systems (if we take an 
"objective" interpretation of probability theory). The mathematics 
of statistical mechanics does not depend on any particular inter- 
pretation of its mathematical objects, so the reader is urged to 
employ whichever interpretation he or she prefers. 

In this section we describe the particular case of this structure that is 
appropriate for the equilibrium statistical mechanics of an infinite-volume 
classical lattice system. 

9A reference for this section is Georgii (ref. 160, Introduction and Sections 1.1 and 2.2). 
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2.1.1. C o n f i g u r a t i o n s  and Events.  The configuration space of 
an infinite-volume lattice system is specified by the following ingredients: 

1. The single-spin space Y2 o. This is the space of possible configura- 
tions of the physical variable(s) at a single lattice site. (For brevity we call 
these variables a "spin.") Examples: Ising model, f2o = { -  1, 1 }; N-vector 
model, f 2 0 = S  u - i = u n i t  sphere in RU; N-component  Gaussian o r  q)4 
model, f2 0 = NN; solid-on-solid (SOS) or discrete Gaussian model, (2 o = 7/. 

Since statistical mechanics is based on probability theory, we shall 
always assume f2 o to be equipped with a a-field ~o of "measurable sets." 
Usually f2 o will also come equipped with a physically natural topology; 
in fact, f2 o will almost always be a complete separable metric space, 
and 0% will be the cr-field of Borel sets. If f2 o is a compact metric space, 
we say that the system has bounded spins; otherwise we say that the system 
has unbounded spins. Examples: The Ising and N-vector models have 
bounded spins; the Gaussian, ~0 4, SOS, and discrete Gaussian models have 
unbounded spins. 

2. The lattice 50- -a  countably infinite set of "sites." For  the moment  
we need not give 50 any geometric structure, but for concreteness the 
reader can imagine 50 to be some d-dimensional lattice. 

The infinite-volume configuration space (2 is then defined to be the 
Cartesian product (f2o)~; that is, it is the set of all configurations 
co = (cox)x ~ ~ with COx e ~0 for each site x. The space f2 is equipped with the 
product o--field o~ = (o~) se and with the product topology. 1~ The product 
topology means that a sequence (or net) of configurations (con) converges 
to a configuration co if and only if coax ~ cox for all x e 5 ~ If f2 o is metrizable 
(resp., separable, complete metric, compact),  then so is (2. 

It is important  to understand physically what the product topology 
means. Suppose for simplicity that f2o is a metric space. Then a typical 
neighborhood of co ~ f2 is the set 

JV~o,+,A = {co': dist(cox, co') < e for all x ~ A } (2.6) 

where e > 0 and A is a finite subset of 50.n That  is, a typical neighborhood 
of co in the product topology is the set of configurations that are close to 
co on some finite set of sites A, but are arbitrary outside A. In particular, 
if s o is discrete (as, e.g., in the Ising model), then a neighborhood of co is 
the set of configurations that agree with co on some finite set of sites A, but 

1o If g2 0 is a separable metric space, then the product a-field of the individual Borel a-fields 
coincides with the Borel a-field for the product topology. 

1~ More precisely, the sets ./Vo,,~.a form a neighborhood basis of ~o, i.e., every neighborhood of 
o) contains one of the sets X~o,+,A- 
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are arbitrary outside A. These facts will play an important role in our 
discussion of non-Gibbsianness for RG image measures (Sections 4.1-4.3). 

For each subset A c 5a, we let ~ c o~ be the sub-~-field correspond- 
ing to events depending only on the spins mA = (COx)x~A; that is, ~ is the 
~r-field of events measurable within the subset A. We denote by Y the class 
of all nonempty finite subsets of 5f. We denote by A c the complement of 
A i n U .  

Remork. The Cartesian product (12o) ~ is not the most general 
confguration space. Often one wishes to study a lattice model with local 
constraints (e.g., hard-core exclusions). One way (not the only one) to treat 
these constraints is to cut the excluded configurations out of the configura- 
tion space: that is, we let the configuration space 12 be an appropriate sub- 
set of the product space (12o) ze. We do not allow this much generality here, 
but much of the present theory goes through (with some modification) in 
this situation. (318' 274, 16) 

2.1.2. F u n c t i o n s  ( = O b s e r v a b l e s ) .  An observable is simply a 
real-valued measurable function on 12. We consider various spaces of such 
functions: 

1. The space B(12) = B(12, W) of bounded measurable functions. This 
is the largest space of functions we shall consider. 

2. The space Bloo(12 ) = OA~y B(12, WA) of bounded local functions. A 
function is local if it depends on only finitely many spins. 

3. The space Bql(12)=Bloc(12 ) of bounded quasilocal functions. A 
function is quasilocal if it is the uniformly convergent limit of some 
sequence of local functions. Equivalently, a function is quasilocal 
if it "depends weakly on distant spins" in the sense that 12 

lim sup [f(co)-f(co')[--=O (2.7) 
AT.L-" o~,co' ~ Q 

oA A = c@l 

4. The space C(12) of bounded continuous functions. 

5. The space C1oc(12)~B1oc(12)~ C(12) of bounded continuous local 
functions. 

6. The space Cq1(12 ) ~ Bql(12 ) ~ C(12) of bounded continuous quasi- 
local functions. 

t2The statement I i m A T ~ F ( A ) = e  (where e ~ N  or C) means that for each 8 > 0 ,  there 
exists a finite subset K~c~L,r such that ] F ( A ) - - ~ [ < ~  whenever A=K~. Statements 
limA~zO F(A)= + oo or --oo are to be interpreted analogously. (Mathematicians call this 
"convergence along the net of finite subsets of ~ ,  directed by inclusion.") Please do not 
confuse this notion of convergence with the limit in the sense of van Hove, to be defined 
in Section 2.4.1. 
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Examples. 1. For s N, the function f(~0)= sgn(q)0) is bounded 
and local (hence quasilocal), but not continuous. Analogous functions can 
obviously be constructed for/20 = S N- 1 or Nu, and indeed on any single- 
spin space which is not discrete. 

2. If s = s = Z, then for any fixed site x* ~ ~ and any (bounded) 
nonconstant function f :  Z ~ R ,  the function h(~o)=f(co~ox.) is (bounded 
and) continuous but not quasilocal. (This example, which was suggested to 
us by Hans-Otto Georgii, is further discussed in Appendix A.1.) 

We equip each of the above spaces with the "supremum norm" (or 
"uniform norm") 

Hfl[ = ]kftq o~ = sup [f(co)l (2.8) 
a~c(2 

So equipped, the spaces B(s Bql((2), C(~), and CqI(Q ) a re  Banach 
spaces. Let us notice that: 

(a) If the single-spin space/2 o is a compact metric space, then every 
continuous function is bounded and quasilocal. Hence C(s 
Cql(~r C2 Bql(~r 

(b) If the single-spin space ~2 o is discrete, then every quasilocal 
function is continuous. In particular, Bql(~) = Cqt(~) c C(s 

(c) If the single-spin space ~o is finite, then quasilocality and 
continuity are equivalent (and imply boundedness). Hence 
C([~)  = Cql(Q ) = Bq,(~-2). 

(d) If the single-spin space (2 0 is a separable metric space, then every 
uniformly continuous function is quasilocal. 

2.1.3. Measu re s .  Next we study measures on (2. Let M(f2)=M((2, ~ )  
be the space of finite signed measures on/2, and M+ 1(~) = M+ 1(~2, ~-) c M(f2) 
be th e space of probability measures. There is a natural duality between 
spaces of functions and spaces of measures, namely 

(#, f )  - P(f)  - f f d# (2.9) 

If/2 is compact, then every bounded linear functional on C(s arises in this 
way from a finite signed measure (Riesz-Markov theorem); otherwise put, 
the Banach-space dual of C(f2) is exactly M(f2). 

Let/~ be a probability measure on/2 ;  then the support of # (denoted 
supp#) is a closed subset of s that can be defined in any of three 
equivalent ways: 
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(a) The set of all co e s such that every neighborhood of co has non- 
zero measure. 

(b) The intersection of all closed sets of measure 1. 

(c) The complement of the union of all open sets of measure zero. 

The key theorem is: if ~2 is a separable metric space, then #(supp #) = 1, so 
that supp # is the smallest closed set having measure 1. 

We need to discuss what it means for a sequence (or net) of measures 
#,  to converge to a limiting measure #; in other words, we need to equip 
the spaces M(f2) and M+m(g?) with a topology. In fact, there are several 
mathematically natural topologies, each with a distinct physical meaning. 
The simplest topology is the norm topology defined by the total variation 
norm 

I I # - v l l =  sup I # ( f ) - v ( f ) J =  sup 
f e B(I2,.~) f e C(.Q) 

PISI[~ ~< 1 I l f l l~  ~< 1 

= 2  sup I#(A)-v(A)I  
A e ~  

Iv(f )  - v(f)l  

(2.10) 

A sequence (or net) p ,  converges in variation norm to # if H # , - # H - + 0 .  
Physically, norm convergence of #~ to # means that expectation values in 
#,  converge to those in #, uniformly for all bounded observables f .  This is 
an extremely strong notion of convergence, which occurs only rarely in 
physical applications. Therefore, we introduce also the weak topologies 
induced by the various classes of functions defined in Section 2.1.2: 

1. The bounded measurable topology: #~ ~ # if # ~ ( f ) ~  # ( f )  for all 
f~B((2,  ~.~). [If  the #n are probability measures, it suffices to 
check that #n(A) --* #(A) for all A e ~-.] 

2. The bounded quasilocal topology: #n ~ #  if #, , (f)  ~ # ( f )  for all 
feBql((2 , Y ) .  [If  the #,  are probability measures, it suffices to 
check convergence for feBloc(g2,~),  or alternatively for all 
A e U A ~  ~ 

3. The (ordinary) weak topology: #,--*# if #~( f )~ l~ ( f )  for all 
f e  C((2). 

4. The weak quasiloeal topology: # n ~ l i  if #~( f ) -+#( f )  for all 
f 6  Cql(g2, Y) .  [If  the #n are probability measures, it suffices to 
check convergence for f e C1oo(s i f ) .  ] 

We emphasize that the convergence is required to occur for each observable 
f i n  the designated class, but the convergence is not required to be uniform 
in j :  This is important, since f could equally well be the local energy den- 
sity in New York or the local energy density on Andromeda; and one 
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should not expect, in most situations, the convergence to be uniform on all 
such observables. This reasoning also suggests that the two quasilocal 
topologies are likely to be the ones of greatest physical relevance. 

Examples. 1. Let ~2 o = ~, and let #n (resp. #) be the Dirac delta 
measure concentrated on the configuration in which all the spins take the 
value 1In (resp. 0). Then /~, ,~# in the weak and weak quasilocal 
topologies, but not in the bounded measurable or bounded quasilocal 
topologies. 

2. Let f2 o = { -  1, 1 }, and let/~n be the Dirac delta measure concen- 
trated on the configuration which is + 1 for all spins at a distance ~ n  from 
the origin and - 1  for all other spins. Let /z be the Dirac delta measure 
concentrated on the configuration which is all + 1. Then #, ~ kt in the 
bounded quasilocal, weak, and weak quasilocal topologies, but not in the 
bounded measurable topology. 

Georgii bases his theory on the bounded quasilocal topology (which 
he calls the "topology of local convergence" or the "2a-topology") (ref. 160, 
Chapter 4); Israel restricts attention to compact metric single-spin spaces, 
and uses mainly the weak (=weak  quasilocal) topology (ref. 209, Chapters 
II and IV). 

Let us remark that if f20 is separable and metrizable--as it is in nearly 
all concrete examples--then the weak quasilocal topology coincides with 
the weak topology; this is true even though these hypotheses do not quite 
imply that C(O)~ Bql(~Q ). I f /2  o is countable and discrete, then the weak, 
weak quasilocal, and bounded quasilocal topologies all coincide. 

Finally, let us remark that with respect to the (ordinary) weak topology, 
M+I(f2) is separable and metrizable (resp., complete metrizable, compact 
metrizable) if and only if t2 is. 

2.2. I n t e r a c t i o n s  and H a m i l t o n i a n s  13 

As discussed in the Introduction to this section, the Hamiltonian H(e)) 
for an infinite-volume system is an ill-defined object. Therefore we must 
proceed more cautiously. We define first the concept of an interaction, 
which corresponds roughly to the idea of a "formal Hamiltonian" or a "set 
of coupling constants." Then we define the finite-volume Hamiltonians 
corresponding to a given interaction and given boundary conditions. 

The (meaningless) Hamiltonian of an infinite-volume system is written 
formally as a sum of terms corresponding to various finite subsets of the 

13 References for this section are Georgii (ref. 160, Section 2.1) and Israel (ref. 209, Sections 
1.1 and 1.2). 
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lattice: one-body terms, two-body terms, three-body terms, and so forth. 
Mathematically this idea is made precise as follows: 

D e f i n i t i o n  2.1. An interaction (or interaction potential or poten- 
tial) is a family q~ = (q~A)A ~S~ of  functions ~b~: g2 ~ ~ such that for each 
A ~ 5P, the function q~a is o~A-measurable (i.e., depends only on the spins in 
the finite subset A ). 

Remark. Note that we do not allow the interaction q5 A to take the 
value +oo. Therefore, a "hard-core interaction" is not included in our 
formulation. 

Example. 
Hamiltonian is 

Consider the Ising model whose formal (i.e., meaningless) 

H(eo)"="  - Z JxyC~176176 (2.11) 
( x y )  x 

This model is defined (meaningfully!) by the interaction 

( -hxCOx if A = {x} 

~ba(co)=~--JxyC.O~C-Oy" if A =  {x, y} (2.12) 

to otherwise 

The next step is to define the Hamiltonian H I corresponding to 
an interaction ~ acting in a finite volume A. This depends, however, on 
what boundary conditions one chooses. The simplest case is free boundary 
conditions: 

Def ini t ion  2.2. Let ~ be an interaction. Then, for each AE 5 P, 
for volume A with free boundary conditions is the the Hamiltonian HA,free 

function 
~b 

HA, free = 2 60A (2.13) 
A~S~ 
A ~ A  

Note that this is always a finite sum, so the free-b.c. Hamiltonian is always 
well-defined. Note also that HA,free depends only on the spins inside A. 

Free boundary conditions are not, however, sufficient: for many 
purposes we need Hamiltonians in which the interior of the volume A is 
allowed to interact with the exterior. To do this, we must consider the 
bonds that couple a given volume A with its exterior; these give a contribu- 
tion of the form 

W~,Ac = ~ ~ A (2.14) 
A~5 o 

A n A ~  

A c~ AC ~ SZ5 
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Note that now we are dealing with a n  infinite sum; therefore we must be 
careful about its convergence. In any case, the Hamiltonian for volume A 
with general external boundary conditions corresponds to adding the 
contributions (2.13) and (2.14): 

D e f i n i t i o n  2.3. Let �9 be an interaction. Then, for each A ~ 5 e, the 
Hamiltonian H~  for volume A with general external boundary conditions is 
the function 

HA*(co) = ~ ~A(co) (2.15a) 
A e . 5  a 

A c ~ A v ~  

--= HA'/',free(co) + W~,A~(co ) ( 2 . 1 5 b )  

provided that this sum converges to a finite limit for all co ~ 12, in which case 
we call the interaction �9 convergent. 14 

Here the convergence is not required to be absolute, nor is it required 
to be uniform in co; we insist only that the finite-volume Hamiltonian 
H~(co)--HA(coA, coA~) be well-defined for all configurations co (i.e., all 
pairs consisting of an internal configuration (gA and an external configura- 
tion coA~). This is a very modest requirement. It rules out, however, the use 
of this formalism for a Coulomb system, in which the interaction decays 
too slowly to be summable in any reasonable sense. 15 

For  many purposes it is convenient to think of the configuration out- 
side A as fixed (the "boundary condition") and the configuration inside A 
as variable. Therefore, for any fixed r e 12, we define the Hamiltonian H ~ A,'c 

which uses boundary condition ~ outside the volume A to be 

HA~,~(CO) = HA~(COA • VAc) (2.16) 

Here COAX ~ c  is the configuration which agrees with co on A and with v on 
A c. Note that HA~,~(co) depends only on the behavior of co inside A. 

14 More precisely, what this means is that the net (ZA~S~;A~A,~;a~  4~A(e)))~S~ converges 
to a finite limit (for each co ~/2) as zl i" ~ .  

15 Lattice Coulomb systems admit a partial thermodynamic treatment based on free boundary 
conditions and a carefully taken infinite-volume limit (ensuring overall neutrality of the 
plasma) (ref. 139, and references therein). It may be possible to cast that theory into a 
generalized version of the Gibbs DLR framework in which the "bad" external configura- 
t i o n s - h e r e  the nonneutral ones--are  made inaccessible to all Gibbs measures (ref. 304, 
pp. 16-18 and Chapter 6). If so, many (but not all) of the results discussed in this section 
would be valid also for such systems. The case of gravitational systems is even worse, 
because there is no condition analogous to neutrality that can be enforced. These systems 
are not even thermodynamically stable. 
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It is also possible to define the Hamiltonian with other boundary 
conditions (e.g., periodic), but we shall have no need for these. 

The summability properties of the Hamiltonian (2.15a) have impor- 
tant implications for the characteristics of the measures constructed with 
them. In addition to the notion of convergence introduced in Definition 2.3 
above, we wish to distinguish two stronger notions of summability: 

Def in i t ion 2.4. We call the interaction q~, (a) uniformly convergent 
if, for every A ~ 5 r the sum (2.15a) converges uniformly in a); and (b) 
absolutely summable if, for every A ~ Y ,  the sum (2.15a) converges in B(g?) 
norm. This is equivalent to the condition that Z,~.y;A~i  I[q~A Jl~ < oo for 
each i ~ 5s 

Obviously, absolutely summable implies uniformly convergent, which 
in turn implies the convergence of (2.15a). Some comments and examples 
are in order: 

1. The physical interpretation of absolute summability is roughly 
that the maximum interaction energy between one spin and the rest of the 
universe is finite. Alternatively, the flipping of one spin produces always a 
bounded change in energy. 

2. An example of a uniformly convergent interaction which is not 
absolutely summable is the following one-dimensional lsing model~345): 

(0-1)" c, if A is a nonempty set of n adjacent points 
OSA(CO ) ___ and ~ox= + 1 for all x ~ A  (2.17) 

otherwise 

for a suitable sequence of nonnegative numbers (c,)n~>~. If ncn,~O, this 
interaction is uniformly convergent; but it is not absolutely summable 
unless Zn ncn < Go. Thus, cn = n -  ~ with 1 < c~ ~< 2 provides the desired coun- 
terexample. [In fact, if ~]n c,, = oe--for example, c n = 1In log(n + 1)--the 
interaction does not even belong to the largest space of interactions 
considered in the usual thermodynamic formalism, namely the space r 
introduced in Section 2.4.4 below.] 

3. Interactions can also be classified according to the maximum 
spatial distance over which they extend: the range of ~ is defined to be the 
supremum of the diameters of the sets A with 45 A ~ 0. Thus, an interaction 

is of finite range R ( R < o e )  if qSA------0 whenever d iam(A)>R.  For a 
finite-range interaction, the sum (2.15a) is a finite sum, so q~ is (trivially) 
a uniformly convergent interaction. If, in addition, each ~A is a bounded 
function, then q5 is absolutely summable. 
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4. Let us now introduce two natural pieces of terminology: First, we 
shall call an interaction q~ bounded if each q~A is a bounded function. Note 
that if q~ is bounded (resp. absolutely summable), then each Hamiltonian 

| (resp. HA ~) is a bounded local (resp. bounded quasilocal) function. H A ,  free 
A bounded interaction, however, may fail to be absolutely summable if the 
bounds [[q~A ]1 o~ do not decay fast enough. 

5. Second: if, as is usual, the space ~o (and hence ~ )  comes equipped 
with a topology, then we call an interaction q~ continuous if each q~a is a 
continuous function. Note that if # is continuous (resp. continuous and 

(resp. HA ~) is a uniformly convergent), then each Hamiltonian HA,free 

continuous function. All the interactions considered in this work (and an 
overwhelming majority of those considered elsewhere) are continuous. 

6. If (2 0 (and hence (2) is compact, then every continuous interaction 
is automatically bounded. This is one reason why systems of bounded spins 
are easier to work with than systems of unbounded spins. 

7. Nevertheless, as we discuss later (Section 2.3.5), all the properties 
of an interaction must be interpreted modulo physical equivalence. 
In this regard, the apparent summabitity properties may turn out to be 
misleading, as they may change widely from one physically equivalent 
interaction to another. (36~ 

2.3. Specif icat ions and Gibbs Measures z6 

We now come to the heart of the theory of infinite-volume lattice 
systems, which is to make precise what we mean by an infinite-volume 
Gibbs measure for a given interaction ~b. We cannot simply use the explicit 
formula (2.1), because the infinite-volume Hamiltonian H is ill-defined. The 
traditional solution is to define an infinite-volume Gibbs measure to be any 
measure which is a limit (in a suitable topology) of finite-volume Gibbs 
measures with some chosen boundary conditions. The disadvantage of this 
definition is that it is cumbersome to check: given a measure # on the 
infinite-volume configuration space, how do we determine whether there 
exists some sequence of finite-volume Gibbs measures converging to # ? We 
would prefer, therefore, to have a more direct condition on the infinite- 
volume measure /t. Such a condition was first proposed by Dobrushin (85~ 
and Lanford and Ruelle(235~: their idea is to define an infinite-volume Gibbs 
measure to be one whose conditional probabilities for finite subsystems A, 
conditioned on the configuration outside A, are given by the Boltzmann- 
Gibbs formula based on the Hamiltonian H~.  This is the approach we 

16 References for this section are Georgii (ref. 160, Chapters 1-4) and Preston (ref. 304, 
Chapters 1, 2, and 5). 
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shall take; the traditional approach can then be justified a posteriori 
(Propositions 2.22 and 2.23). 

Let us note that, in general, we must condition on the configuration 
in the entire exterior of A-- that  is, we must specify a complete "external 
condition." However, in the special case of a nearest-neighbor interaction 
(resp. an interaction of finite range R), it suffices to specify the spins 
immediately adjacent to A (resp. the spins at a distance ~<R from A)- -  
hence the term "boundary condition." We shall usually bow to tradition 
and call our external configurations "boundary conditions," but we 
emphasize that in the general case of an infinite-range interaction it is 
essential to specify the configuration in the entire exterior region. 

Let us also remind the reader of the physical role played by boundary 
conditions: in infinite volume the Gibbs measure (to be defined shortly) 
may not be unique, and the boundary conditions serve to select a par- 
ticular Gibbs measure (i.e., a particular "phase"). All this will be described 
in greater detail in what follows. 

2.3.1. Specifications. We begin by formalizing the idea of 
"conditioning on the exterior of a volume A," irrespective of any particular 
formula for these conditional probabilities. The point is that for a given 
external configuration (DAC we wish to specify the (conditional) probability 
distribution of the spins inside the volume A: that is, we want to specify 
Prob~o~c(dcoA). Such an object is called a probability kernel, iv In general, a 
probability kernel ~ from a space (f2, o~) to another space (~2', Y ' )  is an 
object ~(co, A) with two "slots": an "input" slot that accepts an input 
configuration co ~ ~2, and an "output" slot that accepts a set A E ~-' and 
returns its probability. More formally, a probability kernel from (fJ, ~-) to 
(s ~ ' )  is a map rt: s x ~ '  -+ [0, 1] satisfying: 

(a) For each fixed co ~ f2, ~(co, �9 ) is a probability measure on (~',  ~-'). 

(b) For each fixed A e i f ' ,  rt(-, A) is an if-measurable function on s 

We shall write such a probability kernel equivalently as =(co, A)-- = 
~(Arco)-rto~(A). The first notation emphasizes that rc is a kind of 
"transition probability" (as in the theory of Markov processes); the 
second notation emphasizes that rt will later be interpreted as a conditional 
probability; and the third notation emphasizes that co is a parameter 
("boundary condition") indexing the probability measure on D'. 

Thus, in our case we need to specify a probability kernel rc A from 
(f2~c, ~Ac) to (~A, ~ ) "  For technical reasons, however, it is convenient to 
define ~ instead as a probability kernel from the full  space ((2, ~-) to 

17 For a more extensive introduction to probability kernels and their properties, see ref. 26, 
Section 56, or ref. 277, Section III-2. 
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itself: we t h e n  i m p o s e  expl ici t ly  the c o n d i t i o n  tha t  ~(co,-)  d e p e n d  o n  co 
on ly  t h r o u g h  its c o m p o n e n t s  e)Ac (i.e., it is ~-ac-measurable) ,  a n d  tha t  it 

r e p r o d u c e  the  " b o u n d a r y  c o n d i t i o n "  C0Ac w h e n  the q u e s t i o n  fed in to  its 

second  slot  conce rns  on ly  spins  ou t s ide  A (i.e., w h e n  A e o~c). W e  are thus  

led to the  fo l lowing  def ini t ionlS:  

D e f i n i t i o n  2 .5 .  A specif icat ion 19 is a family H-=(TZA)Aey of 
probability kernels from (f2, o-~) to itself, satisfying the following conditions: 

(a) For each A ~ ~ ,  the function rcA(., A) is ~ac-measurable. 

(b)  7z a is ~ac-proper, i.e.,for each BS ~ na(CO, B)=XB(CO). 
20 

(C) I f  A c A ' ,  then 7~A, TrA=rCA,, 

Physica l ly ,  the idea  is tha t  7rA(CO,-) is the e q u i l i b r i u m  p r o b a b i l i t y  

d i s t r i b u t i o n  for v o l u m e  A subjec t  to the b o u n d a r y  c o n d i t i o n  09 ou t s ide  A. 
C o n d i t i o n  (a) states t ha t  this  m e a s u r e  depends ,  in  fact, on ly  o n  the  b e h a v i o r  

of o~ outside A. C o n d i t i o n  (b)  s tates tha t  for o b s e r v a t i o n s  outside A, this  

m e a s u r e  equa l s  the de l ta  m e a s u r e  6o ,  i.e., it r ep roduces  the b o u n d a r y  

cond i t i on .  C o n d i t i o n  (c) is a c o m p a t i b i l i t y  c o n d i t i o n  for pa i rs  of v o l u m e s  
A c A' :  it  s tates tha t  if a v o l u m e  A '  is in  e q u i l i b r i u m  wi th  its exterior ,  t hen  

all subse ts  of  A '  are  in  e q u i l i b r i u m  wi th  their exteriors.  21 

~8 See ref. 304, Section 1, for a more leisurely discussion of these points. 
19 In some mathematical-physics literature (e.g., ref. 126) the term "local specification" is used. 

We emphasize that this adjective "local" is superfluous; the concepts discussed here and in 
ref. 126 are identical. In particular, the reader should not confuse this (redundant) use of 
the word "local" with our concept of "quasilocal specification" to be introduced in 
Section 2.3.3. 

2~ product of two probability kernels is a probability kernel: (~17z2)(o),A) = - 
~1(o), do)')7z2(co' , A). For future reference we also define two ways of multiplying a 

measure by a probability kernel: 

(/zx)(A) =- f u(do)) rt(o), A) 

(# x n)(B) -= f/t(do)) 7z(o), do)') Zs(o) x o)') 

where A ~ ~ and B e J" x o ~ ' .  Thus, # x 7r is a probability measure on the product space 
(~2 x O', ~ x ~-'), while ,an is its marginal on the second space (t2', ~-'). 

21 From the probability-theory point of view, the definition of "specification" looks very 
similar to the definition of "system of regular conditional probabilities." However, there is 
a crucial difference: condition (c) in the previous definition is required to hold for all values 
of the arguments, while for conditional probabilities it holds in general only almost- 
everywhere (with respect to the unconditioned measure) in the first variable. For further 
discussion, see also the introduction to ref. 339. 
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Definition 2.6. A probability measure # on [2 is said to be consistent 
with the specification H = (Tz A)A E s~ i f  its conditional probabilities f o r  f ini te  
subsystems are given by the (~A)A~S~: that is, 

for each A s 5  f and A e ~  E~( )~AI~c )=rCA( . ,A )  #-a.e. (2.18) 

We denote by fg(H) the set o f  all measures consistent with H. 

The following proposition gives two apparently weaker, but in fact 
equivalent, formulations of the condition (2.1 8): 

Proposition 2.7. Let  H=(~A)A~Se be a specification, let # be a 
probability measure on f2, and let A ~ 5 P. Then the following are equivalent: 

(a) For each A ~ ,  E ~ ( Z A I ~ c ) = T Z A ( . , A  ) #-a.e. 

(b) There exists a measure vA such that # = VA~rA. 

(c) # = #~ZA. 

Physically, (b) states that/~ is the equilibrium probability distribution for 
volume A with some (possibly stochastic) boundary condition vA, while (c) 
states that p can itself play the role of VA. 

Let us note that f#(H), the set of all measures consistent with H, is a 
convex set: if #1 ..... #,  belong to fq(H), then so does any convex combina- 
tion of them. The physical interpretation of such convex combinations, and 
of the extremal points of fg(H), will be discussed in Section 2.3.6. 

We also make the (trivial) remark that if the lattice ~ were finite, then 
there would be a unique measure consistent with H, namely the measure 
zzo(c0,-), which must be independent of co. This is one aspect of the fact 
that phase transitions cannot occur in finite systems. 

2.3.2. Gibbsian Specifications and Gibbs Measures. An 
important example of a specification is the Gibbsian specification 
H e =  (rc~) A ~ corresponding to a given interaction 45. More precisely, let 
45 be a convergent interaction, so that we can define the Hamiltonians H~ 
with general external boundary conditions. Let # ~ 1 7 6  be a 
probability measure, called the a priori measure. We then define the 
conditional partition function 

Z~(COA~ ) = f exp[--H~(co)] 1-[ d#~176 
x E A  

(2.19) 

[Note  that the Hamiltonian HA~(O)) depends on both the spins co A inside A 
and on the "boundary conditions" e)Ac. After integrating out the spins ~oA, 
we obtain a function of o)Ac.] Since H~  is everywhere finite, it follows that 

822/72/5-6-4 
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Z~(COAC) > 0 for all c0. If, moreover, ZA~(e)W) < + Oe for all A ~ ~ and all 
co e f2, we say that the interaction ~b is #~ Note in particular 
that if each HA ~ is bounded below--which certainly occurs if q~ is absolutely 
summable, since this makes each H~  bounded--then q5 is automatically 
#~ Also, if the single-spin space ~2 o is finite, then every 
convergent interaction is automatically #~ [because the integral 
(2.19) is then a finite sum of finite terms]. 

D e f i n i t i o n  2.8. Let #o = I - I x ~  po be a probability measure, and let 
q~ be a convergent, /,~ interaction. Then the probability measure 
z~(e) , .  ) on ~ defined by 

A) = ZA~(mac) -1 f)~A(m) exp[--HAr [ l  dP~176 (2.20) 7~ A~ ((.O, 
x~A 

is called the Gibbs distribution in volume A with boundary condition COAc 
corresponding to the interaction q~ and the a priori measure po. 

It is straightforward to verify that the family H~ = (ZA~)A ~ S~ is indeed 
a specification; it is called the Gibbsian specification for ~b (and #o). A 
measure consistent with H e is called a Gibbs measure for q~ (and/~o). By 
Proposition 2.7, a measure # is a Gibbs measure for H e if and only if 
# ~  = #  for all A, i.e., 

f dlA(T) Z~(T, AC) -1 f ~A(O,)A X "CA c) exp[ - HA~(OA X ZA,)] H dP~176 #(A) 
XEA 

(2.21) 

for all A e Y and all A ~ .  Equation (2.21) is called the Dobrushin- 
Lanford-Ruelle (DLR) equation. A slightly simpler equation is obtained by 
restricting A to ~A" 

(~oA) = f d#(z) Z~(z~c) -1 exp[ --H~(coA x ZAC)] #~ (2.22) 
d .  ~ 

In general (2.22) is weaker than (2.21); the former is a necessary but not 
sufficient condition for/~ to be a Gibbs measure for H e. However, in nearly 
all practical situations the two conditions are equivalent: see Remark 3 at 
the end of Section 2.3.3 below. 

At this point the reader may be wondering: Why have we bothered to 
introduce the very general (and abstract) concept of a specification, when 
virtually all of the concrete models studied in statistical mechanics 
correspond to Gibbsian specifications? We have two reasons: First, non- 
Gibbsian specifications must be employed in some interesting statistical- 
mechanical problems, notably those involving hard-core exclusions (which 
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we do not consider in this paper) or zero temperature (Appendix B.2.1). 
But perhaps more importantly, we want to be consistent with the under- 
lying message of this work, which is that not everything in the worm is 
Gibbsian. Therefore, we must introduce concepts which are general enough 
so that the problems we wish to study will not have been excluded simply 
by definition. Having done so, we will then be able to investigate, without 
a priori preconceptions, which problems give rise to Gibbsian specifications 
and which do not. 

2.3.3. Quasilocality. In all theoretical physics, a fundamental role 
is played by the concept of an "isolated system." A completely isolated 
system is of course an idealization, but one can in general render a system 
as close to isolated as desired by moving it a large distance away from all 
other objects. (Here we neglect cosmological effects, as well as couplings to 
fields that could carry off radiation.) This asymptotic isolation is possible, 
of course, because the interaction potentials decay to zero as the spatial 
separation tends to infinity. One can even argue that this decay of inter- 
actions is an essential precondition for the possibility of doing science: 
without it, the results of experiments on Earth would depend sensitively on 
conditions on Andromeda, and the repeatability that is fundamental to the 
scientific method would be absent. 

These remarks justify the introduction of a class of specifications that 
will play a central role in the remainder of this paper: 

Defini t ion 2.9. A specification H =  ( n A ) A ~  is said to be quasi- 
local tf, for each A e 5  ~, feBql((2)  implies rtAfeBql((2 ). [Equivalently: 
f ~ Bloc(g2) implies 7ZAf e Bql((2). ] 

Note that (TtAf)(e~)= S teA(CO, dog')f(o9') is the mean value of f i n  the 
equilibrium probability distribution for volume A with boundary condition 
C~AC. Therefore, a specification is quasilocal if the mean values of (quasi)- 
local observables depend very weakly on the external spins far from A (e.g., 
outside a very large volume A') when the external spins in the intermediate 
region A ' \ A  are fixed, i.e., 

lim sup I(rcAf)(col) -- (rcAf)(o)2) I = 0 (2.23) 
A" $ .Lf co l , co2 ~ .Q 

@oi) A, = (~o2) A, 

for all f e  Bql(f2 ) [or Bloc(I2)]. 22 We emphasize that (2.23) constrains only 
the direct influence of the spins outside A' (since the spins in the "annulus" 

22 If the state space S'20 is finite, it suffices to check (2.23) for f E B ( K 2 ,  ~ A ) ,  because any 
f E B j o r  ) [say, f E B ( O ,  ~ .~)  for some . ~ A ]  corresponds to finitely many different 
functions in B(I2, ~a )  when one fixes the configuration e ~ \  a. If the state space Qo is 
infinite, we do not  know whether or not  this weaker condition is equivalent to (2.23). 
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A' \A  are fixed). In particular, (2.23) is perfectly compatible with the 
occurrence of long-range order: it says merely that any influence on A from 
the spins outside A' has to be transmitted by the intermediate region. We 
emphasize also that this condition of "weak dependence" is formulated in 
the supremum norm, i.e., it is a "worst-case" condition. 

Examples. 1. If all the Hamiltonians H{  are local functions, then 
/ /~  is a quasilocal specification. This occurs, in particular, if 45 is a finite- 
range (and/t~ interaction. 

2. If all the Hamiltonians HA ~ are quasilocal functions, then / / #  is a 
quasilocal specification. This occurs, in particular, if ~b is a uniformly 
convergent (and #~ interaction. 

3. Although we have not shown explicitly here how to treat models 
with constraints (e.g., hard-core exclusions), it is easy to see that local 
constraints do not disrupt quasilocality. 

Examples 1 and 3 cover all reasonable systems (of either bounded or 
unbounded spins) with finite-range interactions. Examples 2 and 3 cover all 
reasonable systems of bounded spins. Therefore, we argue that all systems of 
physical interest are quasilocal with the possible exception of models of 
unbounded spins with infinite-range interactions. These latter systems are, 
unfortunately, usually not quasilocal: 

4. Consider a model of real-valued spins {qh}--for example, a 
Gaussian or q~4 model--with formal Hamiltonian 

H = - ~" Ju~o,q~j (2.24) 
i , j  

where J has infinite range. Then the resulting specification is not quasilocal, 
because an external spin arbitrarily far away from the volume A can, by 
taking extremely large values, have large effects inside A. The trouble here 
is that quasilocality is defined in the supremum norm, which is too strong 
a condition for systems with unbounded Hamiltonians. (There is in fact a 
more serious difficulty in this example: for some external conditions the 
Hamiltonian HA ~ is divergent. Therefore, to treat these systems it is 
necessary to enlarge slightly the concept of specification in order to allow 
some external conditions to be "forbidden" (ref. 304, pp. 16-18, 89; refs. 
249 and 61), or else to play some minor trickery (ref. 160, pp. 261,264-265, 
424-425). 

We summarize the main conclusion from this discussion: 
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Theorem 2.10. Let q~ be a uniformly convergent and #~ 
interaction, f in particular this happens i f  q5 is absolutely summable, or if  q~ 
is finite-range and It~ Then the specS'cation H + is quasilocal. 

The Gibbsian specification arising from a model with finite (resp. 
bounded) Hamiltonians has an additional characteristic property: 

Definition 2.11. A specification H=(TCA)A~5,, is said to be, (a) 
nonnull (with respect to Ito) if, for each A E 5 ~ and each A ~ ~A, 

/ t~  ~ rc,I(co, A ) > 0  for all cos12 (2.25) 

and (b) uniformly nonnull (with respect to /to) if, for each A ~5  Q, there 
exist constants 0 < ~3 <~ ~A < OC such that 

C~A#O(A) <~ ~A(CO, A) <<. ~A/t~ (2.26) 

for all co ~ 12 and all A ~ ~'~3. 

Roughly speaking, "nonnull" means that there are no hard-core exclu- 
sions, while "uniformly nonnull" means that moreover the finite-volume 
Hamiltonians are bounded (as a function of both the interior spins e) A and 
the exterior spins ~OA,). 

It turns out that the twin properties of being quasilocat and uniformly 
nonnull exactly characterize the Gibbsian specifications for absolutely 
summable interactions: 

Theorem 2.12 (Gibbs representation). Let 17 be a specification, 
and let #o be a product measure. Then the following are equivalent: 

(a) There ex&ts an absolutely summable interaction ~5 such that 17 & 
the Gibbsian specification for ~ and/t ~ 

(b) 17 is quasilocal and is uniformly nonnul[ with respect to It~ 

Moreover, i f  the single-spin space 12o is finite, then these are also equivalent 
to: 

(c) 17 is quasilocal and is nonnull with respect to/to. 

The proof that (a) ~ (b) is easy; the nontrivial proof that (b) ~ (a) is 
due to Kozlov. (225) The observation that ( c ) ~ ( b )  for finite single-spin 
space was made by both Sullivan <345~ and Kozlov. (22s) 

Def ini t ion  2.13. A measure It on 12 is said to be quasilocal if  there 
exists a quasilocal specification with which # is consistent. (Sullivan (345) uses 
the term "almost Markovian" in place 03" "quasilocal".) 
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Theorem 2.12 implies that quasilocality is only slightly more general 
than Gibbsianness for an absolutely summable interaction: roughly 
speaking, quasilocality allows for local constraints (e.g., hard-core exclu- 
sions) while Gibbsianness does not. 

Remarks. 1. For further discussion on the Gibbs representation 
theorem, in connection with translation invariance, see the Remark at the 
end of Section 2.4.9. 

2. Sullivan ~ and Gross (ref. 181, pp. 194-195) have introduced a 
slightly larger class of interactions than those considered here, based on the 
observation that the only energies which play a role in the definition of the 
specification H e are the relative energies of pairs of configurations that 
differ at only finitely many sites. Therefore, it is not necessary for the 
Hamiltonians 

H~(co) = ~ q~A(co) (2.27) 
A ~ 5 "  

Ac~Av~(~ 

to be well-defined, but only the relative Hamiltonians 

H~I,A(co, co') = ~ [q)A(co) -- ~A(co')] (2.28) 
A ~ 5  o 

A c ~ A ~ 2 ~  

for configurations co, co' that agree outside A. It turns out (ref. 345, 
Proposition 3) that for interactions whose relative Hamiltonians are 
uniformly convergent (Sullivan calls these interactions "~-convergent"),  
the corresponding specification is again quasilocal and nonnull (at least for 
finite single-spin space). So this generalization does not provide examples 
of physically interesting nonquasilocal specifications. Indeed, we can 
combine this result with (c) ~ (a) of Theorem 2.12, and conclude that for 
any "relatively uniformly convergent, interaction q) (at least on a finite 
single-spin space) there is an absolutely summable interaction qs' such that 
H e = H  e'. Roughly speaking this means that q~ and ~ '  are "physically 
equivalent" (see Section 2.3.5). 

3. If H is a quasilocal specification, then the criterion for /~ to be 
consistent with H can be weakened slightly: instead of requiring/~ =/~Tr~ 
[Proposition 2.7(c)], it suffices to have # = #~A on the ~-field ~ (ref. 160, 
Remark 4.21). Thus, if ~ is a uniformly convergent (and #~ 
interaction, then the alternate DLR equation (2.22) is equivalent to the 
standard DLR equation (2.21). 
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4. In  rather  great generality it can be p r o v e n  (164'3~ that  every 

measure # is consistent with some specification. However,  this specification 
will in general not  be quasilocal, Indeed, in Section 4 we shall give 
numerous  examples of measures that  are not  consistent with any quasilocal 
specification. 

2 .3 .4 .  Feller Property. It  is useful to single out  a class of 
specifications in which the finite-volume Gibbs measure ~ZA(CO , -) depends in 
a "sufficiently cont inuous"  way on the bounda ry  condit ion co: 

D e f i n i t i o n  2 .14 .  A specification H=(rCA)A~Se is said to be Feller 
if, f o r  each A ~ 5~ f 6 C(~2) implies TcAf ~ C(~2). 

Example .  If the interaction ~ is cont inuous and uniformly convergent  
(and /t~ then the specification H e is Feller. Thus, nearly all 
specifications of physical interest are Feller. 

I t  is wor th  remarking that  the definition of the Feller proper ty  for- 
mally resembles that  of quasilocality: indeed, Definition 2.14 is identical to 
Definition 2.9, with Bql(~'~ ) replaced everywhere by C(g2). In  particular, if 
the single-spin space s 0 is finite, then Bql (~  ) = C(~Q), so the concepts of 
"quasilocal specification" and "Feller specification" coincide. 

We can now state a very impor tan t  uniqueness theorem: 

Theorem 2.15 .  Let  # be a probability measure that gives nonzero 
measure to every open set U c g2. 2a Then there is at most  one Feller specifica- 
tion with which # is consistent. In particular, i f  the single-spin space Oo 
is finite, then there is at most  one quasilocal specification with which # is 
consistent. 

This theorem has an impor tan t  consequence for the renormalizat ion 
group:  it shows that  the downward  vertical ar row in (1.2) cannot  be a mul- 
tivalued map,  provided that  we interpret H '  as s tanding for a specification. 

Remark .  Such uniqueness does not  bold in general for non-Feller  
specifications. Indeed, if #1,/~2,-.- is any finite or countabty  infinite set of  
probabil i ty measures that  are distinguishable at infinity, 24 there exists a 
specification (in general non-Feller  and nonquasi local)  with which all these 
measures are consistent. 25 Fo r  example, let/~1, #2 .... be Gibbs measures of  

23 This means, roughly speaking, that every configuration in g2 is "possible," i.e., there are no 
"hard-core exclusions." 

24 This means that there exist disjoint sets Fl, F2,... s ~'~ --= ('l A ~ s, ~A c such that #k(Fk) = 1 for 
each k. 

25 Proof: Form the measure It =~k Ck#k, where cl, c2,... > 0 is any sequence with sum 1. By 
refs. 164, 305, and 339 there exists a specification //with which /~ is consistent. But then 
#k=e~iXFk# (where Fk are the sets defined in footnote 24) is also consistent with H 
(ref. 304, Lemma 2.4). 
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the two-dimensional Ising model at an arbitrary sequence of temperatures 
ill, flz,...e [ - 0 %  + e e l ;  then there exists a specification with which all 
these measures are consistent! (By Theorem 2.15, such a specification is of 
necessity non-Feller and nonquasilocal.) This remark shows that non- 
quasilocal specifications can be extremely pathological and "unphysical"; it 
is an additional argument for the importance of quasilocality. 

2.3.5. Physical Equivalence in the DLR Sense. The same 
physical situation can be described by many different interactions 4. For 
example, the interactions 

f -hoo i if A =  {i} 

g}a(o~)= l -  �9 �9 if A = { i , i + l }  
0 J ( '~  c~ + 1 otherwise 

(2.29) 

and 

{o ~tA(O) ) = ~ O~i -- J(~i(Di+ 1 if A = { i , i + l }  

otherwise 

(2.30) 

both describe the one-dimensional Ising model with nearest-neighbor inter- 
action J and magnetic field h; they are obviously "physically equivalent." 
The reason they are "physically equivalent" is that they define, the same 
specification--and it is the specification that determines the physics. 

Reflecting a little bit on this and similar examples, one comes to the 
following definition (ref. 160, Section 2.4): 

Def in i t ion 2.16. Let ~ and 4 '  be convergent interactions. We say 
that q5 and 4 '  are physically equivalent in the DLR sense/f, for all A ~ 5 ~, 
the function H ~ -  H~A ' is ~c-measurable (i.e., depends only on the spins out- 
side A ). 

One can then prove the following theorem: 

T h e o r e m  2.17. Let ~b and ~b' be convergent #~ inter- 
actions. Consider the following statements: 

(a) q5 and 4 '  are physically equivalent in the DLR sense. 

(b) H~ = H ~', i.e., the specifications for �9 and 4 '  coincide. 
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Then (a) =*, (b). Moreover, i f  #~  O for every open set U c  (2, 26 and the 
interactions 45 and 45' are continuous, then (b) =~ (a). 

Corollary 2.18 (Griffiths-Ruelle). Let 45 and 45' be uniformly 
convergent, continuous, #~ interactions; and assume that #O( u)  > 0 
for every open set U = Q. I f  there exists a measure # that is Gibbsian for both 
45 and 45', then 45 and 45' are physically equivalent in the D L R  sense, and 
H ~ = H ~' (hence oh and ~ '  have exactly the same Gibbs measures). 

There are several ways to deal with the ambigui ty  caused by physical 
equivalence. One  way is to select a single "preferred" representative from 
each class of physically equivalent interactions: in the Ising model  this is 
exemplified by the possibility of using "spin" interactions q~A = --JA (7A or 
"lattice-gas" interactions 45A = --JAP A =- --JA((1 + ff)/2)A; (209'360) and more  

generally it is exemplified by the concepts of "c~-normalized" interactions 
and "gas" interactions (ref. 160, Sections 2.3 and 2.4). However,  for interac- 
tions which are not  finite-range, this approach  can give rise to convergence 
problems. (36~ 

The other  approach  is to accept the ambigui ty  as inevitable, and to 
work with equivalence classes of interactions modulo  physical equivalence. 
We shall take this latter approach.  The key result here is Corol lary  2.18, 
due originally (albeit in a very slightly weaker form) to Griffiths and 
Ruelle. (177) This result has an impor tan t  consequence for the renormaliza- 
t ion group:  it shows that  the downward  vertical ar row in (1.2) cannot  
be a mult ivalued map,  provided that  we interpret H' as standing for an 
equivalence class of interactions modulo  physical equivalence. 

To avoid trivialities, we assume henceforth that #~  0 for every 
open set U c (2. 

2 .3 .6 .  S t r u c t u r e  o f  the Space f # ( n ) .  Physical systems exhibit 
in general one or  more  possible "macrostates,  ''27 depending on the values 
of some control  parameters.  For  instance, water can be in a liquid, solid, 

26 This means, roughly speaking, that every configuration in t2 is "possible." If it were not so, 
then the true configuration space would be a proper closed subset F= I~xE~ supp #0x c f2. 
We could then make the condition hold simply by redefining the configuration space to be 
F rather than f2. So the condition means simply that the configuration space does not 
contain any "useless points." Some such condition is needed for (b)~ (a) to hold, because 
the interaction q~ is completely arbitrary at the "useless points" co E f2 \F. 

27 These "macrostates" are also referred to as "phases" in the chemical and physical literature. 
Here, following an established mathematical-physics nomenclature, we reserve the word 
"phase" for the notion of "pure phase," to be defined in Section 2.4.9 below. For this 
informal discussion we prefer to use the word "macrostate," but keeping the quotation 
marks to emphasize the informality of the concept. We do not want to get entangled with 
the many different senses adopted in the literature for the word "state." 
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or gaseous "macrostate," depending on temperature and pressure; and 
there are points on the temperature-pressure phase diagram where two or 
even all three of these "macrostates" are possible. 

The physical relevance of the theory developed in the preceding sub- 
sections relies on the assumption that for each physical system there exists 
a specification / /  from which all the statistical-mechanical information 
about the system can be obtained: that is, such that the space ~(H) of 
measures consistent with H describes all the "macrostates" of the physical 
system that are possible for the given choice of control parameters. There- 
fore, we must be able to transcribe all the expected properties of the set of 
these "macrostates" in terms of properties of the space if(H). We briefly 
discuss here this transcription. In consistency with our main message that 
not everything in the world is Gibbsian, everything in this subsection holds 
for general specifications, which need not be Gibbsian. (This generality will 
also be useful when discussing statistical mechanics at zero temperature: 
see Appendix B.2.1.) However, for the sake of brevity and familiarity, we 
will sometimes refer to the measures consistent with H as the "Gibbs 
measures" for H--which is a slight abuse of language when H is not 
Gibbsian. 

There are two important properties that characterize the macroscopic 
systems observed in nature. First, these systems involve a huge number of 
degrees of freedom, so large that only a statistical description is possible. 
However, these statistical aspects do not manifest themselves at a macro- 
scopic level: that is, macroscopic observables do not fluctuate; the system 
behaves deterministically with respect to them. The second property refers 
to the microscopic observables: they do fluctuate, but their fluctuations are 
only local, not affecting large regions. Equivalently, local observations made 
far away one from the other are almost independent. 

To translate these properties into precise mathematical statements, we 
need first to specify what a macroscopic observable is. As is usual with 
long-used concepts, there is more than one possible meaning. Some 
people consider a macroscopic observable to be any translation-invariant 
measurable function. At this point, however, we would like to remain at a 
general level, leaving the aspects related to translation invariance until the 
next section. So we adopt an alternative definition, which corresponds to 
what could be called "global" observables, namely observables that do not 
depend on what happens to finitely many spins. Recall that if A is a finite 
subset of the lattice, then ~AC is the ~-field consisting of all events that are 
measurable by observations made solely outside A; that is, they are the 
events that do not depend on the behavior of the spins inside A. Now 
consider the events that belong to ,~A~ for every finite subset A: these events 
constitute a a-field 
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~ ~ ~a~ (2.31) 
A E ~  

which consists of all those events whose definition is not affected by 
changes on any finite number of spins. This field is usually called in mathe- 
matics the tail field, and could be thought as the field of  global events. The 
functions measurable with respect to this field are called observables at 
infinity and can be interpreted as global observables. 

Examples of Global Observables. 1. All "macroscopic averages," 
for instance, observables of the form 

f(o~)- I.lim~ IA.I-' x~ f(~x) 
10 (or whatever) 

if the limit exists 

otherwise 

(2.32) 

where (An) is a suitably increasing sequence of finite subsets of 5r which 
together exhaust 5r (we will discuss this further in Section 2.4.1), and 
f :  f2 o ~ ~ is a measurable function. A macroscopic average as in (2.32) is 
obviously unaffected by altering finitely many spins, so f is indeed an 
observable at infinity. 

2. In an Ising model, consider 

if there exists an infinite connected cluster of + spins 
otherwise (2.33) 

The existence of an infinite cluster is obviously unaffected by altering finitely 
many spins, so g is indeed an observable at infinity. (This observable is of 
particular importance in percolation theory.) 

3. In an Ising model, consider the difference in magnetization 
between the even and odd sublattices: 

~stagg(O)) ~ I lira ~ [An1-1 ( - 1 )lxl ~ox if the limit exists 

otherwise 

(2.34) 

where (A,) is as before. This also is obviously an observable at infinity. 

Thus, the usual macroscopic measurements performed on real systems 
correspond to global observables, but the converse is not true: as Example 3 
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illustrates, our concept of "global observables" includes some quantities 
that are experimentally not very accessible. For example, in the antiferro- 
magnetic Ising model, the sign of the staggered magnetization is an 
observable at infinity, which detects which of the two sublattices is 
positively magnetized and which is negatively magnetized. But it is very 
unlikely that an experimenter could succeed in reliably labeling the two 
sublattices, much less in measuring separately their magnetizations. 

After the previous discussion, we can now state more precisely which 
properties a measure It representing a "macrostate" of a physical system 
must have: (i) It must be deterministic on global events, that is, It(A) can 
only take the values 0 or 1 for an event A ~ ~~  ; and (ii) its expectation for 
spatially distant events must, in some sense, asymptotically factorize 
[ = short-range correlations = (some type of) cluster property]. It turns out 
that these two properties are equivalent: 

Proposition 2.19. 
are equivalent: 

(a) 

(b) 

Let It~ M + l(s Then the following properties 

It has trivial tail field, that is, i f  A ~ ~ then It(A) equals either 
Oor 1. 

It has short-range correlations, that is, for each A ~ ~ we have 

lim sup IIt(A n B ) - - I t ( A ) I t ( B ) l  = 0  (2.35) 
A E 5  a 

Property (a) states, roughly speaking, that all the observables at 
infinity (=  global observables) take a constant value from the point of view 
of the measure It. For instance, the fact that all the sets of the form 
{co ~ O: f(co)e B} have measure either 0 or 1 means that there is a precise 
value f~ such that f = f ,  with It-probability 1. Property (b) is a strong 
"cluster property": it states that distant regions of the lattice are asymptoti- 
cally independent (even if one of the regions involves infinitely many 
spins), uniformly in the observable measured in the second region. 

Now fix a specification H, and let us consider the structure of the set 
fq(H). We know that f#(H) is a convex set, so it is natural to ask what are 
its extreme points. 28 The answer is: 

Proposition 2.20. Let It ~ f#(H). Then the following properties are 
equivalent: 

28 W e  recall  t h a t  the  ex t r eme  po in t s  of  a convex  set a re  those  t h a t  c a n n o t  be wr i t t en  as a n o n -  

tr ivial  c o n v e x  c o m b i n a t i o n  of  o t h e r  po in t s  in the  set. 
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(a) # is an extreme point of f#(II). 

(b) I~ has trivial tail field. 

(c) t~ has short-range correlations. 

The upshot of the preceding discussion is that the "macrostates" of a 
physical system described by a certain specification correspond to the 
extremal Gibbs measures for this specification. What is the interpretation of 
the nonextremal measures of f#(//)? For  "nice" convex sets, every point 
in the set can be represented as the barycenter of a probability measure 
concentrated on the extreme points (this is a kind of "integral" convex 
combination). It turns out that fr is nice in this sense. 29 Thus, every 
nonextremal measure in fr is an (integral) convex combination of 
extremal ones. In fact, a deep result (ref. 304, Theorem2.2; ref. 160, 
Theorem 7.26) states that this decomposition is unique, that is, that f#(//) 
is a simplex. These results mean, in experimental terms, that a nonextremal 
Gibbs measure corresponds simply to the preparation of a randomly 
chosen extremal Gibbs measure. The probabilities for this choice are given 
by the "coefficients" of the convex combination. This extra randomness 
can be interpreted as representing ignorance on the part of the experi- 
menter about the system's "macrostate" (i.e., over and above his or her 
unavoidable ignorance about its microstate). From this point of view, the 
physical system itself can always be considered to be in a well-defined 
"macrostate" described by an extremal Gibbs measure. Thus, the extremal 
Gibbs measures are the "pure" physical objects. 

As a consequence of the preceding discussion, we conclude that the 
cardinality of the set of extremal measures of fq(H) represents the number 
of physical "macrostates" available to the system. A change in this number 
as the control parameters are varied corresponds to a phase transition 
(more precisely, to one of the notions of phase transition, see Section 2.6.5); 
and the variation of this number as a function of these control parameters 
(temperature, magnetic field, chemical potential, etc.) can be recorded in 
the form of a phase diagram. Therefore, the study of the set of extremal 
measures of fq(H) is a central problem in statistical mechanics. As a first 
step, it is essential to determine conditions under which the set fq(H) is 
nonempty, i.e., under which there exists at least one infinite-volume Gibbs 
measure. Contrary to what one might initially think, this is a nontrivial 
problem, since there exist physically quite reasonable models for which 
there are no infinite-volume Gibbs measures. The typical examples are the 

29 For systems of bounded spins this can be proven by appealing to the Choquet 
theorem. (298'2~ For general systems it can be proven through direct probabilistic 
arguments (ref. 304, pp. 24-32; ref. 160, Section 7.3 and the associated notes; ref. 109). 
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short-range massless Gaussian models (harmonic crystals) in dimension 
d~< 2, and the solid-on-solid or the discrete Gaussian models in d =  1. The 
essential point here is that the existence of Gibbs measures in these models 
is equivalent to the breaking of a noncompact symmetry of the single-spin 
space (the shift of all the spin values by a constant); and, as is well known, 
it is impossible to break discrete symmetries in d =  1 or continuous sym- 
metries in d~<2. We refer to ref. 160, Chapter9, for precise statements, 
references, and further examples. In any case, the following theorem suffices 
for virtually all applications to models of bounded spins: 

Proposi t ion  2.21. Let ~ be a compact metric space, and let 17= 
( ~ A ) A ~  be a Feller specification. Then ~(H)  is nonempty. 

This result is, in fact, an immediate consequence of Proposition 2.22 
below: take any sequence whatsoever of boundary conditions (%); by 
compactness, the sequence (v,~3o) must have at least one limit point It, and 
Proposition 2.22 then guarantees that It ~ if(H). 

If there are several "macrostates" available to the system, and an 
experimenter wants to select a particular one with absolute certainty, how 
must he or she proceed? There are basically two ways: One approach is to 
add to the Hamiltonian some additional fields, such that an infinitesimal 
value of these fields--more precisely, a limit process consisting in turning 
them on and then slowly off in some appropriate sequence--selects one or 
the other of the "macrostates." For example, in an Ising model at low tem- 
perature, one may add to the Hamiltonian a magnetic field h; the limits 
h ~, 0 and h 1" 0 then select the extremal Gibbs measures It + and It_ of the 
zero-field Ising model. An alternative approach is to immerse the (finite) 
sample in a configuration typical of the intended "macrostate" (selection 
via boundary conditions). For example, in the Ising case we could use 
boundary conditions in which the spins outside the volume A are fixed to 
be all + or all - ;  taking the limit A T ~ with these boundary conditions 
again selects It+ or It_, respectively. In relation with this second point of 
view we present two propositions, the first of which justifies a posteriori the 
traditional approach to infinite-volume lattice systems based on infinite- 
volume limits: 

Proposi t ion  2.22. Let 17= (7CA)3~.~ be a Feller specificat&n. Let 
(A,)n>~t be an increasing sequence of  finite volumes whose union is ~ ,  and 
let (vn),~> 1 be an arbitrary sequence of  probability measures on s (i.e., 
arbitrary deterministic or random boundary conditions). Let t t be any limit 
point (in the weak topology) of  the sequence (Vn~A,)n>~l. Then It is consis- 
tent with fl. In particular, f~(II) is a closed subset of  M +l(~ ). 
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Proposition 2.23. Let g2 be a compact metric space, let 17= 
(TZA)A~ ~ be a Feller specification, and let # be an extreme point of  ~(17). 
Then, for p-a.e. ~o, 

lim 6~oz~ A = # (2.36) 
A T ~  
A E S ,  ~ 

in the weak topology. 

Proposition 2.22 states that any weak limit of finite-volume Gibbs 
measures, with arbitrary deterministic or random boundary conditions, 
is an infinite-volume Gibbs measure. This is the link between the 
DLR approach and the traditional approach via limits of correlations. 
Proposition 2.23 is a very strong converse statement, for the special case of 
extremal Gibbs measures: it states that if one takes any "typical" configura- 
tion from the measure # and uses it as a boundary condition, in the 
infinite-volume limit one recovers/~. This is the mathematical transcription 
of the process of selecting a "macrostate" by preparing the sample with an 
appropriate boundary condition. In fact, there is a revealing generalization 
of this, which states that if # is any Gibbs measure, then if one takes a 
"typical" configuration from the measure # and uses it as a boundary con- 
dition, in the infinite-volume limit one recovers one of the extremal Gibbs 
measures in the decomposition of #.(159~ This theorem can be interpreted as 
saying that the result of a measurement on a large (strictly speaking 
infinite) system will always yield a value characteristic of one of the 
extremal Gibbs measures: for example, a measurement of the magnetiza- 
tion in a low-temperature Ising model at zero magnetic field will always 
yield _ M o ,  not an intermediate value. 

Finally, the consistency between the physical picture and the mathe- 
matical formalism requires some discussion of the issue of distinguishability 
of "macrostates." Physically, two "macrostates" should be considered 
different only if there is some macroscopic measurement that can tell the 
difference. In terms of the formalism discussed so far, this corresponds to 
the requirement that global observables be able to distinguish among the 
different extremal measures for a given specification. The following theorem 
shows that even more is true: the global observables uniquely characterize 
each measure--extremal or not--consistent with a given specification. 

Theorem 2.24. Let 17 be a specification. Then: 

(a) The extremal measures of  ~(17) are mutually singular when 
restricted to the tail field. That is, i f #  and v are distinct extremal 
measures of  ~(17), there exists a set A E ~ such that p ( A ) =  1 
and v(A) = O. 
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(b) Each measure #~f~(H)  is uniquely determined [among the 
measures o f  ~#(II)] by the events in the tail field. That is, i f  lt and 
v are measures in fY(17) such that # ( A ) =  v (A) fo r  each A ~ ~oo, 
then li = v. 

For the proof, see ref. 160, Theorem 7.7. 

2.3.7. Condi t ioning on an Arbi t rary  Subset of Spins. The 
DLR equations tell us how to condition on the spins in the complement of 
a finite set. However, in Section 4 we shall need to condition on sets of 
spins which are not complements of finite sets. Therefore, we need the 
following technical construction, which can be skipped on a first reading. 

Let H=-(rCA)A~ ~ be a specification. Let zJ be a subset of 5~' (not 
necessarily cofinite!). Let co ~ (2 be a configuration (but only its components 
co~ will play any role). We then define the system restricted to the volume 
5r with configuration space (Do)-~\~: the specification for volume ~q~\A 
with external spins set to co a is the family HOg= ( T z ~ ) ~ , A = ~ \  A defined by 

O9 t ! 7rA(co, A) = 7ca(co a xco,  A) (2.37) 

where co'~((20) ~\~ and A ~ \ ~ .  Clearly the functions ~ZA(.,A ) are 
~_~\~ )\A -measurable. It is easy to see that the family Ho9 defines a 
specification on the system with lattice ~ \ A .  

Let now ~ be a measure consistent with H. Let #o~ be a regular condi- 
tional probability for # given ~ .  [-Such regular conditional probabilities 
always exist if (12, ~ )  is, for example, a standard Borel space. This includes 
all examples of physical interest.] We then have the following intuitively 
obvious result: 

Proposition 2.25. For l~-a.e, co, the measure I~o9 r ~_~\~ is consistent 
with Ho9. 

2.4. Translat ion Invariance 3~ 

Until now the lattice &t' has been simply a countably infinite set of 
sites, devoid of any geometric structure. In most applications, however, Y 
is a regular d-dimensional lattice; this additional structure allows us to 
define the notion of translation invariance for measures, interactions, 
specifications, and so forth. For simplicity we shall take ~ to be the simple 

30 References for this section are Georgii (ref. 160, Chapter 14), Israel (ref. 209, Chapter IV), 
Preston (ref. 304, Chapter 4), and Ruelle (ref. 318, Chapter 3). 
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(hyper)cubic lattice Z d. This is no real loss of generality, because other  
regular lattices can be mapped  to Z d by an appropr ia te  labeling of sites. 31 

2 .4 .1 .  Van Hove Convergence.  An impor tan t  role in the statisti- 
cal mechanics of t ranslat ion-invariant  systems is played by sequences of 
volumes ( A n ) w h i c h  grow in such a way that  the surface-to-volume ratio 
tends to zero. We therefore make  the following definitions: 

Definition 2 .26 .  Let  r > O, and let A c y_d. We then define, (a) the 
inner r -boundary  ~?~-A = {x c A :  dist(x, A c) <<. r}, (b) the outer r -boundary  
~3+A = {x e A~: dist(x, A)  <~ r}, and (c) the r -boundary  0rA = ~?TA w O+A. 

We can then state the desired condi t ion in a number  of equivalent 
ways: 

Proposition 2 .27 .  Let  (An)n~> 1 be a sequence o f  nonempty f ini te  
subsets of Z d. Then the following are equivalent: 

(a) l i m , _ ~  [O~-A,J/JAnJ = 0 .  

(b) l i m , _ ~  JO~A~I/[An[ = 0 .  

(c) For each r > 0, l imn~ o~ J~rAnl/JAnJ = O. 

(d) For each a ~ Z  d, l i m n ~  IAn \ (An+a) l / lAn j  = 0 .  

(e) For each a ~ Z  a, l i m n _ ~  ] ( A , +  a)kAnI/IA,I  =0 .  

(f)  For each f ini te  subset A c g a, l imn_ o~ JAn A (An + A)J/[An[ = 0. 

Moreover,  all o f  these conditions imply that: 

(~) l i m n - ~  [Anl = ~ .  

(~)  There exist  vectors an ~ y a such that the translates An - an f i l l  out 
y_a in the following sense: f o r  each f inite subset A ~ 2U, there 
exists no(A) < ~ such that A c A n - an for  all n >~ no(A). 

Definition 2 .28 .  A sequence (An)n>>. 1 of  nonempty f ini te  subsets o f  
Z a is said to converge to infinity in the sense of van Hove  (denoted 
A ,  ~ ~ )  i f  it satisfies any one (hence all) o f  the equivalent conditions o f  
Proposition 2.27. 

Definition 2.29 .  Let  F be a funct ion f r o m  5e (the nonempty f ini te  
subsets o f  Z a) to some metric space W, and let w be some element o f  W, We 
write lim A ~ o~ F(A)  = w in case lim,_~ o~ F(An) = w for  every sequence (An) 
that tends to infinity in the sense o f  van Hove. 

3x What is really relevant here is not that ~Va equals Z a, but merely that the additive group Z d 
acts on ~:  that is, there should exist bijections t~ : ~ ---, ~ ( a ~ Z a) such that t, t b = I a + b and 
t o = identity. The formulas below can easily be generalized to this case, by replacing each 
occurrence of x - a  by t~(x). 

822/72/5-6-5 
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2.4.2. Translation-lnvariant Measures. With these prepara- 
tions, we now focus attention specifically on translation invariance in lattice 
spin systems. With 5r = S ,  the translation group Z '~ acts on the infinite- 
volume configuration space s = (s ~ by 

(T=02)x=02~ ~ forall  x e ~  (2.38) 

where a e Z d. (The minus sign here means that T=02 is the configuration 02 
translated forward by a.) This action on the configuration space induces in 
turn an action on functions 

(Taf)(02)=f(Ta02) for all coes 

and on measures 

(Ta#) (A) -#(T]~[A])  for all A e f f  

(2.39) 

(2.40) 

A function feB(s is said to be translation-invariant if T a f = f  for all 
a eY d. A measure /~ is said to be translation-invariant if Tap=s for all 
a e Z  d. We denote by M~nv(s and M+l,inv(s the spaces of translation- 
invariant measures. All this is just a precise mathematical statement of the 
obvious notions that everybody has in mind. 

At this point we can repeat the considerations done in Section 2.3.6, 
this time regarding the relationship between physical "macrostates" and ele- 
ments of M+ 1,i,v(s If we now take the point of view that the "macroscopic" 
observables are the translation-invariant bounded measurable functions, 
then the requirements for a measure # representing a physical "macrostate" 
are: (i) Translation-invariant functions in B(s must not have fluctuations 
with respect to #, i.e., they must be constant with #-probability one; and 
(ii) the probability of distant events must factorize in some sense. Once 
more, the extremal measures are the objects with the right properties. 
Indeed, M+ i,inv(s is a convex set, and its extreme points are characterized 
by the following theorem: 

Proposition 2.30. Let # e M + l.inv( s ). Then the following properties 
are equivalent: 

(a) # is an extreme point of  M +l,in,(s 

(b) Every translation-invariant function f e B(s is #-a.e. constant. 

(c) lim,~o~ n-U~,a~c, # ( f  Tag)=#( f )# (g)  for all f geB(s [or 
Bql(s ) or Bloc(Q ) or C(s  where C, is a cube of  side n. 

(d) lim A , co IA]-a ~,a~A # ( f  Tag)= #( f )  #(g) f or all f ge  B(s [or 
Bql(s ) or Bloc(s or C(s 
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We notice that the "cluster property" embodied by properties (c) and (d) 
is much weaker than the one presented in Section 2.3.6 [part (b) of 
Proposition 2.19]: (c) and (d) state that distant regions of the lattice are 
asymptotically independent, but only in an averaged sense. A measure 
# ~ M+ l,i.v((2) having the properties listed in Proposition 2.30 is said to be 
ergodic. 

Therefore, by considerations analogous to those of Section 2.3.6, if we 
consider the translation-invariant functions to be the only "macroscopic" 
observables, then the ergodic measures are associated to physical "macro- 
states" and their convex combinations to "mixtures" representing ignorance 
on the part of the experimenter. Note that, as in the first part of Section 2.3.6 
(through Proposition 2.19), we have not made any reference to interactions, 
specifications, or Gibbsianness; the present comments have general validity. 

We have now introduced two distinct classes of observables that could 
plausibly be called "macroscopic": the global observables (Section 2.3.6) 
and the translation-invariant observables (present section). Which class 
truly corresponds to the "experimentally accessible" observables? This 
question does not have a canonical answer: it all depends on the system 
and the experiments. It is known (ref. 160, Proposition 14.9) that for a 
translation-invariant measure #, every translation-invariant function is 
measurable at infinity, modulo a set of #-measure zero. The converse is not 
true. By limiting ourselves to translation-invariant observables, we eliminate 
some not-very-accessible global observables, like the staggered magnetiza- 
tion mentioned in Section 2.3.6. 

Analogous questions could be posed in relation to whether the 
extremal measures of if(H) or the extremal measures of M+l,inv(Q) 
should represent physical "macrostates." We shall comment briefly on this 
point once we define the notion of translation-invariant specifications 
(Section 2.4.9). For now, let us comment that the ergodic measures have 
the additional appeal of being precisely those for which "space averages 
equal ensemble averages": 

Proposition 2.31 (Ergodic theorem). Let # be an ergodic 
translation-invariant probability measure on E2, and let f ~ LI(#). Then: 

(a) lim A i o~ IAI-1Za~A Taf =~ f d# in L1(#) norm. 

(b) l i m , ~  n-dZa~c, Taf =~ f d# pointwise #-a.e. 

Part (a) is called the L I (or mean) ergodic theorem; it is easily 
generalized to L p for all p < ~ .  Part (b), which is much deeper, is called 
the Birkhoff (or individual) ergodic theorem. 
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The simplex M+l,inv(Q) of translation-invariant measures has the 
property that its extremal elements--namely, the ergodic measures--are 
dense in the whole set, in the bounded quasilocal or weak quasilocal 
topology. In other words, any translation-invariant measure # can be 
approximated arbitrarily closely, with regard to any finite set of (quasi)- 
local observables, by ergodic measures. Physically this means that through 
observations in any finite volume, no matter how large, one cannot learn 
the long-range correlation properties of the measure /~ (ergodicity or the 
lack thereof). The proof of this fact is really quite simple: Pave 7/a by cubes 
of side n; let #n be equal to # on each cube, but independent between cubes 
(i.e., cut the correlations between distinct cubes); and finally, let/~n be #,  
averaged over the n a possible translates (so as to make it translation- 
invariant). Then it is easy to see that/~, is ergodic, and that lira, + ~/7~ =/~ 
in the bounded quasilocal topology. We have just sketched the proof of: 

Proposition 2.32. The ergodic measures are a dense subset of  
M+/,inv(t'2), in the bounded quasilocal topology [and hence also in the weak 
quasilocal topology]. 

The density of the ergodic measures is thus an intrinsic and natural 
feature of infinite-volume physics. Geometrically, however, a simplex with 
dense extreme points (a so-called Poulsen simplex) is highly unintuitive. 
Indeed, our usual intuition, derived from finite-dimensional geometry, is 
that the extreme points should form a closed subset (as, e.g., the vertices of 
a triangle, of a tetrahedron, etc.). The unusual behavior of M+l,inv(s is 
possible only in infinite dimensions. It will be at the origin of many of the 
"pathologies" to be discussed in Section 2.6.7. 

Remark. It is an amazing mathematical fact that a (compact 
metrizable) simplex with dense extreme points is essentially unique: all 
Poulsen simplices are affinely homeomorphic to each other. (256'289) 

If we think of the ergodic measures as representing all the "macrostates" 
available to the system, it is natural to inquire whether the translation- 
invariant observables distinguish between different such measures, as is 
desirable on physical grounds (see the analogous discussion at the end of 
Section 2.3.6). The answer is yes: 

T h e o r e m  2.33. (a) The extremal measures of M+l,inv(12) (i.e., 
the ergodic measures) are mutually singular when restricted to the a-field 
~nv of translation-invariant events. That is, i f  i~ and v are distinct ergodic 
measures, there exists a set A ~ ~inv such that I~(A ) = 1 and v(A)= O. 

(b ) Each measure #~M+a,inv(12 ) is uniquely determined [among the 
measures of  M+ 1,inv(s by the translation-invariant events. That is, i f#  and 
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v are measures in M+ 1,inv(~r such that # (A)= v(A) for  each A ~ ~inv, then 
/z=v. 

For the proof, see ref. 160, Theorem 14.5. In fact, this theorem is also 
true with the invariant field ~ii,v replaced everywhere by the tail field ~o~; 
this follows from ref. 160, Proposition 14.9. 

2.4.3. Dividing Out Translation Invariance. Translation 
invariance brings along some natural notions of "equivalence." For 
instance, different observables cannot always be distinguished when looked 
at in a translation-invariant measure. (Example: ao versus cry7. ) In this 
section we discuss the central object generating all these notions of 
"equivalence," namely the set of functions that have zero average with 
respect to all translation-invariant measures. 

From now on until the end of Section 2, we shall generally assume 
that the single-spin space t2 o is a compact metric space, i.e., we restrict 
attention to models of bounded spins. The configuration space C2 is then 
also compact. This restriction is made primarily to simplify the exposition; 
in Appendix A we partially remove this restriction. 

The functions of interest here are characterized by the following 
proposition: 

Proposition 2.34. Let (2 o be a compact metric space, and let 
f 6 C((2). Then the following properties are equivalent: 

(a) f has zero mean with respect to every translation-invariant 
probability measure, i.e., ~ f dp = 0 for all p E M+ 1,inv((2). 

(b) f has zero mean with respect to every translation-invariant finite 
signed measure, i.e., ~ f dl~ = 0 for all # ~ Minv(~'2 ). 

(c) f lies in the closed linear span of the family of functions 
{ g -  T,g: g6C(C2), a6~_d}. 

(d) l i m . ~  n dl lZ.~c.  Taf l t~=O. 

(e) lim A I ~ IA1-1 II~a~A Taf[Io~ =0- 

We denote by J the class of functions having the properties specified in the 
foregoing proposition; it is a closed linear subspace of C((2), and is exactly 
the annihilator of Minv(C2). The space J will play a very important role in 
the theory of translation-invariant equilibrium measures, and in particular 
in the discussion of "physical equivalence." We define the quotient 
(semi)norms: 

][fllc~m/ . . . .  t~--~ inf H f - c [ l ~ = � 8 9  (2.41) 
c E ~  



9 2 6  v a n  Enter e t a l .  

[I f Ir c(m/J = inf IP f -  glr ~ (2.42) 
g ~ , . r  

Ilfllc~m/~j+ . . . .  t) ~ inf I t f - g l J ~  (2.43) 
g ~ ~ + c o n s t  

The quotient (semi)norms in C(O) / J  and C(O) / ( J  + const) are given by 
simple explicit formulas: 

Proposit ion 2.;35. Let f e  C(O). Then: 

(a) lima ~ ~ IA1-1 IIZ.~A T, f l l ~  exists and equals Ilfl] c~m/.s. 

(b) lim a ~ ~ ]A] 1 t IZ~A T~fllc(o)/ . . . .  t exists and equals 

[] f [1 c ( a ) / ( ~  + . . . .  t)' 

2.4.4. Spaces of Translation-lnvariant Interactions. With 
y=y _d ,  it also makes sense to discuss translation-invariance of inter- 
actions: 

Definit ion 2.36. An interaction q~ = (~A) is said to be translation- 
invariant tf  

~A+x=Tx~A forall A ~ 5  ~, x~Y_ a (2.44) 

For example, the Ising interaction (2.12) is translation-invariant iff 
Jxy = J(x - y) and hx = h = const. 

We now introduce some important Banach spaces of interactions: 

Definit ion 2.37. For each ~>~0, we denote by ~ the space o f  
translation-invariant continuous interactions with norm 

1]~11~=-- Z IX[ ~ - l l l q ~ x l [ ~ < ~  (2.45) 
X ~ 0  

More generally, for any translation-invariant function h: J ~ [-1, ~ ), we let 
~h be the space of  translation-invariant continuous interactions with norm 

h(X) 
II~ll~h- Z ~-IP~xll~ < ~ ( 2 . 4 6 )  

X ~ O  

The most important of these spaces are M ~ ("Israel's big Banach 
space") and ~ ("Israel's small Banach space"). Indeed, No is naturally 
related to C((2) (see Proposition 2.40 below), and so will be the natural 
space on which to develop the theory of equilibrium measures (Section 2.6); 
while MI is the space of translation-invariant absolutely summable 
continuous interactions (see Definition 2.3), and so is a natural space for 
the theory of Gibbs measures. Note that our assumption h ~> 1 implies that 
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II~ll~h>~ I1~11~0 and hence ~ h c g  ~ so ~o is the largest space of inter- 
actions that we shall consider. 

Let us also introduce the space ~finite consisting of all finite-range 
translation-invariant continuous interactions. ~finite is a dense linear sub- 
space of each of the Banach spaces ~h- It will sometimes be convenient to 
carry out proofs first for some class of "nice" interactions--e.g., finite-range 
ones--and then extend to more general interactions by a density argument. 

Remark. The hypothesis of continuity of the interaction plays a role 
in some but not all of the theorems below (the mathematically inclined 
reader is invited to figure out which ones). To avoid complicating the 
notation, we have included continuity as part of the definition of the spaces 
N~, ~h, and ~finite" 

We emphasize that all the spaces N~ permit two-body (or more 
generally n-body) interactions of arbitrarily long range, provided only that 
they are absolutely summable. Indeed, for a pure n-body interaction q~, the 
norms t1" tl ~, are all equivalent: we have limb IL e, = n ~ I I q~ll ~0. The difference 
between the spaces ~)~ is that lower values of e permit interactions which 
contain heavier contributions from large n, i.e., which are "more strongly 
many-body." If we want to force q~ to be "short-range," we must take h(X) 
to grow to + oo as the diameter of X (and not just its cardinality) tends to 
infinity (202.299): 

D e f i n i t i o n  2.38. We write h ~ 1 if, for each K <  oo, there exists 
R = R(K) < ~ such that h(X) >7 K whenever diam(X) >~ R. [Equivalently, for 
each K <  o% there are only finitely many X (modulo translation) such that 
h(X) < K.] In this case we say that Mh is a space of short-range interactions. 

The following proposition will be useful in Sections 3.3 and 5.1.2: 

Proposition 2.39. Fix a translation-invariant weight function 
h: 5#--, [1, ~ ) ,  and f i x  M <  oo. Then: 

(a) The ball {~: [Iq~hl~h~<M} is a closed subset of  ~ ~ 

(b) I f  h ~ 1 and the single-spin space #2 o is finite, then the ball 
{q~: I[q~ll~h~<M} is a compact subset of  ~ ~ 

Remark. Since we are here using the sup norm Ilq~A[I ~ to measure 
the strength of an interaction, all of the above spaces consist solely of boun- 
ded interactions. This is fine for systems of bounded spins, but these spaces 
are not adequate for treating physically interesting systems of unbounded 
spins (Gaussian model, ~p4 model, SOS model, etc.). It is an open problem 
to devise a physically reasonable and adequately comprehensive space of 
interactions for unbounded-spin systems. We remark that any such space 
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is unlikely to be a linear space, because it is perfectly possible for an inter- 
action ~b to be reasonable while - ~  is unstable. Nor can it be a convex 
cone, because ~ may be reasonable while 2~ is unstable for 2 large and 
positive. However, such a space could conceivably be a convex subset of an 
appropriate linear space. 

2.4.5. The Observable f .  Corresponding to an Interact ion q). 
Let ~b be an interaction in ~o. Then it is useful to define an observable 
(=  funct ion)fe  that corresponds roughly to "the contribution to the energy 
from the neighborhood of the origin": 

f ~5~-~- E IX[--1 ~ X  (2 .47)  
x~0  

It is obvious from the definition of ~o that this sum is convergent in [[. [1 
norm, and that [[f~ll~ ~< []~[l~0. Note also that f~  is a quasilocal function, 
i.e., f e  Cql(g2). 

This definition o f f e  is not unique: one could equally well use instead 

f ~ , -  ~ ~ x  (2.48) 
X-~min 0 

where X~min 0 denotes that 0 is the smallest element of X in lexicographic 
order, or many other definitions (ref. 318, Section 3.2). The important point 
is that all such definitions give the same value for the mean of f~  with 
respect to any translation-invariant measure (that is, they give the same 
"mean energy per site"); in other words, any two such definitions of f~  
differ by an element of the space J defined in Proposition 2.34, Therefore, 
what is defined naturally is not the map ~ f ~  of ~o into C(~), but 
rather the map ~ ~ [ f~ ]  of ~o into the quotient space C(~)/J. We can 
then define the following subspaces of ~o: 

Const = {~b: f#  = const } 

j = { # : / . e J }  

J + Const = {qk f~  e J + const} 

and the corresponding quotient (semi)norms 

IP~ll~o/co~st= inf t l@-  ~11~0 
~ Const 

I I~J l# / j=  inf l i e - ~ 1 1 ~ 0  
~ e J  

IP q5 inf 
g* e J + Const 

J105 - ~Ull ~0 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

(2.54) 
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It is then not difficult to verify that: 

Proposition 2.40. Let [2 o be a compact metric space. Then the map 
[-q~] ~ [ f e ]  is an isometry of  N ~  onto C(f2)/J,  and of  N ~  + Const) 
onto C(f2) / (J  + const). 

sion 
2.4.6. Physical Equivalence in the Ruelle Sense. The discus- 
in the preceding section motivates the following definition: 

Definition 2.41. Let ~b, ~'  E ~o. We say that ~ and ~b' are physi- 
cally equivalent in the Ruelle sense / f  q~ - 45' e j + Const, i.e., i f f e  - f e ,  
J + const. 

Ruelle (31s) was the first, to our knowledge, to highlight the central role 
played by the subspace J in the variational theory (see also refs. 202 and 
212). 

We have now defined two distinct notions of "physical equivalence" 
for interactions: 

1. The DLR sense (Section 2.3.5), which is defined for arbitrary 
convergent (but not necessarily translation-invariant) interac- 
tions, and which guarantees the equality of the specifications 
(Theorem 2.17). 

2. The Ruelle sense, which is defined for arbitrary translation- 
invariant (but not necessarily absolutely summable or even 
convergent) interactions in N0, and which guarantees the equality 
of the family of equilibrium measures (Proposition 2.65 below). 

It is natural to ask, therefore, whether these two notions are equivalent on 
their common domain of definition. The answer, fortunately, is yes: 

Theorem 2.42. Let the single-spin space [2 o be a complete separable 
metric space, and let qb, oh' be interactions in ~ .  Then q5 and qS' are physi- 
cally equivalent in the D L R  sense i f  and only if they are physically equivalent 
in the RuelIe sense. 

In Sections 3.3 and 5.1.2 we will need a version of Proposition 2.39 
"modulo physical equivalence." Unfortunately, we have not been able to 
prove such a result for ~1 (or any space ~ ) ,  and we do not know whether 
it is true. All we have is a result for spaces ~h of short-range interactions: 

Proposition 2.43. I fh  ~ 1 and the single-spin space [2 o is finite, then 
for each M <  ~ the sets {~: II~[L~h/j ~< M} and {~: ]]cI)l[~h/(j +const) ~ m } 
are closed subsets of  ~o. 
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2.4.7. Estimates on Hamil tonians:  Bulk versus Surface 
Effects. We can now prove some estimates on the finite-volume 
Hamiltonians, which will play a key role both in the variational theory 
(Section2.6) and in our applications to the renormalization group 
(Sections 3.2 and 3.3). The main physical idea in these estimates is to 
distinguish between "bulk" effects (namely, those which are of order [A[) 
and "surface" effects [those which are o(IAI )]. The upshot is that, provided 
one can control the surface contributions, many natural quantities are 
equivalent "in the bulk": this includes the Hamiltonians HA,free and HA, ~, 
as well as the "Hamiltonian-like objects" Y ~ A  T~fr and - l o g  d#A/dkt~ . 

For f ree  boundary conditions, it suffices to take # in the "big" Banach 
space ~,o: 

Proposit ion 2.44. 

(a) 

(b) 

Let  Ob e ~o. Then: 

IlHA~f~ee ~ ~ IAI-Pl~J]~0 

q~ 
tlHA,f~ee[I o~ = IAI �9 IIc/'lt~0/~ + o(IAI) 

= IAI-II f~ll c(~2)/j + o(IAI) 

(2.55) 

(2.56) 

as A /" oo (van Hove) .  

(e) 

]rHA, fr~e][ CCm/o0,st = IAJ " I1 ~1[.~0/(t + Const) + o(JA]) 

= IA]" Ilfr . . . .  o + o(IAI) (2.57) 

as A /* oo (van Hove) .  

(d) 

H~a,f~e - Z Txfa,  ~ ~<o(IAI) (2.58) 
x G A  

as A .* Go (van Hove) .  

Note, in particular, part (d) of this proposition: since f e  is (roughly) 
"the contribution to the energy from the neighborhood of the origin," it 
follows that ~x~A T x f e  ought to be (roughly) "the contribution to the 
energy from the volume A," And indeed it is: while this sum does not 

q~ 
exactly equal HA,free , it differs from it only by a "surface" term. In this 
sense, Y,x~A T x f e  can be thought of as yet another Hamiltonian for 
volume A, corresponding to some new type of "boundary condition." 

In order to control the Hamiltonians with general external boundary 
conditions, it is necessary to take q5 to lie in the "small" Banach space ~ :  
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P r o p o s i t i o n  2 . 4 5 .  Let ~ E ~m. Then: 

(a) qb is absolutely summable, and 

IIH~fl oo ~ IA I .  I1~11 ~,, 

(b) 

LtH]N 

as A ,7 ~ (van Hove). 

(e) 

= IAI  �9 I1'/'11.~0/~ + o ( I A I )  

= I A I .  IIf,~llc(o~/j+o(IAI) 
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(2.59) 

(2.60) 

as A /~ oo (van Hove). In fact, this bound is uniform for # ~ fa(H*). 

dsxA_ w Txf+ ~<o(IAI) (2.63) 
- l o g  dv o x~A c(~)/ . . . .  t 

I IH~l l~(o)/ . . . .  t = I A I .  I I ~ l l ~ 0 / ( ~ , - + C o n , t ) + o ( I A I )  

= IAl'l l f~llc(a)i(j+ . . . .  t)+ o(IAt) (2.61) 

as A ,7 oo (van Hove). 

(d) 

II | oo l iB,  + '~ ~ <" H~ free I oo ~-~ sup IInA,,~--nA,freello o <~o(IAI) (2.62a) WA, ,,ell - - 
ZEU2 

H~--x~A ~ Tx f*  ~<sup,~ H ~ , ~ - ~ A T X f +  ~<o( IAI )  (2.62b) 

as A s ~ (van Hove). 

In summary, q~ ~ o  suffices to control the Hamiltonian with free 
boundary conditions, but ( P E ~  1 is needed in order to control the 
Hamiltonian with external boundary conditions and hence to apply the 
theory of specifications and Gibbs measures. 

2 . 4 . 8 .  H o w  t o  O b t a i n  a n  I n t e r a c t i o n  f r o m  a G i b b s  M e a s u r e .  
If y is a Gibbs measure for an interaction ~b ~ ~1, then the DLR equations 
permit us to read off the interaction ~, modulo physical equivalence, from 
the measure y: 

Proposition 2.46. (a) Let # be a Gibbs measure (not necessarily 
translation-invariant) for an interaction ~ ~ ~1. Then 
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(b ) Let I21, #2 be Gibbs measures (not necessarily translation-invariant) 
for interactions 41, 4 2 ~ ~1,  respectively. Then 

l o g  d~iA 
dkt2A co ~<2 IAJ. 1141-421P~0/~,+Const)+o(fAJ) (2.64) 

log d]21A = 
d#2A c(m/const JAI" Ir41-421p~o/~t+Co,~t)+o(]A[) (2.65) 

as A /~ oo (van Hove). In fact, this bound is uniform for plEf~(H ~1) and 
It2 ~ ~(H~:). 

Part (a) of this proposition tells us that the interaction can be 
reconstructed by taking the logarithm of the finite-volume densities. This 
corresponds to the fact that Boltzmann factors are exponentials of 
Hamiltonians. An immediate consequence of this is part (b). One implica- 
tion of part (b) is that the reconstructed interaction is unique modulo 
physical equivalence (Griffiths-Ruelle theorem): just take #1=/~2 in 
(2.65) to conclude that ll4a- l~21].~,0/(f +Const)=0. In other words, if p is a 
Gibbs measure for interactions 4~, 4 2 ~  1, then 41 and 42 must be 
physically equivalent in the Ruelle sense. Of course, we already knew this 
(Corollary 2.18 plus Theorem 2.42). 

It is curious that although 4~, 42 are required to belong to the 
"small" Banach space M1, the final estimate is in terms of the Mo/ j  norm, 
hence much stronger. The reason is that 4~, 42 ~ ~1 is needed in order to 
ensure that the boundary energy contributions are indeed o([A[); but once 
this is done, then the bulk energy contribution is determined by the M0/ j  
norm, as in Proposition 2.44(b). 

2.4.9. Translation-lnvariant Specifications and Gibbs 
Measures. We can now examine the theory of specifications and Gibbs 
measures under the hypothesis of translation invariance. 

Defini t ion 2.47. A specification H =  (rcA) A ~s~ is said to be transla- 
tion-invariant ~f 

nA(~O, A ) =  7"CA +a( Ta(-O, T~A ) (2.66) 

for all A E 5  r co~t-2, A E Y ,  and a ~ Z  a. 

In particular, if 4 is a translation-invariant (and convergent, /~0_ 
admissible) interaction, then H ~ is obviously a translation-invariant 
specification. 

Fix a translation-invariant specification H. We denote by ~inv(H)- 
fa(H) ~ M+l.~,v(g2 ) the set of all translation-invariant measures consistent 
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with/7.  ~inv(H) is a convex set, and its extreme points are characterized by 
the following theorem: 

Proposition 2.48. Let  H be a translation-invariant specification. 
Then: 

(a) A measure It ~ ~inv(H) is extremal in ~inv(H) if and only i f  it is 
extremaI in M+l.in,,(s i.e., i f  and only i f  it is ergodic. 

(b) ~nv(H) is a face of M+l,inv(Q): that is, i f  It, veM+a,inv(f2) and 
0 < 2 < 1  are such that 2I t+(1--2)VENnv(H) ,  then in fact  
It, V e ~nv(H). 

It is now the right moment to make some remarks that may at first 
seem pedantic, but could actually be helpful to people haunted by an 
(unfortunately established) terminology that is confusing or at least bother- 
somely subtle. The situation is as follows. If the specification H is transla- 
tion-invariant, we have at our disposal two different spaces of measures of 
physical interest: 

1. (#(H), the space of all measures consistent with H, whether or not 
they are translation-invariant. 

2. Nnv(H), the space of all translation-invariant measures consistent 
with H. 

Physical "macrostates" are interpreted as extremal measures, but the 
question is: extremal in which space? It is important to observe that we 
have three possibilities: 

(i) The extremal points of C~(H). These measures are characterized 
by very strict properties (Proposition 2.19): they show no fluctuations for 
the observables measurable at infinity ("global observables ')--which, 
for translation-invariant measures, form a set larger than the set of 
translation-invariant observables ("macroscopic observables")--and they 
exhibit very strong cluster properties (short-range correlations). 

(ii) The translation-invariant extremal points of N(//). This is often 
a small set, and in many cases it is empty. For  example, in the two-dimen- 
sional Ising antiferromagnet at low temperature, there are only two 
extremal Gibbs measures: one has + magnetization on the even sublattice 
and - magnetization on the odd sublattice (let us call this measure It + ), 
and the other has the reverse magnetization (call this measure # ~). Neither 
of these two measures is translation-invariant, so the set in question is 
empty. More dramatically, there are examples due to van Enter and 
Mi~kisz (365) in which there are not even any periodic extremal Gibbs 
measures. 
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(iii) The extremal points of ~inv(g). This is a much larger set than the 
one discussed in (ii). In particular, it is never empty for compact-spin 
models (see below). For instance, in the example of the Ising antiferro- 
magnet, there is only one translation-invariant Gibbs measure--  �89 _+ + # = ) 
- -which is obviously extremal in ~inv(H) but not in N(H). These measures 
satisfy the comparatively weaker properties of Proposition 2.30: they are 
deterministic for the smaller set of translation-invariant observables, and 
they exhibit the cluster property only in the weakest (Cesaro-averaged) 
sense, namely ergodicity. In  the mathematical statistical-mechanics litera- 
ture, these measures--the extremal points of ~nv(H), or equivalently the 
ergodic elements of Nnv(H)--are called pure phases for the specification H. 
(Unfortunately, the term "pure phase" is sometimes used with different but 
closely related meanings: see, e.g., Appendix B.3.1.) 

Which set is interpreted as representing the physical "macrostates" is 
a problem-dependent issue. In problems where non-translation-invariant 
measures are relevant (interfaces, surface tension, crystal shape, wetting, 
systems with disorder, quasicrystals), it is mandatory to consider the set 
ff(H) of all Gibbs measures. Then the "macrostates" should correspond to 
the measures in (i), and the translation-invariant "macrostates" should 
correspond to the measures in (ii). On the other hand, if one limits oneself 
to measuring bulk observables (i.e., macroscopic averages), then it is 
natural to consider only the translation-invariant Gibbs measures N,v(H) 
and their extreme points: that is, (iii) is the natural choice [(ii) being often 
too small, e.g., empty].  In this regard, the use of the catchy label "pure 
phases" for the measures in (iii) is on the one hand natural, given the 
traditional interest in "macrostates" with symmetry under translations, but 
on the other hand unfortunate for the current interest in more general 
phenomena. A nomenclature more consistent with our purposes could be 
to call extremal Gibbs measures those in (i), translation-invariant extremal 
Gibbs measures those in (ii), and just ergodic Gibbs measures those of (iii) 
(or extremal translation-invariant Gibbs measures, provided that we pay 
attention to the subtleties of word ordering). In any case, in the remainder 
of this paper we shall use the term "phase" or "pure phase" to denote the 
measures in (iii), with one exception: in Appendix B (and only there!) we 
shall succumb to the customary terminology of Pirogov-Sinai theory (as 
well as brevity) and use the term "pure phase" to denote the measures in 
(ii) (in fact a slight generalization of them). 

Regarding the conditions under which the set Nnv(H) is nonempty, it 
suffices to mention a result analogous to Proposition 2.21 (Section 2.3.6): 

P r o p o s i t i o n  2.49. Let s be a compact metric space, and let 
H =  (ZCA)A~ ~ be a translation-invariant Feller specification. Then Nnv(H) is 
nonempty. 
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Because the translations form an Abelian group, this is an immediate 
consequence of Proposit ion 2.21 and the Markov -Kaku tan i  theorem.(~~ 311) 
The idea is that, given a measure/~ e fq(H), we can construct a measure in 
Nnv(H) by averaging /1 over translations (and extracting, if necessary, 
a convergent subsequence). 

Remark. One would like to have a translation-invariant version of 
the Gibbs Representation Theorem (Theorem 2.12). That  is, if H is a 
quasilocal, uniformly nonnull, and translation-invariant specification, one 
would like to prove that there exists an absolutely summable translation- 
invariant interaction �9 such that H = H e. However, it seems to be an open 
question whether this is true or not. Sullivan (ref. 345, Corollary to 
Theo rem2)  constructed a translation-invariant ~b which is "relatively 
absolutely summable" (see Remark 2 at the end of Section 2.3.3), while 
Kozlov (ref. 225, Theorem 3) constructed a translation-invariant absolutely 
summable q~ under a condition on H stronger than quasilocality. 32 

2.5. Entropy, Large Deviat ions,  and the Var iat ional  Principle: 
F in i te -Volume Case 33 

We now begin the study of the second approach to classical statistical 
mechanics, namely the one based on the variational principle, which states 
that the Bol tzmann-Gibbs  measure is the one that maximizes entropy 
minus mean energy. The theory developed in this section is applicable 
to an arbitrary classical-statistical-mechanical system for which the 
Hamil tonian H makes sense. In practice this usually means a finite-volume 
system. First we introduce the free energy; next we introduce the concept 
of relative entropy and its interpretation in terms of large deviations; finally 
we prove the variational principle that connects these two quantities. In 
Section 2.6 we will develop the analogous theory for translation-invariant 
infinite-volume lattice systems. 

In this section we are working in a completely general classical- 
statistical-mechanical (=probabi l is t ic)  context: (f2, S)  is an arbitrary 
measurable space. 

2.5.1. Free Energy 

Definition 2.50. Let v be a probability measure on (f2, ~), and let 
f be a bounded measurable function on f2. We then define 

P(fL v) = log f eSdv (2.67) 

32 Kozlov's Theorem 3 uses (at least in the English translation) the words "necessary and 
sufficient," but in fact he proves only the sufficiency. 

33 References for this section are Georgii (ref. 160, Section 15.1), Israel (ref. 209, Sections 1.2 
and II.2), Preston (ref. 304, Chapter 7), and Ellis (ref. 112, Chapters I, II, VII, and VIII). 
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Physically, P ( f ] v )  is minus the free energy for a system with 
Hamiltonian H = - f  and a priori measure v. Our choice of sign convention 
makes the formulas slightly more elegant. 

It is easy to prove the following properties of the free energy: 

Proposit ion 2.51. 
P(-Iv) has the following properties: 

(a) 

(b) 

(c) 

(d) 

(e)  

(f) 

Let v be a probability measure on (0, Z). Then 

~'(o I v) = o. 

f<.  g== P( f [  v) <~ P(gl  v). 

P ( f  + c I v) = P ( f  I v) + c for any real number c. 

I P ( f [ v ) - P ( g l v ) l < ~ l r f - g t [ ~ .  That is, / ' (-Iv) is Lipschitz 
continuous with Lipschitz constant 1. 

P(. Iv) is convex. 

P(-Iv) is strictly convex in directions corresponding to functions 
which are not v-a.e, constant. 

2.5.2. Relat ive Entropy 

Def in i t ion 2.52. Let # and v be any two probabil i ty measures on 
(s Z). Then the relative entropy (or information gain or Kullback-Leibler 
information) of  li relative to v is defined as 

I(ulv ) = av/  

t + o o  

dv if # ~ v  

otherwise 

(2.68) 

More generally, if  d is any sub-or-field of  Z, then we define 

I ~ ( # t v ) = I ( #  ~ d l v  ~ d )  (2.69) 

Actually, our I(#[v) is the negative of the usual relative entropy 
S(#1 v); but it is more convenient to work with I than with S, and it is too 
cumbersome to keep saying the words "negative of." So we shall just call 
I the "relative entropy" tout court. But this sign difference should be borne 
in mind when interpreting the variational principle! (See also the Remarks 
at the end of this subsection for a comparison with the usual physicists' 
entropy.) 

It is not hard to prove the following properties of the relative entropy: 
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Proposit ion 2.53. 
Then: 

Let #, v be probability measures on (12, Z). 

(a) 0 ~ / ( # I v )  ~ / m a x  ~ - l o g  Vmin, where Vmin = i n f ~ A  ~r v(A). [For 
example, if v is normalized counting measure on a finite space 12, 
then /max=lOg ]121" If12 is an infinite space, then Im,x = +oo.] 

(b) I ( # ] v ) = O  if  and only if # = v .  

(c) I(#1v) is a convex function o f  the pair (#, v). 

(d) For f ixed v, l ( # lv )  is "almost" a concave function of  #, in the 
sense that 

/ i I 2~#~ v >1 ~ 2 f l (# i lv )+ 2ilog2~ (2.70a) 
i 1 / i=1  i=1  

i 2iI(#il v) -- log n (2.70b) 
i=1  

for any probability measures #1 ..... #,, and numbers 2% ..... 2. >~ 0 
with ~'/= 1 2i = I, 

(e) For f ixed v, I (#tv  ) is a lower semieontinuous function of  # in the 
bounded measurable topology, 34 and in the weak topology if 12 is 
a complete separable metric space. 

(f) For f ixed v and f ixed c< 0% the set {#: I(#1v) <--.c } is compact 
and sequentially compact in the bounded measurable topology 
(and hence also in the weak topology). 

(g) I d ( # t v )  is an increasing function of  d .  

(h) I f  s~ 1 c d2 c Z, and #~1 (resp. ~1~ ) is a regular conditional 
probability for # (resp. v) given all, then 

Id2(# ] v) = I ~ ( #  I v) + f + (co )  I~2(#~ ~ I v~,,) (2.71) 

(i) 

[This obviously refines (g).] 

(Strong superadditivity). Let ~r162 d3 be sub-a-fields of  Z 
which are independent  with respect to v. Then 

I~,usc2w_~e,(#Iv)+I~2(#Iv)>~[~,w~2(#]v)-t-Ise2,js~3(#[v ) (2.72) 

34 Recall that a net {p~} converges to # in the bounded measurable topology if~ fdp~ ~ ~ fdp 
for all f e  B(O, Z'). 

822/~2/5-6-6 
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Remarks. 1. The standard statistical-mechanics textbooks (e.g., 
ref. 216, Chapters 2, 4, and 5; ref. 312, Section9.B; ref. 21, Chapter3)  
introduce a quantity which is apparently the entropy of a single measure #, 
without reference to a base measure v: 

f - ~  #~ log #o~ 

S b ~ 1 7 6  ' + = "  l - f  # ( X ) l o g  # ( x ) d x  

if f2is discrete 

if s is continuous 

(2.73) 

However, closer examination reveals that a base measure v has been intro- 
duced surreptitiously in these formulas, namely counting measure in the 
discrete case or Lebesgue measure in the continuous case. This base 
measure does play a physical role in the theory: the physics would be 
different if counting or Lebesgue measure were replaced by some other 
measure. 35 Thus, the formulas (2.73), in which the base measure v is 
hidden, are quite misleading. (They are also inelegant, as can be seen from 
the incompatible treatment given to the discrete and continuous cases.) 
What is involved here is the common sin of failing to distinguish between 
a measure and a density ( = R a d o n - N i k o d ) m  derivative): the latter is 
defined only relative to a specified base measure. In many situations, this 
sin is harmless, because there is a "natural" and universally agreed choice 
of base measure. But not here. We therefore feel strongly that in statistical 
mechanics the base measure v should be introduced explicitly. 

Note also that the definition (2.73) uses unnormalized counting or 
Lebesgue measure as the base measure, while we always take the base 
measure v to be a probability measure. This causes an (irrelevant) additive 
shift in the entropy: e.g., for Q finite, 

I ( #  I Y) = - - S b o o k s ( # )  -1- log I ~ l  (2.74) 

when v is normalized counting measure [v({co})= 1/I~QI for each co e f2]. 
Thus, both / (#Iv)  and Shook+(#) take values in the interval [0, log ]~f], 
but large values of I(#1 v) correspond to small values of Sbooks(~t), and 
vice versa. 

35 In s o m e  cases, counting or Lebesgue measure may play a privileged role by virtue of some 
symmetry: e.g., spin-flip symmetry in the Ising model, or symplectic symmetry in a classical 
Hamiltonian system. In other cases, however, the privileged measure could be some other 
measure: e.g., Haar  measure on a Lie group is not Lebesgue measure except in some very 
special parametrizations. This is yet another reason for making the base measure v explicit: 
it clarifies whether or not there is a symmetry argument that privileges one choice of v over 
another. 
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The reader is urged to remember the two notational differences--the 
sign and the additive constant--when interpreting our results. 

2. The relative entropy I(p[v) plays an important role in information 
theory and in mathematical statistics (large-sample asymptotic theory of 
hypothesis testing and maximum-likelihood estimation); this follows from 
the large-deviations theory to be discussed in the next subsection. See, 
e.g., ref. 31, pp. 119-125, and refs. 229, 228, and 17. The relationship with 
maximum-likelihood estimation is discussed also in Section 5.1.2 below, 

2.5.3. Large Deviations. The physical interpretation of relative 
entropy is associated with the problem of large deviations, which concerns, 
roughly speaking, the estimation of the (very small) probabilities of large 
simultaneous fluctuations in a system consisting of a large number of ran- 
dom variables. In this section we will consider the case of independent, 
identically distributed (i.i.d.) random variables. So let X1,X2 .... be a 
sequence of indepeRdent samples from the probability distribution v; and 
let f be any bounded real-valued measurable function on ~. Then f(X1),  
f (X2)  .... is a sequence of independent, identically distributed real-valued 
random variables. In such a situation the weak law of large numbers states 

f - - 1  n that the sample mean S , -  n Zi=  l f (Xi )  is, with high probability, very 
close to the theoretical mean value m = ~fdv:  more precisely, if A is any 
closed subset of the real line not containing m, then P r o b ( S f e A ) o  0 as 
n o oo. Large-deviation theorems (369'112'77) are a strengthening of the weak 
law of large numbers, in that they give the precise rate of convergence of 
this probability to zero as n ~ oo. It turns out that this probability is 
exponentially small in n, that is, 

Prob(Sfe  A) ,-~ e . . . . . . .  t(f,v,A) (2.75) 

where const(f, v, A) > 0 whenever A is a closed set not containing m. More 
precisely, it can be shown that 

lira sup -1 log Prob(S~e A) ~< - inf I(/ll v) if A is a closed set (2.76a) 
n ~ o o  n ~ : ~ f d # ~ A  

lira inf i_ log P r o b ( S ~  A)/> - inf I(/t[ v) if A is an open set (2.76b) 
n~oz~ n #:~fd,  uEA 

where I(#1 v) is the relative entropy. (For a large family of sets A, for 
instance, the convex ones, the limit actually exists.) 

In the preceding thought-experiment, we looked at only one real- 
valued observable f More generally, we could look at a vector-valued 
observable f =  (fl,..., fk), and ask for the probability that Sen lies in some 
subset A c Rk. Not surprisingly, we have 
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1 o 
l i m s u p C - l o g P r o b ( S ~ , s A ) ~ <  - inf I(p]v) if A is a closed set (2.77a) 

n ~ c : ~  n # : S f d p e A  

1 
l im i n f -  log Prob(Sf .  e A) ~> - inf 

n ~ o o  n ,u: ~ f d,u E A 

These results 
t r ivial  ident i ty  

I (# [v )  if A i s  an open set (2.77b) 

can be wri t ten in a more  succinct way by no t ing  the 

n i = l  i = 1  

(here 3 x is the del ta  measure  at  x), which can be wri t ten as 

where 

S f = L~(f) - f f dL~ (2.79) 

L,,=n -1 ~ 3xi (2.80) 
i = 1  

is called the empirical measure. We emphas ize  that  L n is a random measure:  
it depends  on the r a n d o m  sample  X1,..., Xn. In this language,  the weak law 
of  large numbers  can be re fo rmula ted  as saying that  the empir ica l  measure  
L ,  is, with high p robab i l i ty ,  very close to the theoret ica l  measure  v, when 
"closeness" is u n d e r s t o o d  in the b o u n d e d  measurab le  t opo logy  ( that  is, the 
weak t o p o l o g y  genera ted  by the b o u n d e d  measurab le  functions).  More  
precisely,  if A is any  closed subset  of M+l(ff2 ) no t  conta in ing  v, then 
P r o b ( L n e A ) ~ 0  as n ~  00 .  36 The la rge-dev ia t ion  theorem (179'71'35) then 

states tha t  this p robab i l i t y  is in fact exponent ia l ly  small  in n, namely  

P r o b ( L ,  s A )  ,,~ e "• const(v,A) (2.81) 

36 In this particular topology, a basis for the neighborhoods of v is given by the sets 

B~,f,~=_{u: f f ,  d~-fZdv<eforal l i=l  ..... k} 

where f=  (fl ..... fk) runs over all finite families of bounded measurable functions, and e runs 
over all strictly positive numbers. By the usual weak law of large numbers we have 

k 

Prob(Lnr Bv, t~)~ < ~ Prob(lS~i-mll ~>e)~0 
i=1 

as n ~ 0% since k is finite. Since any closed set A i~ v is contained in the complement of 
some set B,,f,~ the claim Prob(Ln E A ) ~  0 is proven. 
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where const(v, A) > 0 whenever A is a closed set of measures not contain- 
ing v. More precisely, 

1 
lim sup =- log Prob(Ln e A) ~< - inf I(#[ v) 

n ~ o ~  n # : # ~ A  

lim inf 1 tog Prob(L.  e A)  t> - inf I(plv) 
n ~ o o  n # : p e a  

if A is a closed set (2.82a) 

if A is an open set (2.82b) 

In fact, in the present setting, this result is essentially a rewriting of (2.77), 
since every closed (resp. open) set of measures A is contained in (resp. 
contains) one of the form {#: f f d# e A} for some f =  (fl  ..... fk) and some 
A closed (resp. open) c Nk. 

Formulas (2.81)/(2.82) provide a physical interpretation of the relative 
entropy. Indeed, we can say (roughly speaking) that the probability that a 
sample iV 1 ..... Xn, taken from the probability distribution v, "looks like a 
typical sample from g" decays exponentially with rate I(#tv): 

Probv(Xl,,., X, is typical for p).-~ e -":("iv) (2.83) 

In the probabilistic literature, (2.76)/(2.77) are called level-1 large- 
deviation formulas, and (2.82) is called a level-2 large-deviation formula. 

2.5.4. Variational Principle. The free energy and the relative 
entropy are related by the following variational principle: 

Theorem 2.54 (Variational principle). Fix a probability measure 
v on (f2, X). Then P(. Iv) and 1(. Iv) are conjugate convex functions, in the 
sense that 

~eM+l(fa,  X) L ~  

I ( p l v ) =  sup [ f  f d # - P ( f l v )  1 (2.84b) 
f e B(-C2,X) 

Moreover, the supremum is achieved if and only i f  # equals the Boltzmann- 
Gibbs measure for Hamiltonian H =  - f  (and a priori measure v), namely 

e f  dv 
#Bo,:,~ = ~ ef  dv (2.85) 
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This complementary pair of variational principles establishes the 
equivalence of (2.1) and (2.3) for finite-volume statistical-mechanical 
systems. Indeed, ~ f d #  is minus the mean energy for a system with 
Hamiltonian H =  - f ,  and I(#l v) is minus the entropy; therefore, (2.84a) 
states that the Boltzmann-Gibbs measure is the one that minimizes energy 
minus entropy, and that the minimum value of energy minus entropy 
equals the free energy. (In thermodynamic notation, F = E -  TS; recall that 
we are taking/~ = 1.) 

2.6. Entropy, Large Deviations, and the Var iat ional  Principle: 
In f in i te -Vo lume Case 37 

The variational approach developed in the preceding section is 
adequate for finite-volume statistical-mechanical systems, in which the 
Hamiltonian H is well-defined and finite. But it is (not surprisingly) insuf- 
ficient for the infinite-volume case, in which all the relevant quantities 
- -Hamil tonian,  free energy, mean energy, and relative entropy--are  almost 
certainly infinite. Nevertheless, one might hope that for translation-invariant 
infinite-volume systems there would exist an analogous theory in which the 
concepts of free energy, mean energy, and relative entropy are replaced by 
these same quantities per unit volume; one could then define an equilibrium 
measure to be a translation-invariant measure that maximizes the entropy 
density minus mean energy density. In this section we shall develop such a 
theory. But this infinite-volume theory is considerably more subtle than its 
finite-volume counterpart: this subtlety arises from the physical possibility 
of phase transitions, as well as from additional mathematical pathologies to 
be explained in Section 2.6.7 below. 

The variational approach to infinite-volume lattice systems is less 
general than the one based on the DLR equations, because of its restriction 
to translation-invariant measures, 38 but within its restricted domain it is 
equivalent to the DLR theory: the key theorem (Corollary 2.68) states that, 
for any interaction ~ E ~  1, the equilibrium measures coincide with the 
translation-invariant Gibbs measures. 

2.6.1. Free Energy Density ( "Pressure" ) .  We look first at the 
free energy density, or what is equivalent, the "pressure": 

37 References for this section are Georgii (ref. 160, Chapters 15 and 16), Israel (ref. 209, 
Chapters I, II, and V), Preston (ref. 304, Chapters 7 and 8), Ruelle (ref. 318, Chapters 3 
and 4), and Ellis (ref. 112, Chapters IV and V and Appendix C). 

38 Even if the interaction is translation-invariant, there may exist non-translation-invariant 
Gibbs measures (e.g., for the Ising model in dimension d>~ 3(87' 357)), and these are of 
interest in describing interfaces. 
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Def in i t ion 2.55. Let v be a translation-invariant probability measure 
on f2 = (f2o) ~, and let f be a bounded measurable function. Then the pressure 
o f f  relative to v is defined as 

if this limit exists. Similarly, i f  q~ & an interaction in N0, then the pressure 
of 4~ relative to v is defined as 

p ( ~ l v ) =  lim nl~log f exp[-H~, , f re , ]  dv 
n ~ o  

(2.87) 

if this limit exists. 

This quantity should really be called "minus the free energy density." 
The term "pressure" arises from the interpretation of the canonical-ensemble 
Ising model as equivalent to a grand-canonical-ensemble lattice gas; in the 
general case the term "pressure" is not really appropriate, but it has become 
standard among mathematical physicists. It has, at least, the virtue of 
brevity. 

We emphasize that the existence of the limit (2.86) [or (2.87)] is a 
nontrivial problem; in fact, there exist examples of translation-invariant 
measures v for which the limit does not exist, even for simple local 
functions f (see Appendix A.5.2). Therefore, we shall restrict attention to 
two cases: when v is a product measure, and more generally, when v is a 
Gibbs measure for a translation-invariant interaction. 

Proposition 2.56. Let v be a product measure. Then the pressure 
P( f l  v) exists for all bounded quasilocal functions f; in fact, the limit exists 
also in van Hove sense, namely 

Moreover, p(. I v) has the following properties: 

(a) p(0lv)=0. 
(b) f < ~ g ~ p ( f l v ) < ~ p ( g l v  ). 

(c) p ( f  + c l v ) = p ( f l v ) + c  for any real number c. 

(d) I p ( f l v ) - p ( g l v ) l < ~ l l f - g l t ~ .  That is, p( . Iv)  
continuous with Lipschitz constant 1. 

Lipschitz 
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(e) p ( f  + h ] v ) = p ( f l v ) f o r  any h e J .  

(f) p(.  Iv) is convex. 

We emphasize, in particular, part (e): the pressure is constant within 
"subspaces of physical equivalence." 

Propos i t ion  2.57. Let v be a translation-invariant Gibbs measure 
for an interaction ~ ~ J  (and a priori measure [to). Then the pressure 
p ( f  ] v) exists for all bounded quasilocal functions f ;  in fact, the limit exists 
also in van Hove sense, namely 

1 
P( f Jv )=Al im  ~-~[l~ f e x p [ x ~ x T x f ] d v  (2.89) 

Moreover, the limit is given by 

p ( f [ v )  = p ( f -  f~  ] po) _ p( _ f ~  [ #o) (2.90) 

In particular, p( .  [v) has all the properties ( a ) - ( f )  o f  Proposition 2.56. 

The pressure of a function f is the simplest object from a mathematical 
point of view, but the pressure of an interaction ~ is perhaps more familiar 
to physicists. In fact these two objects are essentially identical: 

Propos i t ion  2.58. Let q5 6 ~o, and let v be a translation-invariant 
measure satisfying the conditions of  Proposition 2.56 or 2.57. Then: 

(a) p(cb[v) exists and equals p ( - f ~ [ v ) .  In fact, the limit exists also 
in van Hove sense, i.e., 

(b) I f  in addition r ~ ~1, then for  any ~ ~ D, 

' f lim log e x p [ - H ~  ~l dv 
A 7, oo I--" ~ , 

also exists and equals p( - f ~ ] v ). 

Part (b) states that, for interactions ~ e N  1, the pressure is inde- 
pendent of boundary conditions. 

The reader will note that we have not asserted the strict convexity of 
p(. Iv); this is because, in sharp contrast to the finite-volume case, the 
infinite-volume pressure is not strictly convex (not even modulo physical 
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equivalence). Indeed, this failure of strict convexity is at the origin of some 
rather surprising pathologies of the infinite-volume variational theory in 
the "large" space of interactions N ~ (see Section 2.6.7 below). However, in 
the smaller space N1 these pathologies do not arise: 

Proposition 2.59 (Griffiths-Ruelle(177)). Let  v be a translation- 
invariant measure satisfying the conditions o f  Proposition 2.56 or 2.57. Then 
the pressure p( .  Iv), restricted to the space of interactions N1, is strictly 
convex in directions r J + Const. 

Note, in particular, the contrapositive of this proposition: if p(-Iv) is 
not strictly convex on N~ in directions ~ J + Const, then v is not the Gibbs 
measure for any interaction in Nz. This gives a method for proving non- 
Gibbsianness, which will be exploited in Section 4.4. 

Remark .  The failure of strict convexity in N ~ was first pointed out by 
Fisher, (1~8) who provided a family of exactly soluble one-dimensional Ising 
models in which the pressure can be explicitly seen to have straight segments. 
These models are lattice versions of the Fisher-Felderhof (~22,123,z~6'lzS) 
cluster models. The failure of strict convexity can here be given a physical 
interpretation in terms of the formation of a perfectly rigid crystal. This 
indicates that N ~ \~1  does contain some interactions of physical interest, if 
only for their rather strange thermodynamic properties. 

2.6.2. Relative Entropy Dens i ty .  For brevity we henceforth 
write the relative entropy in volume A a s  IA(#I v), instead of the more 
pedantic Is~A(/~l v). We now define the relative entropy density: 

Definition 2.60. Let  I~, v be translation-invariant probability mea- 
sures on f2 = (g?o) Zd. The relative entropy density (or relative entropy per 
unit volume) of # relative to v is defined as 

i( lv) 1 : -~Ic , ( /~ lv )  (2.92) 

if this limit exists. 

We emphasize that the existence of the limit (2.92) is a nontrivial 
problem; in fact, there exist examples of translation-invariant measures/~, v 
for which the limit does not exist (see Appendix A.5.2). Therefore, just as 
for the pressure, we shall restrict attention to two cases: when v is a 
product measure, and more generally, when v is a Gibbs measure for a 
translation-invariant interaction. 

Proposition 2.61. Let  v be a product measure. Then the relative 
entropy density i (# lv  ) exists f o r  all translation-invariant probability 
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measures #; in fact, the limit exists in van Hove sense and also as a 
supremum: 

i(#lV)=Alim 1 -(-~[IA(#[V ) (2.93a)  

1 
= sup  - -  I A ( # ] v )  (2 .93b)  

Moreover, i (#[ v) has the following properties: 

(a) O<-~.i(#[v)<-..imax =-- --lOgVmin, O, where V m i . . o = i n f ~ A ~ o ~  v(A). 
[For example, i f  v is the product o f  normalized counting measure 
on a finite single-spin space (2o, then imp,, = log  IOol. i f  the sing&- 
spin space s o is infinite, then ima x = + ~ . ]  

(b) / ( # I v )  is an affine function o f# ,  i.e., 

i ( i ~ 1 2 i # i  v)  =~2ii(#i[v,~=l (2.94) 

for any measures #1 ..... # .  ~ M+ ~,inv(s and numbers 21 ..... 2. >>-0 
with Z n 2~=1. 

i = 1  

(c) For f ixed v, i(/zl v) is a lower semicontinuous function of  # in 
the bounded quasilocal topology,  39 and in the weak quasilocal 
topology 40 if  Qo is a complete separable metric space. 

(d) For any #, there exists a sequence (#.)n~>l such that # ~ #  in 
the bounded quasilocal topology, and i(#. ] v ) = / m a x  for all n. 
It follows that i ( # l v )  is a d i s c o n t i n u o u s  function of  # in the 
bounded quasilocal topology (and hence also in the weak quasi- 
local topology) at each # satisfying i(#lv)</max" 

(e) For any #, there exists a sequence (#.).>~a o f e r g o d i c  measures 
such that # ~ #  in the bounded quasiloeal topology, and 
i ( # .  I v) T i(#[ v). [This strengthens Proposition 2.32.] 

(f) For f ixed v and f ixed c < m, the set { #: i(# [ v) <..c } is compact 
and sequentially compact in the bounded quasilocal topology (and 
hence also in the weak quasilocaI topology), at least if s o is a 
complete separable metric space. 

39 Recall that a net {#~ } converges to # in the bounded quasilocal topology if ~ f d#~ ~ ~ f d# 
for all f c  BqI(Q ). In Georgii, ~16~ this topology is called the "topology of local convergence" 
or the "~-topology." See ref. 160, Chapter 4, for properties of this topology. 

40 Recall that a net {#~ } converges to # in the weak quasilocal topology if ~ f d#~ ~ ~ f d# for 
all f ~  Cql(s If s o is a compact metric space, then Cql(t2)= C(g2), and so the weak 
quasilocat topology coincides with the usual weak topology. 
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It is quite remarkable that the relative entropy density i(-Iv) is an 
affine function. This comes from the fact that the relative entropy I(. t v) is 
not only convex, but also concave within a A-independent additive 
constant; and this constant disappears when considering the entropy per 
unit volume in the infinite-volume limit. This affineness of i(-iv) makes the 
infinite-volume variational theory quite different from its finite-volume 
counterpart. 

Proposit ion 2.62. Let v be a translation-invariant Gibbs measure 
for an interaction q s 6 ~  1 (and a priori measure Ito). Then the relative 
entropy density i(itlv) exists for all translation-invariant probability 
measures lt; in fact, the limit exists also in van Hove sense, namely 

i ( i t lv)= lim 1--~- IA(It[V ) 
A ." ~ iA[ 

(2.95) 

Moreover, i(. Iv) has properties (b) and (c) of  Proposition 2.61. 

i(it I v) = i(it I It ~ + p( - f o  I It ~ + f f~  dit (2.96) 

Moreover, i(. I v) has properties (b) and (c) of  Proposition 2.61. 

Note that, by (2.96), the relative entropy density i(-Iv) depends on v 
only via the interaction q~: that is, if Vl and v2 are translation-invariant 
Gibbs measures for the same interaction q~ e N1, we have i(it[v~)= i(it I v2) 
for all #. 

The reader will note that we have not asserted that i(itl v )=  0 if and 
only if # = v. Indeed, this naive conjecture is false: as we have just seen, 
i ( i t lv )=0  also holds whenever It "and v are translation-invariant Gibbs 
measures for the same interaction. In Section 2.6.6 we shall show that, 
roughly speaking, i(itl v) = 0 only when # and v are Gibbs measures for the 
same interaction. This fact will play a crucial role in the proof of the First 
Fundamental Theorem (see Section 3.2). 

Remark. We have proven the existence of i(itlv) when v is a Gibbs 
measure, but this does not exhaust the cases for which/(it iv) exists. Indeed, 
by combining Theorem 3.4 with our construction in Section 4.1, we provide 
a explicit example of non-Gibbsian translation-invariant measures # and v 
for which i(#[v) exists (and is in fact zero): namely, # (resp. v) is the image 
of the + ( r e s p . - )  phase of the two-dimensional Ising model (at low 
enough temperature) under the b = 2 decimation transformation. It is an 
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interesting (and probably difficult) mathematical problem to characterize 
the pairs (p, v) for which i(#]v) exists. 

2.6.3. L a r g e  D e v i a t i o n s .  In Section 2.5.3 we developed the theory 
of large deviations for independent repetitions of an arbitrary probabilistic 
experiment. This theory provided a physical (and statistical) interpretation 
for the concept of relative entropy. It is natural to ask whether there is an 
analogue, for translation-invariant measures on a classical lattice system, in 
which "time averages" are replaced by "space averages." That  is, instead of 
considering large deviations for the sample mean in a large number of 
independent repetitions of the same experiment, one might instead consider 
large deviations from spatial means (physically, large fluctuations of 
extensive quantities) in a single infinite-volume realization. Such a large- 
deviation theory would then, it is hoped, provide a physical interpretation 
of the relative entropy density. 

In this section we describe (without proof!)  the basic features of such 
a large-deviation theory. We emphasize that this theory is much more 
subtle than the theory for the independent-repetitions case, because the 
spins in disjoint regions of space need not be probabilistically independent. 
Indeed, for general translation-invariant measures on s no satisfactory 
large-deviation theory is known. Therefore, we shall restrict attention to 
the case in which v is an ergodic translation-invariant Gibbs measure for 
an interaction q~eN1. Our exposition is based on the recent work of 
F611mer and Orey, (127) Olla, (287'288~ Comets, (67) and Georgii (~sS) (see also 
ref. 52), which in turn is inspired by the pioneering work of Donsker and 
Varadhan. (1~176 In the physics literature, the relation between thermo- 
dynamics and large deviations was pointed out long ago by Lanford. (233) 

If f is a bounded measurable function on (2, then the mean ergodic 
theorem states that the spatial averages S f = [ A [ - ~ a ~ a  Taf  converge in 
LI(/~) norm to the expected value m - S f d v ,  as A ,~ 00. In particular, 
if A is any closed subset of the real line not containing m, then 
Prob(SSA~A)~0  as A /" oe. The mean ergodic theorem is therefore a 
natural generalization of the weak law of large numbers. The large-devia- 
tion theorems strengthen the ergodic theorem by giving a precise rate of 
convergence of P r o b ( S ~ A )  to zero as A 7 oo. 

If we first restrict attention to single-site observables f (i.e., functions 
of a single spin), then the large-deviation theorems for spatial averages 
(level 1) and for the single-site empirical measure (level2) are direct 
analogues of (2.76) and (2.82): 41 

41 In the mathematical literature the large-deviation theorems are usually proven for sequences 
of cubes, but the same theorems ought to be true for general van Hove sequences (though 
the proofs may not be completely trivial extensions). 
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1 
limA2"~sup ~-~ log Prob(S f e A) 

~< - inf i(#1 v) 
p e M +  1,inv(s ~fd#  ff A 

if A is a closed set (2.97a) 

1 
lim inf ~TA, log Prob(S~ e A) 
a 2" ~ Vii 

~> - inf i(#l v) 
,u c M +  i,inv(s ( . fd# ~- A 

if A is an open set (2.97b) 

and 

1 
lim2sup ~ log Prob(LA e A) 

~< - inf 
,u e M +  l,inv(f2): ]/ ~ "~{0} ~ A 

i(/~lv) if A is a closed set (2.98a) 

1 
lim inf 7-~, , log Prob(LA e A) 
A 2' 0o I1"1 I 

~> - inf 
# e M+l,inv(U2): # ~ ~{0} ~ A 

i(/~[v) if A is an open set (2.98b) 

where i(p[v) is the relative entropy density, and for each configuration 
co the single-site empirical measure in volume A is defined to be L A = 

IA[ l ~ i E A  ~)coi. 

The empirical measure LA is a tool for studying events occurring at a 
single site only. These events would completely characterize the measure if 
it were a product measure (as in the i.i.d, case studied in Section 2.5.3), but 
in the general case one clearly needs multisite observables (i.e., functions 
of several spins) in order to describe correlations. The study of such 
observables gives rise to the "level-3" large-deviation theory. It is based on 
the trivial identity 

, ) [A] E (Taf)(co)= t ~ 6ro~o ( f )  (2.99) 
a e A  a e A  

which can be written as 

S f = RA( f )  -- I f dR ,  (2.100) 
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where 

RA=[A]-~ ~ 3To~o (2.101) 
a c A  

is called the empirical field. We emphasize that RA is a random measure (on 
the infinite-volume configuration space ~),  since it depends on the random 
configuration co. In this language, the ergodic theorem can be reformulated 
as implying that the empirical field RA is, with high probability, very close 
to the theoretical measure v, when "closeness" is understood in the bounded 
quasilocal topology (i.e., the weak topology generated by the bounded 
quasilocal functions). More precisely, if 3. is any closed subset of M+l(g2) 
not containing v, then Prob(RA ~A) -~0  as A ,7 ~ .  The large-deviation 
theorem (15s) then states that this probability is in fact exponentially small 
in ]A], namely 

Prob(R A ~ A) ~ e-IAI const(v,A) (2.102) 

where cons t (v ,A)>0  whenever A is a closed subset of M+~(O) not 
containing v. In detail, 

1 

limA .. oosup ] ~  log Prob(RA ~ A) 

~< - inf i(#lv) if Ais aclosed set (2.103a) 
p:  ,u ~: A c~ M +  l , i n v (~ )  

lim inf 1 log Prob(RA ~ A) 

~ > -  inf i(#]v) if A is an open set (2.103b) 
# :  u ~ A c~ M +  1,inv(.G') 

These formulas provide a physical interpretation for the relative 
entropy density. Roughly speaking, the probability that a configuration co, 
taken from the probability distribution v, "looks in A like a typical 
configuration from p" decays exponentially in the volume of A with rate 
i(plv): 

Probv(co A is typical for ]A)~e -IAFi(~lv) (2.104) 

This interpretation of the relative entropy density will play a key role in 
motivating the First Fundamental Theorem (Section 3.2). 

Remarks. 1. Some of the large-deviation theorems use a periodized 
empirical field R(A per), which is a translation-invariant measure on s One 
expects R A and R~A p~) to behave in the same way. 
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2. Our results in Section 4 give examples of some non-Gibbsian 
measures v for which a large-deviations theory can be developed, e.g., 
v = pT where p is a two-dimensional Ising-model Gibbs measure at low 
temperature, and T is a suitable renormalization map. Of course, one is 
able to control the large deviations for v only by reducing it to the same 
problem for the better-behaved measure p. 

2.6.4. Variational Principle. The pressure and the relative 
entropy density are related by the following variational principle: 

Theorem 2.63 (Variational principle). Fix a translation- 
invariant measure v satisfying the conditions of Proposition 2.56 or 2.57. 
Then p(. Iv) and i(. Iv) are conjugate convex functions, in the sense that 

p ( f l v ) =  sup I f  f d#- i (#[v)]  (2.105a) 
p ~ M +  t,inv(~2, ~ )  

F~ 7 
i(plv)= sup ] | f d # -  p ( f , v ) |  (2.105b) 

f E Bql ( (2 ,~)  L~ J 

Written in terms of interactions, this reads 

p ( ~ l v ) =  sup [ - f f ~ d # - i ( p l v ) ]  
/1 ~ M +  1,inv(K2, o~-) 

i (# lv)=  ~0sup I -  f f~  d l~ -P(~ lv ) l  

(2.106a) 

This variational principle gives us another way to associate (infinite- 
volume) probability measures to a given interaction: 

Defini t ion 2.64. Let q~e ~ ~ and ktEM+l,inv(g'2). We say that # is 
an equilibrium measure for ~b (and a priori measure kt ~ if the pair (q~,/~) 
saturates the variational principle (2.106) with v = po, i.e., if 

p(~  I/~ ~ -t- i(/~ I/z ~ = -- f f~  d/~ (2.107) 

We have now laid out two distinct approaches to infinite-volume physics: 

1. The DLR approach, which says what it means for a (not 
necessarily translation-invariant) measure # to be a Gibbs measure for a 
convergent and /t~ (but not necessarily translation-invariant) 

(2.106b) 
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interaction q~. This is the infinite-volume analogue of the explicit formula 
(2.1). This approach is constructed purely on the basis of probability 
theory, and hence it can be called the statistical-mechanical approach. 

2. The variational approach, which says what it means for a translation- 
invariant measure # to be an equilibrium measure for a translation- 
invariant (but not neccessarily convergent) interaction q~. This is the infinite- 
volume analogue of the variational principle (2.3). This approach is based 
on optimization of thermodynamic potentials, and hence it can be called 
the thermodynamic approach. However, as remarked by Wightman, (373) 
conventional thermodynamics refers to the optimization of potentials with 
respect to a rather reduced number of parameters (temperature, chemical 
potential, etc.). In constrast, the optimization of the previous proposition 
is with respect to an infinite-dimensional space of possible interactions 
(c.q. probability measures). 

For translation-invariant interactions ~ and translation-invariant 
measures #, this means in practice the following: The DLR approach applies 
to a more restricted class of interactions, but in return provides much more 
information on the measures. That is, it requires ~b ~ j ) l ,  but gives strong 
control on # via the DLR equations (2.21)/(2.22). On the other hand, the 
variational approach needs only 45 ~ Mo, but provides much weaker control 
over #. In any case, the two approaches are equivalent in their common 
domain of applicability: if ~b is a translation-invariant interaction in M1 and 
# is a translation-invariant measure, then kt is a Gibbs measure for ~b if and 
only if it is an equilibrium measure for ~b. We will prove this in 
Corollary 2.68 below. 

At this point, the reader may be wondering: If the DLR and varia- 
tional approaches are equivalent (for interactions in ~1), then why bother 
introducing both of them? Why not stick with one or the other, and 
shorten this article by at least 30 pages? The answer is that many deep 
results are based on the interplay between DLR and variational ideas. This 
is the case for Theorem 2.67 below, and it is also the case for many of our 
RG results (notably those in Sections 3.2, 3.3, and 4.4). 

Before leaving the subject of the variational principle, let us note a 
simple corollary. Let F(#, q~) be the amount by which the pair (#, q~) fails 
to satisfy the variational principle, i.e., 

{, 

F(#, q~) - p ( ~ l #  ~ + i(/~ I p ~ + J i f  d/~ ~ 0 (2.108) 

Then it is easy to see that 

IF(#, ~ ) -  F(,u, ,;b')l ~< 2 I I ~ -  ~'ll~o/(t +const ) (2.109) 
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Indeed, this is an immediate consequence of Propositions 2.56(c)-(e) and 
2.58(a). In particular, if/~ is an equilibrium measure for 05, then the amount 
by which /~ fails to satisfy the variational principle for 05' is at most 
2 1105- 05' [I ~~ +con~t). Note also that if 05 �9 8 1, then F(#, 05) can be inter- 
preted as a relative entropy: 

F(/~,05)=i(#[v) forany ve~nv(H ~) (2.110) 

This is the content of Eq. (2.96). 
A special case of (2.109) (which is also easy to see directly) is the 

following: 

Proposition 2.65. Let 05, q~eM ~ be physically equivalent in the 
Ruelle sense (i.e., 05 - q~' e j + Const). Then 05 and 05' have exactly the 
same equilibrium measures. 

2.6.5. W h a t  Is a Phase Transition? Informally, the occurrence 
of a phase transition is associated to one or both of the following 
phenomena: a singularity of some thermodynamic potential and/or a 
change in the number of "macrostates" available to the system. Histori- 
cally, the first point of view was primarily associated with Ehrenfest, while 
the second point of view was primarily associated with Gibbs. However, 
the full formalization of the second point of view--in particular, giving a 
precise meaning to "macrostate"--and the clarification of the relation 
between these thermodynamic concepts and the underlying (microscopic) 
statistical-mechanical concepts had to await the development of the DLR 
and rigorous variational approaches. 

The general interpretation of phase transitions as singularities of the 
(what turned out to be infinite-volume) free energy (=pressure) gave 
rise to the Ehrenfest classification: a system is said to exhibit an nth-order 
phase transition if some nth derivative of the free energy is nonexistent or 
discontinuous (and all the derivatives of lower order are continuous). For 
example, the two-dimensional Ising model at low temperatures undergoes 
a first-order phase transition as the magnetic field passes through ,zero, 
because the magnetization ( = first derivative of the free energy with respect 
to the field) has a discontinuity. On the other hand, if the field is kept equal 
to zero and the temperature is lowered (starting from a high value), 
the system undergoes a second-order phase transition at the critical 
temperature, because the magnetization and energy (=  first derivatives of 
the free energy) remain continuous but the susceptibility and specific heat 
( = second derivatives of the free energy) blow up. From the point of view 
of mathematical physics, however, the Ehrenfest classification is both too 
detailed and too crude for our current level of understanding. It is too 

822/72/5-6-7 
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detailed because, as we discuss below, only the distinction between first- 
order and the rest has been put onto a firm basis. Consequently, authors 
usually group all the transitions of order two or higher into a single class 
and call of them continuous phase transitions--because the order parameter, 
e.g., the magnetization (see below), remains continuous. On the other 
hand, the Ehrenfest classification is too crude, because the possible 
singularities of the free energy are much too varied to be captured in a 
single integer n. Some examples are: 

1. The one-dimensional Ising model with 1/r 2 interaction, in which it 
is believed (13'12'58) that the free energy f(/~, h =0)  is C ~ but non- 
analytic at the critical point /?c, at the same time as the 
spontaneous magnetization M(/~, h=0)=--Of /Ohlh=o is discon- 
tinuous at/~c (Thouless effect). (6) 

2. The two-dimensional X Y  model (Kosterlitz-Thouless transition), 
in which it is believed (223) that the free energy f(/ / ,  h = 0) is C ~ 
but nonanalytic at /~c; here the spontaneous magnetization 
M(~, h = O) = --Of/~hlh = o vanishes identically, while the zero-field 
susceptibility )~(/~, h = 0 )=  -~2f/~h2 I h=O is believed to blow up at 
/~c and remain infinite for all/~ >~/~c. 

3. Systems with disorder, in which it is expected in general (and 
sometimes proven) that at high temperature the free energy is 
everywhere C ~ but nowhere analytic, as a function of temperature 
and/or magnetic field. This phenomenon is known as a Griffiths 
singularity. (134) 

The description of transitions where the number of "macrostates" 
changes is based on the use of order parameters. These are observables 
acquiring different expectation values for the different "macrostates." Each 
"macrostate" can be selected either by introducing some extra field that is 
turned off in the limit, or by using the right boundary conditions. The 
connection between this point of view and the existence of singularities in 
the pressure (free energy) was informally known since the early days of 
statistical mechanics: The pressure has to be convex--for the system to be 
stable--hence its only possible discontinuities are the existence of "sharp 
corners" where the various one-sided derivatives of the pressure take dif- 
ferent values. Each of these values defines a different "macrostate." For 
example, in the case of the Ising model, the right and left derivatives with 
respect to the magnetic field give the two possible magnetizations. One 
can select one of the magnetizations by turning off a positive magnetic 
field (i.e., coming from the right) or a negative one (left limit), or, alter- 
natively, by surrounding the sample by spins polarized in the desired 
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form. It turns out that this intuition can be formalized in the framework 
of the variational-principle approach. Using the abstract notion of 
tangent to a convex functional in a Banach space, Gallavotti and 
Miracle-Sole (142) and Lanford and Robinson (234) showed in the mid-1960s 
how the existence of more than one pure phase (ergodic equilibrium 
measure) is equivalent to lack of (G~teaux) differentiability of the 
pressure (see, e.g., ref. 209, or ref. 160, Chapter 16). Moreover, in complete 
agreement with the above example of the Ising model, the direction in 
which the differentiability fails is precisely the direction of the field 
conjugate to the relevant order parameter, and the different directional 
derivatives give the expectations of this observable in the different pure 
phases. 

Therefore, if we restrict ourselves to translation-invariant specifications 
and measures, we have the important distinction that first-order phase 
transitions correspond to a change in the number of ergodic equilibrium 
measures (pure phases), while continuous transitions do not necessarily 
change this number and correspond to much more subtle phenomena (e.g., 
slow decay of correlations =fluctuations propagating over macroscopic 
scales = critical opalescence). The points in parameter space where there is 
a second- (or higher-) order phase transition are customarily called critical 
points, in analogy to the critical point of liquid-gas systems, which was the 
earliest-known example of this phenomenon. 

For phenomena in which one has to go beyond translation invariance, 
the connection between free-energy singularities and properties of the set of 
extremal Gibbs measures is less clear. Nevertheless, transitions involving a 
change in the number of extremal Gibbs measures are usually called (by 
analogy rather than logic) "first-order" also in this general case. 

Corresponding to the two different notions of "phase transition" men- 
tioned at the beginning of this subsection, there are two different types of 
result on "absence of phase transitions": On one hand, there are results 
proving the uniqueness of the Gibbs measure [If f (H)[ = 1 ] (86,92,93,96) or of 
the translation-invariant Gibbs m e a s u r e  [-[~inv(H)]=l] . (42 '266) On the 
other hand, there are results on analyticity of the free energy and correla- 
tions. (143'208'291'90'95'98) Dobrushin and Shlosman (95'98) introduced an 

extremely strong notion of absence of phase transitions, which they call the 
complete analyticity condition. It corresponds roughly to the analyticity 
of all the finite-volume free energies uniformly in the volume and in the 
boundary conditions, 

It is known that in general the different notions of presence and 
absence of phase transitions are not equivalent. This nonequivalence is 
probably due to physical reasons in most of the cases, but sometimes it 
seems an artifact of the mathematical formalism. (91'36~ 



956 van Enter et al. 

2.6.6.  W h e n  Is the  Rela t ive  Ent ropy  Dens i ty  Zero? We now 
come to a key question (which will play a crucial role in our RG theory): 
Under what conditions is i (# [v)=0?  That is, under what conditions is 
the relative entropy in volume A a quantity o(]A[ ), i.e., a "surface effect"? 
The answer is simple: if v is a Gibbs measure for some interaction, then 
i (# [v )=0  when and only when # is a Gibbs measure for the same inter- 
action. The following two theorems make this precise, in a rather strong 
form: 

T h e o r e m  2.66. Let #1, #2 be Gibbs measures (not necessarily 
translation-invariant) for  interactions 41 , 4 2 ~ ~ ' ,  respectively. Then 

1 
lim sup IA(#1, It2) ~< 21141 - 4211 ~0/(t § Coast) 

I f  #1 and #2 are translation-invariant, this means that 

i(#11 #2) ~< 21141 - 4211 ~ 0 / ( j  § Const) (2.112) 

In particular, i f  #1 and #2 are translation-invariant Gibbs measures for  the 
same interaction 4 ~ ~1, then i(# 1 [P2) = 0. 

T h e o r e m  2.67. Let H be a quasilocal specification, let v ~ ~inv(H), 
and let #~M+l,inv(s Suppose that there exists a van Hove sequence 
(A,)n>~ 1 such that 

1 
lim ~ IA~ = 0 (2.113) 

Then # ~ N,v(H). 

Theorem 2.66 is an immediate consequence of estimate (2.64) in 
Proposition 2.46(b). Note, again, that although 41, 42 are required to 
belong to the "small" Banach space ~1, the final estimate is in terms of the 
~ 0 / ( j  + Const) norm, hence much stronger. 

Theorem 2.67 is, on the other hand, a deep and surprising (at least to 
us) result: from a hypothesis on the behavior per unit volume in the infinite- 
volume limit one obtains a conclusion valid for  every volume (namely 

It~A = #). 
The combination of Theorems 2.66 and 2.67 will play a key role in the 

proof of the First Fundamental Theorem (see Section 3.2). 
Combining Theorems 2.66 and 2.67, we deduce the key result relating 

the DLR and variational approaches to classical lattice systems: 

Coro l l a ry  2.68. Let 4 ~  1 and let #~M+l,~nv((2). Then It is a 
Gibbs measure for  4 i f  and only i f  it is an equilibrium measure for  4. 

(2.111) 
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2.6.7. Pathologies in Various Interaction Spaces ~h" In 
Section 2.4.4 we introduced a large class of interaction spaces Nh, of which 
the most important are r and N 1. Now we would like to discuss the 
physical differences between these spaces. This is an important issue, 
because we need to justify our view that (roughly speaking) N 1 is the 
largest "physically reasonable" space of interactions. 

Our point of view is that the fundamental physical principles of infinite- 
volume equilibrium statistical mechanics are given by the theory of 
specifications and Gibbs measures. (We consider the variational theory of 
translation-invariant equilibrium measures to be only a useful technical 
tooL) Furthermore, we argued in Section 2.3.3 that, at least for systems of 
bounded spins (including, in particular, all models with finite single-spin 
space), a physically reasonable specification must be quasilocal. If then we 
put aside hard-core interactions, it follows from Theorem 2.12 that a physi- 
cally reasonable specification must be the Gibbsian specification for some 
absolutely summable interaction. Since N 1 is the space of translation- 
invariant absolutely summable continuous interactions, this justifies our 
contention that N 1 is the largest physically reasonable space of interactions. 

From a mathematical point of view, N ~ is the natural space of inter- 
actions on which to develop the variational theory of equilibrium measures. 
We nevertheless claim that N ~ is, from a physical point of view, much too 
large; even the variational theory on ~o is "pathological." (This is con- 
nected with the fact that interactions in N ~  ~ do not in general 
define specifications, so there are no DLR equations. For  this reason, 
Corollary 2.18 and Propositions 2.46 and 2.59 do not hold in general in &o, 
and the large-deviation theory does not apply to equilibrium measures 

�9 which are not Gibbs measures.) To emphasize that N ~ is an unphysically 
large space of interactions, we list here some of the strange phenomena that 
can be proven for interactions in this space: 

1. There is a dense set of interactions in N ~ with uncountably many 
extremal equilibrium measures [ref. 209, Theorem V.2.2(c)]. (It is perhaps 
not surprising that highly frustrated interactions could produce uncoun- 
tably many pure phases; but in N ~ this happens arbitrarily close tt] zero 
interaction, i.e., at what ought to correspond to "high temperature.") 

2. For  any finite family /~ ..... /z n of ergodic translation-invariant 
measures of finite entropy density (relative to #0), there exists an interaction 
in ~o  for which all of these measures are simultaneously equilibrium measures 
[ref. 209, Theorem V.2.2(a)]. 42 (We find this result absolutely flabber- 
gasting: it implies, for example, that there exists an interaction in Mo for 

42 This result is reminiscent of the corresponding result in the theory of (nonquasilocal) 
specifications: see the remark at the end of Section 2.3.4. 
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which the Gibbs measures of the infinite-temperature and zero-temperature 
Ising models are coexisting pure phases!) It follows that in ~0 the inter- 
action cannot be reconstructed uniquely from the equilibrium measure: for 
any given measure/z, there are many different interactions in ~0 having/~ as 
an equilibrium measure. This is in sharp contrast to Proposition 2.46, which 
asserts the uniqueness (modulo physical equivalence) of the interaction (if 
one exists at all) within N1. 

3. The pressure is nowhere Fr~chet-differentiable in ~o.~72/ By 
contrast, the pressure is Fr6chet differentiable of order n in a neighborhood 
of the origin ("high temperature") in ~n (n/> 2). (180'231'303)'43 

Even the space N~ is incredibly large, in that it allows interactions 
which are strongly many-body (though not quite so strongly as in Mo) and 
of arbitrarily long range (provided only that they are absolutely sum- 
mane) .  This means that even in N~ some rather strange phenomena occur: 

4. At low temperature, the Gibbs phase rule is generically violated in 
all of the spaces s8 n. This is because a first-order phase transition can be 
destroyed by an arbitrarily weak (in l ~ norm) but very long-range two-body 
interaction. (72'~58'34~'21~) The Gibbs phase rule can hold only in spaces ~h 
where the weight h(X) grows sufficiently fast with the diameter of X (and 
not merely its cardinality). 

5. The pressure is not analytic in any open set in any of the spaces 
~ n  (91) In particular, it is not analytic even at "high temperature" (i.e., a 
neighborhood of the origin). In fact, for spaces Mh in which h(X) depends 
only on the cardinality of X, the pressure is analytic in a neighborhood of 
the origin i f  and only i f  h(X) >~ const • e ̀ lxl for some e > 0. ~2~ 

Remark. In the Ising model, analyticity does hold in ~1 norm for the 
subspaces of M~ corresponding to interactions written in lattice-gas or spin 
form (qSx= Jxp  x or qsx= Jxtr Jc, respectively). (2~ This is a very surprising 
result, which we do not completely understand from a physical point of 
view. It is related to the fact that physically equivalent interactions can 
have widely differing norms in any given space Mh; in particular, for lattice- 
gas or spin interactions, one can have [1~11,~1 >~ [r~[[~,/~. (36~ 

43 It seems to be an open question whether the pressure is once Fr6chet differentiable in a 
neighborhood of the origin in ~1. The proofs of higher-order differentiability in refs. 180, 
231, and 303 use the Dobrushin uniqueness theorem, which applies only in ~2 or higher. 
See also ref. 160, Chapter 8 and the corresponding notes. Note added in proof: 
B. Zegarlinsky (private communication) has recently shown us how to prove this result 
using log-Sobolev inequalities. 

44 This statement is a slight lie. What Dobrushin and Martirosyan ~ actually prove is the 
following: Let the single-spin space f20 be finite; let h(X) depend only on the cardinality 
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In  Section 4 we shall prove that  certain renormal ized measures are no t  

G ibbs i an  for any interact ion in N~. The fact that no t  even in ~ - - a  space 

large enough  to suppor t  much  peculiar  behav io r - -does  an in teract ion exist 

is an  indica t ion  of how strong this result is. 

3. POSIT ION-SPACE R E N O R M A L I Z A T I O N  
T R A N S F O R M A T I O N S :  REGULARITY PROPERTIES 

In  this section we define our  general framework for s tudying renor- 
real izat ion t ransformat ions  (RTs), and  prove the two F u n d a m e n t a l  

Theorems on  single-valuedness and  cont inui ty  of the RT map. 

We consider only a s ing le  appl icat ion of the RT map. Therefore, the 
semigroup proper ty  of the " renormal iza t ion  (semi)group" plays no role for 

us. In  part icular ,  we need not  assume that  the image system is of the same 

type as the original  system. Nevertheless, we shall occasionally (by abuse 
of language)  use the term "RG map,"  for reasons of familiarity and  brevity. 

3.1. Basic Setup 

3.1.1. Renormal izat ion Transformat ion Act ing on Measures.  
We consider a " renormal iza t ion  map" T from an or ig ina l  (or o b j e c t )  s y s t e m  

(g2 = s z~, ~-,/~o) to an i m a g e  (or r e n o r m a l i z e d )  s y s t e m  ~ . . . . .  o ,~.  , go'). 

The single-spin spaces s o and  ~ need not  be the same; indeed, we 
will present an impor t an t  example in which they are no t  the same (see 

Example  5 below, and  Section 4.3.5). Al though our  theory in this section 

of X, and not satisfy h( X) >>- const x e ' Ixl for.any e > 0; and let Nc be the complexification 
of ~h. Then, in every open set Uc ~c containing a real point, there exists a complex inter- 
action �9 E U and a sequence of cubes An ." o0 such that the fnite-volume partition 
functions ZA.(~)~ ~ exp[--H],,free] are all zero. Thus, the finite-volume free energies have 
(complex) singularities arbitrarily close to every (real) point in Nh. This result makes it very 
unlikely that the infinite-volume pressure could be analytic in an open set of Nh; but strictly 
speaking it does not rule it out, because conceivably the singularities present in finite 
volume could miraculously disappear in the passage to the infinite-volume limit. [Here is 
a simple example in one complex variable: Let Z,,(z) = z - Zo for all n, where zo e C\N. Then 
limn, ~ n -1 log Zn(z) = 0 for all z s R (provided that the branch cut is chosen to avoid the 
real axis). And the function 0 certainly does have an analytic continuation from R to C !] 
We propose as an open problem to mathematical statistical mechanicians: prove that the 
infinite-volume pressure, which is well-defined on the space Nh of real interactions, has no 
analytic continuation to any open set Uc  ~c containing a real point. In any case, the result 
of Dobrushin and Martirosyan does show that the Dobrushin-Shlosman C95'981 complete 
analyticity condition does not hold for any open neighborhood in ~h, for the specified class 
of h. 
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works only when the spatial dimensions d and d'  are the same--see the 
discussion of Example 7 below, as well as Section 4.5.2--we find it notatio- 
nally convenient to keep the prime on all image-system quantities, as this 
makes it easy to see which quantity refers to which system. We assume the 
following properties for T: 

(T1) T is a probability kernel from 

(T2) T carries translation-invariant 
invariant measures on O'. 
# T e  J/~nv((2').] 

( n , J )  to (O', Y') .  

measures on f2 into translation- 
[That is, if #ed/~n~(s then 

(T3) T is strictly local in position space, with asymptotic volume 
compression factor K <  ~ .  More precisely, there exist van Hove 
sequences (An) c ;Z d and (A')  c ;ga, such that: (a) The behavior 
of the image spins in A', depends only on the original spins 
in An, i.e., 

for each A s . , ~ ,  the function T(., A) is ffA -measurable (3.1) 

(b) lim supn~([A,l/lA~,l)<~K. 

(T1) allows the renormalization map to be either deterministic or 
stochastic. In the deterministic case, the configuration co' of the image 
system is a function co'=t(co) of the original configuration. The m o s t  
conspicuous examples of these types of transformations are decimation, 
linear block-spin transformations, and majority rule for blocks with an odd 
number of spins (see Examples 1, 2, and 5 below). For the general case of 
a stochastic transformation, given an original-system configuration co, we 
choose an image-system configuration co' with a certain probability 
T(og, dos The special case of a deterministic map t: s (2' corresponds 
to setting T(co, .) to be the delta-measure ~,(~) [i.e., the configuration 
co' = t(o~) is chosen with probability 1 ]. Examples of stochastic transforma- 
tions are the majority-rule transformation for blocks with even number of 
spins, and more generally the Kadanoff transformation (see Examples 2, 3, 
and 4 below). The main point of (T1) is to exclude transformations with 
negative weights, which have no sensible probabilistic interpretation. (45) 

(T2) is self-explanatory. Typically translations of the image system 
correspond to some subgroup of translations of the original system. That is, 
there typically exists a homomorphism R: Z a' ~ 7] a such that 

T( Tmx)co, .)= T:<T(CO, .) (3.2) 

45 Transformations with negative weights have occasionally been used in the physics literature, 
not  necessarily intentionally: see, e.g., ref. 344. See also the comments  in ref. 282, footnote 
on p. 453 and text on p. 496. 
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tor all x ~ Zd' and all ~o e ~r For example, an RT employing b x b blocks 
will have R ( x ) =  bx. Thus the translation group Y u' of the image system 
corresponds to the subgroup R [ Z  d'] c g d of translations of the original 
system. Property (T2) trivially follows from this. Some examples are given 
below. 

Properties (T1) and (T2) make rigorous Eq. (1.1): the map # ~ / ~ T  is 
a well-defined map from ~+l ,  inv(~) into ~+l,inv(~"~t). This justifies the 
claim made in the Introduction, that it is easy to define the RT map f rom 
measures to measures. The more difficult and subtle problem of defining the 
RT map f rom interactions to interactions will be discussed in Section 3.1.3. 

Property (T3)--the strict locality of the renormalization map--is  
crucial for our proofs of the First and Second Fundamental Theorems. 
Most often (although we shall not require this) the probability measure 
T(co, .) has a product structure 

T(c0, do')= I-I 7~(~0B., do') (3.3) 
xE~d' 

where Bx is the finite set of original spins which together determine the 
image spin co'. Now let us suppose that Bx = Bo + R(x)  [i.e., Bo translated 
by R(x)], where R: 7/a '~7/a is a homomorphism satisfying de tRva0 
(obviously this needs d ' = d ) .  We then claim that (T3) holds with K =  
Met R]. Proof: Let (A'n) be any van Hove sequence in 2 d'. What sets 
(An) c Z a should we take to satisfy (T3)? Clearly the image spins in An 

, v 7 /d .  depend only on the original spins in the set An - R [ A n ]  + Bo c So at 
first one might think to take A, -=A* .  The trouble is that the (A*) need 
not form a van Hove sequence, because they may have a nonzero density 
of "holes." [Consider, for example, decimation with spacing b > 1: here 
B0= {0} and R ( x ) = b x . ]  So we take instead 

A n = 7/dc3 convex hull of A* (3.4) 

Then, using the fact that det R r 0, it is not hard to convince oneself that 
(An) is a van Hove sequence, and that 

I/hi 
nlimo ~ - ~  = Met R[ (3.5) 

Two points are relevant here: First, we need det R r 0 (and in particular 
d ' = d )  in order to guarantee that the sets (An) are sufficiently "fat" 
to form a van Hove sequence (see the discussion of Example 7 below for 

46 In more detail, T(Tmx)e~ , A )= T(m, T21[A] ) for all x e 7/d', co e s and A E ~-'. 
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what  can happen  if this does not  hold). 47 Second, the quant i ty  K = 
lira SUpb~ ~ [An[/[A'nl is by definition the asymptotic volume compress ion  
factor: as such, it is determined solely by R; it does not  depend on the size 
of Bo as long as Bo is finite. 

We conjecture that  the two Fundamen ta l  Theorems  hold also for 
quasiloeaI renormal iza t ion  maps-- i .e . ,  maps  in which co" depends 
sufficiently weakly on distant  spins ~Oy--but we are not able to prove  this 
with our  present  methods.  Quasi local  renormal iza t ion  maps  are of great  
practical  impor tance :  for example,  in " m o m e n t u m - s p a c e "  renormal iza t ion  
one often uses a determinist ic t rans format ion  

co'x = Z F(bx  - y)coy (3.6) 
Y 

with some length rescaling factor  b > 1 and some kernel  F. In part icular,  if 
one uses a "soft" cutoff  in m o m e n t u m  space, (375'32) then the kernel  F is 
rapidly decreasing at infinity in x space (e.g., decreasing faster than any  
inverse power  of  its argument) .  It  is an impor tan t  open problem to extend 
our  results to such maps.  

3 .1 .2 .  E x a m p l e s .  1. Decimation transformation. (213'374) Let f 2 ' = g 2  
and  d ' =  d, and let b be an integer ~> 2. Define the deterministic RT m a p  

co; = C%x (3.7) 

This m a p  is strictly local [ in fact, of  the p roduc t  form (3.3)] with 
asympto t ic  volume compress ion  factor  K =  b d. I t  is of the form (3.2) with 
R(x )  = bx. 

More  generally, let f 2 ' = f 2  and d ' = d  and let R be any homo-  
m o r p h i s m  from 7/d' to Z a satisfying det R r 0. Define the determinist ic RT 
m a p  

~O'x = coR(x~ (3.8) 

This m a p  is strictly local [ in fact, of the p roduc t  form (3.3)] with 
asympto t ic  vo lume compress ion  factor  K =  [detR].  Some examples  are 
shown in Figs. 2a and 2b. 

2. Majority-rule transformation for  the Ising model. ~281-283~ Let b be 
an integer ~> 1, let B o be a fixed finite subset of  7/d (the block), and let B x = 
B o + bx (i.e., B o t ranslated by bx). Define the m a p  

47 Actually, all we really need is that R, considered as a d x d' matrix, have rank d. Thus, we 
could allow some cases with d' > d. But these are of little interest. The interesting cases with 
d'r d have d '<  d (Example 7 below), and these do not satisfy (T3). 
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f 
+ l  if ~ a y > 0  

y~ Bx 

a~-- - 1  if 20"y<O 
y~Bx 

+1 if ~ ~ry=0 
y~Bx 

(3.9) 

where "_+ 1" denotes a random choice with probabilities of 1/2 each. This 
transformation is deterministic if [Bol is odd, stochastic if [Bol is even. 

3. Kadanoff transformation for the Ising model. (213) A large class of 
nonlinear RT maps for the Ising model f2=~2 '= { - 1 ,  1} z~ can be 
represented in the following form: Consider the same blocks B x as in the 
previous example, and let p > 0. Define the stochastic RT map 

exp(pa'x ~2y~ Bx ay) 
T(a, a ' )=  x~zd'lF/2cosh(pZy~ay) (3.10) 

This map is strictly local [-and clearly of the product form (3.3)] with 
asymptotic volume compression factor K =  b ~, and is of the form (3.2) with 
R(x) = bx. Many well-known RT maps are special cases of (3.10): 

(a) With Bo = {0} and b =  1, (3.10) is model I of Griffiths and 
Pearce, (175'176) a kind of "copying with noise." (This map also 
arises is applications to image processing. (132'1s5)) As p ~ o% it 
tends to the identity transformation. 

(b) With B0= {0} and b>~2, (3.10) is model II of Griffiths and 
Pearce, (175'176) a kind of "decimation with noise." As p--, o% it 
tends to the ordinary decimation transformation (3.7). 

(c) With Bo= {0, 1 ..... b - l } 6  (a hypercube of side b) and b~>2, 
(3.10) is the Kadanoff trhnsformation. (213~ In the limit p ~ oo it 
tends to the majority-rule transformation (3.9). 

As in the decimation transformation, we can replace bx by a more 
general nonsingular homomorphism R(x). Then K=MetR[ .  Some 
examples are shown in Figs. 2c-2e. 

4. Kadanoff transformation for the N-vector model For the N-vector 
model, in which the spins are unit vectors in ~N, the natural generalization 
of the majority-rule transformation is the "rescaled block-spin transforma- 
tion,,(330) 

~ y  ~ Bx (Ty 
o-~- (3.11) 

IEy ~ Bx %1 
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Fig. 2. Some examples  of R T  m a p s  in d imens ion  d = 2. (a) Dec ima t ion  with b = 2 and  K = 4. 
(b) Dec ima t ion  with R(xl, x2) = (x I + x2, x I - x 2 )  and  K =  2 ("checkerboard  decimat ion") .  
(c) Block t r ans fo rma t ion  with b = 2, B 0 = { (0, 0), (1, 0), (0, 1 ), (1, 1) }, and  K = 4. (d) Block 
t r ans fo rma t ion  with R(Xl, xz) = (2xl  - -x2 ,  Xl + 2x2), B0 = {(0, 0), (__+ 1, + 1 )}, and  K =  5. (366) 
(e) Block t r ans fo rma t ion  with R(xl, x2) = (2x 1 + x2, Xl + 2x2), B0 = {(0, 0), (1, 0), (1, 1)}, 
and  K =  3. (281' 283) 
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which is deterministic. (In principle one should specify what happens when 
Z y ~  a y = 0 :  for example, one could choose some particular value of a'x, 
or one could let a" be uniformly distributed on the unit sphere. But this 
situation occurs with probability zero, so it is irrelevant what choice 
one makes.) Similarly, the Kadanoff transformation has a natural 
generalization093): 

exp(p~r~ �9 37y ~ ~ %) 
T(a, da')= 1-I dO(u;)  (3.12) 

xeZd' ~'~N(P ZyeBx  (Ty) 

where 

~eN(h)= u- 'eh~dO(a)=F 2 -~l IN~2 ~(Ihl) (3.13) 

and dO denotes uniform measure on the unit sphere in NN. As p -+ c~, this 
tends to the deterministic map (3.11). 

Analogous formulas can be used to define a Kadanoff transformation 
for the q-state Potts model, using the representation of Potts spins as 
unit vectors in R q 1 pointing from the center of a "hypertetrahedron" 
to its vertices. As p-+  0% this transformation tends to the "plurality- 
rule" transformation with random tie-breakers. The Potts model with 
vacancies (284'31~ can also be treated in this framework, by representing the 
"vacancy" state as the origin in R q- 1. 

5. Linear block-spin transformations. A natural choice of a deter- 
ministic linear transformation is the averaging transformation 

~r '=c  ~ ay (3.14) 
v~ Bx 

for a suitably chosen rescalingfactor c. Typically we choose IBol- 1 ~< c ~< 1. 
We observe that if c>[Bol71, this transformation does not map any 
model of bounded spins to itself: if O o =  [ - M ,  M] ,  we must take O~= 
[ - M ' , M ' ]  with M'>~IBolcM>M. As a consequence, the*f ixed 
point(s) (if any) for such a transformation must correspond to model(s) of 
unbounded spins (i.e., O0=  ~). For  this reason, it is most natural to 
consider (3.14) as acting, right from the start, on such a system of real- 
valued spins. However, in this paper we are not concerned with fixed points; 
our interest is in whether the first application of the RT map is well-defined. 
For  this purpose we may work entirely with models of bounded spins, 
provided that we are willing to accept O~VLOo . For  example, in the 
two-dimensional Ising model with 2 • 2 blocks (and c = 1), we have O o = 
{ - 1 ,  1} but O ; =  { - 4 ,  - 2 ,  0, 2, 4}. 
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For unbounded spins with values in N (or ~N), one can use either a 
deterministic linear block-spin transformation (15~ 

~Ox=C ~ ~Oy (3.15) 
vee~ 

or the stochastic linear block-spin transformation (z8'19) 

r(~o, do') = ~I] const x exp - q~, - c ~ ~Oy d~o~ (3.16) 
x ~  \ y ~ B  x 

which corresponds to adding Gaussian white noise of variance e z to the 
deterministic block spins (3.15). In both cases, the rescating factor c must 
be chosen appropriately if the transformation is to have a fixed point: e.g., 
for hypercubic blocks of side b one takes 

f b a/2 to have a high-temperature fixed point 

c = ~b -a to have a low-temperature fixed point (3.17) 

b (a + 2-,)/2 to have a critical fixed point 

This need to fix a parameter is characteristic of linear renormalization 
transformations. 

Linear block-spin transformations have attracted the attention of 
mathematical physicists because of their connections with central-limit 
theorems: see, for example, refs. 203, 33, 150, 73, and 59. 

6. Linear block-spin transformation with large-field cutoff Even 
when the linear block-spin transformations (3.14)-(3.15) does not map 
models of bounded spins to themselves, one expects the corresponding 
fixed-point measure(s) to have rapidly decaying (e.g., Gaussian or faster) 
densities at large ~o. Therefore, it may be a reasonable approximation to 
modify (3.14)-(3.15) by cutting off the fields explicitly at [al = M ,  c.q. 
[q~[ = M, where M is some fixed large number. That is, on the space f2 = 
~2'= I - M ,  M]  Z~ one can consider the deterministic RT map 

I c  y~.~ qgy if c y~B~ r ~< M 

(PlX=~Msgn(y~Bxq)y) if c ~yEBx q ) y  >M 

(3.18) 

[This works also for N-component spins, if one interprets sgn(q0 = ~0/[q~].] 
To our knowledge, this transformation has not been considered previously. 
(But see Cammarota (57) for a related idea.) 
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7. Restriction to a hyperplane. (327) Let E2~=O 0 but take d' <d ,  and 
define 

~o~= co(x,m (3.19) 

where 0 denotes the origin in 2U d,. This is an unusual type of decimation 
transformation in which the original model is restricted to a hyperplane; 
it has recently elicited some interest (see Section 4.5.2). However, this 
transformation does not satisfy our condition (T3): although the image spins 
in a volume A'n depend only on the original spins in A'n x {0}--so that 
naively one would have a volume compression factor K =  1--the trouble is 
that the sets A' n x {0} do not tend to infinity (in 7/J) in van Hove sense when 
the A', do so in 7/d'. To make them tend to infinity in van Hove sense, one 
would have to "fatten them out," e.g., by taking An=A'n x CR,, where CR, 
is a cube of side Rn in 2 d- d,, and R, ~ ~ as n ~ oo. But then the volume 
compression factor K would be infinite. This example makes it clear why 
we need d ' = d .  Indeed, in this example we have i(# T I /~+T)>0  [see 
Section 4.5.2], contrary to what whould happen if (T3) were to hold [cf. 
(3.30)]. 

3.1.3.  R e n o r m a l i z a t i o n  T r a n s f o r m a t i o n  Ac t ing  on In te r -  
a c t i o n s .  We can now define precisely the renormalization map ~ acting 
on the space of interactions, making rigorous the diagram (1.2). As argued 
in Section 2.6.7, the largest "physically reasonable" space of interactions 
is N1, the space of translation-invariant, continuous, absolutely summable 
interactions. Therefore, in defining N, we shall restrict attention to interac- 
tions 4 5 ~  1 such that there exists an image interaction q y ~ l .  Since a 
priori we wish to adopt a completely open-minded definition--allowing for 
the possibility of multivaluedness--we must define ~ as a relation rather 
than a function. 

De f in i t i on  3.1. Let T be an R T  map satisfying properties (T1) and 
(T2).  We then define the corresponding map ~ = ~T to be the relation 

= {(q~, q),) e ~1 x N~: there exists ~ ~ ~inv(H e) such that #Te  ~i,v(He') } 

(3.20) 

We can also think o f  ~ as a multivalued function: we write ~ '  ~ ~(q~) as a 
synonym for (~b, q~') ~ ~. We define the domain of N to be the set 

dora ~ = {q~: there exists ~b' with (~, ~ ' )  ~ ~}  

= {~: ~(q~) va ~ }  (3.21) 

A priori the map ~ could be multivalued. Indeed, the way we have 
defined it, it surely is multivalued, because of physical equivalence: if 
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q~' ~ ~(q~) and ~ '  ~ ~ c~ ( J  + Const), then also qs' + ~ '  ~ ~(~b). The more 
interesting question is whether ~ can be multivalued apart from the 
"trivial" multivaluedness caused by physical equivalence. The scenario 
proposed in ref. 74 is precisely the claim that this can happen; we shall 
prove in our First Fundamental Theorem (Theorem 3.4) that in fact it 
cannot happen. That  is, we shall prove that the map ~ is single-valued 
modulo physical equivalence. We shall moreover prove that the phrase 
"there exists #" in (3.20) can be replaced equivalently by "for all ft." 

For  RT maps satisfying a very mild continuity condition, we can say 
something about the closure properties of the multivalued map # .  To 
avoid bothersome topological complexities, we restrict atention to compact 
metric single-spin spaces (2 o. 

T h e o r e m  3.2. Let (2 v be a compact matric space, and assume that T 
satisfies (T1) and (T2) and is Feller (i.e., Tf  is continuous if f is). Then 
is a closed subset of ~ 1 x ~ 1  with respect to the # ~ 2 1 5  
# o / ( j  + Const) seminorm. 

Proof. Assume that (<b,, ~ ' , )~ :~  and ( q ~ ,  ~ b ' ) ~ #  ~ x ~  ~, with 

lim It~n--~ll,~0/(j+ConsO= lim IIr (3.22) 
r / ~  cx3 n ~ o o  

We need to prove that ( q ~ ,  q)~)~ ~.  
Choose, for each n, a translation-invariant Gibbs measure/~n for ~b n. 

By passing to a subsequence, we can assume without loss of generality 
that #= converges weakly to some measure #~ ;  and since ~b,-->q~ in 
~ ~  seminorm, it is easy to see that #~ is a translation- 
invariant Gibbs measure for q ~ .  Now the Feller hypothesis on T guaran- 
tees that /~nT--->#~ T weakly. Since /~=T is a translation-invariant Gibbs 
measure for q~'n, and ~', ~ ~b" in Mo/( j  + Const) seminorm, it follows that 
/Zoo T is a translation-invariant Gibbs measure for q~' .  But this implies that 

( ~ ,  ~ L ) ~ .  I 

3.1.4. A Remark on Systems of Unbounded Spins. The 
results to be proven in Sections 3.2 and 3.3 are in principle applicable to 
systems of either bounded or unbounded spins. But for unbounded spins 
our results are not of much interest, because we restrict attention to 
bounded Hamiltonians (i.e., absolutely summable interactions). The trouble, 
as discussed at the end Section 2.4.4, is that we lack at present an adequate 
general theory of unbounded spin systems: we are unable to specify, for 
example, a space of interactions that includes all "reasonable" interactions. 
The development of such a general theory is an important open problem; it 
would be a first step toward putting the standard Wilson-style RG 
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theory (375) on a rigorous footing. In particular, in such a framework one 
could try to prove analogues of our First and Second Fundamental 
Theorems. 

In this regard it should be remarked that the important work of 
Gaw~dzki and Kupiainen (15~ on rigorous RG theory does not 
implement exactly the standard Wilson prescription, at least for bosonic 
theories: while the small-field part of the Gibbs measure is represented 
by a Hamiltonian of the usual kind, the large-field part is represented 
instead by a polymer expansion. (151~ (In recent work, Brydges and Yau (54) 
systematize this idea, and formulate the RG purely in terms of a polymer 
expansion.) For fermionic theories, where there is no "large-field region," 
Gawgdzki and Kupiainen (152/ do implement the full Wilson prescription; 
however, fermionic theories have no direct probabilistic interpretation. Also, 
for bosons, Koch and Wittwer (221'222) implement the Wilson prescription, 
but so far only in the hierarchical model. 

3.2. First Fundamental Theorem: Single-Valuedness of the 
RT Map 

Among the possible pathologies of the RT applied at the level of 
Hamiltonians, the following scenario has been proposed(74)'48: Consider a 
Hamiltonian H lying on a first-order phase-transition surface, that is, one 
for which there exist at least two distinct pure phases (extremal translation- 
invariant Gibbs measures), call them ~1 and #2. Now perform a renormal- 
ization transformation T as indicated in (1.1). The resulting renormalized 
measures #'i -= #~ T and #; = #2 T may then, it is claimed, be Gibbsian for 
two different renormalized Hamiltonians H~ ~ Hi.  In other words, the 
renormalization map N from Hamiltonians to Hamiltonians, defined by 
(1.2), may be multivalued. 

Here we disprove such a scenario. We show that if two initial Gibbs 
measures correspond to the same interaction 45, then the renormalized 
measures are either both Gibbsian for the same renormalized interaction q~', 
or else they are both non-Gibbsian (in which case there is no renorm~tlized 
interaction at all). 

This theorem follows from comparing the large-deviation properties of 
different Gibbs measures according to whether they belong to the same of 
different interactions. Heuristically, if # and v are two Gibbs measures 

48 This scenario is stated very clearly in the Monte Carlo paper of Decker et  al. (ref. 74, p. 23, 
lines 2-5). On the other hand, the analytic arguments in the companion paper of Hasenfratz 
and Hasenfratz ~192) concern "singularities" whose precise nature is unspecified. We are 
unable to make a connection between the two lines of reasoning. 

822/72/5-6-8 
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corresponding to different interactions, then the probability of finding in v 
a large droplet looking like a typical configuration for the measure p is 
exponentially small in the volume of the droplet: 

Probv(COA is typical for ~) ~ e O(IAp) (3.23) 

On the other hand, if/~ and v correspond to the same interaction, this 
probability is subexponential: 

Prob.(co A is typical for p) ~ e -~ (3.24) 

Mathematically, as seen in Section 2.6, this is expressed in the fact that the 
relative entropy density satisfies 

>0  if ~t and v are Gibbs measures for different interactions (3.25) 
i(#1 v) = 0 if/~ and v are Gibbs measures for the same interaction 

Now, under renormalization one looks only at the block spins and forgets 
about the internal spins, hence 

Prob~(block spins in ooA are typical for #) 

>~ Probv(all spins in o9 A are typical for p) (3.26) 

Therefore, if initially the probability was subexponential (same interaction), 
then under renormalization it remains so and we can never obtain the 
exponential decay (3.23) characteristic of different interactions. Mathemati- 
cally, this is expressed by the fact that the relative entropy decreases under 
the application of arbitrary deterministic or stochastic transformations, in 
particular under the RT: 

Lornma 3.3. Let (12, S )  and (12', X') be measurable spaces, and let 
T be a probability kernel from (12, X) to (12', X'). Then, i f  # and v are 
probability measures on 12, 

I(pT[ v T) <~ I(#] v) 

ProoL This is a well-known result, although it is rather difficult to 
find a complete proof in the literature. (Most of the published proofs 
concern one or another special case: T deterministic, vT= v, discrete state 
space, etc.) The first complete proof of which we are aware is due to 
Csiszfir (1963)(69); however, we would not be surprised to learn that this 
result was known much earlier. See also, for instance, ref. 370 and ref. 62, 
Theorem 8.1; and see ref. 66 for some stronger results. For the convenience 
of the reader, let us give a one-line proof: 
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I(ul v) = I(u x T l v x  T)>~I(ItTIvT) (3.27) 

Here the first equality is Proposition 2.53(h): the measures g x T and v x T 
have the same regular conditional probability given Z, namely T. [The 
intuitive idea is that the pair (/~ x T, v x T) contains at least as much infor- 
mation as the pair (#, v), since the latter is the restriction of the former to 
the sub-a-field Z ~  Z x 2;'; but it contains no more information, because 
the same probability kernel has been used to generate both # x T and v x T 
from # and v.] And the inequality is Proposition 2.53(g), since #T (resp. 
vT) is the restriction of # x T (resp. v x T) to the sub-a-field 27' ~ Z x 27'. | 

Theorem 3.4 (First Fundamental Theorem). Let  I~ and v be 
translation-invariant Gibbs measures with respect to the same interaction 
qbE~ ~, and let T be an R T  map satisfying properties (T1)- (T3) .  Then: 

(a) Either #T  and vT are both nonquasilocal (i.e., not consistent with 
any quasilocal specification), or else there exists a quasilocal specification H' 
with which both #T and v T are consistent. In the latter case, if  the single-spin 
space is finite, then H' is the unique quasilocal specification with which either 
#T  or vT is consistent, and it is translation invariant. 

(b) Either #T  and vT are both non-Gibbsian (for absolutely summable 
interactions), or else there exists an absolutely summable interaction qs' for 
which both #T and vT are Gibbs measures. In the latter case, i f  q~' is 
continuous (as it always is, e.g., for a discrete single-spin space), ~b' is the 
unique continuous, absolutely summable interaction (modulo physical 
equivalence in the DLR sense) for which either #T  or vT is a Gibbs measure. 

Proof. Let (An)c Z a and (A'~)c E/' be van Hove sequences having 
the properties (T3) assumed in Section 3.1. Now, by Theorem 2.66, the fact 
that kt and v are Gibbs measures for the same interaction implies that 

1 
,lim,.~ ~ IA.(/t] V) = 0 (3.28) 

On the other hand, the image spins in A~, depend only on the original spins 
in A, : that is, (~lT) p ~ ' ;  is the image under T of # ~ •A~ and likewise 
for v. Hence, by Lemma 3.3 we have 

IA,(i.tTI vT) <~ IA,(# ] V) (3.29) 

It follows that 
1 

0 ~< lira sup ~ IA',(#TI vT) <~ limoo K 

= 0 (3.30) 
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Therefore, by Theorem 2.67, if vT is consistent with a quasilocal specifica- 
tion H', then /~T must also be consistent with this same specification H'. 
The same argument can be made interchanging the roles of # and v. Thus, 
either ~tT and vT are both nonquasilocal, or else there exists a quasilocal 
specification H'  with which both p T  and vT are consistent. In the latter 
case, if the single-spin space is finite, Theorem 2.15 guarantees the unique- 
ness o f /7 ' .  In particular, since /~T and vT (being translation invariant) 
are obviously consistent with any translate of H', we conclude that H'  is 
translation invariant. 

A special case of the foregoing is: if vT (resp. ~tT) is Gibbsian with 
respect to an absolutely summable interaction q~', then #T (resp. vT) must 
also be Gibbsian with respect to this same interaction q~'. The uniqueness 
modulo physical equivalence of q~' is then guaranteed by Corollary 2.18. | 

The First Fundamental Theorem shows that the RT map ~ is single- 
valued modulo physical equivalence. It also shows that the phrase "there 
exists #" in the definition (3.20) can be replaced equivalently by "for all/~." 

Remarks. 1. The first step of this proof (using Theorem 2.66) does 
not require/~ and v to be translation invariant. But the second step (using 
Theorem 2.67) does seem to require at least #T and vT to be translation 
invariant. So we do not know whether the hypothesis of translation 
invariance of/~ and v can be omitted in this theorem. (Note: We always 
assume that the interaction q~ is translation invariant.) 

2. In part (b), the interaction qs', if it exists, ought to be physically 
equivalent in the DLR sense to a translation-invariant interaction. Unfor- 
tunately, we are not able to prove this. From the uniqueness we know that 
q~' is physically equivalent to all of its translates; but it seems to be an open 
question whether this guarantees that ~b' is physically equivalent in the 
DLR sense to a translation-invariant interaction. An affirmative answer 
would also allow K o z l o v ' s  (225) Gibbs Representation Theorem to be given 
a satisfactory translation-invariant version (see the Remark at the end of 
Section 2.4.9). 

3.3. Second Fundamental  Theorem: Cont inu i ty  Properties of 
the RT M a p  

A second aspect of the scenario proposed by Decker et al. (74) is that 
the RT map may be discontinuous at an original Hamiltonian H o lying on 
a first-order phase-transition surface: namely, for original Hamiltonians H 
arbitrarily close to Ho on opposite sides of the phase-transition surface, 
it is claimed that the corresponding renormalized Hamiltonians H'  may be 
a finite distance apart. 
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Here  we disprove this scenario, too. We show that the R T  map is 
always continuous (in a suitable norm) on the set of Hamiltonians where it 
is well-defined, that is, on the set of Hamiltonians for which the image 
measures are Gibbsian. 

The key idea underlying our proof is the fact that, if # is a Gibbs 
measure for an interaction ~ b ~  ~, then the DLR equations allow the 
reconstruction of the interaction q~ (modulo physical equivalence) from the 
measure # : 

log d~,~-  ~ Tx fe+cons t (~b)+o( IA])  (3.31) 
~ ' / * A  x E A  

(see Section 2.4.8). Therefore, if #1 and #2 are Gibbs measures for inter- 
actions ~ ,  q~2e~ ~, we have 

l o g d # ~ A = -  ~ T x f e ~ _ e 2 + c o n s t ( ~ ) - c o n s t ( ~ b z ) + o ( [ A I )  (3.32) 
N #  2A x ~ A 

and in particular 

l o g ~  B(m/ . . . .  t = [AI' Ilq~l-q~2N~o/(~-+Const)+o(]A[) (3.33) 

Now the probability densities of renormalized measures are (particular) 
weighted averages of the original densities, so the supremum of the 
renormalized density cannot exceed that of the original density. That is, 
[Llog(d#~/d#2)[[B(m/ . . . .  t can only decrease under the RT: 

k e m m a  3.5. Let ((2, Z) and (12', Z ' )  be measurable spaces, and let T 
be a probability kernel from (12, Z') to (12', Z').  Let # and v be probability 
measures on 12, with # ~ v. Then # T  ~ vT  and in fact  

1 d(#T) 
o g ~  L~(vr) ~< lOggy L~(~ (3.34) 

d(#T) hl log og - -  ~< (3.35) 
d(vT) L~(~T)/ . . . .  t L m ( v ) / c o n s t  

Proof. Suppose 
d#/dv satisfies 

that the Radon-Nikod)m derivative (=densi ty)  

O<<.a<<.d# <~b<<. + ~  
dv 

v-a.e. (3.36) 
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Then av<~#<~bv (in the sense of the ordering on positive measures), so 
obviously a(vT)<~ t~T<<, b(vT). It follows that 

Since 

d(lzT) b (vT)-a.e. (3.37) 
a < T----5 "< 

d/~ L~(v)= max(log b, - l o g  a) (3.38) log ~v 

log ~-~ v = �89 b - l o g  a) (3.39) 
L~(v)/const 

[-where a and b are the sharpest values making (3.36) true], with an 
analogous formula for d(#T)/d(vT), the lemma is proven. | 

Theorem 3.6 (Second Fundamental Theorem). Let T be an 
R T map satisfying properties ( T1) - (  T3 ) , and let (]51, ~ 2  Edom ~. Then, for 
all q~'~ e ~ ( ~ l )  and q~'2e ~(q~2), 

II~] - ~ l l  ~o1r + con~t) ~ gll ~x - ~211 ~o/(s + Con~t) (3.40) 

That is, on its domain the map ~ is Lipschitz continuous (with Lipschitz 
constant <~K) in the ~,o / ( j  +Const)  norm. 

ProoL Let (An)= Z a and (A'n)= Z d' be van Hove sequences having 
the properties (T3) assumed in Section3.1. Let kqe~nv(H ~I) and 
]22 ~ ~inv(H~2). By the First Fundamental Theorem (Theorem 3.4) we have 
# l T e  ~nv(H ~i) and #2TE ~nv(H~). Now the image spins in A', depend 
only on the original spins in A,: that is, (#1 T) ~ ~-h, is the image under 
T of #1 ~ ~A,, and likewise for #2. Therefore, by Lemma 3.5 we have 

d(#l)A. d(#~ T)A' " ~< log B(m/ . . . .  t (3.41) 
log d~2 T)A~ a(~ ,/ . . . .  t 

(Since the measures ~2 and /~2 T are both Gibbsian, they give nonzero 
measure to every open set; moreover, the interactions ~1, q~2, ~] ,  and ~ ,  
are all continuousl Therefore we can replace the essential sup norms by the 
true sup norms.) Then 

1 log d('tt I T)A;, 
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K d(/-h)A, 
~< lira a ~ log d(/~2)A. ~(~)/ . . . .  t 

= Kilgil - 60211 ~0/(,r + const ) (3.42) 

where we have twice used Proposition 2.46(b). | 

It is curious that although all the interactions 601 , 4}2, q}], and qs~ are 
here required to belong to ~1, the Lipschitz estimate (3.40) is stated in 
N ~ norm. This is because N ~ (or more precisely its quotient by )r or 
J + Const) is the natural norm for measuring bulk energy contributions, as 
discussed in Section 2.4.8. The restriction to ~1 is needed solely to ensure 
that the boundary energy contributions are o(IA[), so as to avoid the 
pathologies discussed in Section2.6.7. In any case, we would like to 
emphasize that all the ~= norms are equivalent (up to a bounded factor) 
for interactions involving boundedly many spins at a time (e.g., two-spin 
interactions), even when they are of arbitrarily long range. The difference 
between the ~ norms concerns how they treat interactions that are very 
strongly multibody. 

Theorem 3.6 constrains very strongly the ways in which the RT map 
can blow up as q~ approaches the boundary of its domain. Indeed, suppose 
that (~,),~>1 is a sequence in dom ~ c ~1 that converges in N ~ norm [or  
more generally, in N 0 / ( j  + Const) seminorm] to ~b~ e N ~ (We need not 
require convergence in N I norm, nor need we require that cb~ belong to 
~1.) Next, let (~'n)n>~J be any choice of renormalized interactions [i.e., 
~b, n e N ( q ~ ) ~  M1]; here the choice concerns the selection of representatives 
modulo physical equivalence. Then (3.40) guarantees that (q;n) is a Cauchy 
sequence in the N ~  seminorm, hence convergences in 
N o / ( j  + Const) seminorm to some q ~  e N~ moreover, this limit is unique 
modulo physical equivalence (i.e., modulo ~ + Const). Now, if q ~  and 
~b~ (or any interactions in their physical equivalence classes) are both 
in ~ ,  then it follows from Theorem3.2 that (~b~,~ / i - )eN,  hence 
q ~  e dom N. Therefore, if ~ e Ml \dom N, it must be that ~b~ is not 
physically equivalent to any interaction in ~1. 

One would like to conclude from this that the N1 (semi)norms 
q~, II -ll~/(t+Cons~) must diverge as n ~ m. Unfortunately, we are not quite 

able to prove this, because we have not been able to prove a version of 
Proposition 2.39(a) modulo physical equivalence (cf. Proposition 2.43). The 
best we have been able to prove is the following: 

C o r o l l a r y  3.7. Let (2 o be a compact metric space, and assume that T 
satisfies ( T 1 ) - (  T3 ) and is Feller. Let ( q~,), >~ 1 be a sequence in dom ~ = ~1 
that converges in ~ o / ( j  + Const) seminorm to q ~  ~ ~ \ d o m  ~.  For each n, 
let ~'~ be any interaction in ~ ( ~ ) ~  ~ .  Then: 
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(a) Either (~'~)~ ~ fails to converge in Mo, or else rl ;ll. l-  00. 

If the single-spin space s is finite, then we also have: 

(b) For any h ~ 1, IIq~',ll~h/(j+Con~t)~ m. 

ProoL (a) Suppose that q~'n ~ 4 "  in ~0, but II~ll~l ~ 0o. So there 
is a subsequence of (~b'n) on which the N1 norm is bounded, say by M; and 
Proposition 2.39(a) then implies that q ~  s ~ l  (with IIq~ll~, ~<M). But by 
Theorem3.2 this means that (qso~, ~ ) e N ,  contrary to the hypothesis 
that q 5  r dom N. 

(b) As argued above, the equivalence classes [qv]  = q~, + j + Const 
converge in M~162 ) to some equivalence class [45~o]. It follows 
that one can choose new representatives ~ '~[~b ' , ]  and ~ f i ~ e [ ~ ]  
such that q3' ~ q3~ in N0. Now suppose that " tI'P~ II ~ / ~ s  + C o n s t )  - -  

[l~'~ll~,,/(j+Con,) ~ 0o. Then there is a subsequence of (~b',) on which the 
~ h / ( J  + Const) seminorm is bounded, say by M; and Proposition 2.43 
then implies that ~fiL ~ Mh + J .  + Const (with tl II ~ / (s  + co,s~) ~< M). But 
this means that  there exists " ~ o ~ h = ~ ) '  (with I I~ - I I .~<M)  such that 
q ~  e [qS-] = [q~-]. And by Theorem 3.2 this means that ( ~ ,  ~ ) ~ ,  
contrary to the hypothesis that q ~  ~ dom ~.  | 

Our inability to prove the divergence of the M1 seminorm is not as 
serious as it may seem: as will be discussed in Section 6.1.2, one probably 
wants anyway to formulate RG theory in a space ~h of short-range inter- 
actions, and for such a space our result (b) is sufficient (when O6 is finite). 

4. PROVABLY PATHOLOGICAL RENORMALIZATION 
TRANSFORMATIONS 

4.1. Griffiths-Pearce-lsrael Pathologies I: Israel's Example 

4.1.1. Introduction. Griffiths and Pearce (174 176) were the first to 
point out the possible existence of what they called "peculiarities" of the 
RT. These peculiarities were exhibited in models in which the internal spins 
undergo a phase transition for some fixed block-spin configuration. They 
observed that in such a situation the correlation functions of the internal- 
spin system could become discontinuous functions of the block spins, 
which implies that each of the terms of the (formal) expansion yielding the 
renormalized Hamiltonian (1.3) could be discontinuous. This casts doubts 
on the convergence of such an expansion, and hence on either the existence 
or the continuity properties of the renormalized Hamiltonian. 

This situation was further clarified by Israel ~21~ in the particular case 
of the b = 2 decimation transformation. He argued that when such peculiar- 
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ities exist, a very weak locality condition is violated by the renormalized 
measure: the conditional expectation for a single site is a discontinuous 
function (in the product topology) of the boundary conditions. That is, it 
is possible to fix the block-spin configuration in an arbitrarily large volume 
around the origin in such a way that what happens at the origin depends 
strongly on the block spins which are outside of the volume. The set of con- 
figurations for which this pathology occurs is improbable, but not of zero 
measure. In our terminology, the renormalized measure is nonquasilocal: 
that is, it is not consistent with any quasilocal specification. In particular, 
the renormalized measure is not the Gibbs measure for any uniformly 
convergent interaction. 

In this section we fill in the technical details of Israel's argument, 
thereby converting it into a rigorous proof. In the following sections we 
shall generalize Israel's argument to other models and other renormaliza- 
tion transformations. In all cases, the underlying physical mechanism 
causing the non-Gibbsianness of the renormalized measure is the same: the 
influence from the block spins outside the specified volume is transmitted 
to the origin via the internal spins in the intermediate region, bypassing the 
block spins in the finite environment of the origin. This occurs because 
the internal spins have a phase transition, and the block-spin boundary 
conditions can pick different phases of these internal spins. 

4.1.2, Israel's Example: Decimation in d=2 .  Let us present 
now Israel's example--the two-dimensional Ising model at low temperature 
and zero magnetic field, using the b = 2  decimation transformation-- 
together with the proof that after one renorrnalization step the renormalized 
measure is no longer Gibbsian. 49 The strategy of the proof is to show that 
the renormalized measure exhibits grossly nonlocal correlations, in the 
sense that the conditional probability distribution of the spin at the origin, 
as a function of all the other spins, depends strongly on the spins 
arbitrarily far away from the origin. More precisely, we shall show that if 
we take an arbitrarily large cube and fix all the block spins inside, except 
the origin, in a fully alternating configuration, then the renormalized 
magnetization at the origin depends strongly on the block-spin configura- 
tion outside of the cube. 

The ferromagnetic nearest-neighbor Ising model in Z 2 is defined by the 
formal Hamiltonian 

H =  - J  ~ a~aj (4.1) 

49 It is well known that the decimation transformation is badly behaved in the limit o f  
infinitely many decimations 1213' 374): for example, any fixed point must have a two-point 
correlation function <Cro; ax> which is independent of x (so in particular does not decay as 
txl --* 00). But the present example is much more drastic, as the problems appear after a 
single step. 
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where (0 ' )  denotes nearest-neighbor pairs and J plays the role of an 
inverse temperature. We shall use the decimation transformation with scale 
factor b = 2. The image (or block) spins are those spins with both coor- 
dinates even, while the remaining spins are the internal spins. We denote by 
(Z2) image [resp. ( • 2 ) i n t ]  the set of image (resp. internal) spins. More 
generally, if A is a subset of Z 2, we denote by A image ~ A ~ (Z2) image [resp. 
A int-  A n (g2)int] the set of image (resp. internal) spins in A. 

The proof of nonquasilocality of the renormalized measure goes in 
four steps: 

Step O. Computation of the conditional probabilities for the image 
system. These conditional probabilities turn out to be related to expecta- 
tion values in a system of internal spins, with fixed image spins e)'. 

Step 1. Selection of an image-spin configuration e)'specia ~. We find an 
image-spin configuration C0'specia ~ such that the corresponding system of 
internal spins has a nonunique Gibbs measure (i.e., a first-order phase 
transition). 

Step 2. Study of a neighborhood of O)'~p~oia ~. We study the internal-spin 
system for image-spin configurations o9' in a neighborhood of e)'sper and 
show that the internal-spin order parameter is a discontinuous function of 
o)'. In physical terms, this means that the internal-spin order parameter 
depends sensitively on the image-spin configuration arbitrarily far from the 
origin, if the image-spin configuration in the intermediate region is set to 
(D tspecial �9 

Step 3. "Unfixing" of the spin at the origin. This is a technical step 
relating the image spin at the origin to the internal spins nearby. (After all, 
we want the conditional probabilities for image spins, not internal spins.) 

Let us now discuss these steps in detail. 

Step O. Computation of the conditional probabilities for the image 
system. Let # be any Gibbs measure for the ferromagnetic Ising model in 
Z 2 with nearest-neighbor coupling J. Our goal is to show that, for J 
sufficiently large, the image (decimated) measure #T  has nonquasilocal 
conditional probabilities. Therefore, our first order of business must be to 
compute these conditional probabilities. To do this, we use the only fact we 
know about the measure #, namely that it satisfies the DLR equations for 
the ferromagnetic nearest-neighbor Ising model. 

The present case is relatively simple, because the image spins are 
simply a subset of the original spins. Let, therefore, A' be a finite subset of 
772; we wish to compute the conditional probabilities E ~ r ( f  I {aj}j~a,c) for 
functions f of the spins {a;}i~A,. But these are just the conditional 
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probabilities E, ( f t  {a,},~2(A,c)) for functions f of the spins {ak}k~2A,. 
There is a slight complication now, because the set 2(A 'c) = (z2)image\2A ' 
is not the complement of a finite set; its complement consists of the image 
spins in 2A' plus all the internal spins. Therefore, the DLR equations for 
the original model do not immediately tell us how to condition on 
{at}~2(A'O). However, we have studied this problem in Section 2.3.7; the 
conclusion (Proposition 2.25) is that the conditional probability measure 
[2(" I {ffl}l~2(A,c))is, for #-almost-every {at},~2(~,c), a Gibbs measure for the 
Ising model restricted to volume (2A' )u  (7/2) int with external spins set to 
{aX}t~2(A'C). This latter system is specified by the same formal Hamiltonian 
(and hence the same interaction) as the original Ising model, except that 
now only the spins in (2A' )~(22)  int are considered to be random 
variables, and the spins {at}~2~A,~) are considered to be fixed. 

Note that we know only tha t /~( t  {at}z~2(A,~)) is some Gibbs measure 
for the restricted interaction: if the restricted interaction happens to have 
more than one Gibbs measure, then we have no way of knowing which one 
is /~(.1 {al}l~2(A'~)). Therefore, we shall have to prove bounds which are 
valid uniformly for all Gibbs measures of the restricted interaction. This is 
what we shall do in Steps 2 and 3 below. 

Note also that this computation of the conditional probabilities is 
asserted to be valid only for #-almost-every {at}t~ 2(A'~); indeed, conditional 
probabilities are only defined up to modifications on a set of measure zero. 
Therefore, in order to prove nonquasilocality we must prove not only that 
this particular version of the conditional probabilities is a discontinuous 
function, but that no function obtained from this one by modification on 
a set of/~-measure zero can be continuous. That is, we must prove that the 
conditional probabilities are essentially discontinuous. We shall do this in 
Steps 2 and 3 below. 

It is convenient to study first the system of internal spins alone, i.e., 
the system in (7 /2 )  int with all image spins {a)}j~z: set to fixed values. We 
call this system the modified object system for image-spin configuration 
{a)}i~z~. In Step 3 below we will "unfix" the image spins in the volume A'. 
In fact, it suffices to consider just one particular volume A', which we shall 
take to be {0}. 

Step I. Selection of an image-spin configuration (Dtspecial . Our goal is to 
show that the conditional probabilities /~('1 {O'I}I~2(A'~)) are essentially 
discontinuous functions of {al)~2(A'c). Therefore, we must find a point 
co'= {crj}j~z2 of essential discontinuity. A good candidate would be an 
image-spin configuration cotspecia 1 such that the corresponding system of 
internal spins has a nonunique Gibbs measure. Indeed, nonuniqueness of 
the Gibbs measure means that the internal spins in volume 2A' depend 
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sensitively on the internal spins arbitrarily far from the volume 2A' (albeit 
with the intermediate internal spins free to fluctuate); so it is a reasonable 
guess that the Gibbs measure might depend sensitively also on the image 
spins arbitrarily far away (but with the intermediate image spins held fixed 
at co'~p~r and this is precisely the statement of essential discontinuity (see 
Step 2 below). 

For the b = 2 decimation transformation, such a configuration cotspecia 1 
was found by Griffiths and Pearce(176'174): it is the fully alternating 
configuration co',~t defined by 

0"i1 ,i  2 ~ 0"2il ,2i 2 = ( - -  1 )ii + i2 (4.2) 

(see Fig. 3a). Notice that each internal spin is adjacent either to two image 
spins of opposite sign--in which case the effective magnetic fields 
cancel--or else to no image spin. Therefore, the modified object system is 
simply a ferromagnetic Ising model in zero field on a decorated lattice, ~35~) 
as shown in  Fig. 3b. Now we can explicitly integrate out the spins in the 
decorated lattice that have exactly two neighbors, yielding an effective 
coupling J '  = �89 log cosh 2J between those two neighbors. The result is an 
ordinary ferromagnetic Ising model on 7/2, with nearest-neighbor coupling 

J '  and zero magnetic field (Fig. 3c). If J '  > J~ = �89 log(1 + xf2) = 0.440686 .... 
that is, 

J >  �89 c~ 1 + x ~ )  = 0.764285... ~ 1.73J c 

then the modified object system for image-spin configuration (D/alt has two 
distinct Gibbs measures, a " + "  phase and a " - "  phase (obtainable by 
using " + "  or " - "  boundary conditions, respectively). 

Step 2. Study of a neighborhood of O);pecia I = cobalt' The next step is 
to study image-spin configurations in a neighborhood (in the product 
topology) of co'a~t. To show that the order parameter (o-~)o,, is an essen- 
tially discontinuous function of the image-spin configuration co', it suffices 
to show that there exists a constant 6 > 0 such that in each neighborhood 
of co'alt the essential oscillation of (ai)~, is at least 6. More precisely, it 
suffices to show that there exists 6 > 0  such that in each neighborhood 
.A~co'a~t there exist nonempty open sets ~/"+, X_ c X and constants 
c + > c  with c + - c  i>6 such that 

(cri)~, >~ c+ whenever co' ~ JV+ (4.3a) 

(~i)~o. ~< c whenever co' e ~2 (4.3b) 
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N o w  a basis for the ne ighborhoods  ~ /  ~ co'alt is given by sets of the form 

YR = { co': co' = C0'alt on A R, Co' = a rb i t ra ry  outside A R } (4.4) 

where AR is a square of side 2R + 1 centered at  the origin (here R is an 
unprimed distance). We shall take JV+, ~ to be sets of the form 

JVR, R,+ {CO': co' = +1 on = = Coral t o n  AR, CO' AR,\AR, 

co' = arb i t ra ry  outside AR, } (4.5a) 

~/~R,R', • { C O , :  COt = colal t o n  AR, Co' = - - I  o n  AR,\AR, 

Co' = arb i t ra ry  outside Ae, } (4.5b) 

m 

_ _ - - +  - + �9 _ _  _ j . . . . . . .  

' I - - - / I 

- / ~ - I I I I 

- - - - +  i �9 I . . . . . . . .  

- - I l I I 

- + . . . . . . . . . .  ~ / 

I l I 1 _ , , , , 

(a) (b) 

j ,  

Fig. 3. 

(c) 

(a) The fully alternating image-spin configuration W'al v (b) The decorated system of 
internal spins. (c) The equivalent nearest-neighbor interaction on (2//) 2. 



982 van  E n t e r  e t  al.  

with R' chosen appropriately as a function of R (R < R' < oo). The motiva- 
tion behind this choice is that setting the image spins in AR,\AR to be all 
" + "  (resp. all " - " )  is expected to push the system into its " + "  (resp. " - " )  
phase. The remainder of Step 2 is devoted to proving that this is in fact the 
case. 

Since we know only that the conditional distribution (.)~o, is some 
Gibbs measure for the modified object system, we need to prove the bounds 
(4.3) uniformly for all Gibbs measures for this system. It suffices to show that 
there exists R " <  oe such that the Gibbs measure for the modified object 
system in the finite volume int AR,, , with image spins C0'S~#R,R, + (or JVR, R, ' ) 
and arbitrary internal-spin boundary condition {fft}l~(z2)~.,\A~! , satisfies the 
bounds (4.3). For simplicity we shall take R"= R'. In fact, in this two- 
dimensional example (but not in higher dimensions) we can take R' = R + 2. 
Therefore, we are led to the following situation: 

Let AR be the square of side 2 R +  1 centered at the origin, and let 
FR--AR\AR_ 1 be the Rth layer. Now choose an even number R, and 
consider all the configurations with the image spins in AR fixed in the alter- 
nating configuration CO'a~ t, and those in the second layer outside AR (that 
is, in F'irnage] fixed to be " + "  The spins outside AR+2 (both image and = R + 2  I 

internal) are fixed in some arbitrary configuration. The situation is depicted 
in Fig. 4a, where a circle represents an internal spin which fluctuates over 
all possible values. Now consider all the resulting systems of internal spins 

A image and an int given the above configuration of image spins in ~-R+2 in AR+ 2 
arbitrary fixed configuration (of both image and internal spins) outside 
AR+2. We want to convince the reader that all the measures so obtained 

int which are bounded have local magnetizations (cril,i2) for (il, i2) e A R+I 
below by a strictly positive constant, uniformly in R (sufficiently large) and 
uniformly in the boundary condition outside AR+2. The sequence of 
bounds used in our proof is summarized in Fig. 4. 

int Each internal spin in A R + 2 feels an "effective magnetic field" -t-J from 
each image spin adjacent to it; but because the image-spin configuration in 
AR is alternating, these "effective magnetic fields" are all zero except at 
some sites in layers FR+I and FR+2: 

(i) An internal spin in layer FR + 1 feels an effective field + 2J if it is 
adjacent to two " + "  image spins. 

(ii) An internal spin in layer FR +2 feels an effective field + 3J or + J, 
depending on whether the adjacent spin in layer FR+ 3 (which is always an 
internal spin) happens to be " + "  or " - "  

int We therefore consider the system of internal spins in A R+ 2 with the 
magnetic fields described in (i) and (ii) above (Fig. 4b). 
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Next we notice that by the FKG inequality (129) (or alternatively 
the Griffiths II inequality(172'3s~ the local magnetizations (aix,i2) for 

int (il, i2)s  A R+2 are bounded below by the values that they would take if the 
magnetic fields + 2 J  in (i) were changed to zero, and the fields + 3 J  in (ii) 

int changed to +J.  We now have a system consisting of the spins in A R+2, 
int (Fig. 4c). with a magnetic field + J on each spin in layer/ 'R + 2 

This latter system lives on a finite subset of the decorated lattice. We 
int can explicitly integrate out the spins in AR+ ~ that have exactly two 

neighbors (namely, the spins that have one coordinate even and one coor- 
dinate odd), yielding an effective coupling J' = �89 log cosh 2J between those 

int two neighbors. Similarly, we can integrate out the spins in/~R+ 2, yielding 

m : , : : o o o o o o o o o o o  :<1 
, , + O + O - O + O - O + :  I 
: 0 0 0 0 O O O O 0 0 O , I  
x + O - O + O - O + O +  : 1  
: O O O O O O O O O O O :  I 

t ~ 1 7 6 1 7 6 1 7 6 1 7 6  
(8 

- m  

h-J o r  37 

# ~ ;?; ~ 
0 0 @ 0 0 0 � 9 1 7 6  

O 0 0 0 0  
O 0 0 O O 0 0 0 0 0 @  

0 0 0 0 @  
0 0 0 0 0 0 0 0 0 0 |  

@ Q O 0 0  
0 0 0 0 0 0 0 0 0 0 @  

O 0 0 0 0  
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(b) 

>_ m 

h=J 

00000000000 
0 0 0 0 0  

00000000000 
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00000000000 
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00000000000 
0 0 0 0 0  

00000000000 
0 0 0 0 0  

(c) 

Fig. 4. 

~ e ~ o o  + o o o o o +  

o o-Q:) o 0 + o o s  o o + 

o o o o e > m + o o o o o + 
o o o o o  + o o o o o +  

�9 0 0 0  �9 + 0 0 0 0 0 § 

R+2 ~ + + + + + 

(d) (e) 

Sequence of bounds proving a lower bound on the magnetization ~ r  the internal 
spins. 
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an effective magnetic field h '=  i log cosh 2 J>  0 on each remaining spin in 
FR+I , i n t  except that the field is 2h' at the corners (Fig. 4d). But this last 
system is equivalent to a square lattice of size ( R + 2 ) x  ( R + 2 )  with 
nearest-neighbor coupling J '  and + boundary conditions (Fig. 4e). As 
R--+oo, this system tends to the " + "  phase for an Ising model with 
coupling J'.  In particular, the magnetization (~r;,,i2) of any spin remaining 
in this system (i.e., any spin with il and i2 both odd) tends to the 
spontaneous magnetization Mo(J'), which is >0  if J '>Jc.  We can now 
return to the decorated lattice, to compute the magnetization (a,-,,~) on 
the internal spins that got integrated out (i.e., the ones with i~ even and i 2 

odd or vice versa): 

(ai~,i2)A~+2 = (tanh[J(~r' + 0")] )R+2 

= ((�89 tanh 2J)(a' + a"))R+2 

---, (tanh 2J) mo(J') > 0 (4.6) 

where a' and ~" are the two internal spins adjacent to o-,.1,i2. We have 
therefore proven our claim that the magnetizations (~il,i2) for 
(il, i2 ) int eAR+ l are bounded below by a strictly positive constant [namely 
(1-e)( tanh2J)Mo(J ' )  for any e > 0 ] ,  uniformly in R>~Ro(il, i2) and 
uniformly in the boundary condition outside AR+ 2. Repeating the argu- 
ment but with the image spins in FR+ 2 chosen as ,,_,,,50 we obtain the 
" - "  phase for the internal spins and thus a strictly negative upper bound 
on (aix,i2). This proves that the local magnetization, say for the four 
internal spins neighboring the origin, is determined by the image spins at 
faraway distances. 

Step 3. Unfixing of the spin at the origin. We now have to make a 
slight modification in the preceding argument, as the system we really want 
to study is the system consisting of the internal spins in A R +  2 and the spin 
at the origin, with the image spins in A ~  mage other than the one at the origin 
fixed in the alternating configuration CO'alt, the image spins in layer r'image - - R + 2  
set to be "+" ,  and the spins outside A R +  2 (both image and internal) fixed 
in some arbitrary configuration. By the same reasoning as before, we 
obtain a system on the decorated lattice plus the origin, with a coupling J 
between the origin and its four neighbors and an additional magnetic field 
- J  on the neighbors of the origin (Fig. 5). Denoting by ( . ) +  (resp. ( . )  +) 

50 Because we have fixed the image spin at the origin to be + ,  the two situations are not  quite 
symmetric. But the only change is a shift in the location of the internal spins in FR+ 1 , which 
feel a nonzero effective field; and this is irrelevant, since we replace these fields by zero 
anyway. 
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the expecta t ion in the old (resp. new) decora ted  system, it is easy to see 
tha t  

2o-0,0= _+1 ((70,0 exp[J((7o, o - 1)(~ro, l + (70,-, + al,o + a - l , o ) ]  ) + 
<(7o, o> ; - 

Z~,o,o = _+1 <exp[J (ao ,  o - 1)((7o,1 + ao,-1 + (71,o "t- (7 - -1 ,0 ) ] )  + 

_ 1- -  (exp[--2J((7O, l+o-o, 1--~-(71,o-t-o" 1 ,0 ) ] )+  (4.7) 

1 + ( e x p [  - -  2J(o 'o ,  1 q- (70, 1AV ~ q- ( 7 - 1 , o ) ]  } + 

Similarly, for the analogous  system with the image spins in F image set to --R+2 
- , we have 

((7o, o) ~ -- 1 - ( e x p [ - 2 J ( ( 7 ~  + a ~  + a l ' ~ 1 7 6  

1 + ( e x p [ - 2 J ( a o ,  1 + a o ,  1 +al,o+a 1,0)] ) - -  

Therefore,  

where 

1 - ( e x p [  + 2J(ao; 1 + ao , -1  --t- (71,o "]- o ' -  1,o)] ) + 

l + ( e x p [ + 2 J ( a o ,  l + a o ,  l + a l , o + a _ 1 , o ) ] ) +  
(4.8) 

2 ( y - x )  
( ao ,o )  T- - (ao,  o )  ~ - (1 + x ) ( 1  + y )  (4.9) 

x = <exp[  - 2J(ao,1 + ao,-1 + o1,o -[- (7--1,0)] > + (4.10) 

y= (exp[+2J(ao, l+ao, 1 ~- 0"1,0 ~- 0"-- 1,0)] ) + (4.11) 

I I J t 
J 

Fig. 5. 

I 

- h = - J ~ "  
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t 

h = - J  

J 
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," I h=---J 
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Decorated lattice when the spin at the origin is free to fluctuate. 

822/72/5-6-9 



986 van Enter  e t  al. 

Now 

y - x = 2 ( s i n h 2 J ( c r o ,  l+Cro,_ l + a l , o + ~ r  1,o))+ 

= 2  ~ ~ ((0"0,1-1- 0"0, _1-~- 0"1,0 ~- 0" 1,0)k~+ 
k=l  
k odd 

~> 4J((o'o, 1 + O-o _1 + Oh,o + o'_1,o)) + 

= 16J(ao, 1 ) + (4.12) 

since the contributions from k = 3, 5,... are all nonnegative by Griffiths' first 
inequality. On the other hand, the denominator in (4.9) is bounded 
between 1 and (1 + eSJ) 2. Since we proved previously that for J ' >  Jc, the 
local magnetization (0"o, 1) + is bounded below by a strictly positive 
constant, uniformly in R (sufficiently large) and in the configuration out- 
side A R+ 2, we can conclude that 

(Cro, o) + - (ao, o) S ~> 6 > 0 (4.13) 

uniformly in R (sufficiently large) and in the configuration outside A R + 2- 

Conclusion of the argument. In summary, we have shown that at zero 
magnetic field and any sufficiently low temperature, given any Gibbs 
measure #, the renormalized measure # T  has the following property: Let 
(Otalt be the fully alternating configuration a'a,i2 = ( -  1 )/1 + i2; let AR, + = 
JV'R/2,(R/2)+I, + be the set of all configurations {~r'} that are alternating in 
AR/2, + in F(R/21+I and arbitrary outside; and let AR,_ be analogously 
defined but with - in F(R/2)+I. In the product topology AR,+ and AR, 
are open sets--in particular, they have strictly positive (/~T)-measure--and 
given any neighborhood of ~ ~ (Dial t we can always choose R large enough 
so that AR,+ u AR, c ~ar. Moreover, we have proven that for all 
co'1 ~AR, + and o ) ~ A R  _, we have 

E#T((T'O, 0 ] { (7;i,i2} (il,i2)~ (0,0))(0,)'i) -- E,uT((~'O, 0 [ { (7'il,i2} (il,i2 ) ~ (O,O))(O)i) ~ (~ > 0 

(4.4) 

This means--as  first pointed out by Israel(21~ the conditional expec- 
tations of a~, o are discontinuous as a function of the boundary conditions. 
More precisely, they are essentially discontinuous: no modification on a set 
of (#T)-measure zero can make them continuous at ~O'a~ t. NOW, for systems 
with a finite single-spin space (such as the Ising model), continuity is 
equivalent to quasilocality. Therefore, what we have really proven is that 
the renormalized measure I~T is not consistent with any quasilocal specifica- 
tion. (In our language, /~T is nonquasilocal; in the terminology of 
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Sullivan, (345) it is non-almost Markovian.) In particular, #T is not Gibbsian 
for any uniformly convergent interaction. 

T h e o r e m  4.1. Let # be any Gibbs measure for the two-dimensional 
/sing model with nearest-neighbor coupling 

J >  �89 cosh-l(1 + xf2) = 0.764285... ~ 1.73J~ 

and zero magnetic field. Let T be the decimation transformation with spacing 
b = 2. Then the measure #T is not consistent with any quasiloeal specifica- 
tion. In particular, it is not the Gibbs measure for any uniformly convergent 
interaction. 

In physical terms, we have shown that the value of the renormalized 
spin at the origin, a~.o, depends strongly on the values of the renormalized 
spins arbitrarily far-from the origin, if the renormalized spins in the inter- 
mediate region are fixed to be alternating. Such a long-range dependence 
is incompatible with the measure #T being Gibbsian for any reasonable 
interaction. 

4.2. Gri f f i ths-Pearce- lsrael  Pathologies I1: General Method 

In this section we abstract the essential features of the Griffiths- 
Pearce-Israel argument, in order to prepare the way for generalizations to 
more complicated examples. 

Step O. Computation of the conditional probabilities. This step is techni- 
cal and messy, but the final result is the obvious one [cf. (4.22)/(4.23) 
below]. The reader is therefore invited to skip this step on a first reading. 

For decimation, the computation of the conditional probabilities of #T 
was an immediate application of Proposition 2.25. For more general RT 
maps, it will be a more complicated" application of this same proposition: 
the idea is to consider first a joint system of interacting spins co and co', and 
then decimate this system to the space f2'. 

If # is any measure on the system of original spins (i.e., on f2), and T 
is any probability kernel from f2 to f2', then the joint measure # x T on 
f2 • f2' is well-defined by 

f d#(co) f T(co, do)') ZA(co, co') (4.15) (# • T)(A) 

for measurable sets A c s x f2'. Now, if H = {re A } is a specification for the 
system of original spins, we wish to define a specification H |  T =  
{(H|  T)A.A, } for the joint system, with the property that 

# consistent with H =~ # x T consistent with H | T (4.16) 
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(In fact, the converse should also hold, i.e., a measure v on f2 x D' should 
be consistent w i t h / / |  T if and only if 12 - v ~ f f  is consistent with H and 
v=12x T.) 

For simplicity let us assume that the probability kernel T has the 
following form: 

T(~o, d~')= [I T~(~%, o;) dvx(OY) (4.17) 

where the v~ are probability measures, and the Bx are finite sets of original 
spins which together determine the image spin co'. We also assume that the 
family of sets {Bx}x~ ,  is locally finite, 51 i.e., only finitely many image 
spins x depend on any given original spin y. Now, to motivate the 
construction, suppose that # is a Gibbs measure for an interaction ~b (and 
a priori measure 120). Then, formally the measure 12 • T is given by 

(12 • T)(&o, do)') " = "  const x iV[ e | [ I  7"~(cos~, ~o~,) 
X = s  ~ x e . L P '  

x H d12~176 1-I dvx(Cn') (4.18) 
X ~  x ~ '  

Of course, the first two infinite products (the ones over functions e -~x~~ 
and T~) are meaningless, but we know what to do: to describe the condi- 
tional probability distribution 12 • T, with (n fixed outside a finite set A and 
co' fixed outside a finite set A', we retain in the products only those terms 
that intersect A and/or A', i.e., 

(12 x T)(do) A , &o'A, [r co'A,c) 

= const(coAc, C0A'C) X H e-~X('~ lq  Tx(c~ ~ 
X r ~  A # ~ x : x  c A '  o r B x  ~ A # ~ o r b o t h  

X U 0 r d12x(c~x) I-[ dvx(c~ (4.19) 
x ~ A  x ~ A '  

Now, the first product is just exp[--HA~(~%, COAt)I, and the first and 
third products together yield (when properly normalized) the kernel 
~A(COA,, dO)A). Therefore, the specification H |  T should be defined as 

- -  1 ( H |  T)(d(hA, dch'A,[O)Ac , O)~,c)= ZA, A,(C0A,, C0~,~)-- XA(~A~, dd)A) 

x IV[ 7"~((C.0A~ X OA)B~,, (C.0~,~ x ,'.b~,)~) 1-I dv.,:(~') (4.20) 
x : x  ~ A '  o r B  x r~ A # ~25 o r b o t h  x ~ A "  

51 That is, the set {x: Bx~y} is finite for each yeG ~ 
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where 

2A,A'(O~ac, CO'A'C) -1 = ~ ~A(COAc, d&A) J~ A • g~2'A, 

X U f f ' x ( ( ( D A C > ( ( D A ) B x  , (coA,C• ]--[ dye(co') (4.21) 
x : x  ~ A ' o r  Bx C~ A # ~ o r b o t h  x ~ A '  

and we have assumed, of course, that ZA,A,(COA c, CO'A,c)> O. [If2A,A,(COAC, CO~,~) 
=0,  then (coA~,co~'~) is a "forbidden boundary condition," which has 
to be dealt with as in the theory of lattice systems with hard-core con- 
straints. ~3~ We must now check that: 

(a) H |  T, thus defined, is indeed a specification. 

(b) If # is any measure consistent with H, then # • T is consistent 
with H |  T. 

These two verifications are messy calculations, which the authors are 
convinced will work out (although mental exhaustion prevented them from 
writing out the full details). 

Things become much simpler when H is the Gibbsian specification for 
an interaction ~b and a priori measure / t  ~ and the Tx are all nonvanishing. 
Then it is easy to see that H |  T is the Gibbsian specification for the inter- 
action ~ (on the lattice 5O w 5 ~ defined by 

fqSx(~O ) if X ' = ~  

~x,x,(co, co')=~--logT~(co,~,co'~)  if X = B ~ a n d X ' = { x }  (4.22) 

otherwise 

and a priori measure #o x v. (In particular, it follows immediately from the 
general theory in Section 2.3.2 that H |  T is indeed a specification.) This is 
the interaction corresponding to the formal Hamiltonian 

Hjo~nt(co' co ' )= E ~bx(co)- E log L(co,~, co') 

= Ho~gi,al(co) -- Z log 7"~(co~, CO') (4.23) 

If the T~ can vanish, then ~ may take the value + ~ ,  which is not (strictly 
speaking) permitted in our formulation; but the same algebra shows that 
H |  T is indeed a specification, at least when 2A,A,(CO~ , CO~,~) > 0. 52 

52 Many of our concrete examples do have configurations for which ZA,A,(~Oa,, 0~,~)=0: for 
example, in the case of decimation, one obviously cannot insist that a certain image spin 
be + 1 and simultaneously insist that the corresponding original spin be -1!  But each of 
these concrete cases has a simple resolution: for example, in the case of decimation, we 
called internal spin only those original spins which are not (locked to) image spins; of 
course, the original spins which are locked to image spins do not even need to be 
considered. 
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Having constructed the specification H |  T on the lattice 5 ~ u 50', we 
can now apply the same argument as in the decimation case, based on 
Proposition 2.25 (see Section4.1.2, Step0). Indeed, the renormalized 
measure #T is obtained by decimating the joint measure # x  T, i.e., 
restricting it to the lattice 50'. 

We hope that someone will come along and simplify our "abstract 
nonsense" concerning Step 0. But we have no doubt that our concrete 
arguments in this paper are correct. 

Step 1. Selection of an image-spin configuration CO'specia I for which the 
corresponding internal-spin system has a nonunique Gibbs measure. We need 
to find an image-spin configuration CO'specia I such that the resulting system of 
internal spins (the "modified object system") has at least two distinct Gibbs 
measures, call them/~ + and # . How we do this depends on the details of 
the model and the renormalization transformation. For the b = 2 decimation 
transformation on the nearest-neighbor Ising model, the fully alternating 
configuration co'alt does the trick. For the majority-rule transformation we 
shall need a more complicated configuration (Section 4.3.4). 

Now let f be a local observable such that # + ( f ) >  kt_ (f) ;  we shall call 
f the "internal-spin order parameter." (For the decimation example, f is 
the spin at a neighbor of the origin.) 

Step 2. Discontinuity of the internal-spin order parameter as a function 
of the image-spin configuration in a neighborhood of O)tspecial  . The next 
step is to study the behavior of the internal-spin system for image-spin 
configurations in a neighborhood (in the product topology) of cO'~per Our 
goal is to show that the order parameter for the internal-spin system is 
essentially discontinuous as a function of the image-spin configuration co'. 

To do this, we first choose image-spin configurations co+ and co'_ 
which we hope will "select the phases # + and/~_".  We then study image- 
spin configurations co' which are equal to co'~p~ia~ on some large box AR, 
which are equal to co+ (or co'_) on some annulus AR,\A R ( R < R ' <  oo), 
and which are arbitrary outside AR,. Our goal is to show that, no matter 
how large R is, the internal-spin phase is selected by the behavior of the 
image spins in AR,\AR--for a suitable choice of R' depending on R--no  
matter what happens outside A R,. 

In mathematical terms, our goal is to show that there exists a number 
6 > 0 such that in each neighborhood JV" ~ co'sp~ial (in the product topology) 
there exist nonempty open sets Y+,  J V  c ~P and numbers c+, c_ with 
c+ - c  ~> 6 such that for every co'~ JV'+ (resp. co's JV_) and every Gibbs 
measure/.t for the internal-spin system with image spins set to co', we have 
~( f )  >~ c+ [resp. # ( f )  ~ c ]. Now a basis for the neighborhoods Jff ~ co'ak 
is given by sets of the form 

'/~/'R = { c o t :  (Dr ~-  co'alt on AR, co' = arbitrary outside AR} (4.24) 
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We shall take ~/~,  J f ;  to be sets of the form 

JV'R,R,,+ = {CO' :  C O ; ~  coral t on AR, CO'= co+ o n  A R , \ A R ,  

co' = arbitrary outside A e, } (4.25a) 

~/'R,R', -- : { (Dr :  co j  ~ (Dr : co~ ~--- (J)al  t o n  A R ,  _ o n  AR,\AR, 

CO' = arbitrary outside A R' } (4.25b) 

We then have to prove that R'  can be chosen as a function of R 
(R < R'  < oe) so that ~ ( f )  satisfies the claimed bounds. 

In practice, the only way we shall be able to prove the existence of 
such an R'  < oe is to prove that the internal-spin system with R' = oo and 
co' e YR, ~, + or YR, oo, - has a unique Gibbs measure, and that this measure 
satisfies the required bounds. It  will then follow fairly easily that the 
(possibly nonunique) Gibbs measures for R'  < ~ tend to this unique limit 
as R'--* oo, and satisfy the bounds (with a slightly reduced 6) for some 
sufficiently large R'. 

We emphasize that since we know only that the conditional distribu- 
tion (-)~o, is some Gibbs measure for the internal-spin system, we need to 
prove the claimed bounds on ~t(f) uniformly for all Gibbs measures for this 
system. To do this, it suffices to show that the bounds are satisfied for a 
finite-volume internal-spin system, for some sufficiently large volume, 
uniformly in the (internal-spin) boundary conditions; that is, it suffices 
to show that there exists R " <  oo such that the Gibbs measure for the 
internal-spin system in the volume int A R,, , with image spins co'~ ~A/R.k, ' + 
(or JV'R.R, _ ) and arbitrary internal-spin boundary condition 

{ • l } l •  2 int int (~ ) \AR,, 

satisfies the claimed bounds. For  simplicity we shall take R " =  R'. 
Let us emphasize once again that both the image spins and the inter- 

nal spins are arbitrary outside AR,, but for different reasons. The image 
spins are arbitrary outside AR, because our computat ion of the conditional 
probabilities /~(-Ico') is valid only for (pT)-almost-every co'; therefore, to 
prove that these conditional probabilities are essentially discontinuous [i.e., 
cannot be made continuous by modification on a set of (#T)-measure 
zero],  we must prove our bounds for a nonempty open set of configurations 
co'. The internal spins are arbitrary outside A R,, ( =  A R,) because we know 
only that the conditional measure/~( .] co') is some Gibbs measure for the 
modified object system, but we have no idea which one (in case it is non- 
unique); therefore, we must prove bounds valid for all infinite-volume 
Gibbs measures of the modified object system. 
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Step 3. Unfixing of the spin at the origin. The final step is to show that 
if the system of internal spins is slightly modified by changing the inter- 
action with a few (in our examples just one or two) image spins close to 
the origin, the order parameter at these extra spins differs little from the 
value at internal spins close to the origin. This is the step of "unfixing" 
some image spins discussed above. 

Conclusion of the argument. Combining the conclusions of Steps 2 
and 3, we have that for all possible image-spin configurations outside AR,, 
the order parameter at image spins close to the origin is determined by the 
image spins in the arbitrarily distant annulus AR,\AR. In mathematical 
terms, the conditional probability distribution of the image spin at the 
origin is an essentially discontinuous function of the other image spins, in a 
neighborhood of O)'speoia~. Thus, the renormalized measure has nonquasi- 
local conditional probabilities: It is not consistent with any quasilocal 
specification, and in particular is not the Gibbs measure of any uniformly 
convergent interaction. 

4.3. Griffiths-Pearce-lsrael Pathologies II1: 
Some Further Examples 

In this section we apply the Griffiths-Pearce-Israel method to prove 
non-Gibbsianness of the renormalized measure in the following additional 
examples: 

1. b = 2 decimation for the Ising model in dimension d~> 3. 

2. Decimation with spacing b >/3, for the Ising model in any dimen- 
sion d~> 2. 

3. The Kadanoff transformation with finite p and arbitrary block size 
b ~> 1, for the Ising model in any dimension d >~ 2. 

4. Some cases of the majority-rule transformation for the Ising model 
in dimension d =  2. 

5. Block-averaging, with even block size b, for the Ising model in any 
dimension d~> 2. 

Finally, and most strikingly, we can show that in all of these examples 
except (and this probably only for technical reasons) the majority-rule 
case, there is in fact an open region in the (J, h) plane for which the renor- 
malized measures are non-Gibbsian. Therefore, the Griffiths-Pearce-Israel 
pathologies are not associated with the fact that the original model is sitting 
on a phase-transition surface. Rather, it suffices that a first-order phase 
transition can be induced in the internal-spin system by choosing an 
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appropriate block-spin configuration. For this we need to work at low 
temperature but not necessarily at zero magnetic field. 

4.3.1. Israel's Example in Dimension d>~3. In this section we 
study the b = 2 decimation transformation for the Ising model in dimension 
d>~3. 

Step O. Computation of the conditional probabilities. This has already 
been done. 

Step 1. Choice of C0'speoia~. AS in the two-dimensional case, we choose 
OJ'specia 1 to be the fully alternating configuration ~O'al t. The system of internal 
spins for a fully alternating image-spin configuration again corresponds to 
a periodically diluted ferromagnet: an internal spin with all but one of 
its coordinates even--that is, one which is adjacent to two image spins-- 
has two less neighbors coupled to itself, while all other internal spins are 
unaffected. The only difference from the two-dimensional case is that the 
resulting lattice is not merely a decorated version of an exactly soluble Ising 
model, so we cannot write an explicit formula for its critical temperature. 
Nevertheless, it is easy to show that the internal-spin system does have a 
phase transition, and that at low enough temperature there exist distinct 
Gibbs measures /~+ and #_ with strictly positive and strictly negative 
magnetization, respectively; these phases can be selected by using, for 
example, " + "  or " - "  boundary conditions. These claims follow easily 
from a Peierls argument (for a description of such arguments, see, e. g., ref. 
172). They can alternatively be proven by observing that the diluted system 
is a collection of (d-1)-dimensional  diluted and undiluted Ising models, 
ferromagnetically coupled. In particular, the d-dimensional diluted system 
is more ferromagnetic than the ( d -  1)-dimensional undiluted Ising model, 
and hence ~72) exhibits spontaneous magnetization for all temperatures 
below the critical temperature J~.j_ 1 of the (d-1)-dimensional  undiluted 
Ising model. 

Step 2. Study of a neighborhood of ~O'sp~ci~l = O)'alt. Next we must find 
image-spin configurations c~+ and co'_ that will "select" the phases p + and 
p_ of the internal-spin system. The choice is obvious: as in the two- 
dimensional case, we take co' (resp. co' + ) to be the configuration with all 
spins + (resp. all spins - ). We need then to show that if the image spins 
in A~ mage are fixed in a fully alternating configuration, and those in an 
annulus a image \ ,4  image -- R, \ -  R are set to all + (or all - ), then for R' large enough 
(depending on R) the image spins in the annulus are capable of deter- 
mining the internal-spin phase. 

In two dimensions we were able to take R ' =  R + 2. That is, we were 
able to shield off a volume by fixing around it a single layer of image spins: 
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namely, by setting the image spins only in layer FR+ 2 to be + ,  we were 
able to guarantee that the effective magnetic fields felt by the internal spins 

i n t  in A R + 2 are all nonnegative, even if all the spins (both image and internal) 
outside AR§ 2 are set to be - (see Figs. 4a and 4b). This situation does 
not, however, persist in higher dimensions: a layer F'image of -l- image spins ~ R + 2  

int from the possible - spins does not protect all of the internal spins in FR+ 2 
in layer FR+3 (see Fig. 6). Therefore, we have to resort to a more general 
argument to show that there exists a shielding layer, though thicker. 

i n t  Consider, therefore, the system of internal spins in volume AR,, with the 
image spins in "~image fixed in the alternating ( + )  configuration, the image 

xx R 

spins in the annulus A~,age\AR mage fixed to be all + ,  and the spins outside 
AR, (both image and internal) fixed in an arbitrary configuration & We 
denote expectations in this system by ( R R, �9 ) +', +,~. We want to show that, for 
J sufficiently large, there exists c > 0 such that for all R > 0 there exists 
R ' >  R (depending on R) such that 

R,R' R,R' <a~>+,+,~><~i>• ~>c>O (4.26) 

and by symmetry 

R,R' R,R' ~ - - c < O  <~ri> ++,_~ ~ <ai> +_,_ + (4.27) 

for every configuration ~ outside AR, and every " int l e A R . This will be proven 
using correlation inequalities together with the uniqueness of the Gibbs 
measure for the internal-spin system with image spins set to all + or all - .  

J 

Fig. 6. Why a single layer does not work in d~> 3. For the "worst" configuration of the next 
int external layer (image and internal spins all "-"),  some of the internal spins in layer Fn+ 2 

pick up a negative magnetic field. 
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More precisely, the proof of (4.26) will involve a sequence of 
inequalities comparing the following systems of internal spins: 

1. The system of internal spins in volume A~5 described above, which 
we denote by 

•  + ,  6 

. The infinite-volume system of internal spins A~ t = (Za) int, with the 
image spins in Aimage fixed in the alternating ( •  configuration " ' R  

and the image spins outside AR fixed to be all +.  We denote this 
system by 

R, oo t 
•  + 

. The infinite-volume system of internal spins Ai~ t - ( Z d )  int, with the 
image spins everywhere fixed in the alternating ( +_ ) configuration. 
We denote this system by 

We shall prove the following: 

Step 2.1. /~R,R' converges as R' +,+,~ ~ oo to a Gibbs measure for the 
system 

__., + 

Step 2.2. The system 

<) 
has a unique Gibbs measure, call it #~ ,~ .  

R, oo Step 2.3. The measure # _+, + is larger (in F K G  sense) than all Gibbs 
measures for the system 
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Step 2,4. Let kt_~ (+~ be the " + "  phase (i.e., the maximal Gibbs measure 
in F K G  sense) for the system 

Then #~(+~(o-i) ~> c > 0. 
From these results we will then deduce (4.26). 

Step 2.1. The limit R'  ~ oo. We wish to consider the limit as R' ~ oo 
R R' (for fixed R). By compactness, this sequence of of the measures #~_',+,~ 

measures has at least one limit point in the weak topology (in fact, any 
subsequence has a limit point). We claim that any limit point of the 

R,R' (with arbitrary 6) is necessarily a Gibbs measure for the measures # _+, +,~ 
system 

The proof is trivial: for any volume A c AR,_ ~, the DLR equations for the 
systems 

( . . )  and 
+,  +,  ~ + ,  

are identical (i.e., the TEA'S are the same); so for large enough R', the 
R,R' measure p_+, +,e satisfies the DLR equation in volume A also for the system 

_+, 

Since the latter system's specification is Feller, the DLR equations are 
preserved under a weak limit. 

Note that we have not yet proven that the limit as R ' ~  oo exists; 
different convergent subsequences might a priori have different limits. But 
in the next step we will prove that the Gibbs measure for the system 

is unique, so in fact the limit does exist. 

Step 2.2. Unique Gibbs measure for  the system 

+_, + 
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Consider the infinite-volume system of internal spins (~d)int, with the image 
spins in A image fixed in the alternating ( •  configuration, and the image 
spins outside A R fixed to be all +.  We claim that this system has a unique 
Gibbs measure. (We only need uniqueness at low enough temperature, but 
in fact the Gibbs measure is unique at all temperatures.) This uniqueness 
is intuitively obvious: the effective magnetic fields induced by the + image 
spins outside A R are sufficient to push the system into the " + "  phase. 
Unfortunately, the proof we have to offer is a bit too complicated for our 
taste. It goes as follows. First, we notice that it is enough to prove unique- 
ness of the Gibbs measure when all the image spins (including those inside 
AR) are set in the " + "  position. Indeed, changing the image spins inside 
A R amounts to a finite-volume perturbation of the system and hence it 
does not alter the number of Gibbs measures (ref. 160, Section 7.4). [In 
fact, every Gibbs measure /~' for the perturbed interaction comes from a 
uniquely defined Gibbs measure # of the unperturbed interaction: if W is 
the perturbation, then #'(. ) =/~(. e -  w)/#(e- w).] 

To prove the uniqueness of the Gibbs measure for the system with all 
image spins " + , "  we provide two arguments. First argument, proving 
uniqueness only at low temperature: Pirogov-Sinai theory (337'264'331) 
implies that the phase diagram at low enough temperature is a small defor- 
mation of that at zero temperature, but in this case there is only one 
ground state (namely, all spins " + ' ) .  Second argument, proving unique- 
ness at all temperatures: The internal-spin system is an Ising model on a 
periodic lattice, with nearest-neighbor coupling J > 0  and a periodic 
magnetic field hx = h6~ i (here n.i. 6x = 1 if X neighbors an image spin, and 0 
otherwise), specialized to h =  +J .  By the Lee-Yang theorem (ref. 163, 
Section 4.5, or ref. 254 and references cited therein) and a result of 
Lebowitz and Penrose (246) (see also ref. 172, Theorem 4.4), it can be shown 
that the pressure of such an Ising model is a jointly analytic function of J 
and h on the domain J, h > 0. It follows that all periodic Gibbs measures 
give the same mean value to the observables conjugate to J and h: these 
observables are, respectively, ~ aiaj where the sum runs over all nearest- 
neighbor pairs (0 ')  in a unit cell of the periodic lattice, and 52 ak where the 
sum runs over all sites k in this unit cell that are nearest neighbor to an 
image spin. By Griffiths' comparison inequality, it follows that 

#_ (aiaj) = # + (aicrj) (4.28a) 

#_ (c~k) =/~ + (ak) (4.28b) 

for every pair ( / j )  of nearest neighbors and for every site k neighboring 
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an image spin; here #+ and # _  are the measures corresponding to + and 
- boundary  conditions, respectively. We then resort to the inequality (24~ 

#+(aA)--p_(aA)>>-I#+(aB)# ( a A a B ) - - #  (ae)#+(aAcrS)l  (4.29) 

valid for any sets A, B c 2  J (we denote ffA=l-IieA 6i). F r o m  (4.28) and 
(4.29) we conclude that  

# (~A) = #+(aA)  (4.30) 

whenever a a is a p roduc t  of functions of the form a ia  i with i, j nearest 
neighbors and ~r~ with k being a neighbor  to an image-spin site. (In other  
words, A must  be the symmetric  difference of  a family of such sets {i,j} 
and/or  {k}.) But it is not  hard to see that all sets A c (7/d) int are of  this 
form, hence 

# = # +  (4.31) 

N o w  by the F K G  inequality, # ~< p ~< p + in F K G  sense 53 for every Gibbs 
measure p, hence there is a unique Gibbs measure at all temperatures.  
(This a rgument  is essentially due to Lebowitz,  (24~ with minor  altera- 
tions to accommoda te  periodic systems.) 

Step 2.3. Comparison to the 

(7) 
R o o  system. We claim that  the measure # ; '  + is larger (in F K G  sense) than all 

Gibbs measures for the system 

This is an immediate consequence of the F K G  inequality combined with 
the uniqueness proved in Step 2.2. Indeed, by the F K G  inequality, the 
finite-volume Gibbs measure for the 

53 We write a ~< a' in case o- i ~ aPi for all sites i. An observable f is said to be increasing if 
f(a) <~f(a') whenever a ~< a'. We say that # ~< v in FKG sense in case p(f)<~ v(f) for all 
increasing local observables f. 
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system with any (internal-spin) boundary condition is larger in FKG sense 
than the finite-volume Gibbs measure for the 

system with the same boundary conditions. This inequality passes directly 
to the infinite-volume limit. 

Step 2.4. Spontaneous magnetization for the " + "  phase of the 

system. The 

system is precisely the Ising model on a periodically diluted lattice. As 
discussed in Step 1, this model has spontaneous magnetization for J 
sufficiently large. 

Step 3. Unfixing of the spin at the origin. Finally, we can "unfix" the 
spin at the origin in the same way as in the two-dimensional example. 

Conclusion of the argument. We conclude that in every neighborhood 
of (D'al t there are open sets Y+,  .W such that 

E.r(Cr'o[ {6'i},eo)(cOl)-E~r(ff~) I {~r'i}i~O)(O.)2)~(~>O (4.32) 

for co~ E sg~ and e)2 e ~ .  As in the two-dimensional case, this implies the 
nonquasilocality of the renormalized measure #T, for any original Gibbs 
measure #. This works for any temperature below the critical temperature 
of the undiluted (d-l)-dimensional Ising model. We have therefore 
proven: 

T h e o r e m  4.2. Let d>~2. Then for all J>Jc,d-1, the following 
holds: Let # be any Gibbs measure for the d-dimensional Ising model with 
nearest-neighbor coupling J and zero magnetic field. Let T be the decimation 
transformation with spacing b---2. Then the measure #T  is not consistent 
with any quasilocal specification. In particular, it is not the Gibbs measure 
for any uniformly convergent interaction. 

4.3.2. Dec ima t ion  w i t h  Spac ing  b~>3. The conclusions of 
Theorem 4.2 for decimation with spacing b = 2  hold also for larger 
spacings. The main difference from the b---2 case is that for b~>3 
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the system of internal spins obtained with co' ' = coalt is no longer simply a 
periodically diluted Ising model in zero magnetic field; rather, it contains 
a periodic alternating magnetic field which is nonzero at the sites neigh- 
boring an image spin. As a consequence, we need a more sophisticated 
technique to conclude that there is indeed a phase transition (Step 1). The 
appropriate tool for this purpose is Pirogov-Sinai (PS) theory, (337'338) 
which is summarized in Appendix B. The upshot of PS theory is that the 
phase diagram of a lattice system at low temperature can in some cases be 
deduced from the phase diagram at zero temperature. More precisely, if 
there are a finite number of periodic ground states, and these ground states 
satisfy a suitable "Peierls condition," then the phase diagram of periodic 
Gibbs measures at low temperature is a small perturbation of the phase 
diagram of periodic ground states. In the case at hand, we will show in 
Appendix B that for the fully alternating block-spin configuration, t h e  
system of internal spins has only two periodic ground states (namely, the 
one with all internal spins +,  and the one with all internal spins - )  and 
that these ground states satisfy the Peierls condition. It follows from PS 
theory that at low temperature there are precisely two periodic Gibbs 
measures, /~+ and p_ ,  characterized respectively by a strictly positive or 
strictly negative magnetization. See Section B.5.3 for the details of this part 
of the argument. Steps 2 and 3 are then proven in a manner exactly identi- 
cal to the b = 2 case. The analysis of Section B.5.3 yields a (very weak) 
estimate of the range of temperatures for which the pathologies are present 
[formula (B.81)]. 

We have thus proven the following: 

T h e o r e m  4.3. Let d>~ 2 and b >~ 2. Then for all J sufficiently large 
(depending on d and b), the following holds: Let t~ be any Gibbs measure for 
the d-dimensional Ising model with nearest-neighbor coupling J and zero 
magnetic field. Let T be the decimation transformation with spacing b. Then 
the measure ~tT is not consistent with any quasilocal specification. In par- 
ticular, it is not the Gibbs measure for any uniformly convergent interaction. 

Remark. Checkerboard decimation, as shown in Fig. 2b, is a very 
different situation: the internal spins are not connected, and hence they 
cannot cooperate to have a phase transition. In fact, in this case the first 
iteration of the transformation is well-defined (ref. 374, and ref. 355, 
p. 193). However, the second iteration of this transformation corresponds 
to a single iteration of the b = 2 decimation transformation, and so is ill- 
defined at low enough temperature. 

4.3.3. Kadanof f  T rans format ion  w i th  p Finite. In some sense 
the results thus far should not be surprising: the decimation transforma- 
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tion, unlike other RG transformations, does not in any sense integrate out 
the "high-momentum modes" and leave the "low-momentum modes"; 
it merely integrates out one sublattice and leaves another. In particular, 
if the sublattice of internal (integrated-out) spins is connected, it is hardly 
surprising that the internal-spin system can exhibit a phase transition, and 
that this can give rise to RG pathologies. 

In this section we show something considerably more surprising: that 
the same pathology--non-Gibbsianness after one renormalization step--is 
present at low temperature for the Kadanoff transformation with any finite 
(but nonzero) p.S4 This result is in clear conflict with the RG ideology, 
which states that integration over high-momentum modes cannot produce 
singularities. (Indeed, our proof makes no distinction between block sizes 
b >i 2 and b = 1--and for b = 1 one is not integrating over any "modes," 
high-momentum or otherwise!) In the next subsection we shall prove a 
similar result for some majority-rule transformations (i.e., Kadanoff with 
p =  ~:). 

Consider the Kadanoff transformation (3.10) with block size b and 
parameter p. From (3.10) one readily concludes ~56) that for each choice of 
block spins a' the conditional probabilities of the internal spins ~r 
correspond to a Hamiltonian 

( i j }  x i ~ B x  x i cB~:  / 

(4.33) 

This is the original Ising-model Hamiltonian perturbed by a block- 
dependent magnetic field and an antiferromagnetic multispin coupling. 
It is natural to expect that, for any fixed p < ~ ,  for sufficiently large J (i.e., 
low enough temperature) the perturbation becomes effectively small, and 
the phase diagram a small deformation of that of the original Ising model. 

We notice, however, that there is a small difference from the original 
perturbative setting in that the last two terms in (4.33) do not include a 
temperature factor. In the study of deformations of phase diagrams, one 
considers a fixed value of/~ multiplying all the terms of the Hamiltonian, 
and analyzes the consequences of changing (perturbing) some of the 
remaining parameters. The proof that the deformations are smooth usually 
requires that the size of this perturbation not exceed a certain/%dependent 
bound. In our case, after pulling out a common factor /~, the parameters 
of the perturbation acquire a /%dependence and one is confronted with 
the problem of verifying that this /%dependent size is smaller than the 

54 In earlier versions of this work ~361, 362) we claimed this result only for small p. Subsequently 

we found a proof valid for all 0 < p  < ~ ,  which we present here. 

822/72/5-6-10 
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/~-dependent bound. This problem is especially serious in the case of the 
last term in (4.33), which does not have any small parameter preceding it, 
so that its size decreases only as l/ft. We conclude that to successfully 
complete Step 1 we need a slight strengthening of the usual PS theory, 
involving families of interactions, and showing that the deformations of 
the phase diagram are small uniformly in members of this family. Such a 
strengthening is discussed in Appendix B (Corollaries B.25 and B.29). 

For Step 1, then, we choose a configuration C0'speoia~ for the block spins 
so that the middle term in the RHS of (4.33) does not favor any overall 
internal spin orientation--for example, a fully alternating configuration. 
The "uniform" version of PS theory implies (Appendix B.5.4) that at low 
enough temperature there are two coexisting phases p + and #_ .  This is the 
end of Step 1 of the Griffiths-Pearce-Israel argument. Steps 2 and 3 are 
then completed almost identically to the previous examples. 

In this way we conclude: 

T h e o r e m  4.4. Let d>~2, b~> 1, and 0 < p <  oe. Then there exists a 
Jo (depending on d, b, and p) such that for all J > Jo the following holds: 
Let p be any Gibbs measure for the d-dimensional Ising model with 
nearest-neighbor coupling J and zero magnetic field. Let T be the Kadanoff 
transformation with parameter p and block size b. Then the renormalized 
measure pT  is not consistent with any quasilocal specification. In particular, 
it is not the Gibbs measure for any uniformly convergent interaction. 

A (poor) estimate of the smallness of the temperature is given in 
formula (B.89). We emphasize that our estimate Jo is nonuniform in p. As 
a result, we are not able to take p ~ oe at any fixed J, and thereby treat 
the majority-rule map. (Our partial results on the majority-rule map, 
obtained by a different method, will be described in the next subsection.) 

Remarks. 1. The occurrence of "peculiarities" in the Kadanoff 
transformation at small p and low temperature was suggested already by 
Griffiths and Pearce. (175' 176) 

2. Interesting applications of the Kadanoff transformation (with 
block size b =  1 !) arise in image processing, (155'157' 65'161'132) speech 
recognition, (3~ and other fields of applied probability theory. The basic 
theoretical construct in these fields is a class of models termed hidden 
Markov models (307' 156,252); in our language these are simply the images of 
Markovian (i.e., nearest-neighbor) spin models under local renormalization 
transformations. It has been long recognized that such measures can be 
very far from Markovian; here we have shown that they can even be non- 
Gibbsian. 
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Consider, for example, an Ising-model Gibbs measure corrupted by 
white noise: with probability e a spin is observed incorrectly, independently 
at each site. This is model I of Griffiths and Pearce, (175'176) and is 
equivalent to the Kadanoff transformation with p - - t a n h  1(1-2e)  on 
blocks of size b = 1. For any e satisfying 0 < e < 1, our results show that the 
image measure is non-Gibbsian for (J,h) in an (e-dependent) open 
neighborhood of the low-temperature zero-field region. (The proof for h r 0 
will be given in Section 4.3.6.) This system is of interest in applications to 
image processing. (155' 132) 

4.3.4. Majority-Rule Transformation. Next we wish to show 
that Griffiths-Pearce-Israel pathologies occur also for the majority-rule 
transformation (i.e., the Kadanoff transformation with p =  ~) .  For 
simplicity let us consider the case of an odd block size b, so as to avoid the 
complications caused by ties. In view of the foregoing examples, it is 
natural to try a fully alternating block-spin configuration (D'al t, Using 
Pirogov-Sinai theory, one might hope to prove that at low temperature the 
internal-spin system has precisely two extremal periodic Gibbs measures: a 
~ + "  phase in which the internal spins show an overwhelming majority of 
+ spins in blocks where the block spin is + but only a weak majority of 
- spins where the block spin is - ,  and a " - "  phase with the reverse 
behavior. This result would in fact follow if one could show that there are 
precisely two periodic ground states: a "+"-l ike state in which the internal 
spins are unanimously + in blocks where the block spin is + but show 
only a bare - majority on blocks where the block spin is - ,  and a 
" - " - l ike  state with the reverse behavior (Fig. 7a). Unfortunately, neither 
the shape nor the position within a block of these "minimal islands" of 
minority spins is in general uniquely determined (Fig. 7b); therefore, this 
family of states is infinitely degenerate, and we cannot apply PS theory (at 
least in its usual form). Moreover, it 'turns out that these configurations are 
not even ground states: there are "strip-like" states of lower energy density 
(Fig. 7c). We believe that these strip-like states are truly ground states 
(though we have not proven it); and since they, too, are infinitely 
degenerate, PS theory cannot be applied. 

We suspect that for each odd b >~ 3 there do exist block-spin configura- 
tions (more complicated than (~'alt) for which the Griffiths-Pearce-Israel 
argument can be carried through, but for b--3,  5 we have been unable to 
find any. The simplest case in which we managed to avoid these problems 
is b = 7. Here a bare majority in a 7 x 7 block consists of 25 spins, and the 
unique minimal-energy configuration for an island of 25 or more spins 
(surrounded by a sea of spins of the opposite sign) is a 5 x 5 square. By 
taking a doubly-alternating block-spin configuration (Fig. 8a), we can force 
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Fig. 7. (a) The hoped-for structure of the "+"-like ground state. (b) Indeterminacy of the 
shape and position of the minimal islands of - spins, for the case of a 3 x 3 block. The energy 
per  island is 20J, i rrespective of  its shape. The  energy density is 10J per  block. (c) Striplike 

states with an energy density of  8 J  per  block. These states also have  an  inde te rminacy  in each 

block. 

these 5 x 5 squares to be posit ioned in a unique minimal-energy way 
(Fig. 8b). The energy of this ar rangement  is 80J per group of eight blocks, 
or 10J per block. On  the other  hand, strip-like states would cost at least 
14J per block. Therefore, with this block-spin configurat ion the internal- 
spin system has precisely two ground  states: the " + " - l i k e  state depicted in 
Fig. 8b, and the reverse " - " - l i k e  state. It then follows from PS theory that  
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Fig. 8. Majority rule for 7 x 7 blocks. (a) The doubly-alternating block-spin configuration. 
(b) The unique minimal-energy arrangement of islands of - spins in a + sea. The energy is 
80J per 8 blocks, or 10J per block. 

at low enough temperature the internal-spin system has two extremal 
periodic Gibbs measures, # + and # _, characterized by a nonzero position- 
dependent magnetization of opposite signs. The ingredients of the rigorous 
argument showing that indeed the " +  "- and " - " - l i ke  configurations of the 
type of Fig. 8b are the only ground states, and that PS theory is applicable, 
are summarized in Section B.5.5. This completes Step 1, which is the hard 
part of the proof. 

The proof of Step 2 relies again on PS theory and the F K G  inequality. 
Step 2.1 is proven in the usual way. The fact that the system with + block 
magnetization outside a square AR has a unique Gibbs measure is a conse- 
quence of PS theory: at zero temperature this system has a unique ground 
state, namely the state with all spins + ,  and PS implies (see Section B.5.2) 
that this trivial phase diagram persists at low enough temperature. This 
proves Step 2.2. Finally, we claim that the system with + block spins out- 
side a square A R (and doubly alternating block spins inside) has a larger 
magnetization than the system with doubly alternating block spins every- 
where. Indeed, the constraint that the majority of internal spins in a block 
B be - (resp. + ) can be imposed by including in the Hamiltonian a term 
- h 8  sgn(Zi~B ~i) with h e ~ - o o  (resp. hB ~ + oo). Since sgn(~i~B ~i) is 
an increasing function of the spins, the F K G  inequality implies that the 
magnetization at any site is an increasing function of hB. This proves Step 
2.3. Step 2.4 is a direct consequence of PS theory. 

Step 3 is proven in the usual way. We therefore conclude: 
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Theorem 4.5. For all J sufficiently large, the following holds: Let # 
be any Gibbs measure for the two-dimensional Ising model with nearest- 
neighbor coupling J and zero magnetic field. Let T be the majority-rule 
transformation on 7 x 7 square blocks. Then the measure # T  is not consistent 
with any quasilocal specification. In particular, it is not the Gibbs measure 
for any uniformly convergent interaction. 

It is of course unnatural and unpleasant for this result to be restricted 
to the special case of 7 x 7 blocks. This restriction was necessary only in 
Step 1 (the proof of a phase transition for some fixed block-spin configura- 
tion); it arose from the necessity to obtain a finite number of periodic 
ground states in order to apply PS theory. All the other steps in the proof 
remain valid for blocks of arbitrary size and for Ising models in arbitrary 
dimension. Digging a little deeper, we see that the "rigidity" in the shape 
and position of the islands of minority spins, and hence the boundedness 
of the number of periodic ground states, is a consequence of the following 
numerological "miracle": the block size b = 7  and the island size e =  5 
satisfy the Diophantine equation 

1 + b 2 = 2c 2 (4.34) 

The proof extends automatically to any block size b for which c defined by 
(4.34) is an integer. In Appendix C we find the general solution to this 
Diophantine equation: the admissible block sizes turn out to be 

bk = �89 [(1 + ,,/~)2k + 1 + (1 - ~ ) 2 k +  1] (4.35) 

for k =  1, 2, 3,.... The first few bk are 7, 41, 239, 1393, 8119 ..... For other 
block sizes, a proof of non-Gibbsianness using our methods would require 
either a more clever choice of block-spin configuration cO'specia~, or else a 
more sophisticated version of PS theory capable of dealing with infinitely 
many periodic ground states. (47" 182,23,24,49) Irrespective of these technical 
details, it seems plausible to expect that the conclusion of Theorem 4.5 
remains valid for a/ /block sizes b. 

Remark. Griffiths and Pearce (175'176) and later Hasenfratz and 
Hasenfratz (ref. 192, Section 4) have presented a rather different class of 
cases in which the majority-rule transformation is expected to have 
"peculiarities": in these examples the block-spin configuration ~O'sp~cia ~ is 
taken to be purely + ,  and the magnetic field is taken to be negative (with 
an order-1 strength chosen to exactly compensate the effect of the block 
spins). Our scheme of proof does not apply in these examples, for two 
reasons: First, there are infinitely many periodic ground states, so PS 
theory in its usual form does not apply. Second (and perhaps more 
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seriously), in the configuration (D~special all of the block spins are already +, 
and by construction the corresponding internal-spin system does not have 
a unique Gibbs measure; so it is clearly impossible to "select" the " + "  
phase (i.e., make it unique) by setting the block spins in an annulus to be 
+. This latter fact was already noted by Israel (ref. 210, p. 597). 

4.3.5. Block-Averaging Transformations. In contrast to our 
previous example, in this case our proof works for even block sizes (and 
only these) precisely because of the possibility of ties. We discuss here the 
simplest case, namely the 2 x 2 block-averaging transformation for the two- 
dimensional nearest-neighbor Ising model at low temperatures. We divide 
7/2 into 2 x 2 blocks Bj, and define 

a]= Z ai (4.36) 
i~ B] 

We notice that although the original variables a take two values ( + 1 ), the 
renormalized spins a' take five values (0, +2, _+4). Usually the average 
spins are rescaled, but such a rescaling is irrelevant for our discussion 
because we only consider a single application of the transformation and do 
not iterate. 

Step 1. We choose the configuration (Dtspecial defined by a~ = 0 for all 
j e 7/2. The resulting system of internal spins has, at low temperatures, four 
periodic Gibbs measures corresponding to four ground states formed by 
infinite alternating strips of thickness 2 (see Fig. 9). This follows 
immediately from Pirogov-Sinai theory (see Appendix B.5.7). 

Step 2. Let A be a 4N x 4N square. Take block-spin boundary condi- 
tions as follows: + 4 for the rows of block spins immediately above and 
below A, + 2 for the columns immediately to the right and left of A, and 
+ 4 for the columns just to the right and left of these (see Fig. 10a). A slight 
modification of the usual Peierls argument proves that these boundary 
conditions induce at low temperature the Gibbs measure associated to 
ground-state #3  in Fig. 9 (see Fig. 10b): The leftmost and rightmost 

�9 § - - ' - -  §  -- + § -- -F -I- + § 

§ 4- -- § § . . . . . . . .  

§ § - - 4 . t -  . . . . . . .  
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Fig .  9. 
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T h e  f o u r  p e r i o d i c  g r o u n d  s ta tes  o f  the  i n t e r n a l - s p i n  s y s t e m  o b t a i n e d  by  c o n s t r a i n i n g  

the  b l o c k  sp ins  to  be  zero.  
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Block-spin boundary conditions chosen for Step 2. 

columns fixed in the + 4 block-spin configuration force the internal spins 
in the adjacent +2  columns to be either in the configuration shown in 
Fig. 10b or the one with the + and - spins interchanged in the last column. 
This, in turn, suppresses throughout A the internal-spin configurations 
corresponding to the ground states # 1 and # 2  of Fig. 9 (one pays an 
energy cost at least as big as the vertical part of the contour separating 
them from the rest). However, the +4  block-spin configurations of the top 
and bottom part of the boundary tilt the balance in favor of ground state 
#3  (and hence force the boundary columns with block-spin +2 to adopt 
the internal-spin configurations shown in Fig. 10b). 

Step 3. We unfix two nearest-neighbor block spins: the one at the 
origin and the one immediately above it. Then, at sufficiently low tem- 
perature, one has with high probability the boundary condition of Fig. 11 
for the two-block system (0', 0') (0', 1') (for a suitable positioning of the 
volume A). Notice that this boundary condition has eight + spins and 

+ + 

§ I § m m 

§ § 

Fig. 11. Boundary conditions for the block-spin observable of Step 3. 
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only four - spins; therefore, it is clear that the spins inside the two blocks 
are biased toward + ,  so that 

#tA,O);pecial;OA4;4,2(ff}O',O' )) = #~'l,~O~pecial;OA4;4,2(a(0 ', 1')) ~ C + ( J )  > 0 (4.37) 

at zero magnetic field. [Indeed, at low temperature there is a probability 
~1 /2  of having a spin configuration with alo,,o,)=a~o,,1,)=0 and a prob- 
ability ~ 1/2 of having an all- + configuration with ai0,0, ) = ~r~o,,1, ) = + 4, 
so that limj ~ ~ c + (J) = + 2. ] Similarly, by reversing the sign of the block 
spins on the boundary, we obtain 

/~l,COspecial;eA4;4,2(0"~0',0')) = #tA,co~pecial;~A4;4,2(~iO', 1')) ~ C ( J )  < 0 (4.38) 

where of course c ( J ) = - c + ( J )  by symmetry. This completes the 
argument. 

Remark. Notice that it does not suffice to unfix a single block spin 
to distinguish among the four Gibbs measures, because in all four measures 
the boundary condition on the unfixed block would be symmetric between 
+ and - (i.e., four + spins and four - spins), and the expectation of the 
block spin would be zero. 

The argument given here clearly works for any even block size b ~> 2, 
in any lattice dimension d~> 2. In this way we conclude: 

Theorem 4.6. Let d>~ 2, and let b ) 2 be even. Then for all J suf- 
ficiently large (depending on d and b), the following holds: Let # be any 
Gibbs measure for the d-dimensional Ising model with nearest-neighbor 
coupling J and zero magnetic field. Let T be the block-averaging transfor- 
mation with block size b. Then the measure #T  is not consistent with any 
quasilocal specification. In particular, it is not the Gibbs measure for any 
uniformly convergent interaction. 

4.3.6. General izat ion to Nonzero Magnet ic  Field. It might 
appear from our results thus far that the RG pathology is somehow 
associated with the fact that the original Hamiltonian H lies on the phase- 
coexistence curve (which in the Ising model means zero magnetic field). 
This is in fact not the case. In this section we include a magnetic field h, 
and show that in dimension d~>3 there is an open region in the (J, h) 
plane--namely, low enough temperature and small enough field--where 
the decimation transformation produces a non-Gibbsian measure after one 
iteration. (We suspect that the result is true also for d = 2 ,  but it will 
require a different proof.) Our argument works for decimation with 
arbitrary scale factor b, and for the Kadanoff transformation with any 
p < oe. Moreover, for block-averaging we have an even stronger result: the 
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renormalized measures are non-Gibbsian for arbitrary strength of  the field 
in dimensions d~> 2, at low temperatures. We conclude that the Griffiths- 
Pearce-Israel pathologies are not associated with the fact that the original 
model is sitting on a phase-transition surface. Rather, it is the system of 
internal spins constrained by the configuration cO'sp~oi,1 which must have a 
phase transition. If this transition is of a similar type as that of the original 
system, then it is natural to expect that the original system must at least 
be close to a phase transition, in some sense. But even this need not be the 
case, as the example of block-averaging transformations will show, if these 
two transitions are of different nature. 55 

Let us first treat the case of decimation transformations. Consider, 
therefore, an interaction 

H =  - J  ~ a i o - j - h 2  o- i (4.39) 
UJ) i 

(Note that in our normalization, the magnetic field is not explicitly multi- 
plied by any factor of J or ft.) The idea is that for suitable (small) values 
of h = h/J, we can find an image-spin configuration e)'speci, 1 for which the 
corresponding internal-spin system has a nonunique Gibbs measure. 
Roughly speaking, cO'speci,l must be such that it "compensates" the effect of 
the magnetic field, so that the system of internal spins subjected both to the 
homogeneous field h and to the inhomogeneous field due to the image 
spins has two or more extremal Gibbs measures. 

As in all the previous cases, we formalize this idea in two steps: we 
first show that it works at zero temperature, namely that there are choices 
of h and OJtspecia I for which the ground state is not unique; and second we 
show that Pirogov-Sinai theory is applicable so that it implies nonunique- 
ness of Gibbs measures at low but nonzero temperatures. The simplest case 
is to let co'~p~i, 1 be periodic. 56 In this situation one can find the "compen- 

sating" field ho needed to obtain more than one ground state by studying 
configurations inside a period. We do not want to enter into the details, as 
we later offer a better and more general procedure, but we make the rather 
obvious remark that the field must be taken in a direction opposite to that 
of the majority of image spins within a period. The value of the field must 
be such that if the internal spins follow it, the energy gain is exactly 
compensated by the penalty paid by the internal spins neighboring the 
image spins of opposite sign. (In other words, the sum of all the fields 
--external or due to image spins--felt by the internal spins in a period 
must be zero.) This field strength ho is too weak to favor the flipping of 

s5 Fo r  this  reason,  the t i t le of our  earl ier  repor t  (362) is in re t rospect  somewha t  mis leading.  

56 This  cons t ruc t ion  was  a l ready  suggested by Israel.  121~ 
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small regions of internal spins, and only a collective flip is energetically 
acceptable. Of course, this delicate balance is broken if the field is changed, 
no matter how little. Therefore, we conclude that this value h0 = h 0 ( ~ s p e c i a l )  
is such that for h > ho (resp. h < ho) the internal-spin system has only one 
periodic ground state, namely all spins + (resp. all spins - ) ,  while for 
h = h 0 there are precisely two periodic ground states, namely all spins + 
and all spins - .  

For the second step--retying on Pirogov-Sinai theory--we already 
have two of the required conditions (see Appendix B): a periodic (internal- 
spin) interaction and a finite number of ground states. We need in addition 
to verify the Peierls condition, but this can be done basically following the 
same energy-cost arguments outlined above for the determination of 
ground states. The conclusion is that there exists Jo---J0((Drspecial~ such that 
for J >  Jo there is a continuous curve h = h*(J), with lime_ + ~o h*(J)= "ho, 
on which the internal-spin system has precisely two periodic extremal 
Gibbs measures, namely a " + "  phase and a " - "  phase. As long as CO'special 
is not all + or all - ,  Step 2 can be proven using the F K G  inequality, as 
in Section 4.3.1. We therefore conclude that for h = h*(J) the renormalized 
measure #T is non-Gibbsian. 

The chief limitation of this procedure is that it produces only rational 
values of ho and that there is no uniformity in ho for the range of tem- 
peratures for which the nonuniqueness persists. Hence, by letting ~O'specia 1 
range over all periodic configurations, we prove non-Gibbsianness only for 
a region of the phase diagram formed by countably many curves h = h*(J). 
We can prove that the set of ho values is dense in some interval lhl < e but, 
unfortunately, we cannot conclude non-Gibbsianness for any dense subset 
of an open set in the (J, h) plane: the trouble is that the curves h*(J) 
corresponding to configurations O)rspecial of very high period may survive 
only to very low temperatures (i.e.,'we have no uniform control on J0)- 

If we want to extend this argument to more general choices of e)'special, 
we are confronted with the limitation imposed by the present versions of 
Pirogov-Sinai theory. One possible generalization of this construction is to 
let (Drspecial be quasiperiodic. Then one can use an extension of Pirogov-Sinai 
theory due to Koukiou et a[. (224) (Actually, these authors require the 
quasiperiodic part of the interaction to be small; so we cannot handle 
decimation, but can handle the Kadanoff transformation with p small.) In 
this way we obtain uncountably many curves h = h*(J) on which the renor- 
malized measure is non-Gibbsian. (If the results of Koukiou et al. can be 
extended to frequencies which are Diophantine of arbitrary type I<  oe--at 
present they treat only l =  2--then the corresponding set of ho values would 
contain some interval Ihl < ~ except for a subset of Lebesgue measure zero.) 
However, we still cannot conclude non-Gibbsianness for any dense subset 
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of an open set in the (J, h) plane: the trouble is again that we lack uniform 
control on Jo. 

At any rate, we are able to overcome these technicalities, and we 
present here an argument proving the existence of Griffiths-Pearce-Israel 
pathologies for an open region { J > J 0 ,  [hi <O0J} in the (J, h) plane, as 
originally conjectured by Griffiths and Pearce (175'176) and Israel. (21~ The 
key ingredient is a mechanism to generate a continuum of image-spin 
configurations (.Dtspecial such that PS theory is applicable to the resulting 
internal-spin system. At present this is only possible if we resort to 
randomness: Zahradnik, (379381) and with less generality Bricmont and 
Kupiainen,(44, 4s) extended PS theory to systems with superimposed (small) 
random interactions for dimensions d~> 3. Our construction will therefore 
be based on a (slightly) random choice of the configuration e)'speci, ~ and will 
be limited to d ~> 3. 

Consider, for starters, decimation with some spacing b ~> 2, applied to 
an Ising model with ferromagnetic nearest-neighbor interaction J and 
magnetic field h = Jh > 0. We consider a block-spin configuration which is 
equal to the fully alternating configuration except that the spins that would 
correspond to a " + "  have a probability e/2J of becoming a " - , "  inde- 
pendently for each such spin. We wish to show that for each sufficiently small 
positive h, there exists an e such that the random magnetic field induced by 
the block spins (whose net effect is negative) exactly compensates the 
positive uniform field, in the sense that for almost all such image-spin 
configurations there are two distinct Gibbs measures #+ and p . To do 
this, we apply an as-yet-unpublished theorem of Zahradnik, (38~ 
which generalizes Pirogov-Sinai theory to small random interactions, if the 
lattice dimension is />3. [In the preprint, (38~ the random interactions 
are assumed to be small uniformly in all realizations of the randomness. 
This condition is not satisfied in our case, as one has large terms (of 
strength ~J) ,  albeit occurring with small probability (e/2J). In a private 
communication, Zahradnik (381) has informed us that minor modifications 
of his proofs suffice to cover also this case.] 

We apply Zahradnik's theory with the original Hamiltonian Ho taken 
to be the system of internal spins with fully alternating image spins (i.e., a 
ferromagnetic nearest-neighbor Ising model in a periodically diluted lattice 
and with a periodic magnetic field of mean zero; see Section 4.3.2); the 
symmetry-breaking "fields" are taken to be the uniform magnetic field, and 
the random negative magnetic fields coming from those block spins that 
were flipped from " + "  to " - "  according to the procedure explained above. 
The analysis of the ground-state structure of Ho, and the proof of 
the Peierls condition for it, were already carried out in Sections 4.3.2 and 
B.5.3. Zahradnik's theory (Theorem B.31 ) then assures us (Section B.5.7) that 



Renormalization-G roup Pathologies 101 3 

for each J sufficiently large and each 5 sufficiently small, the phase diagram 
is, with probability 1, a small deformation of that of the Hamiltonian H0; 
that is, for each such pair (J, e) there exists a unique h*(J, 5 )>0  such 
that the system has two distinct Gibbs measures~ ~ ~+ a n d  #_ (which 
can be obtained, for example, by taking h~,h* or h•h*, respectively). 
Moreover, the value ho(5) at which a " + " -  and a " - " - l ike  configurations 
are simultaneously ground states is a strictly increasing function of e. [-This 
follows from an argument similar to, albeit more elaborate than, the one 
presented at the beginning of this subsection for periodic choices of (Dtspecial  . 

Without randomness, the function ho(5) is linear with a slope depending on 
the block size b and the dimensionality d. A small randomness produces only 
a small smooth deformation of the curve, so we could say that it remains 
"almost linear."] As Zahradnik's theory tells us that the low-temperature 
phase diagram is a smooth deformation of the zero-temperature one, we 
conclude that h* is a continuous and strictly increasing (and "almost 
linear") function of 5. Obviously the case h < 0 can be handled by the same 
argument with " + "  and " - "  reversed. 

The bottom line is, therefore, that there exists--for each J sufficiently 
large--a continuous and monotonic curve 5*(h) through the origin, defined 
for Ihl small, such that for almost all choices of the random block-spin 
configuration the system presents multiple Gibbs measures on the curve 
and a unique Gibbs measure to each side of the curve (Fig. 12). Thus, for 
the Ising model with J sufficiently large and 1hi sufficiently small, we can 
prove Step 1 by chosing as (.0tspecial any one of the configurations from the 
probability-1 set corresponding to e = e*(h). The proof of the validity of 
Steps 2 and 3 is essentially identical to that of the case h = 0 (Sections 4.3.1 
and 4.3.2). We notice that due to the smoothness of the phase-diagram 

Fig. 12. 
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Phase diagram for a random-field Ising model at low temperatures (d~> 3). 
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deformations, the bound 1hi < 6 ( J )  for which these steps, and hence the 
existence of RG pathologies, can be proven is given by a continuous 
function 6(J). Moreover, we have lim infj ~ Go cS(J)/> 60 > 0. 

The final result is the following: 

T h e o r e m  4.7. For each d>~ 3 and b >~ 2, there exists a Jo < oo and 
a 6o > 0 (depending on d and b) such that for all J >  Jo and [hi < 6oJ the 
following is true: Let I~ be any Gibbs measure for the d-dimensional Ising 
model with nearest-neighbor coupling J and magnetic field h. Then the renor- 
realized measure I~T arising from the decimation transformation with spacing 
b is not consistent with any quasilocal specification. In particular, it is not the 
Gibbs measure for any uniformly convergent interaction. 

Similar results are valid, by a similar argument, for the Kadanoff 
transformation with any fixed 0 < p <  oo. However, we are not able to 
apply such an argument to the majority-rule example because we need 
dimension d >~ 3. This seems to be only a technical reason. 

The proof for block-averaging transformations in a field is much 
simpler: we do not need randomness in the choice of e)'speoia 1. In fact, the 
same steps detailed in Section 4.3.5 above can be applied regardless of  
whether or not a field is present. Steps 1 and 2 are exactly the same for all 
values of the field, because the constraint of zero block spins removes all 
field-dependence inside such blocks. (The point is that the ground-state 
configurations, as well as the block-spin boundary conditions needed to 
select them, are the same for all values of the magnetic field.) In Step 3, the 
presence of a field causes an asymmetry between " + "  and " - "  boundary 
conditions--i.e., we no longer have c ( J ) =  - c +  (J) - -as  well as a smaller 
value for the difference c+ (J) - c (J) between the two magnetizations. But 
this difference is still bounded away from zero uniformly in A (the extra 
factor involved depends only on the fields at the eight sites of the two-block 
observable), so the result is still valid. Alternatively, one could "unfix" a 
strip of N x 2 blocks. 

Therefore, we have: 

Theorem 4.8. For each d>~ 2 and each even b >/2, there exists a Jo 
(depending on d and b) such that the following is true: For any Gibbs 
measure I~ of the d-dimensional Ising model with nearest-neighbor coupling 
J>  Jo and arbitrary magnetic field h, the renormalized measure i~T arising 
from the block-averaging transformation is not consistent with any quasilocal 
specification. In particular, it is not the Gibbs measure for any uniformly 
convergent interaction. 

This result is in contrast with the results obtained above for decimation 
and Kadanoff transformations, where we were able to prove non-Gibbsian- 
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ness for h # 0  only for d>~ 3 and only for Ihl/Jsmall. The restriction to weak 
fields is, for these examples, essential, because it is known that in a strong 
field the renormalized measure is Gibbsian/175' ~76, 2~0) Moreover, Martinelli 
and Olivieri (262) have proven that for any (J, h) with h # 0, the decimation 
transformation results in a Gibbsian measure when the spacing b is large 
enough (how large depends, of course, on J and h). 

Finally, we note an interesting consequence of our Theorem 4.7: for 
the Ising model in dimension d~> 3, in the region { J > J o ,  ]hi < 60J}, the 
Dobrushin_Shlosman(96. 98) complete analyticity condition is violated. 

4.4. Large-Cell Renormalization Maps in Dimension d~>>4 

Six years ago, Lebowitz and Maes (243) constructed a very different 
example of a nor~-Gibbsian measure, arising in the study of entropic 
repulsion of a surface by a wall. Subsequently, Dorlas and van Enter (~~ 
generalized this example, and pointed out its relevance for the renormaliza- 
tion-group theory of Ising-like models in dimension d ~_>>4. In this section 
we present a slightly generalized version of the Lebowitz-Maes-Dorlas- 
van Enter theorem on non-Gibbsianness, and then discuss its relevance 
for RG theory. The reader interested primarily in the results (resp. in 
the application to RG theory) should read up through the statement of 
Theorem 4.9, and then skip directly to Section 4.4.3 (resp. to Section 4.4.4). 

4.4.1. Non-Gibbsianness of the Sign Field of an (An)har-  
monic Crys ta l .  Consider a system of real-valued spins {q~}x~zd, and 
define ax = sgn(q0x). 57 Clearly {ax}~z~ is a field of Ising spins. We shall 
show that for certain massless Gibbs measures on the system of {q)} spins, 
the projection of such a measure on the {a} spins is non-Gibbsian. 

The measures we have in mind are those possessing a spontaneously 
broken global shift symmetry ~o --, (p + c. More precisely, consider a system 
defined formally by the Hamiltonian 

H(~o) = �89 ~ Vxy(<P~ - q)y) (4.40) 
x r  

where the functions Vxy are even, and Vxy= Vx+a,y+a for all x, y, aeT/d. 
Such a system is termed an anharmonic crystal (or if the functions Vxy are 

s7 Str ic t ly  speak ing ,  we m u s t  define cr x a lso  in the a m b i g u o u s  case ~o x = 0. The  s imples t  cho ice  

is to  set ax  = + 1 b y  fiat; the  m o s t  e l egan t  cho ice  is to set a x = _ 1 wi th  p robab i l i t i e s  1/2. 

H o w e v e r ,  this  cho ice  will in fact  p l ay  n o  role,  as every  m e a s u r e  t h a t  we will cons ide r  has  

the  p r o p e r t y  Prob(~0 x = 0 for  a t  least  one  x ) =  0. 
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all quadratic, a harmonic crystal). [More rigorously, such a system is 
defined by the interaction 

~A((p)= ~Vxy(q)x--~Oy) if A= {x, y} 
(4.41) 

otherwise 

where the a priori measure d#~ is taken to be Lebesgue measure. 
Lebesgue measure is not normalizable, but if the potentials Vxy are chosen 
suitably, then one has ZA((])AC)< 00, and the specification is then well- 
defined. In the infinite-range case there are some subtleties associated with 
rapidly growing boundary conditions, as discussed in Example 4 of 
Section 2.3.3. ] 

For an (an)harmonic crystal, an infinite-volume Gibbs measure need 
not exist; and indeed, it will not exist in low enough dimension, e.g., d~< 2 
for short-range interactions. (4~ 136) However, if a Gibbs measure # does 
exist, then it possesses a spontaneously broken global shift symmetry in the 
sense that rc/~ is also a Gibbs measure for the same interaction (here 3, 
is the map that shifts all spins by a constant c), but z , # # #  for c # 0 .  
That zcP is a Gibbs measure is an immediate consequence of the DLR 
equations, while re# ~/~ follows from the impossibility of the probability 
distribution of ~o0 being invariant under a nontrivial shift. Further informa- 
tion on the properties of (an)harmonic cyrstals can be found in refs. 40 
and 43. 

Every harmonic crystal is a massless Gaussian model, and the 
converse is very nearly true. To see this, consider a translation-invariant 
Gaussian measure # on R z~' with mean m and covariance 

<qox; ~oy) = Cx~ = (2~) Jf O(p)e~P(X-Y)dp 
�9 [ = ,~ ]d  

(4.42) 

where ((p) is a nonnegative, even, integrable function of p e [ - ~ , ~ ]  d. 
Now let us define 

Bx= (2~)-u f ~(p)- t  e,p.(x-.~) dp (4.43) 
- [ _ ~ , ~ ] a  

assuming that d(p)- i  is an integrable function ofp.  Then B is the inverse 
matrix of the covariance matrix C. Now, suppose that 

I Bxv I < oo (4.44) 
y 
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as will occur if g(p) 1 is at least modestly smooth. 58 In that case, there is 
a well-defined specification corresponding to the formal Hamiltonian 

1 . . (4.45) H(e)= E Rxv 0x 0 -h E 
x, y ,c 

with h = m/O(O) and a priori measure taken to be Lebesgue measure; and 
# is a Gibbs measure for this specification. In particular, if ~(0)= oo--this 
is the "massless" case-- then the couplings Bxy satisfy 

Z B~y = 0 (4.46) 
Y 

This means that the Hamiltonian can be rewritten as 

1 H(~o) = ~ ~ Bxy(~Ox- ~oy) 2 (4.47) 
x r  

(note that here h = 0). Thus, every massless Gaussian measure (satisfying 
mild regularity conditions) is the Gibbs measure for some harmonic 
crystal, and conversely. Further details on the Gibbs representation of 
Gaussian measures can be found in references 88 and 230 and ref. 160, 
Chapter  13. 

Now let/~ be any translation-invariant Gibbs measure of the (an)har- 
monic crystal, and let /~ be its Ising projection. Under mild technical 
conditions on the potentials Vx>,, we will prove that /~ is a non-Gibbsian 
measure. The basic idea of the proof  is to use the spontaneously broken 
shift symmetry to show that 

Prob~(~ox > 0 for all x ~ A) ~> e o(iAi) (4.48) 

as A ~ m (van Hove). That  is, the probability that all the spins in a region 
A are simultaneously positive is exponentially suppressed at a rate slower 
than the volume of A (roughly speaking, it is suppressed by a "surface 
term"). This means that 

i(6 + [ /~)=0 (4.49) 

where 6 + is the delta measure concentrated on the configuration with all 
spins +.  If/~ were Gibbsian, then by Proposit ion 2.67, 6 + would have to 
be Gibbsian for the same interaction. But 6 + is obviously non-Gibbsian 

58 A necessary condition for Zy IB,~y[ < ov to hold is that ~(p) i be a continuous function of 
p ~ [ -  ~, n]  a. However, this condition is not sufficient; for some sufficient conditions in the 
case d =  1, see ref. 110, Section 10.6, and ref. 214. 

822/72/5-6-i1 
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(no absolutely summable interaction can force a spin to be + ), so fi must 
also be non-Gibbsian. 59 

The proof of (4.48) proceeds in three steps: 

Step 1. Using the DLR equations, one proves the identity 

y F(cp)dlx(Cp)=f F(~o+kzA)e HreI(Cpq-kZA;~P) d[-~((p) (4.50) 

for any bounded function F and any Gibbs measure #. Here A is an 
arbitrary finite set of sites, ZA is its indicator function, k is an arbitrary real 
number, and Hrcl denotes the energy difference between the two configura- 
tions. (Since the two configurations differ on a finite set of sites, this energy 
difference is finite/~-a.e.) In essence, this identity says that a configuration 
~o + kZA has a probability exp[ -Hr~l(q) + k)~A ; <P)] times as large as that of 
the configuration rp. 

Step 2. One estimates the energy difference Hrel, and attempts to 
remove the factor exp( -Hre0  from the right-hand side of (4.50) at the 
price of a prefactor e o()Ai). 

Step 3. Specializing to the case FOp)= Z(~0 > 0 on A), one attempts to 
prove a lower bound on S F(q~ +k)~A)d/~(q~) that is of the form e 1AI r(k), 
where f(k)---)0 as k---, + oo. Since the left-hand side of (4.50) is inde- 
pendent of k, we can take k --) + oo and thus complete the proof. 

Unfortunately, Steps 2 and 3 are slightly tricky (though not terribly 
complicated), and the details of the proof depend on the exact form of the 
potentials Vxy. In fact, we have three distinct proofs, each one valid for a 
distinct class of Vxy" 

(a) Each Vzy is convex, and Z ~ 0  I[ V~>z It ~ < oo. 

(b) Each Vxy is quadratic (of either sign), and the measure # is a 
massless Gaussian satisfying (4.44) and (4.46). 

(c) Each V~y is convex, the model is finite-range (i.e., only finitely 
many of the V0~ are nonzero), and the model is dominated by a 
stable Gaussian in the sense that the vectors {z: inf<o V'~z(rp)>0} 
span a subspace of ~d of dimension > 2. 

59 Alternative argument: If fi were Gibbsian, then by Proposition 2.67, 6 § would have to be 
Gibbsian for the same interaction, and moreover i(/~ 16 + ) would have to be zero. But in fact 
i(~ t 6 + ) = co. Second alternative argument: If/~ were Gibbsian, then by Proposition 2.59, the 
pressure p ( g [ ~ )  would have to be strictly convex in directions g = f ~  r J + const arising 
from interactions ~ c N '1. But for g ( a ) =  ao (i.e., a magnetic field), it is easy to see from 
(4.48) that p(2g[ ~ ) =  2 for all 2 ~> 0, contradicting the strict convexity. (For a more general 
version of this latter argument,  see Section 4.4.2.) 
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(We conjecture that these technical conditions can be removed or at least 
weakened.) Case (a) is the easiest case, as the energy shift is uniformly 
bounded; unfortunately, the sup norm condition on V' does not allow 
potentials growing faster than linearly at infinity (such as Gaussians!). All 
the technical details in cases (b) and (c) are attempts to control an energy 
shift that is bounded only in some average sense. We urge the reader to 
study first the proof for case (a), before proceeding to cases (b) and (c). 
Case (b) is the one treated by Dorlas and van Enter(l~ we follow their 
proof almost verbatim. Case (c) is a minor generalization of the one treated 
by Lebowitz and Maes(243); the proof we give is slightly different from 
theirs, but the underlying ideas and tricks are the same. 

T h e o r e m  4.9. Let # be a translation-invariant Gibbs measure for  an 
(an)harmonic crystal satisfying one of  the conditions (a ) - ( c )  listed above. 
In case (c), assume in addition that # is symmetric around its mean. Then 
for each M < oo, we have 

Prob~(~o~ > M for all x ~ A) >~ e o(IAI) (4.51) 

as A 7 oo (van Hove). It follows that fi, the projection o f  # on the Ising 
spins a ~ -  sgn(Cpx), is not the Gibbs measure for  any interaction in ~ .  

Remarks. 1. One consequence of this theorem is that an arbitrarily 
weak perturbation of the form H--. H - Z x  f(q)x), wheref i s  nondecreasing 
and nonconstant, will drive the spins (Px to + oo. As a result, the perturbed 
model will have no infinite-volume translation-invariant Gibbs measures. 
This is the phenomenon of entropic repulsion of a surface by a soft wall, 
studied by Lebowitz and Maes. (243) 

2. It is natural to ask whether fi is nonquasilocal (and not merely 
non-Gibbsian). We discuss this question, in somewhat greater generality, in 
Section 4.4.3. 

Proof  o f  Theorem 4.9. Since the hypotheses of the theorem are 
invariant under a uniform shift q )~  q~ + c, it suffices to consider the case 
M = 0; this lightens the notation. (For our application to the sign function, 
we need only M =  0 anyway. But we will exploit the formulation with 
general M in Section 4.4.2.) 

Step 1. Let # be any Gibbs measure for any model of real-valued spins 
(not necessarily an anharmonic crystal). Then the DLR equations for 
volume A say that 

d#A(~OA [ q)A~) = ZA((4)AC) -1 e -m'(~~ dqOA (4.52) 
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Now let F be any bounded (for simplicity) measurable function, and let #J 
be any field which vanishes outside A. Then 

= ZA((I~AC ) --1 f F(q~) exp[ -- Ha((PA, ~PA0] &Oa 

=ZA((Pw) l f F((p+tfi) exp[--HA((,OA +~OA, (PA~)] dq~A 

= f F(~0 + #J) exp{ - [H,~(q)A + t~A, ~OAc) -- HA(~OA, ~0W,)] } 

x d#a(q~a l ~ow.) (4.53) 

where in the middle line we used the shift invariance of Lebesgue measure. 
Now integrate over d#w(~OA~): we obtain 

where 

f F(q3) d#(q~) = f F(~p + ~ t )e  -Hr~'(r + r162 d#(q~) (4.54) 

Hrel(Cp --+- ~t; ~9)=--HA((pA "[-t~A, q~A,')-- HA(~O,, q~Ac) (4.55) 

Note that Hrel is independent of A as soon as A D supp ~. The identity 
(4.54) is thus valid for any #J of bounded support. In particular, if we take 
Ilt = kXA , we obtain (4.50). In the case of the anharmonic crystal (4.40) we 
have the following expression for Hre~: 

Hrel(gWkZA; q~)= ~ EVxy(q~x+k-~py)- Vxy(~ox-~&)] (4.56a) 
xEA 
yeA  c 

k 
= ~ fo VtY(~gx - q)y -JF ~l) dO (4.56b) 

x~A 
yEA c 

Step 2. The goal of this step is to prove that 

f F(q~) d#(~o) >~ e ok(rAI) f F(q~ + kZA ) d#(~o) (4.57) 

(or some similar formula) for some suitable class of nonnegative functions 
F. Here ok(lAI) denotes a term that may depend in an arbitrary way on k, 
but for each real k it should be o(IA[) as A ,* oo. 
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Case (a). This is the easy case, as the energy shift (4.56) can be 
bounded in sup norm: 

IlHr~llloo~< ~ IkI.LIg'xyll~<~lklo(lAI) as A /~ oo (4.58) 
x ~ A  
VC /I c 

by the usual argument based on S~eo II V;~II~ < oo (see, e.g., the proof of 
Proposition 2.45 in Appendix A.3.8). Substituting (4.58) into the identity 
(4.50), we conclude that 

f F(qo)dg(q)))e-tkl~ f F(qo+kZA)dl2(qo) (4.59) 

uniformly for all nonnegative bounded functions F. 

Case (b). Here we apply the Schwarz inequality to the right-hand side 
of the identity (4.50): 

f F(~p+kZA)e Hr~176176 d#(~P)~ [S F(~p+kzA)~/2 dl~(q~)]2 (4.60) 
e + Hret(~o +kXA;q') d # ( q ) )  

for any F~> 0. In particular, if F is the indicator function of some set, then 
F1/2= F. Now in case (b) we have 

k 2 
Hre=((P + kza ; qo) = k(q~, BZA ) + -~ ()~A, BZA) (4.61) 

and/~ is a Gaussian measure with mean m and covariance matrix C = B ~. 
We can therefore calculate exactly 

f exp[ kZA q~)] d#(q~) = exp[k2()~A, B)~A) + km(l, B)~A)] + + 

= exp[kZ(zA, BZA)] (4.62) 

since B1 = 0  by (4.46). Now 

kZ(za, BZA)=2k 2 ~ Bxy<~k2o(IAI) as A /' Go (4.63) 
. x '~A 
y ~ A  c 

by the usual argument based on Z~. ~ 0 [Boz I < oo. Hence 

uniformly for all indicator functions F. This is a slight variant of (4.57). 
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Case (e). This case is a little bit trickier. Let F be any nonnegative 
function supported on the set {r a ~< r ~< b on A and a' ~< ~0 ~< b' on 0 + A }, 
where r is the range of the interaction. Then on the right-hand side of 
(4.50) the integrand is nonvanishing only when a - k ~< ~Px ~< b - k for x e A, 
and a' ~< r ~< b' for y ~ 0 + A. Now, since V~y is convex, V'y is increasing, 
so Vxy(~px-q~y+k)-V~y(~p~-cpy) is an increasing (resp. decreasing) 
function of q0~ - q~y for k ~> 0 (resp. k ~< 0), as seen from (4.56b). Therefore, 
for k>~0 (which is the case that will interest us) we have 

X~Ord 
yffO+ d 

[Vxy(b-a ' ) -  Vxy(b-a ' -k )]  

<-G C(a', b, k) [0 /A[  (4.65) 

where C(a', b, k ) = ~  [Vo~(b-a')-  Vo~(b-a'-k)] is finite for all a', b, k 
(since only finitely many terms in this sum are nonzero). Hence 

f F(~p)dlt(q~)>~{exp[-C(a',b,k)[O/A[]} f F(~o+kXA)d#(q~) (4.66) 

uniformly for all nonnegative F satisfying the support condition. This, too, 
is a variant of (4.57). 

Step 3, Case (a). We apply (4.59) to F(~o)--x(q~ > 0  on A), so that 
F ( r p + k ; c ~ ) = ; ~ ( ~ p > - k  on A). Since the Vxy are convex, it follows 
immediately from the DLR equation that the F K G  inequality (25) holds for 
every Gibbs measure #. Therefore we have 

(;~(qo > - k  on A)).>~ 1-[ (Z(~p~> - k ) ) ~ =  Prob.(q~o> - k )  IAI 
xEA 

(4.67) 

Combining this with (4.59), we get 

lira inf, 1~7, log Prob,(rp > 0 on A)/> log Prob~(q~0 > - k) 
A. -~  IAI 

(4.68) 

But taking k ~ + o% the right-hand side goes to zero. 

Step 3, Case (b). We apply (4.64) to F(q~)= Z(~o > 0 on A). We control 
Prob,(~p > - k  on A) using the Brascamp-Lieb inequality, r which is 
valid for arbitrary Gaussian measures, combined with the Chebyshev 
inequality. Indeed, for k > - m  we have 
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Prob~(~o > - k  on A) 

>~ Probu(Lq~-rn [ <m+konA)  

= f i  Prob~(lqox,-m[ <m+k I IqOxj-rnl < m + k  for 1 <~j<i) 
i = 1  

[where A = {xl,..,, x,}] 
>~ f i  (1 E~((q~x,-m)2 [ Iq)x/-mL <m+kfor l <<.J<i)) 

i= 1 (m + k) 2 

[by Chebyshev ] 

= f i  (l_var~(q)~,[ 'q)x,-m' <m+kfor l <~j<i)) 
i=1 ( m + k )  2 

[since conditioning a Gaussian on a set 
symmetric about the mean preserves the mean] 

var,(q~x)'~ 

i = 1  

[by Brascamp-Lieb ] 

(1 Co0 ~l~t 
(m-~--k)j) (4.69) 

Combining this with (4.64), we get 

( l iminf l ~ l o g P r o b . ( ~ 0 > 0 o n A ) ~ > 2 1 o g  1 (4.70) 
/- ~ I A I  

Now take k --* + oe. 

Step 3, Case (c). We apply (4.66) to F(~o)= z(a <~ cp <~b on A and 
a' <<. q) <<. b' on O~+A), with the choices a = 0 ,  b=2m+2k, a ' = - k ,  
b ' =  2rn + k, k/> 0. We therefore need to control 

Prob~(a-k<.~o<.b-k on A and a'<<.~o~b' on 0r+A) 

= Prob~(Iq~ - m] ~ m + k on A u ~ + A) (4.71) 

To do this, we employ the Brascamp-Lieb and Chebyshev inequalities as 
in case (b) (the Brascamp-Lieb inequality is valid because all the Vxy are 
convex). Here it is important that # be even about its mean, because 
Brascamp-Lieb refers to variances rather than to expectations of squares; 
we need to know that conditioning/~ on a set symmetric around the mean 
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does not displace the mean. The only other change from case (b) is that 
var.(~ox[---)  is bounded above not by var . (gx) ,  but rather by the 
variance of q~x, in the dominating Gaussian, which by hypothesis is finite 
(call it Coo). Thus, we have 

Prob~(lcp-ml ~m+k on Aw~+ A)>~(1 

Combining this with (4.66), we get 

lim inf -~--1 log Prob,(q) > 0 on A) 
A ~  IAI  

/>liminf 1 log 
A t o0 I A I  

Coo .~ IA ~ c~+ A] 
(m + k)=} (4.72) 

Prob~(0 < rp < 2m + 2k on A 

and -k<~o<2m+k on c3+A) 

>~ log (1 % o  '] (m+k)2 j (4.73) 

Now take k ~  + oo. | 

Romark. We do not know whether there can exist translation- 
invariant Gibbs measures for the anharmonic crystal that fail to be 
symmetric around their mean. (In the Gaussian case such measures cannot 
exist.) That is, we do not know whether the reflection symmetry can be 
spontaneously broken. If the answer is no, then our additional hypothesis 
in case (c) is superfluous. 

The technical condition in case (c)-- that  the model be dominated 
by a stable Gaussian--unfortunately excludes some interesting models, 
such as the (Vg) 4 model. The need for this technical condition arises 
from the use of Brascamp Lieb inequalities to bound the conditional 
probability Prob,( lq~x,-m[ < m + k [  I~Oxj-ml <m+k for 1 <.j<i). An 
alternate approach would be to use the F K G  inequalities as in case (a), but 
then we would be forced to work with increasing functions, i.e., to take 
b = b' = + oo. Unfortunately, the cutoff b < Go was necessary in case (c) in 
order to control the energy shift Hrel, which otherwise could be unbounded 
above. 

How can we escape from this dilemma ? Let us first note that the large 
energy shift arises from applying the shift q~x ~ q~x + k to fields q~x that are 
already large and positive, hence have no need to be shifted farther upward 
in order to bring them above the level q)= 0. This suggests that instead of 
applying a uniform shift qL~ ~ ~ox + k in the region A, we should apply a 
nonlinear map ~0x-+f(q~x) that would produce a large upward shift when 
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(Px is negative, but a smaller shift when q~x is large and positive. In this way 
we may hope to have an energy shift that is uniformly bounded above. Of 
course, in the case of a nonlinear m a p f w e  must also deal with a Jacobian, 
but this turns out to be manageable. The idea may be crazy, but it seems 
to work, at least for some rather large class of potentials Vyy. However, 
this paper is already much too long, and we have not had time to work out 
all the details, so we leave further development of this circle of ideas to the 
interested reader. 

4.4.2. Non-Gibbsianness of Local Nonl inear  Functions of 
an ( A n ) h a r m o n i c  Crystal.  The method of the preceding section 
applies, in fact, to local nonlinear functions much more general than the 
sign. Indeed, let f2~ be a compact metric space, and let f :  R--, f2; be any 
function (not necessarily continuous) such that limbo ~ + oo f(q~)= co* exists. 
We shall show that for the class of massless Gibbs measures on the system 
of {q~} spins considered in the preceding section, the projection of such a 
measure on the {co} spins is non-Gibbsian. 

Theorem 4.10. Let ]~ be any translation-invariant measure on Nzd 
satisfying the estimate (4.51) for all M < oo. Let (2'o be a compact metric 
space, and let f :  ~--* ~2'o be a function (not necessarily continuous) such that 
lim~o_~ +~ f(q0)= co* exists. Let fi be the image measure of  l~ under the map 
f applied to each spin. Then fi is not the Gibbs measure for any interaction 
in ~ ,  with respect to any a priori measure supported on more than one point. 

Proof. Let U, V be open sets in f2~ satisfying co* ~ U c  U ~  V. Then 
let go" f 2 ~  [0, 1] be a continuous function satisfying go ~ U-= 1 and 
go ) VC-0;  the existence of such a function is guaranteed by Urysohn's 
lemma. Now define g: g?6 ze-,  [0, 1] by g({cox}x~z~) =g0(coo). That is, g is 
the function go applied to the spin at the origin. 

Now let us compute the pressure P()~gl ~) for )~ >/0: 

p()ogLfi) = lira n -d log  f e x p  [2 ~ g0(cox)] dfi(co) 
1l --+ o o  x E C, ,  

n ~ o o  x ~ C n  

(4.74) 

if this limit exists. Since go ~< 1, clearly the lim sup is ~< 2. On the other 
hand, the lim inf is 

>~ lim inf n a log[e;.n d Prob~(f(~0x)E U for all x ~ C,,)] 
n ~ o o  

>~ lim inf n - a l o g [ e  ~nd Probu(q~ x > M for all x ~ Cn)] 

= 2 (4.75) 
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where M is chosen so that q) > M implies f(q>) e U; here the final equality 
uses the fundamental estimate (4.51). So we have 

p(2g[/~)=2 for all 2>~0 (4.76) 

But this violates the strict convexity of the pressure, which must hold if/~ 
is a Gibbs measure for an interaction in ~1 (Griffiths-Ruelle theorem, 
Proposition 2.59). Hence/~ is non-Gibbsian. | 

4.4.3. Physical Interpretation. We have proven that /~ is not 
the Gibbs measure for any interaction in #~, but is this enough ? We know 
that non-Gibbsianness can sometimes occur for "trivial" reasons, e.g., if 
there are hard-core exclusions, or for "semi-trivial" reasons, e.g., if the 
Hamiltonian H~  is quasilocal but unbounded. (This latter can happen 
only when the single-spin space is infinite.) If we contend that/~ is "patho- 
logical," then we really ought to prove not merely that/~ is non-Gibbsian, 
but also that it is nonquasilocal. 

We are not able at present to prove nonquasilocality, but we can argue 
heuristically that in at least some cases the non-Gibbsianness does involve 
some strongly nonlocal effect. Consider the sign of the (an)harmonic crystal. 
Recalling Theorem 4.9 together with Remark 1 following it, it is natural to 
conjecture that 

lira E,(sgn(~0o) [ ~ox>0 for all x having R~< Ix] ~<R')= 1 (4.77) 
R ' ~ o o  

for all R, no matter how large. [At least in case (c) of Section 4.4.1, we are 
able to prove this using the F K G  inequality, via a slight extension of the 
arguments of Lebowitz and Maes. (243)] That is, if we condition on the 
spins in an annulus R~< [xl ~<R' being all >0, as R ' ~  oe this drives all 
the spins to + oo, and in particular forces the sign of the spin at the origin 
to be + (with probability 1 !). For the Ising measure/~, this means heuristi- 
cally that the spin at the origin is feeling an infinite energy. However, since 
the effect occurs for all R, no matter how large, this infinite energy must 
arise from the interaction between the spin at the origin and arbitrarily 
distant spins. (Crudely speaking, the interaction, if it exists, is non- 
summable.) Thus, we do not have here merely the "semi-trivial" situation 
of a Hamiltonian which is quasilocal but unbounded (which anyway is 
impossible for a model with finite single-spin space); some strongly 
nonlocal effect is taking place. It may even be that (4.77) implies non- 
quasilocality; or it may be that nonquasilocality can be proven by a 
different argument. These are open questions. 

A similar situation probably holds in the setup of Section 4.4.2, 
whenever the image single-spin space g?~ is finite. 

A very different situation arises i f f  is a bijective map of ~ onto O5 (of 
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course fJ;  must then be uncountably infinite !). In this case f is merely a 
one-to-one relabeling of spin values; the physics of the image measure /] 
is obviously identical to that of the original measure /~. In particular, 
if the original (an)harmonic crystal has finite-range interactions, then 

is consistent with a Gibbsian specification for a particular finite-range 
but unbounded interaction, namely the one gotten by mapping the 
(an)harmonic-crystal specification via the function f .  Such a specification 
is always quasilocal; the interaction is uniformly convergent hut not 
absolutely summable. 

Finally, let us remark that the local nonlinear maps considered here 
are a special case of the renormalization transformations considered in 
Sections 3 and 4.1-4.3: namely, one in which the blocks are single sites, the 
transformation is deterministic, and the image space is in general different 
from the original space. Such transformations trivially obey properties 
(T1)-(T3)  of Section 3.1. Of course, if f is one-to-one, then the transforma- 
tion is trivial (just a relabeling of spin configurations). However, if f is 
many-to-one, then the transformation is not so different in nature from the 
usual (block-spin) renormalization transformations: both "discard details" 
from the original spin configuration. These details may be in the fine 
structure of a single spin, or in the local fine structure of a small block 
of spins, but qualitatively there does not seem to be any great intrinsic 
difference. Our theorems both in Sections 4.1-4.3 and in the current sub- 
section are of the general type: a RT map which discards ( important)  
information makes the image measure (sometimes) non-Gibbsian (and 
possibly even nonquasilocal). 

4.4.4. Application to the Renormalization Group. In this 
section we apply Theorem 4.9 to the RG, following closely Dorlas and 
van Enter. (1~ Let us consider an Is ing model in dimension d >  4 at the 
critical point, and apply block-averaging transformations on various block 
sizes b. Then de Coninck and Newman (73) and Shlosman (332) (and private 
communication) have shown that there exists a b-dependent choice of 
normalization such that the block-spin measures converge as b-~  c~ to a 
massless Gaussian measure6~ this is a slight variant of the A i z e n m a ~  
Fr6hlich triviality theorem. 

Now the key observation is that a block-averaging transformation 
followed by a projection on Ising confgurations is identical to a majority- 

6o Conventional wisdom holds that the normalization can be chosen to be b p for a suitable 
power p [in fact, one predicts p = (d+ 2--t/)/2 = (d+ 2)/2]. If this is the case, then the 
limiting measure can also be obtained by repeated application of the block-averaging trans- 
formation with a fixed block size b, and hence is a self-similar Gaussian measure. 1336' 18, 33) 
However, this conventional wisdom has not yet (as far as we know) been proven rigorously. 
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rule transformation. So consider applying the majority-rule transformation 
using larger and larger block sizes b. Since the block-averaged spins (with 
a suitable b-dependent normalization) converge as b ~ oo to a massless 
Gaussian, it is not difficult to show that the majority-rule image spins 
converge as b--* ov to the sign of this same massless Gaussian. But by 
Theorem 4.9, this latter measure is non-Gibbsian! (For details, see 
ref. 105.) 

This non-Gibbsian scaling limit is not a fixed point in the strict sense, 
as the sequence of majority-rule transformations lacks the semigroup 
property: the majority rule on block size b 2 is not equal to the second itera- 
tion of majority rule on block size b (as politicians well know !). Therefore, 
the existence of pathologies for the fixed point arising from the b ~ oo limit 
does not guarantee that the corresponding pathologies will occur for the 
fixed point arising from iteration of a majority-rule map with a fixed block 
size b. But it does make it plausible: there does not seem to be so much 

difference between majority rule on a block of size b n and n iterations of 
majority rule on a block of size b. And, in any case, the "large-cell 
majority-rule" approach is clearly part of the RG enterprise, (~31' 253) so it is 
interesting to see that it can fail. Finally, as we discuss in Section 5.2, there 
are other reasons to expect that this behavior is in some sense typical. 
Indeed, we conjecture that the fixed-point measures of nonlinear RG trans- 
formations for d~_>~ d, ( - u p p e r  critical dimension of the model) will be 
non-Gibbsian in considerable generality. 

Finally, we remark that the results discussed here for d >  4 are expec- 
ted to hold also for d =  4, provided that the "triviality conjecture ''(375' 117) 
is true. 

4.5. Other Results on Non-Gibbsianness and Nonquasilocality 

In Sections 4.1 4.4, we have given a number of examples of non- 
Gibbsian (or what is slightly stronger, nonquasilocal) measures, with 
particular attention to those arising in RG theory. It is natural to ask 
whether the phenomenon of non-Gibbsianness (or nonquasilocality) is more 
widespread. Unfortunately, very little is known about the properties of 
nonquasilocal measures, and very few examples of nonquasilocal measures 
are known. In this section we try to make a complete survey of all known 
physically interesting examples of nonquasilocality. (The list is short enough 
that such a comprehensive survey is feasible.) 

4.5.1. Trivial Example: Convex Combination of Gibbs 
Measures for Different Interactions. These are perhaps rather silly 
examples: if one makes a convex combination of Gibbs measures for the 
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Ising model at two different temperatures, then it is hardly surprising that 
the resulting measure will not be Gibbsian at all. The proof says roughly 
that if the resulting measure were Gibbsian for some interaction q~, then the 
two original measures would also have to be Gibbsian for q~. But this is 
impossible, because the Griffiths-Ruelle theorem tells us that a measure 
can be Gibbsian for at most one interaction (modulo physical equivalence). 

We need a preliminary result, concerning the conditions under which 
a "reweighting" of a Gibbs measure remains a Gibbs measure: 

Lemma 4.11.  Let H be a specification and I* a measure in ~(H).  
A measure v of  the form v = f #  belongs also to ~(H)  i f  and only i f f  is 
~&%-measurable (modulo #-null sets). 

(We recall that ~'oo = 0A ~s~ -~AC is the a-field of observables at infinity: 
see Section 2.3.6.) The proof of this lemma is given, for instance, in ref. 304, 
Lemma 2.4, and in ref. 160, Theorem 7.7. 

We can now prove the main result: 

P r o p o s i t i o n  4.12.  Let #1, #2 .... be a finite or countably infinite 
family of  measures (not necessarily translation-invariant) which are 
distinguishable at infinity, i.e., there exist disjoint sets F1, F2 .... e 200 such 
that Pk(Fk)= 1 for each k. Assume further that each of  the measures 
#1, ~2 .... gives nonzero measure to every open set in s Now form a convex 
combination # = ~,k Ckl~ with all Ck > O. I f  # is consistent with a specifica- 
tion H, then so are #1, #2,...; and i f  H is Feller, then this is the only Feller 
specification with which any of  these measures is consistent. 

Thus, if some two of the {#k}--say, #i and #j--happen to be 
consis tent  with different Feller specifications (Hi # Hi), then it follows that 
# is not consistent with any Feller specification. In particular, /~ is not a 
Gibbs measure for any continuous, uniformly convergent interaction. If the 
single-spin space O 0 is finite, this means that # is not consistent with any 
quasilocal specification, and in particular that/~ is not a Gibbs measure for 
any uniformly convergent interaction. 

Remark. It is not difficult to show that if the measures #1, ~2,.-. are 
pairwise distinguishable at infinity, then they are jointly distinguishable 
at infinity in the sense of Proposition 4.12. Here it is crucial that we are 
dealing with a countable family. 

Proof of  Proposition 4. 12. Suppose that # is consistent with a 
specification H. Then, by Lemma 4.11, the measures #~= C~IZFkl ~ are also 
consistent with H. The uniqueness follows from Theorem 2.15. | 

822/72/5-6-12 
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In order to apply Proposition 4.12, we need to verify that the measures 
#a, #2,... are distinguishable at infinity (the support hypothesis is usually 
trivial to check). One easy way to obtain such measures is to recall that 
distinct ergodic translation-invariant measures are distinguishable at 
infinity (Theorem 2.33 and the remark following it). We therefore have: 

C o r o l l a r y  4.123. Let I~1,122,... be a finite or countably infinite family of  
ergodic translation-invariant Gibbs measures for interactions 41, ~b2,... e ~ 1, 
respectively. Now form a convex combination 1~ = ~,k ek#k with all ck > O. I f  
# is consistent with a Feller specification H, then all the interactions qb k must 
be physically equivalent in the D L R  sense (and hence also in the Ruelle 
sense). 

Proof. If #i =/~j, then q}i and qoj must be physically equivalent in the 
DLR sense (Corollary 2.18). So we can assume without loss of generality 
that the measures #~, #2,.. are all distinct. Since distinct ergodic measures 
are distinguishable at infinity, and Gibbs measures for an absolutely 
summable interaction always give nonzero measure to every open set, we 
can apply the preceding proposition to conclude that H = I I  ~1 = 11 ~2 . . . .  
The rest follows from Theorems 2.17 and 2.42. | 

Therefore, (nontrivial) finite or countably infinite convex combinations 
of  ergodic translation-invariant Gibbs measures for non-physically-equivalent 
interactions cannot be Gibbsian; and for finite single-spin space they cannot 
even be quasilocal. 

4.5.2. Restriction of the Two-Dimensional Ising Model to 
a n  A x i s .  Schonmann (327) gave another example of a non-Gibbsian 
measure that can be obtained by applying a simple transformation to a 
well-known Gibbsian measure. He proved that if #+ is the " + "  phase of 
the two-dimensional Ising model at zero field and at any temperature 
below critical, then its restriction #+ P to the axis {(i, 0): ieT/} is a non- 
Gibbsian one-dimensional Ising model. His argument is based on two 
results: 

(R1) For  all temperatures below the critical temperature for the 
d = 2 Ising model, i(# _ P [/~ + P) # 0. 

(R2) Let a'~,ev denote the spin configuration on the "annulus" 
{(i, 0): n <~ lil ~< N}. Then for each n there exists an N(n) such that 

#(.l~'n.N(n)=--l)'-+ll a s  n ~ o e  (4.78) 

for all Gibbs measures/ l  of the original model. 61 As a consequence 

( # + P ) ( . I a ' ~ , ~ ( , ) - - - 1 ) ~ u _ P  as n ~  (4.79) 

61 This  s t a t ement  easi ly follows from Schonmann ' s  L e m m a  1. 
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Result (4.79) implies that if #+ P is consistent with some quasilocal 
(=Feller)  specification, then /~_P must be consistent with that same 
specification. Heuristically this is due to the fact that a measure obtained 
just by a change in the boundary conditions must be a different phase for 
the same interaction. To see it mathematically, let H =  0rA) be a quasilocal 
specification with which # + P is consistent. Then for each set A contained 
in the interval ( - n ,  n) we have that 

( l~+P)( . la ' , ,U(n)=-- l )rcA = ( l~+P)( . ]a '~ .u (m=-- l )  (4.80) 

by property (b) of Definition 2.5; and passing to the limit n --* Go (since H 
is Feller) we obtain 

(/~ P ) ~ A = #  P (4.81) 

Therefore, /~+P were a Gibbs measure for some (uniformly convergent) 
interaction, then so would be # P. But this contradicts the result (R1), 
because Gibbs measures for the same (absolutely summable translation- 
invariant) interaction have zero relative entropy density. 

Schonmann's restriction P does not fit into the framework considered 
in Section 3, because the volume compression factor K is not finite (see 
Example 7 in Section 3.1). On the other hand, Schonmann's proof of non- 
Gibbsianness seems to be rather different from our proofs in Sections 
4.1~4.3. We show here that, nevertheless, his result can be obtained by 
following basically the steps discussed in Sections 4.1-4.3 (although at 
present we are able to do it only for temperatures tow enough). This will 
prove that # + P is not merely non-Gibbsian, but in fact nonquasilocal. The 
proof will use (R2), but not (R1). 

In our language, the image spins for this transformation are the spins 
on the horizontal line, and the internal spins are all the spins of the plane 
except those of the line. We first notice that Schonmann's result (R2) 
corresponds exactly to our Step 2: that is, (4.78) shows that the annulus 
[ - N ,  - n ]  u [n, N] of image spins selects the phase of the internal spins. 
Physically, this is a kind of wetting phenomenon: imposing - spins on a 
large segment of the axis (of size ~ N )  give rise to a droplet of the " - "  
phase in a neighborhood of the axis, even when the bulk boundary conditions 
are + ; as N ~ oo the width of the droplet grows to infinity, and moreover 
the left and right droplets join, thereby enforcing the " - "  phase throughout 
the infinite system. 

We sketch now how our Step 1 can be proven via a contour argument, 
so that we obtain the nonquasilocality of the image system without making 
use of the large-deviation estimate (R1). We consider the origin unfixed 
from the start (so Step 3 is superfluous), and consider CGpecial to be an alter- 



1032 van  E n t e r  e t  al. 

nating configuration such that the neighbors of the origin are of opposite 
sign: 

II:+ if 
1 if i < 0  

(4.82) 

We shall prove the following: there exists e > 0 such that for all k there 
exist n(k) and N(k) such that 

] 2 + (O-OI O-'l,k ~" O)'special, atn(k), N(k) ~-~ -]- 1 ) >/8 > 0 (4.83a) 

#+(o-ol o-i,k= CO;pe~i~l, o-'.(k/,N(k) = -- 1)~< - ~ < 0  (4.83b) 

It is clear that (4.83a) and (4.83b) together imply the nonquasilocality of 
#+P ,  for they show that in an arbitrarily small neighborhood of 
cO'spe~ ~ { - 1, 1 }~ (namely, ~ - {o-': o-'~,k = ~O'sp~al}), there exist open sub- 
sets 

~k ,  + = { 0-r: o-;,k = ('Otspecial a n d  o-rn(k),N(k ) = -[- 1} (4 .84a)  

X k , _  = {o-': o-'l,k = CO'special a n d  o-'.(k),N(k) = -- 1 } (4 .84b)  

such that the (#+ P)-average value of E~+p(o-~[ {o-'}x~0) over ~ , +  (resp. 
Jlrk, ) is ~>e (resp. ~<-e/2). This is incompatible with E,+e(o-~l {o-~}~0) 
having any continuous (-= quasilocal) version. 

In order to prove (4.83a) and (4.83b), we shall prove the following 
intermediate result: there exists e > 0 such that 

+ (O-O ] o-Ii,k = (Dfspecial) ~ 8 (4.85) 

for all k. This trivially implies (4.83a), by the F K G  inequality, for any 
choice of n and N. To see that it also implies (4.83b), we use (4.78) with 
/~ = # + and applied to the functions 

f~ = Z(o-'l,~ = C0'special) (4.86a) 

gk = a0Z(a'l,k = C0'speoial) (4.86b) 

We obtain 

lim #+( fk la ' , . x (n )  = -- 1 ) = #  (fk)  (4 .87a)  

l im /~ + (gk I o-'n.N(n) - 1) = / ~ _ ( g ~ )  (4 .87b)  
n ~ 3  
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Dividing (4.87b) by (4.87a), we get 

lim /~+(a01~'l,k=C0'spe~i~l, a',,N(,/= -- 1 ) = #  (a0ja'l,k=C0'~pe~i) (4.88) 
n ~ o o  

Now, by (4.85) and spin-flip symmetry, the RHS is ~< - - a .  62 Therefore, for 
each k there exists an n(k) such that 

] .L+(O 'OIO ' I ,  k = (.Otspecial, atn(k),N(n(k)) = --1 ) ~ 2 (4.89) 

which is (4.83b). 
So now let us prove (4.85)--at low enough temperatures--by a more 

or less standard Peierls argument. (172) Here the contours are defined as the 
boundaries (in the dual lattice) of regions where the spins differ from the 
ground-state configuration (that is, all " + "  except for the required alter- 
nating " - " ) .  In counting the energy of such contours one must subtract 
the energy of the contours already existing in the ground state (squares 
surrounding the alternating " - " ) .  After some thought, one concludes that 
the energy of the contours is at least proportional to Nv + �89 2, where 
N~ (resp. Nh) is the number of vertical (resp. horizontal) bonds in the 
contour. On the other hand, the number of possible contours is even less 
than that for the unconditioned Ising model. As in the standard Peierls 
argument, these facts imply that the probability of finding a contour sur- 
rounding the origin--that is, of having a " - "  at the origin--goes to zero 
as/? goes to infinity. 

Bornorks. 1. In contrast to the RG examples given in Sections 
4.14.3, here the non-Gibbsianness occurs only for interactions on the first- 
order phase-transition curve, i.e., zero magnetic field. Indeed, Maes and 
van de Velde (26~ have proven that if either h-r 0 or/~ is sufficiently small, 
the restriction of the two-dimensional Ising model to an axis is Gibbsian. 

2. It is natural to generalize this example: consider a d-dimensional 
Ising model and a d'-dimensional coordinate plane (1 ~< d' < d). It seems to 
be an open question, for all cases other than (d, d ' ) =  (2, 1), whether the 
restricted measure is non-Gibbsian at low temperatures. 

4.5.3. Fortuin-Kasteleyn Random-Cluster Model. In 1972 
Fortuin and Kasteleyn (13~ introduced a correlated bond-percolation model 
which has since become known as the Fortuin-Kasteleyn random-cluster 

62 If we app ly  spin-flip symmet ry  to (4.85), we no t  only  change  #+  to /~ and  e to - a ,  bu t  

mus t  also change  o)'~p~cia 1 to --~O'spec~a 1. But  this  la t ter  is jus t  CO'~pec~a~ reflected in the x2 axis 
(i.e., x I ~ - x z )  , and  the measures  p +  and  # _  are inva r i an t  under  this reflection. 
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model For a finite graph G = (V, B) having vertex set V and edge (or 
"bond") set B, the model is defined as follows: On each bond b there is a 
variable nb taking the value 0 ("bond vacant") or 1 ("bond occupied"). The 
probability of a configuration n = {nb} is defined to be 

Prob(n) = const x pX~(.)(1 - p)~0(.)q~(.) (4.90) 

where 0 < p < 1 and q > 0 are parameters; here Jffo(n) [resp. JV~l(n)] is the 
number of bonds b with nb= 0 [resp. n b = 1 ], and Cg(n) is the number of 
"clusters" (i.e., connected components of vertices) in the graph G. whose 
vertex set is V and whose edges are the occupied (nb = 1) bonds. For  q = 1 
this model reduces to ordinary (independent) bond percolation, while for 
integer q ~> 2 there are identities relating the random-cluster model to the 
q-state Potts model. (13~ 128, 111) 

Let us now try to formulate the random-cluster model on a countably 
infinite graph G = (V, B) [-for example, V= 7/d and B = nearest-neighbor 
bonds in 7/a], following the DLR approach. The "lattice" is here B, and the 
configuration space is {0, 1} 8. Let A be a finite subset of B, and let A* c V 
be the set of all vertices touching at least one bond b e A. We need to 
specify the conditional probabilities of {rib}be A given {n b,}b,eB\A, But this 
is easy, by the same method as for spin systems: we write down the formal 
(meaningless) Boltzmann factor for the infinite lattice, and then drop all 
terms that do not involve {nb}b~A. The result is simple: it is 

Prob({nb}b~A I {nb,}b, eBkA) 
= const({nb,} b,~ ~\A) x p~PI("A)(1 - p)J/'o(.A)q~A*(.) (4.91) 

where JVo(nA) [resp. ~l(nA)] is the number of bonds b ~ A  with n b = 0  
(resp. nb = 1), while cgA.(n ) is the number of clusters containing at least one 
element of A*, in the graph whose edges are the occupied (nb = 1) bonds 
(both those inside and outside A). 

It is easy to see that (4.91) defines a specification (i.e., it is consistent 
for different A). It is also easy to see that the dependence o n  {nb,}b,~B\A is 
only via the set of answers to the following questions: for each pair 
x, y s A*, one wants to know whether x and y can be connected by a path 
of occupied bonds lying in B\A. Note, however, that the answer to this 
question could depend on bonds nb, arbitrarily far away from A (provided 
that the graph G contains arbitrarily large closed loops). Therefore, for 
q ~ 1, the specification defined by (4.91) is not quasilocal (as was previously 
noted in ref. 6). 

Aizenman et al. (6) have proven the existence of the infinite-volume 
limit for the "Gibbs" measures of the random-cluster model taken with 
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either free (nb,~O) o r  wired (nb, = 1) boundary conditions. However, 
since the specification (4.91) is not quasilocal (hence not Feller), it is not 
immediate that these limiting measures /,j- and #w are indeed consistent 
with the specification (4.91) [since Proposition2.22 does not apply], 
although it seems very plausible. Indeed, it is not clear that there exist 
any measures consistent with the specification (4.91). We therefore pose the 
following open question: Prove that the infinite-volume limit measures 
taken with free or wired boundary conditions are consistent with the 
specification (4.91). 

Assuming that there do exist measures consistent with the specification 
(4.91), we can now prove that all these measures are nonquasilocal (hence 
non-Gibbsian). 

Def in i t ion 4.14. Let [2 be a metric space. We call a function 
f :  s ~ N strongly discontinuous if every continuous function differs fi'om f 
on a set having nonempty interior. [In detail: for every g ~ C((2), the set 
{co: f(co) ~ g(co) } has nonempty interior.] 

We call a specification strongly non-Feller if there exists A ~ 5P and 
f ~ C(f2) such that g A f  is strongly discontinuous. 

A sufficient condition for strong discontinuity of a function f is the 
following: there exists an (o*~g2 and an e > 0  such that for every 
neighborhood A/~co* there exist open sets A/+,A/_ c A /  such that 
info,~ w+ f(co) - supo, ~ ~ - f(co) > ~. 

It is now easy to prove that the specification (4.91) is strongly non- 
Feller. To avoid uninteresting graph-theoretic complexities, we prove the 
theorem for the special case V= Z d and B = nearest-neighbor bonds in y_d. 
The reader can easily generalize this to a suitable class of countably infinite 
graphs G. 

Proposition 4.1 5. Let q ~ 1. Then the specification (4.91) for the 
random-cluster model is strongly non-Feller, when V =  77 d and B = nearest- 
neighbor bonds in Z d. 

Proof. Let A be a set containing a single bond bo = {Xo, xl}, and let 
f ( n )  = nb0. Now let co* be the configuration which sets n b = 1 on parallel 
rays running from Xo and Xl to infinity, perpendicular to the bond bo, and 
which sets n b = 0 on all other bonds. Now any neighborhood A/~  co* (in 
the product topology) contains the particular neighborhood 

A~ R = {n: n = co* on AR} (4.92) 

where A R is the set of all bonds in a square of side 2R + 1 centered at the 
origin. We then choose A/R. + to be the subset of A/R in which an occupied 
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bond in AR+ I\AR connects the two parallel rays; and we choose JVR_ to 
be the subset of JVR in which all the bonds in AR+ I\AR are vacant (so that 
the two parallel rays cannot be connected, no matter what happens outside 
AR+I). It is easy to see that 

{ ~  for all co ~ YR. + 

(4.93) 
(/r {b~ f)(o))  = P for all ~o e Xe _ 

+ (1 - - p ) q  

for all R. Since 0 < p < l  and q r  it follows that r~b0) f is strongly 
discontinuous. ] 

P r o p o s i t i o n  4.1 6. (a) Let H be a strongly non-Feller specification, 
and let # be any measure consistent with H that gives nonzero measure to 
every open set. Then # is not consistent with any Feller specification. 

(b) Let H be a strongly non-Feller specification, and assume further 
that H is nonnull with respect to an a priori measure #o that gives nonzero 
measure to every open set. Let # be any measure consistent with H. Then # 
is not consistent with any Feller specification. 

Proof. (a) Let A E5 p and f ~  C(O) be such that gAf is strongly 
discontinuous. If now H'  is a Feller specification, by definition ~Af  is 
continuous, and therefore differs from l~Af o n  a set having nonempty 
interior. But since/~ gives nonzero measure to every open set, g A f  and ~ f  
cannot be equal #-a.e.; ~t cannot be consistent with both H and H'. 

(b) is an immediate consequence of (a), once we realize that any 
measure consistent with a nonnull specification (Definition 2.11) must give 
nonzero measure to every open set. | 

Since the FK specification (4.91) is clearly nonnull (for 0 < p  < 1 and 
q > 0), we conclude: 

C o r o l l a r y  4.1 7. Let q r 1, and let # be any measure consistent with 
the F K  specification (4.91) (for V = 77 a and B = nearest-neighbor bonds in 
y_a). Then # is not consistent with any Feller ( -  quasilocal) specification. 

We note that the method used here to prove nonquasilocality is essen- 
tially the same as that used in Sections 4.1-4.3 on the RG examples. The 
only difference is that here we are working with an explicit specification, so 
that we can prove bounds over the whole sets X+ and X _ ;  whereas in 
Sections 4.1-4.3 we were working with the conditional probabilities of a 
given measure #', which are defined only up to modification on #'-null sets, 
and therefore we could only prove the bounds over JV'+ and ~ _  in the 
#'-a.e. sense. 
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Finally, we remark that for integer q ~> 2, there exists a joint model of 
interacting Potts spin and bond occupation variables--that is, a model 
whose state space is { 1,..., q} V x {0, 1 }~--whose marginals on the spin and 
bond variables are the Potts and random-cluster models, respectively. (lm 
This joint model has local interactions, so its specification obviously is 
quasilocal. (The only reason it is not Gibbsian is that there are some 
exclusions.) The identities relating the joint, Potts, and random-cluster 
models are easily proven in finite volume, but they can presumably be made 
rigorous in infinite volume by methods like those sketched in Section 4.2, 
Step 0. If so, then any Gibbs measure of the joint model would produce, 
upon "decimation" to the bond variables, a nonquasilocal measure (namely, 
a measure consistent with the random-cluster-model specification). 63 This 
would then be another example in which "decimation" of a quasilocal 
measure yields a nonquasilocal measure. 

4.5.4. Stationary Measures in Nonequilibrium Statistical 
Mechanics. Consider an infinite-volume lattice system evolving stochas- 
tically, in either continuous time or discrete time, according to (quasi)local 
rules which do not satisfy detailed balance. Thus, in continuous time we 
have in mind an interacting particle system(255): for example, a system of the 
spin-flip (resp. spin-exchange) type, in which each spin flips (resp. each 
nearest-neighbor pair of spins exchanges values) independently, at Poisson 
random times, with rates depending in a (quasi)local way on the other spins. 
Examples of such dynamics include: 

(a) The voter model(Z55): independently at each site x, at Poisson 
random times the spin ("voter") at x changes its value to that of 
a randomly chosen neighbor. 

(b) An Ising model with competing dynamics: for example, a mixture 
of Glauber dynamics for two different temperatures, (147) or a 
mixture of Glauber dynamics for one temperature and Kawasaki 
dynamics for a different temperature. (371) (The latter model has 
been considered by Lebowitz and his collaborators in connection 
with the hydrodynamic limit. (242)) 

In discrete time we have in mind a probabilistic cellular automaton 
(PCA)(165'244): simultaneously at each clock tick, each spin attempts 
independently to flip, again with rates depending in a (quasi)local way on 
the other spins. An example is: 

63 This would probably also give a method for proving that gj and #~, are consistent with the 
random-cluster-model specification, at least for integer q. 
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(c) The Toom model(356'244): each spin changes its value, with 
probability p, to the majority of its northern neighbor, its eastern 
neighbor, and itself, and with probabilities (1-p) /2  to + 1. 

Thus, the PCAs are the discrete-time analogues of the spin-flip interacting 
particle systems. 

Lebowitz and Schonmann (ref. 250, p. 50) have argued that in both 
the continuous-time and discrete-time cases, the stationary measure(s) 
should generally be expected to be non-Gibbsian and indeed nonquasi- 
local: for "systems maintained in a nonequilibrium state by contacts with 
outside sources... [the measures describing] stationary nonequilibrium 
states cannot be expected to behave in a quasi-Markovian [-in our 
language, quasilocal] way--isolating a part [-of the system from the rest] 
will generally change its behavior drastically." 

This conjecture has been proven by Lebowitz and Schonmann (25~ in 
the case of the voter model. More precisely, they have proven [-ref. 250, 
Eq. (3.8)] that i(6+[vp)= 0 where v o (0 < p < 1) is an extremal translation- 
invariant stationary measure of the voter model in Z d (d~> 3). This shows 
that vp is non-Gibbsian (as remarked also in ref. 244). It is interesting to 
note that this is the same large-deviations argument employed in the 
Lebowitz-Maes-Dorlas-van Enter examples (Section 4.4). 

Martinelli and Scoppola (263) have given another example of a dynamics 
in which the stationary measure is non-Gibbsian: again the probability of 
a region in which all the spins are + decays more slowly than exponentially 
in the volume of the region, so the measure cannot be Gibbsian. However, 
the Martinelli-Scoppola dynamics is highly nonlocal--it involves collective 
flips of arbitrarily large clusters so perhaps the non-Gibbsianness is not 
so surprising. (The Martinelli-Scoppola dynamics superficially resembles 
the Swendsen-Wang (349) dynamics; but in truth the resemblance is not so 
close, since the stationary measure of the former is non-Gibbsian, while the 
stationary measure of the latter is the nearest-neighbor Ising model!) 

Finally, Maes and Redig (259) have described an (anisotropic) local 
spin-exchange dynamics in which the stationary measure is expected to 
have nonsummable long-range correlations in the "high-noise" regime (i.e., 
at what ought to correspond to "high temperature"). Such unusual 
behavior would suggest, though it would not prove, that the stationary 
measure is non-Gibbsian. The long-range spatial correlations are indicated 
in this model by a perturbation calculation, but a more general physical 
intuition seems to be the following: Transport properties for spin-exchange 
processes are diffusive, and the correlation functions are expected to exhibit 
slow (power-law) decay in time ("long-time tails"). Now, one expects 
spatial and temporal correlations to have roughly similar decay--i.e., both 
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exponential or both power-law--except in very special cases such as models 
satisfying detailed balance. This suggests that spin-exchange processes 
not satisfying detaile balanced should have, quite generally, stationary 
measures with long-range correlations, and very likely, stationary measures 
that are non-Gibbsian. 

In the PCA models, the probability measure on the space-time 
histories is the Gibbs measure for a (d+ 1)-dimensional lattice model with 
interactions which can be expressed in terms of the transition rules of the 
PCA model. O65'z44) The stationary measure of the PCA model thus corre- 
sponds to the restriction of this space-time measure to a d-dimensional 
(equal-time) hyperplane. When the PCA is in the "high-noise" regime--so 
that the associated (d+t)-dimensional  equilibrium model is in the 
Dobrushin-Shlosman high-temperature regime--the stationary measure is 
known to be unique and Gibbsian. (244) (A similar theorem has recently 
been proven also for continuous-time spin-flip systems. (261)) However, by 
analogy with the Schonmann example (Section 4.5.2), one may suspect that 
in the "nonergodic" (phase-transition) regime of the PCA model--where 
the stationary measure is not unique--each stationary measure would 
typically be non-Gibbsian. In particular, one may conjecture that this is so 
for the Toom model. We thus suspect that Liggett's conjecture (ref. 255, 
p. 224), to the effect that every translation-invariant finite-range dynamics 
with strictly positive rates has a Gibbsian stationary measure, is most likely 
false. 

Remark. The foregoing considerations are for rates that do not 
satisfy detailed balance. If the rates satisfy detailed balance, then one 
expects all the stationary measures to be Gibbsian (for an explicit Gibbsian 
specification that is easy to write down given the rates); however, this has 
not yet been proven rigorously even in the case of Glauber dynamics 
for the nearest-neighbor Ising model in dimension d>~3 (ref. 255, 
Problem IV.7.1 ). 

Finally, let us quote a result of Kiinsch ~232) for continuous-time local 
spin-flip processes with strictly positive rates: if there exists a translation- 
invariant stationary measure which is Gibbsian for some (absolutely 
summable) interaction, then every other transtation-invariant stationary 
measure must be Gibbsian for the same interaction. 

4.5.5. Comparison of Methods for Proving Non-Gibbsian- 
n e s s .  Any theorem of the form "every Gibbs measure has the property 
~ "  provides a method for proving non-Gibbsianness via the contrapositive: 
a measure not having the property N must be non-Gibbsian. We have seen 
four properties of this sort: 
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(i) A Gibbs measure (for an absolutely summable interaction) must 
be uniformly nonnull. This is a consequence of the "easy half" of the Gibbs 
representation theorem [-Theorem 2.12(a) ~ (b)]. 

(ii) A Gibbs measure (for a uniformly convergent interaction) must 
be quasilocal (Theorem 2.10). 

(iii) A measure can be Gibbsian for at most one (uniformly con- 
vergent, continuous) interaction, up to "physical equivalence" 
(Corollary 2.18 ). 

(iv) Translation-invariant Gibbs measures (for translation-invariant 
absolutely summable interactions) have "good" large-deviation properties: 
the probability that spins in a certain region fluctuate into a configuration 
characteristic of another translation-invariant measure decreases exponen- 
tially in the volume of the region, except if this other measure is also 
Gibbsian for the same (absolutely summable) interaction. In precise mathe- 
matical terms: a translation-invariant measure/~ has zero relative entropy 
density respect to another translation-invariant measure v which is 
Gibbsian for an interaction �9 is and only if # is also Gibbsian for the same 
interaction ~b. This is one of the consequences of the discussion of 
Section 2.6.6. It is also closely related to the strict convexity of the pressure 
(Proposition 2.59). 

For  each of these conditions, we have seen examples in which the non- 
Gibbsianness is proven by its violation: 

(i) Lack of uniform nonnullness. This has two manifestations: 
A measure can be nonnull but not uniformly so (see Definition2.11). 
This typically means that the Hamiltonians are unbounded functions 
and one cannot use the formalism developed for absolutely summable 
interactions. This is the generic situation for unbounded-spin models, and 
it gets delicate for infinite-range interactions. In these cases, often the notion 
of Gibbsianness can be preserved if one excludes "by hand" problematic 
configurations. (249'61/ On the other hand, the measure may fail to be 
nonnull, which means that some cylinder sets have zero measure. This is 
a rather simple case of non-Gibbsianness in which the Gibbsianness can 
be restored by allowing hard-core interactions or working on a more 
restricted configuration space (see, for example, ref. 318). We mention that, 
in the setting of complex interactions, there are examples of Gibbsian 
measures that after one renormalization step remain quasilocal but lose 
nonnullness.(15) 

(ii) Violation of quasilocality. Most of the cases of pathological 
renormalization transformations analyzed above (Sections 4.1-4.3 and 4.5.2) 
fall into this category. This phenomenon appears when there are some 
"hidden spins" that transmit information from arbitrarily far away even 
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if the "nonhidden" spins are fixed. In the renormalization transformations 
the "hidden variables" are the fluctuations of the original or internal 
spins that remain once the block spins are fixed. In Schonmann's example 
(Section 4.5.2), the "hidden variables" are all the spins outside the x axis, 
which are "hidden" by the process of restriction. 

(iii) Threatened violation of uniqueness. We used this method to 
study the "trivial" examples of non-Gibbsianness discussed in Section 4.5.1. 
Consider a finite or countable family of different (non-physically-equivalent) 
interactions and pick for each one an ergodic translation-invariant Gibbs 
measure. Then a nontrivial convex combination of these measures cannot 
be Gibbsian for any (uniformly convergent, continuous) interaction, 
because if it were, then each of the original measures would be a Gibbs 
measure also for this new interaction, violating uniqueness. In the case of 
a finite single-spin space, this method also proves non-quasilocality. 

(iv) Wrong large-deviation properties. There seem to be two rather 
different types of "bad" large-deviation properties: 

(c~) Subexponential decay for events whose probability "should" 
decay exponentially in the volume. This applies to the sign field of the 
(an)harmonic crystal (Section 4.4), and the stationary measures for the 
voter and Martinelli-Scoppola models mentioned in Section 4.5.4. Here 
one shows that the probability of all the spins in a large region 
becoming + decays subexponentially in the volume of the region; this is 
incompatible with being Gibbsian for any absolutely summable interaction. 
In other words, one shows that the measure # satisfies i(6+llt)= 0, where 
6+ is the delta-measure concentrated on the all-+ configuration. As this 
measure is obviously non-Gibbsian (it is not nonnull!), neither is #. 

(fl) Exponential decay for events whose probability "should" decay 
subexponentially. The original proof of Schonmann's example ~327~ is based 
on an argument of this kind. Here one shows that, in the " + "  phase, the 
probability of having a net negative magnetization in a large region decays 
exponentially in the volume of the region. In other words, the measures 
obtained via + and - boundary conditions have a strictly positive relative 
entropy. If either of these measures were Gibbsian (for an absolutely 
summable interaction), the other would have to be Gibbsian for the same 
interaction (because they differ only by boundary conditions); but then the 
relative entropy would have to be zero (Theorem 2.66). Therefore, they 
cannot be Gibbsian. 

Often we would like to prove not only that a measure is non-Gibbsian, 
but also that it is nonquasilocal (which is stronger). In nearly all cases we 
have done this "by hand": that is, by proving bounds on the conditional 
probabilities which are incompatible with their having any quasilocal 
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version (see Sections 4.1-4.3 and 4.5.2). In only one case were we able to 
prove nonquasilocality by an abstract "trick": this was the "trivial" convex- 
combination example (Section 4.5.1), where we used method (iii) above. It 
would be interesting to have available other methods for proving non- 
quasilocality. 

4.5.6. Are " M o s t "  Measures Non-Gibbsian? The traditional 
belief among physicists (including ourselves until recently) is that all (or 
nearly all) physically interesting measures are Gibbsian. Indeed, this belief 
is so much taken for granted 64 that it is rarely stated explicitly. 65 The 
profound message of Israel's pioneering work, (zl~ and of the examples 
given here, is that this traditional belief is false: many physically interesting 
measures are non-Gibbsian. In fact, we now suspect that Gibbsianness 
should be considered to be the exception rather than the rule--that,  in 
some sense, most measures are non-Gibbsian. 

It is therefore of at least mathematical interest to study the set 
~ - t . ) ~ i n v ( H  e) of all translation-invariant measures which are 
Gibbsian for some translation-invariant, absolutely summable, continuous 
interaction. Is ~ a "big" or a "small" subset of the space M+l.inv(f2) of all 
translation-invariant measures? 

It is a "big" set in a very weak sense, namely that of being dense in 
the weak topology. In fact, the Gibbs measures for finite-range continuous 
are already dense: 

Proposition 4.18.  Assume that the single-spin space ~2 o is a 
compact metric space, and that the a priori single-spin measure #o gives 

x 

nonzero measure to every open set o f  g2o. Then 

U 
q~ E ~fini te  

is dense in M+l , i nv ( f f2 )  in the weak topology. 

64 There are many  examples of this in the physics literature: see, for example, refs. 55 and 50. 
65 One exception is the recent statement by a noted mathematical  physicist that "every good 

random field is Gibbsian. ''(333) In a similar vein, a mathematician says: "the Gibbsian form 
of local conditional distributions is a rather weak condition, but it is difficult to check it" 
(ref. 232, p. 410). A related though somewhat weaker intuition can be found in a well- 
known monograph  on interacting particle systems: "Is it true that every translation 
invariant strictly positive spin system on 7/a with finite range has an invariant measure 
which is a Gibbs state ? This is plausible ... [because]  the strict positivity of the rates should 
imply that an invariant measure  is somewhat  smooth"  (ref. 255, p. 224). On  this same 
conjecture, another  mathematician says: "We couldn't  prove in general the existence of a 
stationary Gibbs measure, a l though this is very likely to hold" (ref. 232, p. 408). As 
discussed in Section 4.5.4, this conjecture is still an open problem, but  there is good reason 
to suspect that it is false. (These examples, together with those of the preceding footnote, 
illustrate the difference between physicists and mathematicians:  both often have erroneous 
intuitions, but the mathematicians state them explicitly.) 
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Proof. The proof goes in three steps: First, the ergodic measures of 
finite entropy density (relative to po) are dense in M+ 1,inv(f2) [Proposition 
2.61(e)]. Second, Israel (2~ has shown, using the Bishop-Phelps theorem, 
that each ergodic measure of finite entropy density is an (extremal) equi- 
librium measure for some interaction r 8 ~ (see item 2 in Section 2.6.7). 
Finally, the finite-range interactions form a dense subset 8n=it~ c 8~ and it 
follows from a theorem of Lanford and Robinson (234) (see also Sokal (341)) 
that every extremal equilibrium measure for ~b* e 8 ~ can be approximated 
in the weak topology by equilibrium measures for interactions r n ~ 8finite 
with ll~.-~*ll~0--,0. | 

We emphasize that density in the weak topology is an extremely weak 
property: it means only that an arbitrary measure /~EM+t,inv(~Q ) can be 
approximated arbitrarily closely, with regard to any finite family of local 
observables, by a measure in "(fffinite' In particular, the long-range-order 
properties of the approximating measures can be totally different from 
those of the limiting measure #. Thus, Proposition 4.18 is very far from 
saying that "most" measures are Gibbsian. 

In a more profound sense we expect that ~ is in fact a rather "small" 
subset of M+l,inv(~'~). For example, we conjecture: 

Conjecture4 .19 .  (a) ~ is a set of  first Baire category in 
M+ 1,inv(~?). [That is, ~ is a countable union of  sets which are nowhere dense 
in M+ 1,inv(g2).] 

( b ) a5 c~ ex M+ 1,inv((~) is a set of  first Baire category in ex M+ 1,i,~((2). 
(Here "ex" denotes the extreme points, i.e., the ergodic measures.) 

First Baire category is a classic notion of "smallness" in topology. (29~ 
We can make some small steps toward proving Conjecture 4.t9(a): 

Proposition 4.20. ~ has empty interior. 

Proposition 4.21. Assume that the single-spin space f2 o is a 
compact metric space, and that the a priori single-spin measure ! ~~ gives 

x 

nonzero measure to every open set of  ~2o. Let S be a compact subset of  8 ~ 
and let gs be the set of  equilibrium measures for interactions in S. Then Ns 
is a compact subset of  M+l,inv(=Q). 

Corollary 4.22. Assume that the single-spin space s o is a compact 
metric space, and that the a priori single-spin measure #o gives nonzero 
measure to every open set of  g?o. I f  S a a-compact subset of  8 ~ with 
S ~ 8 1 ,  then g s = ~ s = - - U ~ s ~ i , v ( H  ~) is a-compact and of  first Baire 
category in M+~,i~v(f2). In particular, this occurs for S = S h  with h ~ 1. 

Proof  of  Proposition 4.20, Let F e N  and v~M+z,~,~\N. Then, by 
Proposition 2.48(b), ( 1 - 2 ) # + 2 v C a J  for 0<2~< 1. But (1-2)/~+2v-->/~ 
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weakly as 2 J, 0. Hence fq cannot contain any open neighborhood of #. 
[In this proof we could equally well have taken v to be a Gibbs measure 
for an interaction not physically equivalent to the one for which /~ is 
Gibbsian, and then applied Proposition 2.48(b) and the Griffiths-Ruelle 
theorem.] | 

Proof of Proposition 4.21. M+l,inv(f2) 1s compact, so we need only 
show that gs is closed. Let # ,  be an equilibrium measure for q5 n e S, with 
#~ ~ /2  weakly. Then, since S is compact, there exists a subsequence O~nj 
that converges (in ~o  norm) to some q~ ~ S. But then p is an equilibrium 
measure for ~. | 

Proof of Proposition 4.22. The first statement is an immediate con- 
sequence of Propositions 4.20 and 4.21. The second statement follows from 
Proposition 2.39(b). | 

We thank S. R. S. Varadhan for suggesting these latter results and 
sketching the proofs. 

Note Added (April 1993): Robert Israel has succeeded in proving 
Conjecture 4.19. We thank him for communicating to us his very beautiful 
proof, which we hope will be published soon. 

5. DISCUSSION 

5.1. Numerically Observed Discontinuities of the RG Map 

5.1.1. Statement of the Problem. In several Monte Carlo 
renormalization group (MCRG) s t u d i e s  (34'236'74'166) it has been found that 
the numerically computed renormalization transformation N: H~--~H' is 
discontinuous at a first-order phase-transition surface. 66 However, this 
behavior is rigorously excluded by our Second Fundamental Theorem 
(Theorem 3.6). In this section we would like to offer our interpretation of 
the numerically observed discontinuities. 

A MCRG s t u d y  (346'347) proceeds as follows: We choose an original 
Hamiltonian 11, and generate a long sequence of random samples 

66 The models in which this behavior has been (at least tentatively) observed include the 
two-dimensional Ising model at low temperature, 174) the ten-state Potts model in two 
dimensions, (74~ the three-state Potts model in three dimensions, (34) the Z 2 lattice gauge 
theory in four dimensions, ~166~ and the U(1) lattice gauge theory in four dimensions/236' 74~ 
However, in a more recent study of the two-dimensional Ising model at low temperature ~168), 
the observed discontinuity was always less than the estimated truncation error, and it 
decreased as more terms were included in the renormalized Hamiltonian; this was inter- 
preted as evidence against a discontinuity in the exact renormalization map. 
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co~,e)2,.., from the Gibbs measure /~=cons txe  -'~ using some Monte 
Carlo procedure. On each of these "original-spin" configurations coi we 
apply the renormalization map T to generate the corresponding block-spin 
configuration co~. In this way we have generated a random sample 
~o], co~ .... from the renormalized measure # ' = # T .  It is now assumed 
that #' is the Gibbs measure for some renormatized Hamiltonian H '  
belonging to a fixed finite-parameter family H(21 . . . . .  "~N), and some statisti- 
cal method (34s'~67'1~ is employed to estimate the unknown parameters 
21 ..... 2u. 

Such a procedure has three sources of error: 

1. Statistical error arising from the finite Monte Carlo sample. 

2. Systematic error arising from the finite lattice size. (We take the 
point of view that our goal is to learn about the behavior of the 
infinite-volume system.) 

3. Systematic error arising from truncation of the renormalized 
Hamiltonian: #' may not be (in fact, in almost all cases is not) a 
Gibbs measure for any Hamiltonian in the assumed N-parameter 
family. We include here the possibility--studied in detail in 
Section 4 ~ t h a t  p' is not the Gibbs measure for any reasonable 
Hamiltonian. 

It is useful to study these three sources of error separately. In particular, 
we would like to study the problem of truncation of the renormalized 
Hamiltonian, independently of the problems of statistical and finite-size 
errors. Therefore, we begin by formulating an idealized model of the 
parameter-estimation problem in which we assume that the experimenter 
knows exactly the expectation values of an appropriate set of observables 
(to be specified later) in the infinite-volume renormalized measure #'. 
This idealized situation can be approximated to arbitrary accuracy with 
sufficient computer time, by making long Monte Carlo runs on large 
systems. (In principle we should then discuss the stability of our theory 
relative to small statistical or finite-size errors. But we feel that our 
considerations are still too preliminary to justify entering into such 
technicalities.) 

5.1.2. An Idealized Model of Parameter Estimation. Let us 
first consider the parameter-estimation problem in a general probabilistic 
(=  statistical-mechanical) context, without regard (for the moment) to the 
renormalization-group application. Let, therefore, (~2, Y )  be an arbitrary 
measurable space, let F be some family of probability measures on (~2, ~ ) ,  
and let p be another probability measure on (~, ~ ) .  We wish to find the 
measure in F which is in some sense "closest to" (or "best approximates") p. 

822/72/5-6-13 



1046 van Enter e t  al.  

H o w  should we define "closeness"? Any definition is, of course, somewhat  
arbitrary, but  we claim that  the following definition is very natural:  

The measure in F closest to p, denoted p F, is the one which minimizes 
the relative ent ropy I(p[.), assuming that a minimizer with finite relative 
ent ropy exists (it may  or may  not  be unique). 

Note  that  the unknown  measure is taken here as the reference measure 
(second argument)  in the relative entropy. 67 In support  of this definition, 
we cite the following properties: 

1. If p e F, then p F = p, uniquely. This is a rather trivial property,  but  
it is at least a necessary condit ion for any reasonable definition of"closeness." 

2. Suppose that  one generates a large r andom sample from p, 
and constructs maximum-l ikel ihood estimates (334~ based on the (false) 
assumption that  the sample arose from some measure in F. In the large- 
sample limit, this maximum-l ikel ihood estimate will converge to p F. This 
can be proven under  suitable technical hypotheses, (199) but it is easy to see 
intuitively why it is true: the relative ent ropy I(plv) is, up to an additive 
constant ,  precisely minus the mean (under the true measure p) of the log 
likelihood function: 

I(p ] v ) = f dp log ~v v 

= const - I dp log "dv" (5.1) 

so maximizing the likelihood is equivalent to minimizing the relative 
entropy. Thus, p~ is the estimate that  would be generated by an experi- 
menter  possessing an infinite r andom sample from p and using the optimal 
estimation method  (namely, max imum likelihood). 68 (Note  also that  the 
maximum-l ikehood  estimate for a finite sample c01 ..... co n is the measure in 
F closest to the empirical measure L n -  n - I  ZT= 1 6o~, for the given sample. 

6v This follows Cencov. ~62) [Note, however, that (~encov's notation for the arguments of I(. 1. ) 
is the reverse of ours.] By contrast, Csiszfir t7~ considers the quite different problem in 
which the unknown measure is the first argument in the relative entropy. 

6SThis assertion is perhaps somewhat misleading: The maximum-likelihood method is 
optimal as regards statistical errors (in the large-sample limit), (334~ while here we are 
concerned with the systematic errors due to truncation. Indeed, the problem here is to 
define what we mean by the "optimal" truncation. In any case, we claim that maximum- 
likelihood estimation is a sensible idealized model of what a good experimenter would 
actually do if he or she could. 
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This close relat ion between maximum-l ike l ihood  es t imat ion and relative 
en t ropy  has been noticed by previous authors . )  

Suppose  now that  the set F is of the B o l t z m a n n - G i b b s  form 
( = exponent ia l  family) 

i = l  

for some specified family Hx ..... HN and a priori measure  go. We can assume 
wi thout  loss of generali ty that  the functions 1, H1 ..... HN are linearly 
independent  (#~ Then  the relative en t ropy  

N 

I(plvx) = log Z()~) + Y' Aif Hi dp + const (5.3) 
i = l  

is a strictly convex funct ion of A; in part icular ,  the measure  p F is unique if 
it exists at all, 69 and it is defined by the condit ions 

( H i ) , ~ =  ( H i ) p  for all i =  1 ..... N (5.4) 

The  foregoing theory  is adequate  for pa rame te r  es t imat ion in finite- 
volume systems; but  for infinite-volume systems it is inapplicable,  because 
the relative en t ropy  of two t rans la t ion- invar iant  measures  is in nearly all 
cases + m. The  p rob lem here is that,  as discussed in Section 2.6, the 
relative en t ropy  in volume A typically grows propor t iona l ly  to the volume 
(unless the two measures  happen  to be Gibbs  measures  for the same inter- 
action).  This vo lume factor  is uninterest ing in the present  context,  because 
it does not  depend on the paramete rs  2 over  which we want  to optimize. 
Therefore,  it makes  sense to just  divide out  this volume factor  and 
minimize the relative en t ropy  density. Tha t  is, if F cM+l, inv(~2)  and 
p E M + l , i n v ( ~ 2 ) ,  w e  define: 

The  measure  in F closest to p, denoted p F, is the one which minimizes 
the relative en t ropy  density i(p[-) ,  assuming that  these relative en t ropy  
densities are well-defined and that  a minimizer  with finite relative en t ropy  
density exists (it m a y  or m a y  not  be unique). 

Suppose  now that  F is the set of t rans la t ion- invar iant  Gibbs  measures  
for interact ions (b ~ V (and a priori measure/~o),  where V =  span((b~ ..... ~ , )  

69 The minimizer p ~ could fail to exist: Consider, for example,/2 = { - 1, 1 }, ~t ~ = �89 (c~ l + c5 + l), 
p =6_1, N= 1, and H~(co) = ~o. Then the minimum is "at ;~= + oo"; there is no minimizer 
at finite A. 
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is some specified finite-dimensional linear subspace of ~ .  Then, from 
(2.96) we have 

i(p I v) = p(  --/~1~ ~ + .f f~  @ + i (Pl#~ 

--F~(q~) (5.5) 

whenever v is a Gibbs measure for ~b. Thus, i (p lv)  depends on v only via 
the interaction q~; in fact, Fo(~ ) is precisely the amount by which the pair 
(p, qs) fails to satisfy the variational principle. Therefore, if one Gibbs 
measure for ~b happens to minimize i (pl . ) ,  then all Gibbs measures for q5 
do so. So the measure in F closest to p may not be unique. Nevertheless, 
the corresponding interaction is necessarily unique (modulo physical 
equivalence) if it exists a t  a l l ,  7~ because Fp is strictly convex on V c M  1 
(Proposition 2.59). This is good, because it is after all the interaction that 
we would like to estimate. Now, an interaction q~* minimizes Fp r V if and 
only if p p f [ V ]  is a tangent functional at f e ,  to the pressure restricted 
to f [ V ] .  {Here f [ V ]  denotes the image of V under the map g~--,f~,; it 
is a linear subspace of C(f2). } Now, by the Hahn-Banach theorem, 71 every 
tangent functional to p p f [ V ]  can be extended to a tangent functional 
to p, i.e., to an equilibrium (=  Gibbs) measure. It follows that an interac- 
tion 4 "  minimizes Fp ~ V if and only if there exists a translation-invariant 
Gibbs measure v for ~b* such that 

( f e i ) v  = ( f e i ) p  for all i =  1,..., N (5.6) 

What happens if we consider larger and larger subspaces of inter- 
actions? Let V1 c V2 c ... be an increasing sequence of finite-dimensional 
linear subspaces of ~1, whose union is dense in ~1. Let qs* be the inter- 
action in Vn that minimizes Fp ) V~. Then it is natural to conjecture the 
following: 

Conjecture 5.1. (i) I f  p is a Gibbs measure for  some interaction 
q5 ~ ~1,  then oh* ~ 45 in ~J  norm as n --* oe. 

(ii) I f  p is not a Gibbs measure for  any interaction in ~1,  then 

I1~'*11~,--" ~ as n --, ~ .  

v0 Again, a minimizer could fail to exist, if the min imum is "at infinity." This occurs, for 
example, if p is a ground-state measure for some interaction �9 e V: then Fp(~qs) --, 0 as 
/~--, + oo. 

~ The required version of the Hahn-Banach  theorem (ref. 318, p. 157, A.3.2) can be deduced 
easily from the separating-hyperplane version [ref. 323, p. 46, Theorem II.3.1 or ref. 315, 
p. 58, Theorem 3.4(a)] by considering epigraphs. 
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We are not able to prove this much (and we suspect that it may not 
be true without additional hypotheses). Regarding conjecture (i), what we 
can prove is the following: 

Proposit ion 5.2. Let p be an ergodic translation-invariant measure 
of finite entropy density (relative to #o); and let V~ ~ V 2 c ... be an increasing 
sequence of subsets of ~o, whose union is dense in ~o. Then: 

(a) There exists an interaction ~ ~ ~o (not necessarily in ~1!) for 
which p is an equilibrium measure. 

(b) Let ~ be any interaction in ~o for which p is an equilibrium 
measure. Then there exists a sequence ~n ~ Vn which converges to 

in ~o norm. If, in addition, ~ belongs to some space ~h ~ ~o 
and U n~=l Vn is dense in ~h (in ~h norm), then there exists a 
sequence ~ ~ V n which converges to ~ in ~h norm. 

( c ) Let ~ be any interaction in ~ ~  for which p is an equilibrium measure, 
and let ( ~ )  be any sequence converging to ~ in ~o norm. Then 
Fp( ~ , )  --* O. [In particular, we have lim, ~ ~ i n f ~  vo Fp( ~b ) = 0.] 

(d) Conversely, let (~ , )  be any sequence for which F p ( ~ , ) ~ 0  and 
which converges in ~o norm, say to ~ .  Then p is an equilibrium 
measure for ~ .  In particular, i f  (][~,[1~1) is bounded, then 
~ ~ 1  and p is a Gibbs measure for ~ .  

This shows that if p is a Gibbs measure for q~ ~ ,  then there exists 
a sequence ~b~ V, of approximate minimizers which converges (in ~1 
norm) to ~b. Unfortunately, there is no guarantee that the exact minimizers 
~b* (if such exist) converge to 05; they might fail to converge, or they might 
converge instead to some interaction ~ 0 \ ~  for which p is an 
equilibrium (but not Gibbs!) measure. It is an important open problem to 
find conditions under which conjecture (i), or something like it, can be 
proven. 

Remark. It is certainly possible for a sequence ~ of approximate 
minimizers of Fp to fail to converge even when p is a Gibbs measure for 
some interaction in ~)~. Consider, for example, an Ising model: take 
p =/~o= product measure, and let ~n be a ferromagnetic two-body inter- 
action n - d f ( n -  l ( x -  y))a~ay, where f is some fixed nonnegative smooth 
function with 0 <~f (x )ddx<~  1. In such a situation, F p ( ~ , ) = F u 0 ( ~ , ) =  
p( _f~~ But then F,0(~,)-* 0 by the Lebowitz-Penrose theorem (~)  
(ref. 354, Appendix C), which tells us that the so-called "Kac limit" 
l i m , ~  p(_f~,[/~o) is the high-temperature mean-field pressure, which 
is 0 in our normalization. On the other hand, it is obvious that #o is the 
Gibbs measure for the absolutely summable interaction q~ = 0, and that 
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nevertheless the interactions @, do not converge in N '~ or any of its 
subspaces ~h '  (Moreover,  the measures # ,  defined by the interactions ~ ,  
converge to the product measure #o-) We fear that something similar could 
happen also for the exact minimizers qs*, unless the spaces V~ are very 
carefully chosen. 

On the other hand, we can almost prove conjecture (ii): 

P r o p o s i t i o n  5.3. Let h: 5~ oo) be a translation-invariant 
weight function, and let p be a translation-invariant measure which is not an 
equilibrium measure for any interaction in ~h. Let (@n) be any sequence in 
~h for which Fo(@n) --* O. Then at least one (and possibly both) of the 
following two statements is true." 

(a) l im,~  co Hq3nll~h= oo. 

(b) (@,) does not converge in ~o norm. 

Moreover, i f  the single-spin space s o is finite and h ~ 1, then statement (a) 
is always true. 

This comes very close to proving conjecture (ii): the only possible 
escape clause is that the sequence ( ~ , )  might have no limit at all (even 
in ~0  norm),  even though (llqS.[l~,) is bounded. This can happen, for 
example, if the interactions become longer-and-longer-ranged but with 
bounded total strength. 72 In such a case one must have /1O3.11~h--, co in 
every space Mh of "short-range interactions" (Definition2.38), e.g., 
h(X) = diam(X) ~ with e > 0. 

Proof of  Proposition 5.2. Part  (a) is a special case of a theorem 
of Israel [ref. 209, Theorem V.2.2(a)]. Part  (b) follows from the density of 
I.)n~ 1 V, in ~ o  (or Nh)- Part  (c) follows from the (Lipschitz) continuity of 
the function Fp in Mo norm. Part  (d) is also a consequence of the 
continuity of Fp, since the hypotheses imply that Fp(~b~)=0.  The last 
statement is a consequence of Proposit ion 2.39(a) applied to Nh = M1. | 

Proof of Proposition 5.3. Suppose that (q3) converges in ~ o  norm 
to q3 . Then F p ( ~ ) = 0 ,  so p is an equilibrium measure for q3 . By 
hypothesis this means that ~boo r Mh, i.e., tlqSoo]l~h = oo. Now assume that 
I[~fi~l[~h ~ oo; then there is a subsequence of (@,) on which the Mh norm 
is bounded, say by M;  but by Proposit ion 2.39(a) this implies that 

72 This situation is reminiscent of "mean-field-like" interactions. However, in such situations 
one usually expects (and in some cases can prove, as in the previous remark) that the 
limiting measure p is Gibbsian for some interaction ~ ~ ~1 which has picked up a magnetic 
field, We wish to thank Bob Griffiths and Bob Swendsen for a discussion of this point. 
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IIqS~ll.e~< M, a contradiction. This proves that either (a) or (b) (or both) 
must be true. 

Finally, suppose that the single-spin space is finite, that h ~ 1, and 
that there is a subsequence of (45) on which the ~h norm is bounded, 
say by M. Then by Proposition 2.39(b) there exists a subsubsequence 
which converges in ~o norm to some ~o~ with IIq3~ll~, ~<m; and p is an 
equilibrium measure for qSo~; but this contradicts the hypothesis of the 
proposition. I 

Remarks. 1. Similar ideas appear in the work of Hugenholtz. ~2~ 

2. A partially alternate proof of the second half of Proposition 5.3, 
when p is ergodic (or a finite convex combination of ergodic measures), 
goes as follows: By the Bishop-Phelps theorem (ref. 209, Corollary V.2.1) 
there exists ~ n ~  ~ with 11~,-45,11~0~<CoFp(~) such that p is an 
equilibrium measure for ~ ,  [if p = ~ i  m 1 ccip i is the ergodic decomposition 
of p, then Co=(2min~_<g.<mcr Now assume that IIqS,tleh ~ 0% so 
that there is a subsequence of (qS) on which the ~h norm is bounded, say 
by M. We have then shown that there exist interactions ~ .  in ~o, 
arbitrarily close to {4: I141L e~, ~< M}, for which p is an equilibrium measure. 
When this ~h-ball is compact in ~o (i.e., s finite and h ~ 1), then it is 
easy to show that there exists an interaction in this ball for which p is an 
equilibrium measure [we have done it above, by extracting a subsequence 
of ( ~ )  convergent to ~ ; for what it is worth, the corresponding subsub- 
sequence of ( ~ )  also converges to q 5  ]. Unfortunately, if the Nh-ball is 
not compact, we do not see any way to conclude that there exists an inter- 
action in the ball (or even in ~h) for which p is an equilibrium measure. 
So this method still does not suffice to prove conjecture (ii). 

5.1.3. Appl icat ion to the Renormal izat ion Group. Now let 
us apply these ideas to the renormalization group, by taking p to be the 
renormalized measure p'. We assume that the experimenter uses the scheme 
described in the previous section to construct an estimated renormalized 
interaction 4'n ~ Vn. We continue to ignore statistical and finite-size errors. 

The expected behavior of the estimates 4"  depends critically on 
whether p' is Gibbsian or non-Gibbsian. Assuming the validity of Conjec- 
ture 5.1 (or something like it), we have the following scenario: 

Case (i). I~' is Gibbsian for 4 '  ~ 1 .  Then we expect the estimated 
renormalized interactions 4', to converge in ~ norm to 4 ' .  Now, by the 
First Fundamental Theorem (Theorem 3.4), the renormalized measures 
arising from distinct phases of the original model must be Gibbsian for the 
same interaction 4 ' .  Therefore, any observed multivaluedness of the RG 
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map must disappear asymptotically as the assumed interaction space V, 
grows. 

Case (ii). #' is non-Gibbsian. In this case we expect the estimated 
renormalized interactions ~b' n to diverge in ~1 norm, i.e., I[ 4~'nll e~--' oe. This 
behavior is almost rigorously proven (Propostion 5.3). 

This dichotomy provides, at least in principle, a clear method for 
distinguishing experimentally the Gibbsianness or non-Gibbsianness of the 
renormalized measure p'. Whether it will work in practice is less clear: the 
proofs of non-Gibbsiannes in Section 4 (and of the Fundamental Theorems 
in Section 3) involve extremely rare events in large volumes; so the 
distinction between Gibbsianness and non-Gibbsianness might turn out to 
be visible only with extremely high statistics and when using an extremely 
large space of renormalized interactions (that is, including interactions 
involving many spins simultaneously). On the other hand, it is at least 
conceivable that this dependence on rare events is an artifact of the proof 
and not of the result. It would be interesting, therefore, to perform a high- 
precision MCRG test, using a large space of renormalized interactions, to 
compare a case in which #' is expected to be Gibbsian (e.g., the d = 2 Ising 
model at a temperature not too far below critical) with a case in which/d 
is expected or proven to be non-Gibbsian (e.g., the d =  2 Ising model at low 
temperature). We are somewhat pessimistic about whether the asymptotic 
(n ~ oe) behavior can be seen with any currently feasible expenditure of 
resources, but it cannot hurt to try. 

In the existing MCRG studies, the interaction space V is usually taken 
to be quite small: typically 1 ~<dim V< 10. Can we explain the observed 
discontinuity of the RG map as an artifact of this truncation to a small 
space of interactions? In our opinion the answer is yes. Note first that the 
estimated renormalized interaction 4 '  is, according to (5.4)/(5.6), just a 
proxy for the renormalized expection values ( f~ )~ , ,  gt~ V. These latter 
expectation values are, of course, discontinuous at a first-order phase- 
transition surface (and multivalued on that surface). That in itself does not 
imply the discontinuity and multivaluedness of ~ ' ,  because the map from 
interactions to expectation values is itself discontinuous and multivalued. 
However, for most renormalization transformations we expect the renor- 
malized expectation values to be more discontinuous than the original 
expectation values; and it is far from clear that this larger discontinuity can 
be realized, simultaneously, for all observables f~, (g~e V), at any inter- 
action in the given space V. If it cannot, then the RG map on the space of 
interactions will appear to be discontinuous. 

Consider, for example, an Ising model at h = 0 and/3 >/?c, and use the 
majority-rule transformation. Then the renormalized magnetization M '  will 
undoubtedly be larger than the original magnetization M=M(~ ,  0§ 
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since minorities tend to get outvoted. Now suppose that one is using, as in 
the work of Decker et aI. (ref. 74, Section 4), only a single renormalized 
coupling h', with fl' fixed to equal ft. (That is, V is a one-dimensional affine 
subspace.) Then one will inevitably find a renormalized coupling h ' >  0 for 
the image measure #'+ (resp. h' < 0 for # '  ), since only in this way can one 
account for a renormalized magnetization M '  = M(fl, h') > M. Decker et al. 
do recognize this objection, and try to argue that allowing fi' to vary 
would not produce an effect large enough to account for the observed 
discontinuity in h', but we do not find their argument convincing. 

The situation is more subtle if one considers the two-dimensional space 
of couplings fi' and h'. Then one has to choose the pair (fl', h') so as to 
match the observed renormalized magnetization M '  and the observed 
renormalized energy E'. To do this, let us determine first the unique value 
ft,  such that the renormalized energy can be matched at zero magnetic 
field, i.e., E '  = E(f i , ,  0). Then we ask how the renormalized magnetization 
M '  compares to the spontaneous magnetization at f l , :  

(a) If M '  ' + > M(f i . ,  0 ), then it is impossible to match both M'  and 
E '  at zero magnetic field. Therefore, the renormalized coupling h' 
will be found to be > 0  (resp. <0)  for the image measure #'+ 
(resp./~" ). 

(b) If M'<~M(f i , ,  0+), then M '  and E '  can be matched by taking 
fl = f t . ,  h ' =  0. [If  M ' <  M(f i . ,  0 +), this entails using a mixed 
phase v in (5.6), but that is perfectly legitimate. It corresponds to 
the minimum of F o ~ V occurring at a point of nondifferentia- 
bility.] 

We are unable to decide a priori between these two possibilities; it seems 
to be a detailed dynamical question. 

One approach is to compute the low-temperature expansion of M '  and 
E '  and compare them to the corresponding expansions for E(/~, 0) and 
M(fi, 0). This would answer the question at sufficiently low temperature. We 
are indebted to Jesfis Salas (319) for performing this computation, for the two- 
dimensional Ising model at h = 0, using majority rule on 2 x 2 blocks (with 
a random tie-breaker). Setting u = e -4/~, M =  (fro),  and E =  (a0a(1,o)), 
Salas finds 

M'(u,  0 + ) = 1 - 4 u  3 - 32u 4 + O(u s) 

E'(u, 0) = 1 - 8u 3 - 63u 4 + O(u 5) 

These are to be compared with the well-known results 

M(u, 0 + ) = 1 - 2u 2 - 8u 3 - 34u 4 + O(u 5) 

E(u, 0 )  = 1 - -  4 u  2 - -  1 2 u  3 - -  3 6 u  4 -k- O ( u  5)  

(5.7a) 

(5.7b) 

(5.8a) 

(5.8b) 
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Matching the energies, we find 

'= - , /~u3 /2  ~ -3u3  u ,  + u 5/2 + O(u 7/2) (5.9) 

Plugging this into M, we have 

M(u, ,  0 + ) =  1 - 4 u  3 - 6 3  u 4 _ 4 ~ u  9/2+ O(u s) 
z .  

(5.1o) 

which is equal to M'(u, 0 +) at leading order and greater than M'(u, 0 +) 
at order u 4. We conclude that at low temperature M '  and E' can be 
matched at h = 0  in the two-dimensional Ising model with the 2 x 2  
majority-rule transformation. However, we do not know what will happen 
with other transformations. 

Similar remarks apply in the case of higher-dimensional interaction 
spaces V. While we are unable to prove that a discontinuity will inevitably 
be observed, neither do we see any reason to believe that the renormalized 
expectation values (f~,)~, can always be matched, simultaneously for 
all gte V and all phases #', by some interaction ~ ' e  V. Therefore, we 
must expect that typically the observed RG map will be multivalued and 
discontinuous at a first-order phase-transition surface, purely as an artifact 
of the truncation of the renormalized interaction. Of course, if the image 
measure #' is Gibbsian, then this discontinuity should go to zero asymp- 
totically as the assumed interaction space V n grows. If #' is non-Gibbsian, 
then we expect the estimated renormalized interactions qs' n to diverge in N1 
norm, and it is perfectly likely that the ~'n corresponding to different phases 
will diverge in different ways. 

We think that this explains the numerically observed discontinuities of 
the RG map, irrespective of whether the renormalized measure #' is 
Gibbsian or not. 

5.2. A Remark on Dangerous Irrelevant Variables 

The renormalization-group description of critical behavior in its 
simplest form seems to imply hyperscaling relations such as 

dv=y' + 2,8 (5.11) 

dv = 2A4 - ~ (5.12) 

dv= 2 -c t  (5.13) 

d + 2 - q  
6 - - -  (5.14) 

d - - 2 + q  
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where v, e,/3, 7, 7', ~, A4, and r/are critical exponents and d is the spatial 
dimension. It is a well-known fact, however, that hyperscaling does not 
hold for systems above their upper critical dimension d,: for d > d ,  the 
critical exponents are expected to be those of mean-field theory, and these 
exponents satisfy the hyperscaling relations only at d= d,. Indeed, the 
hyperscaling relations (5.11)-(5.14) have been proven rigorously to fail for 
Ising-like models in dimension d > 4 .  (2'133'8'14'7"117) 

In conventional RG theory this failure of hyperscaling is ascribed to 
so-called "dangerous irrelevant variables. (H9'~2~ Here we cast some doubt 
on this explanation, at least in the context of Ising-to-Ising RG maps in 
dimension d >  4. We suggest, instead, that what fails is the Gibbsianness of 
the fixed-point measure ~t*. 

The traditional explanation of hyperscaling---and of its failure--is the 
following(119"12~ Under an RG transformation H '  = ~ ( H )  with linear 
scale factor l, the correlation length ~ and free energy density f transform 
as 

~(H) = l~(H') (5.15a) 

f ( H )  = g ( H )  + 1-df (H ') (5.15b) 

where g is nonsingular. (In fact, for most RG maps these identities are only 
approximate.) Near a fixed point H*  we parametrize the Hamiltonian by 
scaling fields gt,  g2 .... with eigenvalues l yx, lY2,...; the variable gi is said to be 
relevant (resp. irrelevant) if y i > 0  (resp. y ;<0 ) .  The critical surface 
corresponds to setting all the relevant scaling fields to zero. We can assume 
without loss of generality that g~ is a relevant variable (y~ >0).  The 
asymptotic laws then read 

r  g2,...) ,~ l~(lY~gl, lY2g2,...) 

f s ing(g l ,  g 2 , ' " )  '~ 1-afsing(lYlgl, lY2g2, ''') 

Making the choice l =  g[-l/y173 we obtain 

g2 g3 
~(gl ,g2 ,  g3,. . .)~ Igll-1/Ylr ~1,  iglly2/yl, iglly3/y 1 

f~i~g(g,, g2, g3,-..) ~ [glld/Y' fsing ( -l- 1, 
\ 

(5.16a) 

(5.16b) 

- - , . . . )  (5.17a) 

g2 g3 ) 
Iglly2/y ~, ig~73/y ~ .... (5.17b) 

73 For a position-space RG map, this can of course be done only approximately, since 1 must 
be a power of the basic block size b. However, this is good enough for the purpose of 
obtaining critical exponents: by choosing l within a factor b of the desired value, one 
obtains the desired equality within a bounded multiplicative constant. 
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If now gi is an irrelevant variable (Yi < 0), then gi/] glJ y,/yl _~ 0 as gl ~ 0. It 
appears at first glance, therefore, that for the purpose of determining the 
leading scaling behavior, the quantity gi/[ gl[ y'/yl on the right-hand sides of 
(5.17) can be replaced by zero. For example, if only the first two fields are 
relevant (the case of an ordinary critical point), we would obtain 

~(gl,g2,g3,g4,. . .) ,~[gtl-x/Yl~ +_l, lgl[y2/yl,0, O (5.18a) 

fsing(gl,g2,g3,g4,...)~lglld/Ylfsing • igl[ya/yl, ,0  .. . .  (5.18b) 

In particular, suppose that we set g l =  t (the temperature deviation from 
criticality) and g2 = h (the magnetic field). Then (5.18a) yields the scaling 
behavior of the correlation length: 

t ~ --* 0+~ v '=  ~(t,h=O, g3,gn,. . .)~ ( _ t ) _  v, as t w i t h y =  1/y t (5.19) 
as t ~ 0 - J  

Likewise, (5.18b) and its derivatives yield the scaling behavior for the 
thermodynamic quantities: 

(a) Differentiating (5.18b) twice with respect to t and setting h = 0 ,  
we obtain the critical exponents for the specific heat: ~ - - ~ ' = 2 - d / y t .  
Combining this with (5.19) yields the hyperscaling law dv = 2 -  ~. 

(b) Differentiating (5.18b) once or twice with respect to h, then setting 
h = 0, we obtain the critical exponents for the spontaneous magnetization 
and the susceptibility: fl = (d--Yh)/yt and 7 = 7 ' =  (2Yh- d)/yt. Combining 
this with (5.19) yields the hyperscaling law dv = 7' + 23. 

(c) Differentiating (5.18b) four times with respect to h, then setting 
h = 0  (with t>0 ) ,  we obtain the critical exponent for the four-point 
cumulant: 2 A 4 + 7 = ( 4 y h - d ) / y , .  Combining this with (5.19) and the 
formula for ~ yields the hyperscaling law dv = 2A4-  :;. 

(Relations f6r exponents on the critical isotherm can be obtained in a 
similar manner by setting gl = h  and g2 = t = 0 . )  However, Fisher (119),74 
pointed out that this reasoning is correct only i f  f (ga ,  g2, g3, g 4 , . . . )  and its 
low-order derivatives have finite limits as g3, g4 . . . .  --> 0 when gl = _1. I f f  or 
one of its low-order derivatives diverges as g3, g4 . . . .  - +  0, then the hyper- 
scaling relations can fail. A variable g~ which is irrelevant in the RG sense 
but which provokes a divergence of the free energy density (or one of its 

74 See also Wegner and Riedel (ref. 372, p. 250 and footnote 8), Fisher (ref. 120, Appendix D), 
and Ma (ref. 258, Section VII.4). 
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low-order  derivatives) is termed a dangerous irrelevant variable. We 
emphasize that  the free energy is here being evaluated well away from the 
critical point, namely at gl  = -t-1. 

The s tandard  example of such a behavior  is the ~04 model  in dimension 
d > 4 .  Here the fixed point  ~is Gaussian,  with relevant fields gl = t and 
g2 = h; the ~0 4 coupling constant  g3 = u is irrelevant in the R G  sense. 
However,  the Gaussian model  is unstable at nonzero  magnetic  field on the 
critical isotherm, and also at zero magnetic  field below the critical 
temperature,  and the irrelevant q~4 term is needed to stabilize it. A mean- 
field calculation (which is expected to give the correct scaling for d > 4 )  
predicts that  the free energy diverges as u ], 0, as 

f ( t =  -1 ,  h, u) '~u lW(hu 1/2) (5.20) 

f ( t  = O, h, u) ~ u-  1/3h4/3 (5.21) 

where W is a well-behaved function. Inserting this behavior  into (5.17b), 
one finds modified hyperscaling laws which differ from (5.11)-(5.14) and 
which are consistent with the mean-field exponents. This behavior  occurs 
because the fixed point  H *  is on the boundary of the stability region, and 
the free energy diverges as this boundary  is approached.  75 

Here we would like to make  the trivial observat ion that such a blowup 
of the free energy is possible only in models with unbounded  Hamil tonians  
(such as the q~4 model).  Indeed, we know that  for absolutely summable 
interactions (~beN1),  the free energy density is a Lipschitz continuous 
function of the interaction (Proposi t ions  2.56 and 2.58). This means that  
the free energy density and its first derivatives are always bounded. This 
si tuation prevails in all physically sensible models of bounded spins. 

These considerations do not  quite rule out  the possibility of dangerous  
irrelevant variables: in principle it could happen that  f (_+ 1, g2, g3,...) and 
its first derivatives are bounded,  but  that  higher derivatives blow up. This 
would cause some or all of the hyperscaling relations to fail. 76 This is 
indeed what  happens in the  X Y  model  in dimension d = 4 - e  (and 
probably  also d =  3) if we let g3 be the coefficient of a cos nO single-site 
term, where n is even and ) 4 .  (276'11) Such a term is irrelevant in the R G  
sense (at least if e is small enough) ,  but  for T <  T~, it suppresses the 

75A qualitatively similar behavior is expected to occur also in dimension d=4. Here the 
dangerous irrelevant variable g3 = u is only marginally irrelevant (i.e., Y3 = 0, but second- 
order effects make g3 irrelevant), so that the violations of hyperscaling are only logarithmic. 

76 Fisher (ref. 120, p. 134) states that the derivation of the hyperscaling relations relies 
implicitly on the assumption that the free energy f(_+l, g2, g3, g4,...) has a well-defined 
finite limit as g3, g4,..- ---* 0. However, this statement is slightly misleading, because it is too 
weak: in fact, as is clear from (a) (c) above, to derive a hyperscaling relation one needs to 
know that at least the second derivative of f with respect to t or h has a good limit. 
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Goldstone modes. In d < 4 these modes give rise to a divergent longitudinal 
as well as transverse susceptibility in the pure X Y  model, ~1~176 so that 
(02f/OhZ)(t = -1 ,  h = 0 ,  g3) is finite for g3~0 but blows up as g3-*0 
(presumably at the rate ,,~g[~/2; see ref. 276). This means that the model 
with g3 # 0  belongs to a Zn-symmetric but SO(2)-nonsymmetr ic  univer- 
sality class--which naively would not exist--and that in this universality 
class the relation 7' = (2yh -- d)/Yt [-step (b) above] fails. As a consequence, 
the scaling law 7 '=  7 fails, and is replaced by 7 '=  7 -  leya/Yt > 7 .(276) 

Other cases in which an apparently irrelevant term (in the RG sense) 
changes the phase diagram have been studied in refs. 51, 11, and 359. 

However, we have not been able to construct any plausible Ansatz for 
such a behavior in an Ising-to-Ising RG maps for the Ising model in 
dimension d >  4. Nor do we know of any plausible candidate for the 
dangerous irrelevant variable. (In the Ising language there is no term in the 
Hamiltonian corresponding to the ,,~p4 coupling"; such a term is built into 
the a priori single-spin measure.) 

At this point we have two alternative courses of action: One possibility 
is to search for another variable--which may not be directly related to the 
coefficient of some term in the Hamiltonian--that  could nevertheless play 
the role of dangerous irrelevant variable. This approach has been 
implemented for the behavior at the tricritical point of the N-component 
q)6__ ~04 model both in the limit N--* O(3 (320-322'124) and for N finite. (238'11) 
But the physical meaning of the mechanisms proposed in these papers is far 
from clear to us. 

The alternative possibility is to accept that the dangerous-irrelevant- 
variable scenario may not be the correct description of what is happening 
in the Ising model in dimension d >  4, at least in the context of an Ising-to- 
Ising RG map. In that case, as the hyperscaling relations (5.11)-(5.14) do 
fail for Ising models in dimension d > 4, we must conclude that one of the 
other assumptions made in the conventional RG theory must fail when 
applied to Ising-to-Ising RG maps in dimension d > 4. 

For large-cell RG maps (b ~ oo), the results summarized in Section 4.4 
show that what fails is the Gibbsianness of the fixed-point measure /~*. 
Now there is a very close similarity between the dangerous-irrelevant- 
variables scenario and the non-Gibbsianness proof for large-cell RG maps: 
both hinge on the fact that a massless Gaussian field is unstable to magnetic- 
field perturbations. This reasoning suggests that non-Gibbsianness of the 
fixed-point measure may occur also for iterated Ising:to-Ising transforma- 
tions with fixed block size b (e.g., majority rule or the Kadanoff transfor- 
mation). If this were the case, then the RG map N from Hamiltonians to 
Hamittonians would be ill-defined at the critical Ising model, and the 
putative fixed-point Hamiltonian H* would simply not exist. 
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Possibly the dangerous-irrelevant-variables scenario is the correct 
explanation of the failure of hyperscaling with respect to some but not all RG 
maps (e.g., with respect to linear block-spin maps, but not Ising-to-Ising 
maps). It is perfectly possible for the explanation of any phenomenon to differ 
from one theoretical approach to another, provided that all approaches 
give the same conclusions (i.e., the same quantitative predictions). 

6. C O N C L U S I O N S  A N D  OPEN Q U E S T I O N S  

6.1. Conclusions 

6.1.1. H o w  Much  of the Standard Picture of the RG M a p  is 
True? We can classify the evidence regarding the validity or failure of the 
standard picture of RG transformation in three categories: 

1. Positive results. Some RG maps are well-defined in parts of the 
one-phase region. The published proofs refer to the following cases: 

(a) High-field results. Decimation and Kadanoff transformations 
for absolutely summable lattice-gas (176) and Ising-spin (2~~ inter- 
actions. 

(b) High-temperature results. Decimation, ~2m'215) Kadanoff, (2~~ and 
averaging (215'57) transformations for absolutely summable Ising- 
spin interactions. 

(c) Small-field results. These results refer to decimation transforma- 
tions of the Ising model in any dimension(262): For any f ixed 
temperature and nonzero value of the magnetic field, there exists 
a minimum block size brain beyond which the renormalization 
transformation is well-defined (the minimum block size diverges 
as a power of 1/h when h--+ 0). 

(d) Results in one dimension. The decimation transformation is 
well-defined in dimension d =  1 for lattice-gas interactions with 
many-body and long-range couplings satisfying the summability 
condition ZA~o (diam A + 1)IA[ 1 ILq~All~ < oe. (6~ For instance, 
this includes all the two-body Ising interactions decreasing 
strictly faster than 1/r 2. 

These results are, however, of limited interest, as they correspond to well- 
understood regions of the phase diagram, deep within the regime in which 
uniqueness of the Gibbs measure, and even analyticity of the free energy 
and correlation functions, can be proven. If these were the only positive 
results, then one would conclude, in agreement with Griffiths and Pearce's 
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pessimist, (175~ that the method only works where one does not really need 
it (and, we may add, sometimes not even there, given Theorem 4.8). 

We can also mention, as positive results (of a sort), our Fundamental 
Theorems of Section 3, which say that the RG map is single-valued and 
continuous--in accordance with the standard picture--~f it exists at all. 

2. Nonnegative results. There is at present no evidence of RG 
pathologies above or at the critical temperature for models strictly below 
the upper critical dimension du (= 4 for Ising-like models). In fact, there 
exist models for which the critical point has been rigorously studied using 
the standard RG prescription: the hierarchical models (221'33'222) and the 
Gross-Neveu model. (152) The hierarchical models present the most faithful 
transcription of Wilson's prescription, but from our point of view they are 
somewhat artificial, as the possible pathologies are removed "by hand." 
The Gross-Neveu model is fermionic, and thus has no direct probabilistic 
interpretation. We also should mention here some very interesting 
preliminary results (217) indicating that for the two-dimensional Ising model 
at zero field, the majority-rule transformation might be well-defined at (as 
well as slightly below) the critical temperature. These results are partially 
rigorous and partially numerical, and so far they concern only some 
selected (albeit judiciously selected) block-spin configurations. We feel that 
this work provides some support for the standard picture, but its results 
are still inconclusive. 

3. Negative results. There are pathologies at low temperature (not 
only at zero magnetic field) in all dimensions d~> 2, and quite possibly at 
the critical point in dimension d ~>~ d~. In the former case these pathologies 
consist in the non-Gibbsianness of the renormalized measure, that is, in the 
impossibility of constructing a renormalized Hamiltonian after even a 
single RG transformation. In Sections 4.l~4.3 we have shown examples of 
such pathologies for all the standard real-space transformations (decima- 
tion, Kadanoff, majority-rule, averaging). The range of temperatures where 
these pathologies are proven to exist does not include the critical tem- 
perature, but on the other hand the pathological region extends off the 
phase-coexistence curve, i.e., to nonzero (and in some cases large) magnetic 
field (Section 4.3.6). Finally, in Sections 4.4 and 5.2 we have given 
arguments indicating that for d~_>~4 there may be pathologies at the 
critical point. In these latter cases our arguments suggest that the fixed- 
point Hamiltonian may be ill-defined. 

Taken together, these results suggest that non-Gibbsianness may be 
the normal situation for RG maps at low temperature and/or near a first- 
order phase-transition surface, or at the critical point in high dimensions. 
This is in direct conflict with the conventional RG ideology (compare the 
first paragraph of the Introduction). 
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Remark. In this paper we have considered only RG maps which are 
strictly local in position space. We do not know whether similar 
pathologies--either in the low-temperature regime, or at the critical point 
in dimension d c>__~4--will occur for RG maps which are quasilocal in 
position space, such as linear maps with a smooth cutoff in momentum 
space. (375'32) But we suspect that they will, as we do not see any great 
qualitative differences between strictly local linear block-spin maps and 
quasitocal linear block-spin maps. The situation has been accurately 
summarized by Griffiths (ref. 174, p. 64): "Thus far no peculiarities of this 
sort have been found in momentum-space transformations of the sort intro- 
duced by Wilson--which may merely reflect the fact that no one has looked 
for them!" 

6.1.2. Responses to Some Objections.  Many of our colleagues, 
upon hearing our results, have initially reacted by saying: "If #' is not 
Gibbsian for some interaction in N1, then that just means it is Gibbsian for 
some interaction not in ~1. You have to use a larger space of interactions." 
This view seems a priori reasonable--and it is even conceivable that it is 
correct--but unfortunately things are not quite so simple. Before asserting 
that #' is Gibbsian for some interaction ~ , ~ 1 ,  one first has to define 
what it means for a measure to be "Gibbsian" for a non-absolutely- 
summable interaction. Our notion of Gibbs measure relies on the DLR 
equations, and if the interaction fails to be absolutely summable (or at least 
convergent), then these equations simply do not make sense. It is thus 
incumbent on the advocate of "larger interaction spaces" to make precise 
what is the correspondence between measures and interactions that is to 
substitute for the DLR equations (and be equivalent to them when the 

interaction is absolutely summable). 
Now, as is usual when one is looking for the solution of an equation, 

there are two complementary aspects--existence and uniqueness--and one 
wants preferably for both properties to hold. The existence is favored by 
enlarging the space of possible solutions, while the uniqueness is favored by 
narrowing it; and it is far from clear a priori whether there exists a space 
in which the solutions both exist and are unique. These general remarks 
can be exemplified in our statistical-mechanical problem. Within the class 
of Feller specifications (and hence afortiori within ~1),  the Griffiths-Ruelle 
theorem (Theorem 2.15, Corollary 2.18, and Proposition 2.59) guarantees 
the uniqueness of the specification for a given measure # (and hence 
the uniqueness modulo physical equivalence of the interaction). But the 
existence may fail, as we showed through numerous examples in Section 4. 
On the other hand, if we enlarge the space of allowed specifications by 
dropping the Feller ( ,.~ quasilocality) property, then the existence holds but 
the uniqueness fails spectacularly (see the Remark at the end of Section 2.3.4). 

822/'72/5-6-14 
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Similarly, if we enlarge the space of allowed interactions from M1 to ~r 
and generalize "Gibbs measure" to "equilibrium measure," then every 
ergodic measure of finite entropy density is the equilibrium measure for 
some interaction, but the uniqueness again fails spectacularly (see item 2 in 
Section 2.6.7). One certainly cannot develop a satisfactory RG theory in 
such pathological spaces. 

Furthermore, we have given strong arguments that any physically 
reasonable specification must be quasilocal, at least in systems of bounded 
spins (see Section 2.3.3). On the other hand, in Sections 4.1-4.3 and 4.5.2 
we have proven directly that the renormalized measures are not consistent 
with any quasilocal specification. So even if there were to exist quasilocal 
specifications corresponding to interactions not in N1, such specifications 
could not be of any relevance for our renormalization-group problem. 77 

Our final objection to considering spaces of interactions larger than 
~1 is that ~1 is already too big! Indeed, the standard RG ideology (37s) is 
that the RG flow should take place in some space of "short-range" inter- 
actions, e.g., interactions which decay exponentially or at least like a 
sufficiently large power (e.g., rxl-P with p~> d +  1). This ideology is not a 
mere whim, but results from the need to explain universality of critical 
behavior: one needs to have an interaction space in which the unstable 
manifold of a given fixed point is finite-dimensional (i.e., there are finitely 
many relevant scaling fields). Now, such a behavior is impossible in a space 
of long-range interactions (such as N1), since in general the critical exponents 
will be altered by any perturbation that decays like ]xl -(d+2-~) with 
e > t h e  critical exponent r/ of the original model (ref. 297, Section 10.2). 
Moreover, even the qualitative phase diagram is unstable to long-range but 
summable pair interactions(358'34~'2m: that is, the Gibbs phase rule cannot 
hold in ~ or even in any ~n. In order to have any hope of constructing 
a satisfactory RG theory, it is necessary to work in a space of"short-range" 
interactions, such as the space Mh for some h ~ 1. 

A second comment which is often made is the following: "The RG 
map is always well-defined as a map from measures to measures; the 
pathologies come from trying to lift it to a map from Hamiltonians to 
Hamiltonians. So why not just stick with the RG map (1.1) on the space 
of measures?" 

This is a sensible question, which was already raised by Griffiths and 
Pearce (ref. 176, pp. 534-535), and our answer is essentially the same as 
theirs: Many interesting things can, indeed, be learned by studying the 

77 Note also that Sullivan t345) and Kozlov (225) have almost proven that every quasilocal 
specification arises from an interaction in ~1: see Theorem 2.12 and the Remarks following 
it, plus the Remark at the end of Section 2.4.9. 



Renormalization-Group Pathologies 1063 

action of RG transformations on measures. For linear RG transformations, 
this is an ancient branch of probability theory that goes back to Gauss' 
and DeMoivre's investigations of the central limit theorem for independent 
random variables, and which continues to this day in studies of central and 
non-central limit theorems for dependent random fields (2~ 183,278,279,59); it is 
closely related to studies of triviality and nontriviality for scaling limits in 
statistical mechanics and quantum field theory. (332'73'117) For nonlinear RG 
transformations, this study is only beginning, (286'196~ but we expect it to be 
fruitful as well. Unfortunately, not all of the RG theory can be carried out 
on the space of measures alone. For example, the critical exponent 7 
measures the rate of divergence of the susceptibility as the temperature 
approaches the critical temperature. Now, the susceptibility is the integral 
of the two-point correlation function, and thus can be read off the measure; 
while the (inverse) temperature is the coefficient of some term in the 
Hamiltonian (e.g., the nearest-neighbor term in the case of the Ising 
model). Therefore, the exponent 7 can be deduced only from a theory that 
relates the measure to the Hamiltonian (or interaction); it cannot be 
deduced solely from an RG map acting on the space of measures. The same 
goes for the exponent v, which measures the rate of divergence of the 
correlation length as the temperature approaches criticality. On the other 
hand, the exponent ratio 7Iv measures the relative rate of divergence of two 
different aspects of the two-point correlation function, and so can poten- 
tially be deduced from a measures-to-measures RG map. Likewise, the 
critical exponent t/measures the rate of decay of the two-point function at 
the critical point, making no reference whatsoever to the temperature; 
therefore, it, too, can potentially be deduced from a measures-to-measures 
RG map. It follows that the scaling law 7Iv = 2 - t /  also lies potentially 
within the purview of a measures-to-measures RG theory. 

6.1.3. Where Does All This Leave RG Theory? After the more- 
or-less cold exposition of facts of Section 6.1.1, and the additional clarifica- 
tion (preemptive defense) of the previous subsection, let us present some 
general remarks about the consequences of the present work for the RG 
enterprise. 

We think that there is already a substantial body of evidence indicating 
that the conventional RG theory, in its narrow sense of Hamiltonian-to- 
Hamiltonian maps, needs to be reexamined. However, this does not, in 
itself, detract in any way from the value and significance of the RG ideas 
that have pervaded much of today's statistical mechanics and quantum 
field theory. The RG philosophy--interpreted broadly to include various 
kinds of "multi-length-scale" and "coarse-graining" arguments--has been, 
and will continue to be, our main tool for analyzing the otherwise 
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inaccessible "intermediate-temperature" regions, which fall beyond the 
reach of series expansions or perturbative arguments and yet are the 
regions in which the most interesting phenomena take place. 

The main issue in the proper application of RG theory to a particular 
problem is the choice of variables in which to express the model, along 
with the choice of the RG map. This was already understood by the 
founding fathers of the field. It corresponds to what Michael Fisher calls 
"aptness or focusability" of the transformation, and his own words are 
especially clear: 

For any given Hamiltonian or class of Hamiltonians there is not just one renor- 
realization group~"the renormalization group" as some people say--but rather 
there are many that might be introduced, and one must question, for example, 
whether the process is best carried out in real space or momentum space and 
so on. A "good" renormalization group must be "apt" or appropriate for the 
problem at hand, and it must, in particular, "focus" properly on the critical 
phenomona of interest. (Ref. 120, p. 82.) 

Let us mention an illustrative example: The usual transformations involving 
averaging (or other kinds of "voting") over square blocks are designed 
mostly having ferromagnetic systems in mind. They are efficient for selecting 
the zero-momentum modes, which are indeed the modes that become 
critical in an ordinary ferromagnetic transition. On the other hand, these 
transformations are unsuitable for studying antiferromagnets because 
they do not distinguish the oppositely magnetized sublattices. This was 
remarked by van Leeuwen, <366) who showed how a more careful design of 
the block shapes could overcome this deficiency (his proposal is depicted 
in Fig. 2d). Thus, while most people imagine RG maps as acting in a huge 
space of Hamiltonians--including regions exhibiting various different types 
of phase transitions (ferromagnetic, antiferromagnetic and many o t h e r s ) -  
it is unlikely that any single RG map can exhibit well-behaved fixed points 
corresponding to all of these transitions. Rather, one must "custom-make" 
the RG map for each new physical situation. 

In this regard, our work--building on that of Griffiths, Pearce, and 
Israel(174-176'21~ be considered an extension of the preceding observa- 
tions: "aptness" and "focusability" are needed not just to ensure the useful- 
ness of the map, but even its very existence. On the other hand, the success 
stories of rigorous RG studies teach us that the search for this "aptness" 
may require a very open-minded attitude, in the sense that, in many cases, 
the appropriate variables are not necessarily spin variables and, in fact, not 
even local objects. Indeed, with the exception of hierarchical (221'33'222) and 
fermionic (152) models, rigorous RG studies have not implemented the strict 
Wilson prescription involving an RG transformation of Hamiltonians 
written in terms of spin variables. Rather, they have employed a combina- 
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tion of spin variables and polymer ensembles (15~ 153,154,184,191) or a pure 
polymer ensemble (54) when studying critical phenomena, or an ensemble of 
Peierls-like contours (148'149'45) when studying first-order phase transitions. 
More generally, "multiscale" and "coarse-graining" ideas have been used in 
a wide variety of problems, including: 

1. Ultraviolet stability of the ~0 4 (refs. 162, 29) and Yang-Mills4 
(ref. 20) quantum field theories. 

2. The Kosterlitz-Thouless transition in the two-dimensional X Y  and 
related models. (137,138) 

3 .  The ferromagnetic transition in the one-dimensional 1/r 2 Ising 
model.(~4~ 

4. Confinement in the three-dimensional U(1) lattice gauge theory. (169) 

5. Localization for random Schr6dinger operators. (141) 

6. The phase transition in plaquette percolation. (5) 

7. The intersection properties of ordinary random walks and of 
Brownian motion. (3' 114,117) 

8. The critical behavior of self-avoiding walks, (53'188"19~ percola- 
tion, (186'185) and branched polymers (187) in high dimensions. 

In many of these examples, the "coarse-graining" is applied at the level of 
objects with some geometric content, such as random walks, clusters, 
surfaces, contours, etc. 

Thus, our work is in no way an attack on the essential physical ideas 
behind the RG approach. It simply points out the need for a more general 
definition of their scope. 

6.1.4. T o w a r d  a Non-Gibbsian Point of V iew .  Let us close 
with some general remarks on the significance of (non-)Gibbsianness and 
(non)quasilocality in statistical physics. Our first observation is that 
Gibbsianness has heretofore been ubiquitous in equilibrium statistical 
mechanics because it has been put in by hand: nearly all the measures that 
physicists encounter are Gibbsian because physicists have decided to study 
Gibbs measures! However, we now know that natural operations on Gibbs 
measures can sometimes lead out of this class: among such operations are 
some renormalization transformations (Sections 4.1-4.3 and 4.5.2), some 
nonlinear local functions (Section 4.4), convex combinations (Section 4.5.1 ), 
and weak limits (Section 4.5.6). It is thus of great interest to study which 
types of operations preserve, or fail to preserve, the Gibbssianness .(or 
quasilocality) of a measure. This study is currently in its infancy. 
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More generally, in areas of physics where Gibbsianness is not put in 
by hand, one should expect non-Gibbsianness to be ubiquitous. This is 
probably the case in nonequilibrium statistical mechanics (Section 4.5.4). 

Since one cannot expect all measures of interest to be Gibbsian, the 
question then arises whether there are weaker conditions that capture some 
or most of the "good" physical properties characteristic of Gibbs measures. 
For example, the stationary measure of the voter model appears to have 
the critical exponents predicted (under the hypothesis of Gibbsianness) by 
the Monte Carlo renormalization group, (371) even though this measure i s  
provably non-Gibbsian.(244' 250) 

One may also inquire whether there is a classification of non-Gibbsian 
measures according to their "degree of non-Gibbsianness." Joel Lebowitz 
has suggested to us the analogy with the rational and real numbers: 
although the set of rationals is very "small" in many senses (e.g., first Baire 
category, zero Lebesgue measure), it is "large" in the weak sense that any 
real number can be approximated by a sequence of rational numbers; and 
the irrational numbers can be classified according to the rate at which 
they can be approximated by rationals (Diophantine approximation). In 
Section 4.5.6 we conjectured a similar scenario for the Gibbsian measures 
within the space of all measures. (Note added in Proof: Conjecture 4.19 
has now been proven by Robert Israel.) It would then be natural to classify 
the non-Gibbsian measures according to how well (or how rapidly) they 
can be approximated by Gibbsian ones. 

Finally, there is a philosophical question, raised by one of our colleagues 
in Rome (to whom we apologize because we cannot remember his name): 
All mathematical modeling, in any branch of science, involves selecting the 
"important" variables in the description of a system and neglecting the 
variables judged "unimportant." In a statistical system this means that the 
"unimportant" variables are integrated out, i.e., one performs a kind of 
"decimation" transformation. Now, if the decimated variables are only 
weakly coupled to the others, then one may hope that the decimation will 
lead to a Gibbs measure (although rigorous theorems guaranteeing this 
seem to be lacking). However, one could also fear that the result of the 
decimation might be a non-Gibbsian measure, especially if the decimated 
variables are strongly coupled to the others. (Such variables might still be 
deemed "unimportant" if they were believed to affect only uninteresting 
quantitative details of the problem, without changing the features of 
interest.) In this case, not only would one be making an approximation in 
describing the system by a particular "model Hamiltonian," but even the 
description of the decimated system by any Hamiltonian would itself be an 
approximation. And one would have to investigate how good this 
approximation is. 
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6.2. Some Open Questions 

We end with a list of open questions for future research: 

1. Clean up the circle of results connected with the Gibbs Represen- 
tation Theorem (Theorem 2.12), particularly in the translation-invariant 
case (Sections 2.3.3, 2.4.9, and A.2). 

2. Determine whether {4: IlOsl[~h~<M} + J  is a closed subset of ~o, 
if h ~; 1, and in particular for ~ h = N  ~ (Sections 2.4.4 and 2.4.6). This 
affects the ways in which the RT map can blow up at the boundary of its 
domain (Section 3.3), and arises also in our theory of parameter estimation 
(Section 5.1.2). 

3. Devise a clean general theory for systems of unbounded spins, 
analogous to the spaces ~0 and N1 for systems of bounded spins (Sections 
2.4.4 and 3.1.4). 

4. Extend our First and Second Fundamental Theorems to RG maps 
which are quasilocal but not strictly local, e.g., maps with a soft cutoff in 
momentum space (Sections 3.1.1 and 3.2). 

5. Investigate rigorously the Gibbsianness or non-Gibbsianness of 
the renormalized measure in the following models: 

(a) Ferromagnetic Ising model, using the decimation transformation 
with spacing b: does the cutoff temperature for non-Gibbsianness 
tend to Jc as b -~ oe? (See Section 4.3.2.) 

(b) Ferromagnetic Ising model, using the majority-rule transforma- 
tion with block sizes b not covered by the construction in 
Section 4.3.4. (For dimension d>~ 3, it appears that no block sizes 
b are covered by this construction: see Appendix C.) 

(c) Ferromagnetic Ising model at low temperature and nonzero mag- 
netic field, in dimension d = 2, using the decimation, Kadanoff, or 
majority-rule transformation. 

(d) Antiferromagnetic nearest-neighbor Ising model in a uniform 
magnetic field, on the paramagnetic-antiferromagnetic critical 
surface: compare the majority-rule (or Kadanoff) transformation 
on square (bxb)  blocks to the same transformation on van 
Leeuwen's five-spin blocks. (366'56) 

(e) q-state Potts model with q large, at (or near) the first-order 
phase transition, using either the ordinary "plurality-rule" (or 
Kadanoff) transformation c31~ or the modified transformation 
including vacancies. (284'31~ 

(f) Other models at or near a first-order phase transition. 
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(g) Ferromagnetic Ising model at the critical point in dimension 
d >  4, using a majority-rule (or Kadanoff) transformation with 
fixed block size b (Section 4.4). 

6. Improve/generalize the theorems on non-Gibbsianness of local 
nonlinear functions of an anharmonic crystal, and in particular try to 
prove nonquasilocality (Section 4.4). 

7. Try to generalize Schonmann's example (Section 4.5.2) to dimen- 
sions d, d '  other than d =  2, d ' =  1. 

8. Prove (or disprove) the existence of measures consistent with the 
Fortuin-Kasteleyn random-cluster-model specification (4.91); in particular, 
prove (or disprove) that the infinite-volume limit measures taken with 
free or wired boundary conditions are consistent with this specification 
(Section 4.5.3). 

9. Investigate the Gibbsianness or non-Gibbsianness of the stationary 
measure(s) in various stochastic evolutions not satisfying detailed balance 
(Section 4.5.4). 

10. Investigate the abstract properties of the set f4 of Gibbsian 
measures (Sections 4.5.6 and 6.1.4). 

11. Investigate rigorously the model of parameter estimation intro- 
duced in Section 5.1.2; in particular, try to prove Conjecture 5.1 or some 
weakened version of it. 

12. Make a high-precision MCRG test, using a large space of renor- 
malized interactions, to compare a case in which the renormalized measure 
is expected to be Gibbsian (e.g., the d =  2 Ising model at a temperature not 
too far below critical) with a case in which the renormalized measure is 
expected or proven to be non-Gibbsian (e.g., the d = 2 Ising model at low 
temperature ) (Section 5.1.3 ). 

13. Clarify the relationship between RG transformations acting on 
contours(148,149) or polymers(~5~ 153,154,184,191,54) and the traditional RG 

transformations acting on spins. 

14. Discuss the Gibbsianness or non-Gibbsianness of various states 
of quantum lattice systems. (257,364) Here one problem is to understand better 
the relationship between the various alternative notions of "Gibbsianness" 
in the quantum case. 

15. Prove Conjecture C.5 of Appendix C. 
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A P P E N D I X A .  PROOFS OF S O M E  T H E O R E M S  FROM 
SECTION 2 

A . I .  Proofs and References for Sect ion 2.1 

The remarks made in Section 2.1.2 are all well-known results. Here are 
some references: 

(a) f2 o c o m p a c t ~ f 2  compact ~ every continuous function on (2 is 
bounded (ref. 314, Proposition 9.4). The density of C~oc(f2) in C(f2) is an easy 
consequence of the Stone-Weierstrass theorem (ref. 314, Theorem 9.28). 

(b) If 12 o is discrete, then every local function is contintmus; and 
continuity is preserved under uniform convergence. 

(c) This is an immediate consequence of (a) and (b). 

Further Remark. If the single-spin space f2 o is noncompact, there 
may exist bounded continuous functions which are not quasilocal. Hans- 
Otto Georgii provided us with the following example: take ~ = f2 o = Z, let 
x* e 5~, and let f :  Z ~ N be bounded and nonconstant; then 

h(~o) = f(~%x*) 

is bounded and continuous but not quasilocal. 
In fact, this construction can be imitated whenever (2 o is a non- 

compact metric space and ~ is infinite: Let f l ,  f2 .... ~ C((20) have disjoint 
supports $1, $2,... with 

Sen ~) S j = ~  and tlf~l[~ = 1 

(such functions are easily constructed using Urysohn's lemma); let 
xo, x~, x2 .... be distinct sites in s let g e  C(f2o) be nonconstant; and define 

h(a) = En~= l g(ax,) fn(axo). 

Standard references for the theory of probability measures on metric 
spaces are the books of Parthasarathy (294) and Billingsley. (3~ Probability 
measures on general (not necessarily metrizable) topological spaces are 
treated in refs. 367, 75, and 329. The Riesz-Markov theorem is ref. 314, 
Theorem 14.8, or ref. 294, Theorems II.5.7 and II.5.8. The theorem on 
support of a measure is ref. 294, Theorem II.2.1. 

The bounded measurable topology on M(~2) and M+ 1(~) is discussed 
in ref. 146. The weak topology on M+1((2) is discussed in detail in refs. 294, 
30, and 367; in particular, the topological properties of M+1(~2) 
for different classes of spaces (2 are discussed in ref. 367, Part II, ref. 294, 
Section II.6, and ref. 75, Theorem III-60. 
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If s o is a separable metric space, then every uniformly continuous 
function on f2 is quasilocal I-ref. 160, Remark 2.21(2)]. Since the bounded 
uniformly continuous functions are sufficient to generate the (ordinary) 
weak topology [this is the famous "portmanteau theorem" (ref. 30, 
Theorem 2.1)], it follows that the weak quasilocal topology coincides with 
the weak topology. On the other hand, if O o is also discrete (hence 
countable), then every quasilocal function is continuous, so the weak, weak 
quasilocal, and bounded quasilocal topologies all coincide. See ref. 158, 
Remark 0.3. 

A.2. Proofs and References for Section 2.3 

Proposition 2.7 is essentially ref. 160, Remark 1.24. Examples 1 and 2 in 
Section 2.3.3 are ref. 160, Proposition 2.24 and Example 2.25. Theorem 2.10 
and related results are discussed in ref. 160, Section 2.2]. Theorem 2.12 is 
proven by Kozlov(225); see also SullivanJ 345) 

Remarks. l. The following conjectured extensions of Theorem 2.12 
appear to be open questions: 

(a) If H is quasilocal and nonnull (but not uniformly nonnull), and 
s o is not finite, does there exist a uniformly convergent interaction k such 
that H =  He? [This theorem might be relevant to models of unbounded 
spins with finite-range interactions.] 

(b) If H is quasilocal, uniformly nonnull, and strongly Feller in the 
sense that f~B(f2, o~A) implies ~cAf~Cql(g-2), and s o is not finite, does 
there exist a continuous absolutely summable interaction ~b such that 
H = He? 

2. Regarding the relation between quasilocality and the Feller 
property, the following appears to be an open question: If ~2 o is compact 
but not finite, can a Feller specification fail to be quasilocal? 

Proof of Theorem 2.15. Let # be consistent with Feller specifica- 
tions H1 and H2. Then 

E,(fl~Ac)(co) = (ZlAf)(~O)= (Zt~Af)(cO) #-a.e. (A.1) 

for each f E  C(t2). Now, since # gives nonzero measure to every open set, 
two continuous functions which agree #-a.e. must in fact agree everywhere. 
So we must have (rqaf)(~o) = ( g 2 A f ) ( f O )  for all co. But if the two measures 
~lA(co, -) and rC2A(C0, -) give equal expectations to each continuous function 
f, then they must be equal. | 

Further examples of pathological nonquasilocal specifications, along 
the lines of the Remark at the end of Section 2.3.4, are given by Georgii 
(ref. 160, pp. 34-35). 
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Theorem 2.17 and Corollary 2.18 are proven in ref. 160, Theorem 2.34. 
Propositions 2.19 and 2.20 are ref. 160, Proposition 7.9 and Theorem 7.7. 
Proposition 2.22 is almost immediate from the definition of Feller specifica- 
tion and weak convergence; for related results, see ref. 160, Sections 4.3 and 
4.4. Proposition 2.23 is proven in ref. 160, Theorem 7.12. 

Proof of Proposition 2.25. Recall that #o~(.) is a regular conditional 
probability for/~ given ~ ,  i.e., it depends on m only through co~; and we 
are interested only in its restriction to ~ c ,  i.e., we want to study the 
measure fVO~(dco3~). The claim is now that for/~-a.e. (n~, we have 

I/~~176 u]~(~o3~, A) = #'~(A) (A.2) 

for all A e ~  and all A c A  *. Both sides of this equation are ~ -  
measurable. So it suffices to prove that for all f e  B(f2, ~ )  we have 

f d#~(~o~)f(eG)f S~A(dco'~) rCA~(CO'~e, A ) = f  dt~(o~)f(o)~)I~~ (A.3) 

Now the right-hand side of (A.3) is f f z ~  d/~, by definition of regular 
conditional probability. As for the left-hand side, let us rewrite it as 

f [d/~(c%) #~~ f(COA) ZC]~(~O'~, ., A) (A.4) 

This passage from an iterated integral to a single integral on the product 
space is justified by ref. 277, Proposition III-2-1. But the measure in 
brackets in (A.4) is precisely d#(o~, ~o~,.); so the left-hand side of (A.3) 
equals 

I d#(~o~, co'j~)f(coa) ~A(~O~ X CO'~, A) (A,5) 

where we have now inserted the definition (2.37) of ~]~. We now use the 
fact that # is consistent with H, and that A c A c (so A c Ac); it follows that 
(A.5) equals Sf;/A d/~. | 

A.3. Proofs and References for Sect ion 2.4 

A.3.1. Van Hove Convergence 

Proof of Proposition 2.27. It is easy to see that 

x e A ~ dist(x, A c) = dist(x, • ~A ) 

x s A ~' =~ dist(x, A) = dist(x, 0j-A) 

(A.6a) 

(A.6b) 
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Therefore, 

187A ] ~< (2r+  1) J 18~Ar 

Ic3+AI ~< (2r + 1)a [c3~-AI 

It follows that (a)-(c) are equivalent. 
Next notice that 

(A.7a) 

(A.7b) 

x ~ A \(A + a) ~ x e A and dist(x, A ~) ~< la[ 

x s (A + a) \A ~ x s A c and dist(x, A) ~< lal 

Therefore (c) implies (d) and (e). Conversely, 

(A.8a) 

(A.8b) 

8 { A =  U [ A \ ( A + a ) ]  (A.9a) 
]al = 1 

8 ~ A =  U [(A + a ) \ A ]  (a.9b) 
l a l  = 1 

so (d) ~ (a) and (e) => (b). 
Finally, 

A • ( A + A ) c  U [A A ( A +  {a})] (A.10) 
a E A  

so (d) and (e) together imply (f). On the other hand, taking A = {a) shows 
trivially that (f) implies (d) and (e). 

This completes the proof of equivalence of (a)-(f). 
Next we prove that l i m , ~  IA,[ = ~ :  this follows immediately from 

(a) and the fact that ]8~-AI >~ 1 whenever A and A c are both nonempty. 
Finally, let us prove statement (/~): For each n, choose an~ 7/d and 

r , ~ Z +  so that Br.(a,) = - {x~Za:  I x - a , I  <~r,} is a maximum-sized ball 
contained in A,,. We claim that l i m n ~  r , =  ~ .  Proof: Fix any r > 0 :  
Since l i m , ~  IA,] = ~  and l i m , ~  18rA,]/IA,I =0,  we clearly have 
l i m , ~  IA,\8;-A,I = o r  and hence in particular A , \ O r A ~ r  ~ for all 
sufficiently large n. But A , \ 8 ~ A , # ~  is just another way of saying 
tha t r , /> r .  | 

Remarks. 1. Many b o o k s  (317'2~ u se  a more complicated defini- 
tion of van Hove convergence, based on a paving of 2U by cubes of side a. 
It is easy to see that this definition is equivalent to conditions (a)-(f). 

2. What physicists call van Hove convergence is termed FOlner 
convergence by mathematicians. Much of the theory extends, in fact, to 
locally compact amenable (semi)groupsJ ~7~ See ref. 226, Section 6.4, for 
ergodic theorems in this context. 
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A.3.2. Translation-lnvariant Measures. Proposition2.30 is 
ref. 160, Theorem 14.5 and Proposition 14.7. Proposition 2.31 is ref. 160, 
Corollary 14.A5 and Theorem 14.A8. For more information on ergodic 
theorems, along with some relevant counterexarnples, see ref. 226, 
pp. 222-226. Proposition2.32 is proven in ref. 160, Theorem 14.12, or 
ref. 209, LemmalV.3.2; a stronger form will be proven as Proposi- 
tion 2.61(e) below. Information on the Poulsen simplex can be found in 
refs. 256 and 289. 

A.3.3. A Digres s ion  on  Subadd i t iv i ty .  An important role in 
the theory of translation-invariant lattice systems is played by the concept 
of a subadditive set function. Subadditivity arguments will be used to prove 
the existence of the infinite-volume limit for the pressure, the entropy 
density, and quantities connected with the quotient norm. We therefore 
collect here the needed results. 

De f in i t i on  A.1. Let 5 e be the class of all nonempty finite subsets of 
Z a, and let 5~*=SPw{~} .  A function F : S e * ~ [ - ~ , ~ )  is called: 
(a) subadditive tf F(A1 w A2) <~ F(A1) + F(A2) whenever A1, A2 ~ 6P* with 
A t c~ A2 = ~ ;  (b) completely subadditive tf F(A) < ~ =  ~ s whenever 
A, A1,..., A ~  5 p* with ZA = Z~'=I 2iZ.~z and all 2i>~0; and (c) strongly sub- 
additive if  F(A 1 w A2) + F(A1 c~ A2) <~ F(A1) + F(A2) whenever AI, A2 ~ 5 p*. 

Clearly, complete subadditivity implies subadditivity. The key non- 
trivial fact is: 

Lemma A.2 (Ref.  273, Th~or~me 2). I f F  is strongly subadditive 
and F ( ~ )  >~ O, then F is completely subadditive. 

Remark. If F is subadditive, then either F(~) />  0 or else F ~  - ~ .  In 
our applications we will always have F ( ~ ) =  0. 

We can now state the two principal theorems on the existence of the 
infinite-volume limit: 

Proposition A.3, Let F: 5~*--* [ - ~ ,  ~ ) be translation-invariant 
and completely subadditive. Then lim A ,, co IAI-1F(A) exists and equals 
infA ~.y IA1-1 F(A). 

Proposition A.4. Let F: 5a* --* [ - o r ,  ~ )  be translation-invariant 
and subadditive. Then l i m n , ~ l A n [ - 1 F ( A , )  exists for any vanHove 
sequence (A,,) satisfying the additional condition IAn]/diam(A,) a >1 6 > 0 for 
some c5>0. Moreover, this limit equals infn~l IC.I i F(Cn).  

We note that ordinary subadditivity is not sufficient for the existence 
of the van Hove limit; a counterexample has been given in ref. 178. 
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Proof of Proposition A.3. This result is stated in ref. 272, Th6or6me 0, 
and proven in ref. 273, Corollaire 10, but the proof is rather difficult to 
follow. For completeness let us give an elementary proof(3421: 

Let A, B 6 50; without loss of generality let us suppose that 0 E B. Now 
consider the decomposition 

1 
ZA = Z ~-TZB+- + Z 2xZ{x} (A. 11) 

a : B + a ~ A  x ~ A  

where 

2x = f { a : B + a ~ x a n d B + a  r A}] (A.12) 
IBI 

Clearly 0 ~< 2x ~< 1; and by summing (A.11) over x e 7/d we find 

'~x= IAI - ] N (A-b)  
x E A  ] b E B  

= A\bOs(A-b  ) [since 0 e B] 

=m;(A) (A.13) 

By complete subadditivity and translation invariance it follows from (A. 11) 
and (A.13) that 

F(A)<~ ~ F(B+a) - -  + ~ 2xF({x}) 

F(B) 2x ) 
= [BI bO (A--b) +Q~A F({0}) 

=F(B)  [ ] A [ - m ~ ( A ) ]  +m~(A)F({O}) (A.14) 
le[ 

Now divide by IA[ and take A ,7 oo (van Hove): by Proposition 2.27(d) 
we have lim A ~ ~ rn~(A)/IA[ =0.  Therefore 

F(A) lira sup - -  ~< F(B) (A.15) 
A I ~  ]AI ]B] 

Since this holds for all B e 5 f,  we have 

F(A ) F(B) . . . . .  F(B) 
lim sup - -  ~< inf - -  ~ nm lm ~ | (A.16) 
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Proof of Proposition A.4. This is essentially ref. 201, Proposi- 
tion 4.10. See also refs. 178 and 342. | 

Remarks. 1. The important concept of complete subadditivity was 
apparently first introduced by Moulin-Ollagnier and Pinchon. (272'273) 

2. The proofs given here actually work (after slight notational 
changes) in an arbitrary discrete amenable group. (342) A slightly different 
proof of Proposition A.3, also valid for discrete amenable groups, is 
implicit in ref. 271, proof of Th6or6me 2. For an extension to locally 
compact amenable groups, see ref. 273. 

A.3.4. A L e m m a  on  S u m s  of  T r a n s l a t e s .  Next we use sub- 
additivity arguments to prove an important lemma concerning the 
infinite-volume limit of sums of translates of a function f This lemma will 
play an important role in our study of the quotient seminorms. 

First let us introduce a convenient notation: for any g ~ B(f2), let us 
define the maximum, m&imum, and midpoint values of g by 

Clearly we have 

sup g~- sup g(m) (A.17a) 

infg-~ inf g(~o) (A.17b) 
( ~ e Q  

mid g-~�89 g(e~)+ inf g(~o)] 
o) e ( 2  toE . (2  

--- �89 g + inf g) (A.17c) 

II gll oo = max(sup g, - i n f  g) 

IIgtl B(m/ . . . .  t = 5(sup g -  inf g) = I i g -  mid gll 

k e m m a  A,5. Let feB(g2). Then: 

(a) 

(A.18a) 

(A.18b) 

lima .- o~ IAI-1 sup,~a~A To f exists' and equals infA~ J ]AI-1 
sup Eo~A rof. 

(b) lima .. ~ [A]-I in fZa~a  Taf  exists and equals SUpA~5O IA] t 
infZa~A T~f  

(c) lima ~ ~ [AI--1 II~a~A Tafllo~ exists and equals infA~j~ IAI-1 

(d) lima .. ~ IAI-t IIZo~A Z.fllB(m/const exists andequals infA~ ~ ]AI-1 
IIE~a TafllB(m/ . . . .  t "  

(e) lim A ~ ~ [A I - lmid(Za~ a T~f)  exists and lies in the interval 
[inf f,  sup f ] .  
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ProoL (a) Consider the set function F+(A) =--sUp~a~ A Taf  , 
defined for finite subsets A ~ Z d. Clearly F is finite-valued and translation- 
invariant. Moreover, it is completely subadditive (Definition A.1): if 
A, A 1,.--, A~ e 5 P with ZA = '~-~n 1 ~i)~Ai and all 2i ~> 0, then 

F(A)= sup ~ (Taf)(e)) 
a ) ~ 2  a E A  

= s u p  ~ 2 i Z ( L f ) ( c ~  
m e g 2  i = 1  a ~ A i  

i ~ l  ~ g 2  a E A  i 

- ~ 2iF+(Ai) 
i - -1  

(A.19) 

Proposition A.3 then implies that lira A , ~ lAP-1F+(A) exists and equals 
infA~s~ ]A[ 1F+(A). 

Part (b) is simply (a) applied to the function - f .  

(c) Consider the set function F(A)='II~aEA Tof l l oo  ; the proof is 
then as in (a). 

(d) This is an immediate consequence of (a) and (b) together with 
(A.18b). [-Or it can be proven directly by applying complete subadditivity 
to Fc(A) =- 112aEA Tafrl~(e)/~o,~t.] 

(e) This is an immediate consequence of (a) and (b). | 

Remark. For f e  Bql(ff2 ) we  can prove this lemma by a slightly dif- 
ferent argument based on the fact that the set functions F+ ,  F, and Fc are 
"almost additive" (and not merely sub additive ). Since the argument is 
virtually identical to that used by Israel in proving the existence of the 
pressure (ref. 209, Theorems 1.2.3 and 1.2.4), we give only a brief sketch. 
For simplicity let us consider part (c); the other parts are similar. 

Suppose first that f is a bounded local function, i.e., that fE B(Q, ~x) 
where diam(X) < D. Then it is easily seen that F(A • A') = 2F(A) whenever 
A' is a translate of A with dist(A, A')/> D. [Here it is important that the 
configuration space is a product space, so that arbitrary pairs of configura- 
tions in A and A' are compatible (i.e., there are no hard-core exclusions). 
It also seems to be important that A' be a translate of A: this guarantees 
that we can choose configurations in A and A' that give 52a~ Taf and 
Za~A, Taf near-maximum values of the same sign.] Moreover, for any two 
sets As, A2 we obviously have [F(A1)--F(A2) I <. [AI A A21-I[fl]~. From 
these two facts one can prove the van Hove convergence of IAt-1 F(A): the 
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idea is to pave a large set A by medium-sized cubes (of side a which will 
eventually go to infinity) separated by corridors of width D. See ref. 209, 
pp. 10-13, for details. The extension to general f e  Oql((2 ) is now a routine 
approximation argument. 

A.3.5.  T h e  Q u o t i e n t  S e m i n o r m .  In Section2.4.3 we stated 
Proposition 2.34 for the case of a compact metric single-spin space f2 o and 
for a continuous function f Here we prove a more general result in which 
these two restrictions are lifted: 

Proposition A.6 (=  Proposition 2.34'). 
the following properties: 

(a) 

(b) 

(c') 

(c") 

Let f e B(f2). Consider 

f has zero mean with respect to every translation-invariant 
probability measure, i.e., ~ f d# = 0 for all # ~ M+ ~.inv(f2). 

f has zero mean with respect to every translation:invariant finite 
signed measure, i.e., ~ f d# = 0 for all # ~ Minv(12). 

f lies in joy=_ closed linear span of  { f -  Taf:  a ~ Za}. 

f lies in ~s(m=--closed linear span of  { g - T a g : g E B ( f 2 ) ,  
a s Y_e}. 

( d )  lim. ~ o~ n d [ [ Z a ~  c .  T a f  I1 co = O. 

(e) l i m a  .~ ~ IAI - ~  ilZ,.~A T~flL~ =0.  

Then (a) ,=, (b) ~ (c') r (c") ,~  (d) r (e). Moreover, i f  f2 o is a compact 
metric space and f 6  C((2), then all these properties are equivalent. [In this 
case property (c) o f  Proposition 2.34 is intermediate between (c') and (c"), 
hence also equivalent.] 

Proof. (a)=-(b) :  If #EMinv(g'2), then #+ ,  #_  ~Minv(~'2) [otherwise 
the Jordan decomposition of # into positive and negative parts would not 
be unique]. So every # e M~v(E2) is a linear combination of two measures 
in M + 1,inv((2). 

(b) ~ (a): 

(c ' )  ~ (c") :  

(c") =~ (e): 

Trivial. 

Trivial. 

Assume that f = g - Tag with g e B(f2). Then 

~A T ~ f  = x~A TX g - Z T,  g 
x ~ x G A + a  

IA A (A + a) l .  ][ gl[ o~ (h,20) 

where ~ denotes symmetric difference. By Proposition 2.27, ]A A (A +a) f /  
[A[ ~ 0  as A ,z ~ (van Hove). This proves the claim for func t ions f  of the 

822/72/5-6-15 
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given form. The same obviously holds for finite linear combinations. It is 
then routine to pass to norm limits. 

(e) ~ (d): Trivial. 

(d) ~ (c'): h~ - f -  n d ~ ]~  c,, Taf l ies  in the linear span of { f -  To f:  
aEZa},  and l i m ~  ]ph~-f][~ =0.  

(d) ~ (b): Since p is translations-invariant, # ( f )  = n-d  ~ c, P(Taf )  
for all n. Hence [p(f)[ ~< ][#[I Jln-a~o~co Taflr~.  Now let n-~ oo. 

(b) ~ (c) ~ (c"), if g2 o is compact and feC(~2):  Suppose that 
f r  Jc(m -~ closed linear span of { g - T~ g: g ~ C(~2), a ~ Za}. Then, by the 
Hahn Banach theorem, there exists l~C(O)*  such that l ~Jc(m=-0 and 
l ( f )  = 1. By the Riesz-Markov theorem, l arises from some/~ e M(g2) and 
l [' Jc (m-=0 means precisely that #eMend(g2 ). But then (b) implies that 
l ( f )  = 0, a contradiction. | 

Remarks. 1. Variants of this Proposition seems to be well known 
(ref. 201, p. 454) (see also ref. 68, pp. 39-40, for a similar argument), but we 
have not been able to find a published proof. See also ref. 318, Exercise 7.2, 
for a related result. 

2. We do not know whether (a)-(b) are equivalent to (c')-(e) in 
general; or if not, under what minimal extra conditions this equivalence 
can be proven. For  aesthetic reasons, if no other, it would be desirable to 
resolve this question. 

Next we prove an analogue of Proposition A.6 in which we quotient 
out constant functions: 

P r o p o s i t i o n  #,.7. Let f ~ B((2). Consider the following properties: 

(a) f has the same mean with respect to every translation-invariant 
probability measure, i.e., ~ f dt~ = ~ f dv for all #, v E M+ 1,in~(g2). 

(b) f has zero mean with respect to every translation-invariant finite 
signed measure of  zero total mass, i.e., ~ f  dp=O for all 
/~ ~ M~n~(s satisfying #(Q ) = O. 

(c') f lies in Jr+ const - closed linear span of { f - To f:  a ~ 7/a} and 
constant functions. 

(c ") f lies in JR(a) + const -= closed linear span of { g - T o g: g ~ B(~  ), 
a ~ Z a} and constant functions. 

(d) l i m , ~  n d [lY:~c, T~f[[,~(~)/ . . . .  t =0.  

(e) lima ~ co [AI -1 []Y:~A T~f[]s(m/~o.,t =0" 

Then (a) .*~ (b) ~ (c') <:> (c") .~ (d) .~  (e). Moreover, i f  (2 o is a 
compact metric space and f e C(~),  then all these properties are equivalent. 
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Proof. ( a ) ~ ( b ) :  If /~aM~nv(12) with #(12)=0, then # + , #  
Minv(12) with/~+(12)=#_(12) = 2>~0. If ,~=0, we are done; if )~>0, apply 
(a) to the measures 2-1/~+, 2 - ~ / ~  ~M+~,~,~(t2). 

(b) ~ (a): Just apply (b) t o / ~ - v .  

(c')=~ (c"): Trivial. 

( c " )~ (e ) :  Assume that f = g - T a g + c  with gaB(12) and caR.  
Then 

~A Txf  B(a)/ . . . .  t ~-~" 2 T x g -  ~ Txg+c[AI B(m/ . . . .  t 
x x E A  x ~ A + a  

<- 2 r g- 2 rxg 
x ~ A  x G A + o  oO 

~<]A A (A +a)l" [[glio~ (A.21) 

The rest is as in Proposition A.6. 

(e) ~ (d): Trivial. 

( d ) ~ ( c ' ) :  Let c--=- l imn~n dmid(Y~a~c Taf) as guaranteed by 
LemmaA.5(e). Then h , - f - n - d Y ~ a ~ c ~  lies in the linear span of 
{ f  - T~f: a ~ Zd}, and 

l imsup[l(hn+c)-f([~=limsup n d ~ T ~ f - c  
n ~ o c  n ~ c ~  a E C n  o ~  

~<lim sup n -d  ~c Taf 
n ~ oo  a n B ( . Q  ) / c o n s t  

= 0 (A.22) 

(d)=~(b): A trivial modification of the corresponding proof in 
Proposition A.6. 

(b) =~ (c) =* (c"), if 12 o is compact a n d f e  C(12): Same as in Proposi- 
tion A.6, but use the subspace Jc (a )+cons t  in place of Jc(a); the signed 
measure # will then have zero total mass. | 

Next we prove a strengthened version of Proposition 2.35. Again we 
can allow an arbitrary (not necessarily compact) single-spin space 12o, and 
an arbitrary (not necessarily continuous or quasilocal) function f. The only 
subtlety is that in this case we must choose the correct definition of J ,  
since (a)-(b) and (c')-(e) are not necessarily equivalent. The right 
definition turns out to be (c')-(e). 
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Proposition A.8 (=  Proposition 2.35'). Let f~  B(Q). Then 

and 

lim (A[ -1 ~ T , f  = inf [A1-1 ~ T~f (A.23a) 
A .-" oo a ~ " A  oo A c ~ g a  a '~ -A o~ 

= II f II B(m/y (A.23b) 

a A G S r  a TA B( (2 )/ . . . .  t 

= IP f J] B(a)/(.~ + const) (A.24b) 

for all closed linear subspaces J satisfying J f c  ~ c ~r 

ProoL In Lemma A.5(c,d) we have proven the existence of the limits 
and their equality to the corresponding infima. Now we want to identify 
the limits with the quotient seminorms. 

Let us denote by Lf the limit (A.23a). Clearly Lf~ I l f l l , .  Moreover, 
by Proposition A.6(c') ~ (e), Lf= Lf, whenever f - f '  ~ JB(o); hence 

To prove the reverse inequality, note that by an easy corollary of the 
Hahn-Banach theorem (ref. 311, Corollary 3 of Section 111.3), there exists 
leB((2)* such that Pill1 ~<1, l ( f ) =  Ilflls(m/.~, and l ~ 3 = 0 .  On the other 
hand, for every l~ B(f2)* that annihilates ~7 = ~  we have 

(n_d ~ Zaf) n~ ~ <~ Lf [lllt (A.25) l ( f )= l  
\ a~  Cn / 

Hence I[ f II B~o)/y ~< Lf. This proves (A.23b). 
A completely analogous argument handles (A.24): it suffices to replace 

and JB(o) everywhere by ~7 + const and J~(o)+ const, respectively. | 

Remark. The proof given here of (A.23) is a slight elaboration of one 
sketched by Hugenholtz (ref. 201, p. 454); by using complete subadditivity 
we are able to deduce the full van Hove convergence. 

A.3.6. Closed and Compact Sets in ~0 

Proof of Proposition 2.39. (a) We shall actually prove something 
slightly stronger, namely that {~b: Jill[abe<M} is closed in the product 
topology F I x ~  c((2x) (which is weaker than the M0 norm topology). So 
let (~,)  be a sequence in {qs: II~[]~h~<M}, and let q0 be another inter- 
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action; and suppose that I I (~ , )x-~xl l - -*  0 for each X. (This would occur, 
in particular, if q~, --* ~ in ~o norm.) Then 

h(X) 
= ~ ~ lira l l(oLL:l l 

X ~ O  n ~ o o  

~l im inf ~ h(X)Ij(~b,)x[I 
. . . .  x~o IYl 

= lim inf IIOLII~ 
r r  

~ M  (A.26) 

where in the key inequality we have used Fatou's lemma. 

(b) Let (q~,) be a sequence in {cb: II~ll~h~<M}. Since the single-spin 
space is finite, each space C(f2x) , X finite, is finite-dimensional. Therefore, 
by compactness of the ball in C(~2x) together with the usual diagonal argu- 
ment, we can extract a subsequence (~,,)  such that (q~n,)x converges (in 
II'[l~ norm) for each X, say to ~x- Let ~ =  {~bx}. In part (a) we have 
shown that IlOsNeh~<M. Now we wish to show that r  in ~0 norm. 
So fix K <  oo; we then have 

1 1 

X~O X~O 
h(X)  < K h(X)  >1 K 

1 2M (A.27) ~< ,F_. ~ II('~.,)~-'~xll +-K-- 
X ~ O  

h (X)  < K 

Since h ~ 1, the first sum contains finitely many terms; and since 
I I ( ~ . , ) x - ~ : 1 1  ~ 0 for each X, we have 

lim sup limb,,- r ~< 2M/K (A.28) 
n '  

Since K may be taken arbitrarily large, we are done. | 

Remarks. 1. For a converse to part (b), see Proposition A.10 
below. 

2. One might ask whether (a) and (b) can be extended to more 
general closed bounded sets in Mh (not just balls). The answer is no, in 
general: a closed bounded convex set in Mh need not be closed (much less 
compact!) in N '~ if h is unbounded. Example: Let {A,} be a sequence of 
finite subsets of 7/d, in which each equivalence class modulo translation 
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occurs at most once, and satisfying l i m , _ ~  h(A, )=  +oe. Let q5 be 
defined by 

(q~)A={lo/h(A,) if otherwise A is a translate of A, (A.29) 

Now, for each sequence 2 ~ 11, let ~ = ~ , ~ 1  2,~bn (this sum is absolutely 
convergent in ~h). Then 

rlq~lP~, = ll2]l,~ and H~b~-qszl]~ = ]12- 2'lFt~ 

(That is, 2 ~ 45 x is an isometric isomorphism of l 1 onto a closed linear sub- 
space of ~h.) Now let S = { q~, }, and let 

T={qs~':O<~2,<~t Vn, ~ 2 ,=1}  (A.30) 
n = l  

T is the closed convex hull of S in ~h. Now, II~Jleh= 1 for all ~ e  T, so 
0 r T. On the other hand, 0 does belong to the closure of T in ~o, since 
lim, ~ ~ JI r  II ~0 = 0. 

The natural setting for discussing the spaces ~o and Nh is that of 
weighted 11 direct sums of Banach spaces. Let YI, Y2 .... be Banach spaces, 
and let h: N ~ (0, oe). Then we define Yh to be the space of sequences 
Y = (Y~, Y2,...), with each y~e Y~, for which the norm 

IlYl],,- ~ h(i)Ily;ll y, (1.31) 
i = 1  

is finite. For h-= 1 we write Yh = Y. It is easy to prove that all the spaces 
Yh are Banach spaces. The canonical projection p;: Yh--* Y~ defined by 
P~(Y) = Yt has norm 1/h(i). 

We then have the following results: 

Proposi t ion  A.9.  
product topology Hi  Y~. 

Proposi t ion  A.10.  

(a) 
(b) 

The closed ball {y: Hyltyh<~M} is closed in the 

Let S ~ Y. Then the following are equivalent: 

S has compact closure in Y. 
S is bounded, pi[S] has compact closure in Yifor each i, and 

lim sup ~ j ryi l f r=0 (A.32) 
N ~ o o  y ~ g i = N  
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(c) S is bounded, p i [S]  has compact closure in Yi for each i, and 
there exists a function h: N ~ [1, oo) such that limi~oo h(i)= 
+oo and 

sup I[yliv, < oo (A.33) 
y E S  

Note that if Yi is finite-dimensional, then S bounded=~p~[S] 
bounded ~ Pi [S] has compact closure in Y~. 

The proof of Proposition A.9 is completely analogous to that of 
Proposition 2.39(a). Let us sketch the proof of Proposition A.10: 

( a )~ (b ) :  Let S be compact in u Then clearly p ~ [ S ] ~ p i [ S ]  is 
compact in Y,.. Moreover, for each e > 0  there exists a finite set 
y(l),..., y(")~u such that S c  0~=~ B(Y (k), e). It follows that 

sup ~ ]tyilir,<~e+ max ~ ny~k)lly, (A.34) 
y ~ S  i = N  l ~ k ~ n  i ~ N  

Taking N ~  c~, we get 

lim sup sup ~ IlY~II y~<e (A.35) 
N - - * ~  y ~ S  i = N  

Since e was arbitrary, the proof is complete. 

(b) =~ (c): Choose N~ < N2 < "-  such that 

sup ~ [lyillre~3 -m (A.36) 
y ~ S  i =  N m 

Now define 

h(i) = f l  for i < N l  
(A.37) 

m f o r  Nm~i<N,.+l 

Then, for all y E S, 

N 1 -- 1 ~ Nm+ 1 1 

IlYblvh = h(i)]lYillr~ = ~ LIy,ILy,+ ~ 2 m 
i = 1  i ~ l  m ~ l  i = N m  

~< ~ II y ill ,., + m~ 
i = l  ~ 1  

~< ilYllv+ 2 

tl yill ~, 

Since S is, by hypothesis, bounded in u this proves the claim. 

(A.38) 
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(c)=~(a): The proof is essentially identical to that of Proposi- 
tion 2.39(b). | 

To apply this to our statistical-mechanical setup, let (Xi) be a sequence 
of nonempty finite subsets of Za in which each equivalence class modulo 
translation is represented once and only once. Setting Yi= C(t2x), it is 
easy to see that ~0  and ~h are isometric to the direct-sum spaces Y and 
Yh, respectively. Therefore, Proposition A . 1 0 ( a ) ~ ( c )  tells us that any 
compact subset of ~0  is contained in the ball {~: [Jg~ll~h~M} for some 
h ~ 1 and some M < ~ .  A similar result can be found in ref. 211, Lemmas 
1 and 2. 

Proof of Proposition 2.43. This is an immediate consequence of 
Proposition 2.39(b), together with the following well-known fact: if A and 
B are subsets of a Banach space X, with A compact and B closed, then 
A + B is closed. II 

A.3.7.  Physical Equivalence. Here we prove Theorem 2.42 on 
the equivalence of the two notions of physical equivalence (DLR and 
Ruelle). Since both senses of physical equivalence are statements about the 
difference ~b-  ~' ,  it suffices to consider the case q~'= 0. 

Proof of Theorem 2.42, DLR=>Ruelle. We wish to measure 
how strongly H~(~oA, COAC) depends on c~Ac. Le t  us therefore define t h e  
oscillation of H~ with respect to coAc by 

oscAc(H~)-- sup ]H~(~)-H~(r~')) 

= sup IHeA(COA, (OA~)-H~(o~A, CO~)I (A.39) 
O,)A, (OAC, oJAC 

Considering now the definition H~(r.O)=~A:AnAr ~A(CO), it is easy to 
see that oscac(H~) gets contributions only from sets A that intersect both 
A and A C, so that 

OSCAc(HA ~) ~< 2 IJ WA ~ A' I oo (A.40) 

In particular, for q> ~ ~1 we have 

osc~c(H~)<~o(JA[) as A ,7 ~ (van Hove) (A.41) 

by (2.62a). 
Suppose now that ~b is physically equivalent to 0 in the DLR sense, 

i.e., that HA ~ is ~c-measurable  for all A. (Actually, it suffices to assume this 
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for some van Hove sequence of sets AI) Then H A(s (DA~) is independent 
of OJA, SO OSCAc(HA ~) is equal to the  unrestricted osc i l l a t i on  

osc(H~) = sup H~ - i n f  HA ~ (A.42) 

- 2  II HA II B(f2)/ . . . .  t (A.43) 

Combining (A.41) and (A.43), we conclude that 

IIHAIIB~/ . . . .  t~<o(lAl) as A / '  oo (van Hove) (A.44) 

By Proposition 2.45(c), we conclude that [q ~ tl .~o/~ t + Const) = 0, i.e., q5 ~ d; + 
Const-- that  is, q~ is physically equivalent to zero in the Ruelle sense. | 

Proof of Theorem 2.42, Ruelle =~ DLR. Suppose that the single-spin 
space f20 is a standard Borel space (e.g., a complete Separable metric 
space), and that q~, cb'~ ~1 are physically equivalent in the Ruelle sense. 
Then by ref. 160, Theorems 4.22 and 5.19 and the comments after them, 
there exists a translation-invariant Gibbs measure for q~, call it /~. By 
Corollary 2.68, # is an equilibrium measure for qs. By Proposition 2.65, # 
is an equilibrium measure also for q~'. By Corollary 2.68 again, # is a Gibbs 
measure for ~b'. But then Corollary2.18 implies that ~b and qY are 
physically equivalent in the DLR sense. | 

Remark. The proof given here of R u e l l e ~ D L R  is aesthetically 
unsatisfying: the two notions of physical equivalence are statements purely 
about interactions and Hamiltonians, so there ought to be a purely 
"algebraic" proof of their equivalence involving only these concepts, without 
dragging in the whole theory of equilibrium measures, Gibbs measures, and 
their equivalence. In particular, it is galling to have to assume that f2 o is 
a standard Betel space, for a result that obviously has nothing to do with 
topology. However, we have been unable to find such an algebraic proof; 
we hope that some reader will do so. 

A.3.8. Estimates on Hamiltonians and Gibbs Measures. In 
Section 2.4.5 we stated Proposition 2.40 for the case of a compact metric 
single-spin space. Here we prove a more general theorem in which this 
restriction is removed. (We still consider only continuous interactions and 
functions, but that restriction, too, could be removed if we really cared.) 

Proposition A.11 (=Proposit ion 2.40'). Themap [~ ]~-~[ f~]  
is an isometry of ~ o / j  onto Cql(f2)/Jql, and of ~@~ onto 
Cql(O)/(Jq, + const). Here Jql = J n Cql(~). 
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Proof. It is convenient (following Ruelle, ref. 318, Section3.2) to 
introduce the modified observable 

f{; - }-', ~ x  (A.45) 
X ~mid 0 

where X~mid 0 denotes that 0 is the m([xI + 1)/2~th element ("middle ele- 
ment") of X in lexicographic order. Clearly f~  - f ~  ~ Jql. The advantages 
o f f ~  are due to the following easily verified facts (ref. 318, p. 37): 

(a) 
(b) 
(c) 

{f ; :  ~ ~ ~ f i n i t e  } : Cloc(.~)- 
{ f ; :  4~sN ~ = Cq1(f2). 

For all f ~  Cqi(Q), 

Ilfll~o -- inf I1~11~0 (A.46) 
~ ~ ~o:j , '~;-  f 

Moreover, for f ~ Gor there exists a q~ z ~'~finite that attains 
this minimum. 

In particular, the map q~ ~ [ f e ]  = E f t ]  is o n t o  C q l ( ~ ) / ~ t ~ q l .  

Now, from II/~lloo ~< IIq~ll~0 we easily deduce that 

Ir [fro] r] c(m/J <- II [ ~ ' ]  II,0/y (A.47) 

To prove the reverse inequality, note that by Proposition A.8 we have, for 
any f ~  Cq1(s 

I[[f]llc(m/j=Alim IAI-~ ~ T , f  0o 
a~A  

Now, by property (c) above, for each A and each e > 0 we can choose ~u~ ~o  
such that f ~ , =  JAI - j  ~a~z  T , f  and II ~ l J .0~  II [AI-' Y,.~A T~ftloo +8. (In 
particular, we have [ f ]  = [f t~]  = [f~,].) Then, by taking A ,," oo and 
e,~0, we conclude that for a l l f ~  Cql(f2), 

II [ f ]  II cr >- inf II ~1[ so (A.48) 
~ 0 :  [ f ~ ]  = [ f ]  

In particular, taking f = f~,  we get 

II [ f e ]  [[ c(e)/J >~ II [4~] Jl ~vy (A.49) 

This proves that the map [q~]~-* [ f e ]  is an isometry of N ~  into 
C(O)/J. 

Repeating the same argument with f replaced by f +  c, and then 
optimizing over c, we conclude that [q~] ~-~ I r e ]  is also an isometry of 
~o/(~r + Const) into C(~) / (J  + const). | 
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Proof of Proposition 2.44. Part (a) is easy and well known: see 
ref, 209, p. 9. 

Part (d): By definition we have 

H + = ~ # x  (A.50) A, free 
X ~ A  

and 

x E A  

!X1-1 Txqb x 
x ~ A  X ~ O  

x ~ A  X ~ O  

= E E Irl =~ +~ 
x a A  Y + x  

[YI 
(A.51) 

(the double sum is absolutely convergent and hence can be rearranged 
freely). Thus 

HA~,free- 2 Txf+ = -  E 
x a A X c~ A :/- ;ZJ 

X c~ AC # C5 

Taking norms, we have 

IxaAf 
!Xl 

- -  45 x (A.52) 

A,free I X  ('~ A I 
x ~ A  co x c ~ A # ~  

~ IXI -* I1~11oo 
x e A  X + x  

X c~ A C ~ (ZJ 

~= I Y I  1 N ~ )  YII oo 

x c A  Y + O  
( Y + x ) ~ A C 4 = ~  

[(A C-  Y)c~A] qkq~rl]~ (A.53) 
~+o L YI 

Now divide by [AI: 

[A 1-1 ~ o~ (A.54) H . ~ o o -  y~ T~.f~ ~< y~ I(A c -  Y)~AI It~gl~ 
x~A Y~o IAI IY] 
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This sum is dominated uniformly in A, since I(A c -  Y ) n A I / I A I  ~< 1 and 
q5 e ~,0. On the other hand, for each fixed finite set Y, we have 

I(A ~ -  Y)c~A] 

IAI 

= Z IA\(A-y)I (A.55) 

which tends to zero as A z ~ (van Hove). Hence, by the dominated 
convergence theorem, (A.54) tends to zero as A z ~ (van Hove). 

Parts (b) and (c) are immediate consequences of (d) together with 
Propositions A.8 and A.11. | 

Remark. See ref. 318, p. 41, for an alternate proof of (c), carried out 
first for q5 e ~,nite and then extended to ~o by density. 

Proof  o f  Proposition 2.45. Part (a) is easy and well known: see 
ref. 209, p. 14, or ref. 160, p. 29. 

Part (d): By definition, 

HA r r = W e 
- -  HA.free A.A c = Z ~bX (A.56) 

Taking norms, we have 

X c~ Ac ~ ~Zi 

X ~ A v ~  
X c ~ A c ~  

x ~ A  X ~ x  
X c~ AC ~ ;2r 

= E E II yll  
x ~ : A  Y ~ O  

( Y + x )  c ~ A C ~  

= ~ J(A ~ -  Y )c~AI .  jl~ylr~ (A.57) 
Y ~ O  

The remainder of the argument is completely parallel to the proof of 
Proposition2.44(d), but using ~P~M~ rather than r ~ This proves 
(2.62a). 

As for (2.62b), the leftmost term is o(]AJ) as an immediate conse- 
quence of (2.62a) and (2.58). The middle term is proven to be o(]AI) in 
ref. 160, pp. 320-321. (That proof is stated only for cubes, but it is valid for 
arbitrary van Hove sequences.) 
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Part (b) is then an immediate consequence of (2.62a) and (2.56). Part 
(c) is likewise an immediate consequence of (2.62a) and (2.57). | 

Proof of Proposition 2.46. Let /~ be a Gibbs measure for an inter- 
action c b e ~  1 and a priori measure /~o. Then the DLR equation (2.22) 
states that 

N•A (O)A) = f dl~(~) Z~A(ZA~) ' exp[--H~(toA • ZAC)] d~ o (A.58) 

where 

Z~(rA,) = f exp[--H~(go A x 77A~)] H dl~~176 (A.59) 
x E A  

Now, by Proposition 2.45(d), we can replace H~(o9 A x z~c) everywhere 
by H~,rre~(mA), incurring an error which is o(IAl) uniformly in c~ and z. 
Therefore, 

d#~ ~ Z~,f~oo log d ~  A + HA,free + log ~ ~< o(IAI) (A.60) 

But IlH~,frCe - ~x~A Txf,~][~ <~ o(IAI) by Proposition 2.44(c), and 
log ZA ~ free - -  [AI p(~l~~ ~< o(IAI) by Proposition 2.58(a). Hence 

logdd-~+ ~ Txf~+lAtp(~bl# ~ ~<o(IAI) (m.61) 
~ A  x E A  ~.~ 

In particular, 

l~ +x~A ~ Tx.fe c(o)/~on~t<~ o(lAI) (A.62) 

This proves (2.63). This bound is uniform for all # e ff(H~). 
Now let #l (resp. #2) be Gibbsian for interactions ~b~ (resp. ~2) in ~1, 

with the same a priori measure/~o. Combining (A.61) for the two cases, we 
get 

log d#lAdl~2A ~ = x~A T x f ,  l ~2 + IAI [P(~I 1#o)_ p(q52 i~0)] ~ + o([AI) 

(A.63) 

But 

x •  Txfel-e2 =IAI .LIcPl-~211~eo/t+o(lA[) 
~X3 

(A.64) 
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by Propositions A.8 and A.11, while 

IP(q~l J/t~ - P(~21/~~ ~< IF ~b, - ~21r ~Vl (A.65) 

by Propositions 2.56(d,e) and 2.58(a). Hence 

log d#lA o~ ~<2 IAI" [[q~l-~2]lg~o/t+o(lA[) (A.66) 

But by Propositions 2.56(c) and 2.58(a), the right-hand side of (A.63) is 
unchanged if we replace ~1 by 051 + gt with ~ C o n s t  (i.e., i f f e~cons t ) .  
Thus, in (A.66) we can replace the N 0 / j  norm by N 0 / ( j  + Const). This 
proves (2.64). 

In a similar way we deduce (2.65) from the two cases of (A.61) 
together with (A.64). | 

Remarks. 1. We wish to emphasize that (2.65) is an equality. This 
fact plays a crucial role in our proof of the Second Fundamental Theorem 
(Section 3.3). 

2. The proofs of Propositions 2.56 and 2.58 do not use these 
estimates, so the reasoning is not circular. 

A.4.  Proofs  and Re fe rences  for  Sec t ion  2.5 

Proposition 2.51 is easy to prove: see, e.g., ref. 209, Lemma 1.2.2. 

Proof of Proposition 2.53. Parts (a), (b), (c), and (g) are proven in 
ref. 160, Proposition 15.5. 

Part (d) is a trivial generalization of what is proven in ref. 160, 
Proposition 15.14(1 ). 

Part (e) is proven for the bounded measurable topology in ref. 160, 
Corollary 15.7 and proof of Proposition 15.14(2). For the weak topology, 
see ref. 209, pp. 42-43; though stated there for compact metric spaces, the 
proof is in fact valid for arbitrary complete separable metric spaces. See 
also ref. 160, p. 316. 

Part (f): We know from part (e) that {I~:I(#[v)~e} is closed in the 
bounded measurable topology. In ref. 160, proof of Proposition 15.6, it is 
shown that the densities {d#/dv: I(#1 v)~< c} are uniformly v-integrable (see 
also ref. 75, Theorem 11-22); this implies, by the Dunford-Pettis theorem, 
that {#:I(#]v)<~c} is relatively compact and relatively sequentially 
compact in the bounded measurable topology (ref. 75, Theorem I1-25, or 
ref. 277, Proposition IV-2-3). Since the weak topology is weaker than 
the bounded measurable topology, the last statement is an immediate 
consequence. 
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Part (h) is proven in ref. 104, Theorem 2.1 and Lemma 2.3. 
Part (i) is an abstraction of the usual statement of strong super- 

additivity (ref. 160, Proposition 15.10). | 

Remarks. 1. Statement (d) is not true jointly in /~ and v. Coun- 
terexample: Let Q = {a, b}, /~1 = v2 = ~,, 122 = V1 = (~b, 21 = ~2 = 1. Then 
I(#~lvl) I(/z2lv2) + ~ ,  while 1 1 = = I(y/q+yl~21�89189 

2. For some improvements of (d) if the /~i have "almost disjoint" 
supports, see ref. 27, Proposition5.1 and Corollary5.2, and ref. 335, 
Theorem 2.1. 

3. If the ~r-field L" is countably generated, then the set {#:/(#Iv) ~< c} 
is in fact compact and metr&able in the bounded measurable topology: this 
follows from ref. 75, Theorem II-24. 

4. Additional useful properties of the relative entropy are given in 
ref. 160, Proposition 15.6 and Corollary 15.7. 

The finite-volume variational principle (Theorem 2.54) is well known: 
see, e.g., ref. 209, p. 46, or ref. 101, Lemma 2.1. 

A.5. Proofs and References for Sect ion 2.6 

A.5.1. The In f in i te -Vo lume Limit: Proofs 

Proof of  Proposition 2.56. For all but part (e), see ref. 209, Theorems 
1.2.3 and 1.2.4. Part (e) is an immediate consequence of Proposi- 
tion 2.34(e). | 

Proposition 2.57 is ref. 318, Proposition 4.4. Proposition 2.58 is an 
immediate consequence of Propositions 2.56 and 2.57 together with the 
estimates (2.58) and (2.62b). 

Proof of  Proposition 2.59. When v is a product measure, this is 
ref. 160, Corollary 16.15(b). When v is a Gibbs measure, this follows from 
the product-measure case together with (2.90). | 

Proof of  Proposition 2.61. The existence of the van Hove limit, and 
its equality to the supremum, both follow from the strong superadditivity 
of IA(I~IV) as a function of A, when v is a product measure [Proposi- 
tion 2.53(i)]. One way to see this is to note that strong superadditivity 
implies complete superadditivity (Lemma A.2); the claim then follows from 
Proposition A.3. Alternatively, one can make a direct argument using the 
strong superadditivity (ref. 209, Theorem II.2.2). 

The affineness is an immediate consequence of Proposition 2.53(c,d), 
and the lower semicontinuity is an immediate consequence of Proposi- 
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tion2.53(e) and Eq. (2.93b); see ref. 209, Theorem lI.2.3, or ref. 160, 
Proposition 15.14. 

The proof of (d) employs the following construction: Pave 2d by a 
cube C, and its disjoint translates. Now, given a translation-invariant 
measure #, let Pn be a measure which equals # when restricted to each of 
these cubes, and in which the copies of the spins in the various cubes are 
rigidly forced to be equal. Then let #,  =n-dy~a~c, T~p~. By construction, 
#, is translation-invariant; and with a little work one can prove that 
i(#n]v)=ima x. On the other hand, it is easy to see that lim,_~o~ # , =  
lira . . . .  p,  = #  in the bounded quasilocal topology. 

Part (e) is proven in ref. 209, Lemma IV.3.2. 
When Q0 is a standard Borel space (e.g., a complete separable metric 

space, or a Borel subset thereof), the compactness in the bounded quasi- 
local topology is proven in ref. 160, Proposition 15.14(3). (We do not know 
whether the result is true for more general spaces Oo,) Since the weak 
quasilocal topology is weaker than the bounded quasilocal topology, the 
last statement is an immediate corollary. | 

Proposition 2.62 is proven in ref. 160, Theorem 15.30(b). 

Remark. F611mer (125) has given a beautiful formula for /(#Iv) in 
terms of the relative entropy (not relative entropy density!) of the condi- 
tional distributions of # and v given the lexicographic past. See also 
ref. 160, Proposition 15.16 and Theorem 15.20. 

Theorem 2.63 is essentially ref. 160, Theorems 15.30(b) and 15.39. 

Remark. A rather weak converse to Theorem 2.66 is the following: 
Let #1, #2 ~ M+l,~nv((2) with #2 Gibbsian for ~ 2 e ~  1, i (#11#2)~K and #1 
ergodic. Then there exists an interaction <b le~  ~ (not ~1!) with 
limb1- q52]1~0 ~< K/2 such that #1 is an equilibrium measure for r This can 
be proven using the Bishop-Phelps theorem (ref. 209, Corollary V.2.1 ). The 
same is true if #1 is a finite convex combination of ergodic measures, but 
then the constant K/2 is replaced by a worse one. 

Theorem 2.67 is proven in ref. 160, Theorem 15.37. The proof is given 
there for a sequence of cubes, but the same proof works for an arbitrary 
van Hove sequence. 

Proof of Corollary 2.68. ~i,~(H e) # ~ ,  so let v e ~,inv(H e) and use 
(2.110). Then Gibbs =~ equilibrium is Theorem 2.66, and equilibrium== 
Gibbs is Theorem 2.67. | 

A.5.2. The In f in i te -Volume Limit: Counterexamples.  As 
mentioned in Sections 2.6.1 and 2.6.2, the existence of the limits defining 
the infinite-volume pressure p(f lv)  and the infinite-volume relative entropy 
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density i(/~l v) is a highly nontrivial problem: contrary to what might be 
supposed at first glance, these limits do not always exist. The first coun- 
terexamples bearing on this problem are due to Kieffer. (219) Here we give 
a simplified version of Kieffer's counterexample, due to Sokal(34~ 

Let f2 = { -  1, 1 } z. Let v, be the measure which gives weight 1/2n to 
each of the periodic sequences of period 2n consisting of n l's followed by 
n - l ' s .  Let v be the convex combination ~,~_~ a~v, .  We shall show that 
for a suitable choice of the coefficients {an}: 

(a) For  the function f(~o)--m0, the pressure 

log ( J exp co i dr(e)) lira k - 1  

k ~  i 1 

does not exist. 

(b) For  the measure # = 6 + = d e l t a  measure concentrated on the 
sequence of all + l's, the relative entropy density l i m ~  ~ k ~I~ , . , k~(# lv )  
does not exist. 

Proof of (a). Let gn(k)  =- ~ e x p ( ~ =  ~ co~) dv,,(co). It is easy to see that 
g,  is a periodic function of period 2n, and satisfies the (crude) bounds 

where 

1 F k 
2---n e "( ) <<. g, ,(k) <~ e F"(k) 

F,,(k ) =-- n - Ik(mod 2n) - nl 

(A.67) 

(A.68) 

is the sawtooth function taking the value 0 at k = 0, 2n, 4n .... and the value 
n at k = n, 3n, 5n,.... Hence 

an 

( J exp o9 i dv(~o) = a ,  gn(k)  (A.69) g (k )  
aneFn(k) 

n = l  

Now choose the sequence {an} to have huge gaps: 

{ ; -~"  if n = 2 ' f o r s o m e i n t e g e r l  (1.70) 
an = const x otherwise 

where ~ > 0 will be chosen later. Then for k = 2 t we have the lower bound 

g ( k  ) >~ ak gk (k  ) >~-i ak2k ~~ = 2--kl e( 1 _ ~)k (A.7t) 

822/72/5-6-16 
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and hence 

lim inf 1 l ~  ~ T l ~  (A.72) 

On  the other  hand,  for 2Z<k<2 z+l we have the upper  bound  

2 / 

g(k) <~ ~ a,e n+ ~ a,e k [-using Fn(k ) <<.min(n, k) ]  
n = l  n ~ 2 / + 1  

~(n~=lan) C21"~-(n=2~l+lan) Ck 
<<. e2~+ const • e ~2~+~ek [const  depends on ~ only]  

~< const  • exp [max(2  t, k - ~2 z+ 1)] 

Defining fl = k /U  (so that  1 < fl < 2), we find 

(A.73) 

1  o.st 
l ogg(k)<~  ~ +max , 1 -  (A.74) 

N o w  choose any 0 < ~ <  1/2. Then max(1/fl ,  1 - 2 7 / f l )  is minimized at 
f i = f l * - = 2 ~ +  1 (which satisfies 1 < f l *  < 2 )  and takes the value 1/(2c~+ 1) 
there. By choosing k =  [_2tfl*J and letting l ~  ~ ,  we conclude that  

1 1 
lira sup ~ log g([2zfl*_J) ~< 2c~ + 1 (A.75) 

Since 1/(2c~ + 1) < 1 - ~ when 0 < ~ < 1/2, it follows f rom (A.72) and (A.75) 
that  limk ~ o~ k - 1  log g(k) does not  exist. | 

Proof of  (b). I t  is easy to see that  

h(k) =- I{1,...,k~(6 + Iv) = - l o g  v(e) 1 . . . . .  co k = + 1)  

Let us again take 

= const  x {~-~"  a ,  

Then  for k = 2 t we have 

n - k + l  
= - l o g  a .  - -  

n = k 2n 

if n = 2 t for some integer l 

otherwise 

(A.76) 

(A.77) 

ak h(k) <<_ - l o g  ~-~ = ~k + log(2k) (A.78) 
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On the other hand, for 2 l<  k < 2 l+1 we have 

2 m - k +  1 
h(k) = - l o g  e -  ~2~ 2 m + 1 

r n = l + l  

>~ - l o g  ~ e -~2m 
r n = l +  1 

I> const + ~2 l+ 1 [const depends on c~ only] 

Thus 

(A.79) 

1 l 
l i m s u p ~ h ( 2 )  ~ e  (A.80a) 

1 
lim inf ~ h(2 l + 1 ) >7 2~ (A.80b) 

l-*~ 2 + 1  

So for any e > 0 we conclude that limk ~ o~ k - l h ( k )  does not exist. | 

We note also that Varadhan (368) and Newman (28~ have given an 
example of a mixing Gaussian process for which the pressure does not 
exist. 

APPENDIX  B. L O W - T E M P E R A T U R E  PHASE D I A G R A M S  
A N D  P I R O G O V - S I N A I  THEORY 

B.1. General i t ies on Phase Diagrams 

The central problem in equilibrium statistical mechanics is the descrip- 
tion of the set of Gibbs measures for a given interaction. More generally, 
families of interactions (or of specifications) are considered, with members 
labeled by certain parameters: inverse temperature 78 /~, magnetic field, 
chemical potential, etc. The ultimate goal is then to describe the set of 
Gibbs measures, in particular the number  of extremal Gibbs measures, as 
a function of these parameters. The partition of the parameter  space into 
regions with different numbers of extremal Gibbs measures is called a phase 
diagram of the family of interactions, and the manifolds delimiting such 
regions are called phase-transition manifolds. 

A natural approach to the difficult problem of determining the full 
phase diagram is to fix first some of the parameters so that the resulting 
"restricted" phase diagram is amenable to a comparatively simple analysis. 
Then, one studies whether this phase diagram is "stable," that is, whether 

78 As we want to discuss explicitly the role of this parameter, throughout this appendix we 
un-absorb/~ from interactions and Hamiltonians. 
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a small change in the fixed parameters produces only a small deformation 
of the diagram keeping unaltered the main properties of the extremal Gibbs 
measures. 

The most widely used "restricted" phase diagrams are the high- 
temperature (fl = 0) and low-temperature (fl = oo) limits. In the former, the 
situation is particularly simple: The finite-volume Gibbs distribution (2.20) 
becomes for fl = 0 just the product measure 1-Ix~A dl ~~ independently of the 
boundary condition. Hence, there is a unique Gibbs measure, namely 
# ~  ~ d/~ ~ which corresponds to independent spins, the one at 
site x distributed according to the apriori  measure #o. [Note that for 
translation-invariant Gibbs measures the same conclusion follows from 
the variational principle (2.105a), which for f ~ = 0  requires i(~[/z~ 
inf i(. I/~ ~ = 0, hence # =/~o.] It is well known that this infinite-temperature 
phase diagram is stable in a suitable space of interactions: for fl small the 
Gibbs measure remains unique and it corresponds to weakly dependent 
spins. This has been proven for lattice-gas (143) or, more generally, 
spin-l/2 (2~ interactions in ~1, and for general interactions in ~2.(86,18o) 
It is not known whether it is true for general interactions in ~1. (Note 
added in proof: Indeed, this fact has been proven to be true; see "Note 
added" in footnote 43.) 

The phase diagram for the zero-temperature limit is, in general, more 
complicated to describe; its stability is the subject of Pirogov-Sinai theory. 
In this appendix we give a brief overview of the conclusions of this theory 
with an eye on the applications needed in Section 4. Its understanding 
requires, of course, a proper grasp of the basic notions involved in the 
construction of zero-temperature phase diagrams. As remarked already in the 
seminal work of Ruelle, (3~6) the formalism for zero-temperature statistical 
mechanics has some important differences from the one for finite tem- 
peratures reviewed in Section 2. Moreover, the nomenclature adopted 
throughout the existing literature is often a source of confusion, with dif- 
ferent authors assigning different meanings to the same words. Therefore, 
for the convenience of the reader and to fix the terminology, we start with 
a review of the zero-temperature formalism. For this part of the appendix, 
the reference closest to our needs--and from which we have taken many of 
the ideas--is the review by Dobrushin and Shlosman. (97) However, for the 
sake of consistency with the rest of our work, we adopt a nomenclature 
slightly different from theirs. We shall parenthetically contrast these 
differences both for the benefit of the reader familiar with ref. 97 and as a 
token of the confusing state of the nomenclature. 

Let us state once and for all that in this appendix, we consider only the 
case of  periodic interactions and finite single-spin space, i.e., If2o] finite. 
Moreover, except in Sections B.2.9 and B.4.4, the interactions are assumed 
to be of  finite range. 
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B.2. Zero-Temperature Lattice Systems. General Formalism 

Heuristically, as fl ~ 0% only configurations with minimal energy 
"survive," the others being exponentially damped by the Boltzmann factor. 
However, in the general theory of zero-temperature statistical mechanics 
- -as  in statistical mechanics quite generally--the central objects are not 
individual configurations, but rather probability measures describing a 
random distribution of configurations. (3~ Just as for nonzero temperature, 
such measures can be defined either via specifications or via a variational 
principle. 

B.2.1. Zero-Temperature Gibbs Measures. Let us start with 
the approach based on specifications. We see that the p--+ oo limit of the 
finite-volume Gibbs distribution (2.20) with a fixed boundary condition 
produces a measure concentrated on the configurations of "minimal 
energy" for the given boundary condition and giving equal probability to 
each such configuration. That is, for any interaction 45, any finite volume 
A, and any boundary condition v e [2AC, we have 

#~ c~ f2~ +) ~ r=o  
lim ~A~(A)= ~ ----=~A:+ (A) (B.1) 

f l ~ o o  

for all sets A e J~A, where g2 ~ is the set of configurations co a in A mini- A,'c 

mizing the e n e r g y  H~(~o A X "EAt): 

F2A~,+ = {CO a : H~A(OOA X ZW) = inf H~((5 A x VA+)} (B.2) 
(7) A E ff2 A 

We call H ~ , r= o=  t~A, + ,  ~,r-o,)a~:e the zero-temperature specification (or 
ground-state specification (97)) for the interaction 45. 

Defini t ion B.1. A zero-temperature Gibbs measure for 45 is a 
measure consistent with the specification (B.1). 

We remark that the specifications (B.1) are quasilocal (since we only 
consider finite-range interactions), but not uniformly nonnull, hence they 
are not Gibbsian. Therefore, zero-temperature Gibbs measures happen not 
to be honest Gibbs measures. In fact, the possibility of including (B.1) in 
the general framework is one of the advantages of introducing the general 
notion of specification (Section 2.3.1), rather than just the more restricted 
(and popular) class of Gibbsian specifications (Section 2.3.2). The zero- 
temperature Gibbs measures for a given interaction 45 from a (weakly) 
closed--hence (weakly) compact--convex subset of the compact metric 
space M+~(~2)cM(f2). Therefore, by Choquet's theorem, (298) any such 
measure can be written as the barycenter of a probability measure concen- 
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trated on the extreme points. In fact, the general theory of specifications 
guarantees us that this decomposition into extremal measures is unique 
(ref. 160, Theorem7.26), i.e., that the set of zero-temperature Gibbs 
measures is a simplex. 

B.2.2. Ground-Sta te  Conf igurat ions.  Support  Properties of  
Zero-Temperature  Gibbs Measures.  The specifications (B.1) satisfy 

7~A(O.)A[O)Ac)=O unless (,OAEff~OA.coAc (B.3) 

This property implies that the zero-temperature Gibbs measures--which 
satisfy #~A =/~ for every finite set A--are supported by the set of configura- 
tions ~ such that ~oA ~g2 ~ for every finite A, i.e., of configurations A, O)AC 
that minimize the local energy when they themselves are the boundary 
condition. Configurations with this property are called ground-state 
configurations. By (B.2) they can be characterized as those configurations 
whose energy cannot be lowered by any change involving only a finite 
number of spins. That is, ~o ~ g2 is a ground-state configuration for an 
interaction (b if and only if for every A and every configuration ~o' such 
that C~AC = C~c we have 

O p ~ '  H~(~ ) -  H~(~)-  y, 
A ~ S  

[~bA(oJ') -- OA(~)] /> 0 (B.4) 

The set of ground-state configurations is closed (hence compact) because 
the conditions (B.4) involve finite-volume Hamiltonians which are 
continuous functions of the configurations. This fact of being a closed set 
justifies the use above of the expression "is supported by" (--"its support 
is a subset of"). We recall that the support of a measure kt is the smallest 
closed set of full measure (Section 2.1.3). 

The fact of being supported on configurations satisfying (B.4) is not 
equivalent to being consistent with the specifications (B.1)--it is weaker. 
The more general measures characterized only by this support property 
turn out to play an important role in the study of the stability of zero- 
temperature phase diagrams (Theorem B.12 below). Inspired by ref. 97, we 
call these measures w- (for weak) zero-temperature measures. Formally: 

Def in i t ion B.2. A w-zero-temperature measure for  an interaction 
~b is a measure # satisfying 

#({ground-state configurations for ~b})= 1 (B.5) 

In Section B.2.7 we discuss a natural limit process that produces 
w-zero-temperature measures, and we present an example (for the Ising 
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antiferromagnet with a magnetic field) in which this limit process produces 
a translation-invariant w-zero-temperature measure which is not a zero- 
temperature Gibbs measure. 

Obviously the set of w-zero-temperature measures for a given inter- 
action ~ is (weakly) closed--hence (weakly) compact and convex. The 
extreme points are simply the delta measures 6o~ concentrated on a single 
ground-state configuration co. This set is therefore trivially a simplex. 

The previous discussion can be summarized in the following way: 

Theorem B.3. Every zero-temperature Gibbs measure is a w-zero- 
temperature measure f o r  the corresponding interaction, i.e., it satisfies (B.5). 

This theorem constitutes the precise version of the idea that only 
configurations with minimal energy "survive" at zero temperature. 

B.2.3. Rigid Ground-Sta te  Conf igurat ions.  The set of 
ground-state configurations is in general rather large. Already the 
ferromagnetic Ising model provides a rich illustration. This model has 
exactly two periodic (in fact translation-invariant) ground-state configura- 
tions: the a l l -"+"  and the a l l - " - "  configurations. But in addition it 
presents infinitely many nonperiodic configurations exhibiting interfaces 
between " + "  and " - "  spins. In all dimensions we have the flat-interface 
configurations: 

+ 1 for x~ >/0 
co~ = (B.6) 

- 1  for x ~ < 0  

(and translated, 90~ and 180~ versions of this). In higher 
dimensions we have a growing zoo: For dimensions d~>2 we have 
configurations with interfaces in the form of staircases; for d>~ 3 there 
appear configurations resembling "books on a table" or "books on a 
staircase. "(97) See ref. 97 for a partial catalogue. 

Not all these configurations are equally relevant for zero- and low- 
temperature phase diagrams. We can distinguish three mutually exclusive 
categories roughly representing different (for us decreasing) levels of 
relevance. We shall call them rigid, convivial, and superfluous. The rigid 
configurations are usually the most important ones (albeit not the most 
numerous); they are associated with deterministic zero-temperature Gibbs 
measures: 

Def in i t ion B.4. For a given interaction ~ ,  a ground-state configura- 
tion co is called rigid (9) if the measure 6~ concentrated on co is a zero- 
temperature Gibbs measure f o r  q~, i.e., is consistent with the specification 
(B.1). 
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A simple calculation proves the following: 

Proposition B.5. 
only if 

for all finite A. 

A ground-state configuration o9 is rigid if and 

I A,o~,,cl = 1 (B.7)  

In words, this says that ~o placed as a boundary condition determines 
uniquely the minimal-energy configuration inside any given volume 
(thereby justifying the qualifier "rigid"). Equivalently, any local change of 
~o produces a strictly positive change of energy. Usual phase-diagram 
studies--in particular Pirogov-Sinai t h e o r y ~ e a l  only with these deter- 
ministic zero-temperature Gibbs measures and their low-temperature 
perturbations. (Warning: Reference 97 reserves the name "ground-state 
configurations" only for the rigid ones.) 

For the Ising model (ferromagnetic, zero magnetic field), it is clear 
that the a l l -"+"  and a l l - " - "  configurations satisfy (B.7) and hence they 
are rigid in any dimension. The case of the nonperiodic ground-state 
configurations (flat-interface, staircase-interface, etc.) is more delicate. 
There is, however, a simple argument/97) showing that if r is a ground- 
state configuration for the d-dimensional Ising model, then its cylindrical 
extension to an extra dimension--defined by ~)(Xl,...,Xd, Xd+l)~ ~o(xl....,x~)--is a 
rigid ground-state configuration for the (d+  1)-dimensional Ising model. 
Indeed, if we think of the extra dimension as "vertical," any local change 
of c5 consists of a finite stack of local changes of o). The bottom and top 
d-dimensional sections of this stack face sections where the configuration is 
equal to e) without changes. Thus, some of the corresponding "vertical" 
bonds join antiparallel spins, which produces a strictly positive contribu- 
tion to the change in energy. This proves (B.7) and hence the rigidity of (5. 

As a consequence of this argument, we conclude that the flat-interface 
configurations are rigid for d~> 2, the staircase-interface ones are rigid for 
d~> 3, and so on. The proof that the rigidity does not extend below such 
dimensions requires further arguments. We shall comment on this below. 

Remark. Rigidity of a ground-state configuration co does not exclude 
its belonging also to the support of some zero-temperature Gibbs measure 
that is not deterministic. For instance, if there is more than one rigid 
configuration, one can of course take convex combinations of the corre- 
sponding delta measures. The possibility of a less trivial example will be 
discussed below, after (B.10). 

B.2.4. Convivial Configurations. Zero-Temperature Entropy. 
However, not all is deterministic in zero-temperature life. Our next type 
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of configurations are those that belong only to the support of a non- 
deterministic zero-temperature Gibbs measure. We recall that the support 
of a measure is the smallest closed set with full measure. 

Def in i t ion B.6. For a given interaction, a ground-state configura- 
tion ~o is called convivial i f  6~ is not a zero-temperature Gibbs measure but 
there exists a zero-temperature Gibbs measure having 09 in its support. 

These ground-state configurations, which individually have little or no 
weight but are relevant as an ensemble, and the associated nondeter- 
ministic Gibbs measure supported on such an ensemble, are probably not 
what the physicist-in-the-street has in mind when thinking about zero 
temperature. One expects them in cases where there is a large degeneracy 
in the ground state. The precise concept measuring such degeneracy is the 
zero-temperature entropy (also called residual entropy). For  the sake of 
completeness, we briefly review the definition and principal properties of 
this quantity. Our main reference is the classic article by Aizenman and 
Lieb.(9) 

There are some subtleties involved in the right notion of zero- 
temperature entropy. Heuristically, its computation requires a limit 
process: one must compute (or measure) a sequence of low-temperature 
entropies and take the limit as the temperature goes to zero. The so-called 
"third law of thermodynamics" claims that such a limit must be zero; such 
behavior is indeed seen in simple models, but not always. Its violation must 
be interpreted as signaling a large "degeneracy of the ground state." The 
formalization of these ideas requires a consideration of the role of the 
infinite-volume limit. As pointed out by some authors (see refs. in ref. 9), 
the volume must be sent to infinity before taking the limit T--* 0. But in 
this case, one must consider with some care the boundary conditions. If, 
motivated by the "ground-state-energy" (=variat ional)  approach [see 
Eq. (B. 14) below], one works with pre-fixed--for instance, f ree--boundary 
conditions, then there are examples where the contribution of some excited 
configurations survives the zero-temperature limit, so that the residual 
entropy seems to be measuring more than just the "degeneracy of the 
ground state." The correct way to consider the boundary conditions, and 
hence the right definition of "degeneracy," was pointed out by Aizenman 
and Lieb. (9) At the same time, they provided a remarkable formula for the 
zero-temperature entropy purely in terms of zero-temperature concepts, 
with no reference to limits from finite temperatures. We shall take this 
formula as the definition. For  a finite set A and an interaction q~, let us 
denote by NA e the set of restrictions to A of the ground-state configurations 
for qs. 
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Definition B.7. 
is the limit 

The zero-temperature entropy for an interaction q5 

1 
s ~ =  lira 7-77,~1og I~A~I (B.8) 

A /"  o o  I/ll 

In words, this formula says that a system has nonzero residual entropy 
iff the number of distinct ground-state configurations, as viewed within a 
finite volume, grows exponentially with this volume. Following ref. 248, it 
is suggestive to call such models superdegenerate. Intuitively, this feature 
requires the presence of competing interactions to produce a sufficiently 
large number of ground-state configurations. Indeed, it can be proven (9~ 
that all ferromagnetic models have zero residual entropy. 

The key result establishing the connection between nonzero residual 
entropy and existence of convivial ground-state configurations is the 
following. To abbreviate, for a translation-invariant (or periodic) measure 
# we denote s(p) - - i ( #  t/~ ~ + log If20[ , where i(/tl v) is the relative entropy 
density defined in Section 2.6.2, and /~o is the product over all sites of 
normalized counting measures. (This is the physicists' usual entropy, which 
is defined relative to the unnormalized counting measure on the single-spin 
space g2o--this accounts for the additive constant log I;2o[.) 

P r o p o s i t i o n  B.8. Fix an interaction q~. Then: 

(a) I f  # is a translation-invariant w-zero-temperature measure for ~b, 
then s(#) <~ s~. 

(b) There exists for ~b a translation-invariant zero-temperature Gibbs 
measure kt such that s(#)= s~. 

We summarize below the results on which this proposition is based 
[Proposition B.13 and Theorems B.11, B.15, and B.17(b)]. We note that if 
the support of # is a finite set, then s(#)--0 [kt is of the form Zi  2i6~,, 
hence s ( p ) < . - ( 1 / [ A [ ) Z i 2 i l o g 2 g ~ O  ]. Therefore, we conclude the 
following: 

P r o p o s i t i o n  B.9. A superdegenerate system with finitely many rigid 
ground-state configurations exhibits infinitely many convivial ground-state 
configurations. 

This proposition covers all the cases we know of in which the existence 
of convivial ground-state configurations has been proven. Consider, for 
example, the model with spins coi= -1 ,  0, 1 and Hamiltonian 

/4A = Y, (R.9) 
I / - J l  = I 
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The ground-state configurations for this model are all the configurations 
with no spin equal to zero, and the all-"0" configuration. The zero-tem- 
perature entropy for this model is exactly log 2. As the all-"0" configuration 
is the only rigid one, we conclude, by the previous proposition, that 
there must be infinitely many convivial ground-state configurations. 
Another important example is the Ising model with nearest-neighbor 
antiferromagnetic coupling of strength J and magnetic field h = 2d [J]. Its 
ground-state configurations are those in which no two nearest-neighbor 
spins are simultaneously " - , "  a fact that produces a nonzero residual 
entropy. There are no rigid configurations, hence the proposition implies 
the existence of many convivial ones. For this model, such a fact can be 
proven also by a different argument which yields some additional insight. 
Indeed, by identifying a " - "  spin with the presence of a particle, the 
ensemble of ground-state configurations--with the associated conditional 
probabilities giving equal weight to all of them--is seen to correspond to 
the grand-canonical ensemble for the ideal lattice gas with nearest-neighbor 
exclusion and chemical potential equal to zero. Using a beautiful 
computer-assisted proof, Dobrushin et a/. (89) proved that such a system has 
a unique Gibbs measure. As none of the ground-state configurations are 
rigid, this Gibbs measure is nondeterministic and therefore supported on 
convivial configurations. This example shows a way (in fact, the only one 
we know of) to interpret and understand the characteristics of nondeter- 
ministic zero-temperature Gibbs measures supported on (very many) 
convivial ground-state configurations: One maps it into a statistical- 
mechanical problem for another, better understood, equivalent system. As 
the original ensemble involves configurations satisfying some condition 
derived from the minimal-energy requirement, this equivalent system will, 
in general, be a model with exclusions. That is, it will not fit into the 
general formalism developed in Section 2. 

Proposition B.9 does not yield any information on models with zero 
residual entropy, for instance, on ferromagnetic systems. In particular, the 
question remains of whether conviviality requires superdegeneracy. A 
possible counterexample is presented in ref. 97: Consider, for the three- 
dimensional ferromagnetic Ising model, the ensemble of ground-state 
configurations that differ only locally (i.e., in finite volumes) from the 
"zigzag interface" one: 

60 zigzag I-~-ll if tl-}-t2-I-t3>O (B.IO) 
( t l ' t 2 ' t 3 )  = - -  if tl q- t2 + t3 <~ O 

Such an ensemble can be mapped onto an appropriate solid-on-solid 
model. If this model can be proven to have at least one Gibbs measure (a 
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problem still open), then it would imply that the above configurations are 
convivial. We must acknowledge that the standing conjecture (87'97) is that 
such Gibbs measures do not exist. Note that if such a Gibbs measure does 
exist then the a l l -"+"  and a l l - " - "  configurations would be at the same 
time rigid and in the (boundary of the) support of a highly nondeter- 
ministic zero-temperature Gibbs measure. 

Nevertheless, there is an interesting result (Proposition 4 of ref. 9) 
involving models with zero residual entropy: 

Proposition B.10. I f  s e = 0 ,  every translation-invariant w-zero- 
temperature measure for ~ is supported on the set of rigid ground-state 
configurations. 

That is, if a model with zero residual entropy does in fact possess 
convivial ground-state configurations, then such configurations can lie in 
the support only of non-translation-invariant zero-temperature Gibbs 
measures. 

Remark. On the other hand, Radin (3~ has shown examples of 
superdegenerate systems with a unique translation-invariant w-zero-tem- 
perature measure entirely supported on the set of rigid ground-state 
configurations. In these examples, the set of ground-state configurations 
does not have any closed translation-invariant proper subset, hence it is 
formed by all the translates of a single (nonperiodic) configuration, and 
limits of such. The nonzero residual entropy implies that any two such 
translates must differ in infinitely many sites, and hence they all must be 
rigid ground states. However, this phenomenon can happen only in the 
presence of infinite-range interactions (albeit decreasing arbitrarily fast with 
the range). (3~ 

B.2.5. Super f luous  G r o u n d - S t a t e  Conf igura t ions .  The last 
type of ground-state configurations are those that are not in the support of 
any zero-temperature Gibbs measure. These are obviously the least inter- 
esting ones, and we shall call them superfluous ground-state configurations. 
The most immediate example is provided by the one-dimensional 
ferromagnetic Ising model. Its ground-state configurations are the al l -"+,"  
a l l - " - , "  and the flat-interface configurations. However, all the zero- 
temperature Gibbs measures are of the form 26+ + (1 - 2 )  6 ; the flat- 
interface configurations (B.6) are superfluous. Heuristically this is because 
the interface is free to wander at no energy cost; in the infinite-volume 
limit it wanders to + oe. The proof goes as follows: Denote by Z+-x0 the 
indicator function of the configuration which is + 1 for x < Xo and - 1 for 
x>~xo. Then, for A = [ - N ,  N], the measures (B.1) yield 
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10/(2N+ 2 if "c (N+I) = -~-t, g N §  "~- - 1  
~ZA~'r=O(Z +_x01Z) = and - N < . x o < ~ N + l  (B.I1) 

otherwise 

[The first line is due to the 2 N +  2 possible positions Xo for the "kink" 
(lack of rigidity).] Therefore, if # is a zero-temperature Gibbs measure, 
then for every N~> ]Xo[ we have 

1 
- 2 N + 2 # ( ~ o  (N+tl-- + l  and ~N+l = - - l )  

1 
~< 2N + 2  (B.12) 

Letting N ~ ~ ,  we conclude that/~(Z + -~0) = 0. The same holds, of course, 
for the flat-interface configurations which go from - to +.  As the ground- 
state configurations here form a countable set (labeled by x 0 E [ - o %  ~ ] 
and the polarity of the kink), its measure is the sum of the measure of each 
of its points. Therefore, (B,12) implies that/~ gives full measure to the set 
formed only by the a l l - "+"  and a l l - " - "  configurations; the flat-interface 
configurations a r e  s u p e r f l u o u s .  79 Combining this with the results stated 
above, we conclude that the flat-interface configurations (B.6) are super- 
fluous in d =  1, and rigid in d~> 2. 

The preceding argument requires not only that there be a growing 
degeneracy in the position of the interface, but also that the number of 
ground-state configurations be not too large, i.e., at most countable. This 
second fact is not true for higher dimensions. In dimension two, for 
instance, the "staircase-interface" configurations form an uncountable set. 
To be sure, the set of staircases with finitely many stairs is countable, and 
the above argument can be used to prove that this set has measure zero for 
all zero-temperature Gibbs measures. This would prove that the support of 
such measures is always contained in the set formed by the al l -"+,"  
a l l - " - , "  flat-interface, and infinite-staircase configurations (this being a 
closed set whose complement has measure zero). But it does not rule out 
the occurrence of nondeterministic zero-temperature Gibbs measures sup- 
ported on infinite-staircase configurations, similar to what may happen in 
the three-dimensional Ising model for configurations close to eJ zi~z"g. 
Nevertheless, we must keep in mind that we are primarily interested in 

79 Alternatively, one can see that the weights (13.t 1 ) define in fact a specification. The above 
argument can then be phrased as showing that (B.I1) is an example of a specification 
with no Gibbs measure. In this form, the example has been discussed by Georgii [ref. 160, 
Example (4.16)]. 
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those features of zero-temperature phase diagrams that survive at (can tell 
us something about) low but  nonzero temperature. Therefore, for the two- 
dimensional Ising model the possible existence of such a zero-temperature 
Gibbs measure with support on infinite-staircase configurations is a rather 
irrelevant issue, since it has been proven (1' 195) that only the Gibbs measures 
of the form 26+ + ( 1 - 2 ) 6  "survive" at nonzero temperatures. The 
question of nondeterministic zero-temperature Gibbs measures becomes 
really important only for dimension d/> 3. 

B.2.6. Nonuniqueness of Specifications and Interactions. 
We shall now comment on one important difference between the zero- 
temperature and nonzero-temperature formalisms: At zero temperature the 
"inverse problem"--given a measure, determine the specification and/or 
the interaction--is no longer well-posed: the map from interactions (or 
specifications) to zero-temperature Gibbs measures is, in general, many-to- 
one. This lack of uniqueness appears at three different levels: 

(a) There are measures consistent with several different zero-tem- 
perature specifications simultaneously. Theorem 2.15 does not apply at zero 
temperature because there are (large) open sets having zero measure for all 
zero-temperature Gibbs measures. Therefore, by redefining the specification 
more or less arbitrarily on such open sets we can obtain several different 
specifications for the same zero-temperature Gibbs measure. Let us present 
an explicit example. Consider the nearest-neighbor Ising model with formal 
Hamiltonian - J ~ < x y > e ) x O ) y - h ~ x ~ O x  . Then the measure 8+ is a 
zero-temperature Gibbs measure for the following zero-temperature 
specifications: 

1. The specification rc el ' r=~ where 451 is defined by J = 0  and some 
h > 0 .  

2. The specification rc e2'r o, where 452 is defined by some J > 0  and 
h = 0 .  

Nevertheless, He~ ' r=~162  H e2'r=~ because the former has 8+ as its only 
zero-temperature Gibbs measure, while the latter has both 6+ and 6_ as 
zero-temperature Gibbs measures. 

(b) There are zero-temperature specifications which arise from 
several non-physically-equivalent interactions (in other words, the notion 
of physical equivalence becomes meaningless at T=0) .  We give two 
examples: 

1. Trivial example: Consider any interaction 45 and any number 
2 > 0. Then 45 and 245 are not (usually) physically equivalent, but 
they have the same zero-temperature specifications. 
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2. Less trivial example: All Ising-type pair interactions (not 
necessarily ferromagnetic) such that hx > Z y  [Jxyl for all x give rise 
to the same zero-temperature specification, namely the one that 
for each finite set A and every boundary condition gives, inside A, 
the measure concentrated in the a l l - "+"  configuration. 

(c) The variational principle (Section B.2.8 below) reduces to the 
minimization of the specific energy, which is not a strictly convex 
functional on ~1 or any of its subspaces ~h- 

B.2.7. Stabi l i ty  and w-Stabil ity. Zero temperature is in itself 
unattainable. So one really is interested in those zero-temperature features 
that "survive" at low but nonzero temperatures. For instance, one is 
interested in determining which are the measures that can be obtained 
as a fl-~ ~ limit of positive-temperature Gibbs measures for a f i xed  
interaction ~. We shall refer to these measures as stable measures for the 
interaction ~b. It is simple to check that all these stable measures must be 
zero-temperature Gibbs measures for ~b: 

T h e o r e m  B.11. Let #,  be Gibbs measures for  a f i xed  interaction 
and a sequence o f  inverse temperatures fin with fl, ~ + ~ .  I f  #n ~ #, then the 
measure # is a zero-temperature Gibbs measure for ~b. 

However, not every zero-temperature Gibbs measure for a given 
potential is necessarily stable. We can illustrate this concept with the case 
of the Ising model. For  d =  1, none of the deterministic zero-temperature 
Gibbs measures (6+ and 6 ) is stable. In fact, the only stable measure is 
(6 + + 6_ )/2. For  the Ising model in dimension 2, only the measures of the 
form 2 3 + + ( 1 - 2 ) 6 _  are stable. The deterministic Gibbs measures 
associated with the rigid flat-interface configurations are unstable: at any 
nonzero temperature, the interface "wanders" to • ~ and we are left with 
a convex combination of the " + "  and " - "  phases. ~1"195) For  dimension 3, 
the flat-interface measures were proven to be stable by Dobrushin ~87) (see 
also ref. 357). 

Remark. The low-temperature Gibbs measure for the flat-interface 
phase seems, at least in numerical experiments, to disappear at a tem- 
perature strictly below the critical temperature, giving rise to a roughening 
transition. If the above-mentioned zero-temperature measure supported 
near the configuration 09 zigz"g happens to exist, we could ask two questions: 
(i) Does it survive for T >  0 (stability)? and, if so, (ii) Does it fail to sur- 
vive to T =  To? If the answer to both questions were yes, then the Ising 
model would exhibit a second roughening transition. 

However, as our eventual goal is the study of how the full phase 
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diagram deforms as the temperature is raised, we must consider a more 
general situation in which the interaction is also varied as the temperature 
goes to zero. That  is, we must consider the more general class of measures 
that can be obtained as a /~ ~ oo limit of positive-temperature Gibbs 
measures for interactions 05n ~ 05. We shall refer to such measures as 
w-stable measures for the interaction 05. (97) (Warning: Reference 337 calls 
these measures stable.) In general, such measures need not be zero-tem- 
perature Gibbs measures for 05. For  example, if to the antiferromagnetic 
Ising model with field h = 2d I J[ considered above we add an additional 
field h n = e//~n, we obtain, in the limit /~n--* o% a Gibbs measure corre- 
sponding to a lattice gas with chemical potential c~. All these measures are 
different among themselves, and different from the unique zero-temperature 
Gibbs measure for the Ising antiferromagnet in a field h = 2d [J[, which 
corresponds to ~- -0 .  A more dramatic example would be to add, to the 
same model, a field h = 1/(/~n) 1/2. The measure obtained in the limit/?n ~ oo 

T = 0  would then be the measure 6+ (all the conditional probabilities rc A are 
equal to 6+) ,  which is not a zero-temperature Gibbs measure for 
because there is no rigid ground-state configuration for this model. This 
example shows that the notion of w-stability is perhaps a little too general; 
for interesting applications one usually constrains oneself to w-stability with 
respect to a pre-fixed set o f  perturbed interactions. In Section B.3.2 we shall 
make precise the desirable properties of such perturbations. 

At any rate, it is immediate that all w-stable measures have the weaker 
property of being supported on the ground-state configurations for the 
given interaction, i.e., they are weak zero-temperature measures: 

T h e o r e m  B.12. Let #~ be Gibbs measures for  a sequence of  inter- 
actions 45 and a sequence o f  inverse temperatures ~n such that 05n --* ~b and 
~ ~ + oo. I f  #n ~ #, then 

#({ground-state configurations for q5 }) = 1 (B.13) 

i.e., # is a w-zero-temperature measure for  05. 

The notion of zero-temperature entropy involves a zero-temperature 
limit, hence it must have something to say about stability. Indeed, 
Aizenman and Lieb (9) have proven the following: 

Proposition B.13. I f  # is a stable translation-invariant zero-tem- 
perature Gibbs measure for 05, then 

s(# ) = s~, 

This result, together with Theorem B.11 and the fact that the set of 
translation-invariant Gibbs measures is nonempty at all temperatures, 
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proves Proposition B.8(b) above. In the case of superdegenerate systems 
(i.e., systems for which s e > 0 ) ,  Proposition B.13 can be used to rule out 
the stability of some measures: 

Corollary B.14. For a superdegenerate system, every translation- 
invariant zero-temperature Gibbs measure supported on a finite set is 
unstable. 

For  instance, for the system (B.9), the all-"0" Gibbs state is unstable. 

B.2.8. Variational-Principle Approach. The variational-prin- 
ciple approach for zero-temperature measures was historically the first 
one to be considered. (316) At zero temperature it provides an even 
simpler criterion than at nonzero temperatures, because it reduces to a 
minimal-energy condition ( F =  E - T S  reduces to F =  E if T =  0). For  a 
translation-invariant interaction 05, it is not hard to show that the limit 

1 
inf ~ 05A(C0) (B.14) 

exists; we call it the minimal specific energy (or ground-state energy). 
A translation-invariant measure # satisfying 

# ( f e )  = e~ (B.15) 

is called a zero-temperature equilibrium measure for the interaction 05. The 
definition can be extended to periodic measures i f f~  is taken to include an 
average over all the sites of a basic period: If 05 is invariant under a subgroup 
S of Z a, with Y_a/S isomorphic to a finite set P c 7/a, then one must define 
f ~ = - ] P [ - l Z x ~ P Z x ~ x  IX[ -1 05x. We shall assume this extension in the 
sequel. Schrader (3zs) has proven: 

T h e o r e m  B.15. (a) Every translation-invariant w-zero-tempera- 
ture measure for q5 is a zero-temperature equilibrium measure for 05, i.e., 
satisfies (B. 1 5). 

(b) Conversely, every zero-temperature equilibrium measure for 05 is a 
w-zero-temperature measure for qs. 

That is, for translation-invariant measures to be supported on (local) 
ground-state configurations is equivalent to having minimal average energy 
density. We notice that, unlike the finite-temperature case, we do not have 
an equivalence between the variational and the Gibbsian-specifications 
approaches; only the more general w-measures appear in the previous 
theorem. The relationship between zero-temperature Gibbs measttres and 
equilibrium measures is much more problematic. 

822/72/5-6-17 
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The variational approach yields also a characterization of periodic 
ground-state configurations: 

Theorem B.16. 1. For any periodic configuration m ~ ,  the 
specific energy (energy per site) 

1 
e~(c0) = Alim ~-~ Z ~A(r (B.16) 

A ~ A  

exists. 

2. The infimum of e~(~o) over all periodic configurations ~o is finite and 
equals the value e~ defined in (B.14). 

3. ~ is a periodic ground-state configuration if and only if 
e~(co) = eqs .  (337'97) 

For completeness, we mention also two variational principles 
involving the minimal energy density and the residual entropy: 

T h e o r e m  B.17. (a) We have 

e~ = inf #(f~)  (B.17) 
# ~ M+ l,per(~2, ~-) 

r [ref 91 

s~ = sup{s(#) I # e M+ 1,per(~r ~ )  and/~(fe)  = ee } (B.18a) 

= sup{s(/~) I/~ is a w-zero temperature measure for q~ } (B.18b) 

In particular, (B.18b) proves Proposition B.8(a). The "inf" in part (a) 
and the "sup" in part (b) are in fact "min" and "max," respectively. They 
are realized by the zero-temperature equilibrium measures. 

B.2.9. In f in i te  Range and Lack of  Quasi local i ty .  The varia- 
tional-principle approach to zero-temperature classical lattice systems can 
be extended without difficulty to interactions in ~o.~328,9) The extension 
of the DLR approach to infinite-range interactions (e.g., in ~1) is, 
however, more problematic. In particular, the validity of the important 
Theorem B.11 is an open question: A sequence of positive-temperature 
Gibbs measures for q~ could conceivably converge to a limiting measure 
that is not consistent with the zero-temperature specification (B.1). If 
this latter specification were quasilocal, such a phenomenon could not 
occur (ref. 160, Theorem4.17); however, for long-range interactions the 
specification (B.1) is in general not quasilocal. Let us conclude this section 
with an example showing this lack of quasilocality. 
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Consider any long-range one-dimensional Ising model with pair inter- 
actions Jxy = Jl~-yt satisfying Zn IJ,[ < oo. The model has to be truly long- 
range in the sense that there must be infinitely many nonzero couplings J , ;  
for simplicity of notation we assume that J,, ~ 0 for all n. We claim that the 
zero-temperature specification of such a model is nonquasilocal. Indeed, 
the zero-temperature conditional probability for the spin at the origin 
satisfies 

~1o} tO)o = + 1 I v ) =  /2 

if ~ x e o  Jxz~> 0 

if 5~eo  J~r~ = 0 

if ~'xeo J~rx < 0  

(B.19) 

To prove that this is not a quasilocal function of the boundary condition 
~, we need to show that there exists some e > 0 for which the following is 
true: For an infinite sequence of nested finite sets A there exist two open 
set of configurations, ~A and X 3 ,  formed by configurations which are all 
identical inside A, but such that 

qs, T =  0 ]~{o} (a}o--- +llz)-Tr~6~'-~ = +1]v')]~>8 (B.20) 

if r e JV A and r' s JV~. Such sets JVA, Y ~  are constructed as follows: Take 
A N = [" - -  N ,  N ]  and fix No > N such that 

IJx[ < [JN+I[ (B.21) 
x >  NO 

and let ~/~A be the set of configurations -c such that 

( [ + 1 ]  if l < ~ x ~ N  

= ~ [ - - 1 ]  if - N < ~ x ~ - i  (B.22) 
zx }sgnJx  if N+I<. l x l<~N o 

(anyth ing  if Ix] >No 

The set YA is defined analogously, but replacing sgn J ,  by - s g n  Jx. We 
then have 

J x z x  = 
x ~ O  

J/Cx 
Ixl > N 

2 I 2 I Jx l+2  2 Jx%>O 
= [ = N + I  ]x[ > N0 

NO 

-- Z IJxl +2 ~ Jx'cx <0 
[xl = N +  1 Ix[ > NO 

for r~A/" A 

for ~ E JV'~ 

(B.23) 
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where the last inequalities follow from (B.21). Therefore, by (B.19), 

1~'6~=~ -- +1  I~) ~ , , , T = o , ,  _ +1  I~ ' )1--  i - -  J~ { 0 }  ~ 0  - -  

if r ~ ~A and r '  ~ Y j ,  and the specification is not quasilocal. 

(B.24) 

B.3. Phase Diagrams 

B.3.1. Regular Phase Diagrams. The words "phase diagram" 
are usually associated with nice pictures in which two conditions are 
satisfied: 

1. Only periodic extremal Gibbs measures are considered. We 
emphasize that the order of the qualifiers has been carefully chosen: the 
measures relevant here are those extremal Gibbs measures that happen to be 
periodic; we are not referring to the measures that are extremal among the 
periodic ones (this latter is a larger and less-well-behaved class). For  short, 
we shall call these measures pure phases, but we emphasize that this 
embodies a double change with respect to the terminology adopted in the 
rest of this paper: First, we consider all periodic Gibbs measures on the 
same footing, whether they are invariant under the whole translation group 
7/a or merely a nontrivial d-dimensional subgroup of it. Second, we invert 
the order of the qualifiers, that is, we call pure phase an extremal measure 
in the sense of (ii) in Section 2.4.9, rather than in the more customary 
sense (iii). 

We shall fulfill this condition throughout the rest of this appendix: by 
"phase diagram" we will mean the partition of a certain parameter space 
into regions with a given number and type of pure phases. 

2. The Gibbs phase rule ~ is obeyed. Let us explain in a little more 
detail what this means. An example of a phase diagram satisfying the Gibbs 
phase rule is presented in Fig. 13 below: There is a point where three pure 
phases coexist (point of maximal coexistence), from which there emanate 
three lines where two pure phases coexist, which in turn bound three open 
regions in which there is only one periodic extremal Gibbs measure. Such 
a phase diagram will be called regular. More generally, an r-regular phase 
diagram 

1. 

2. 

. 

consists of (ref. 173, Appendix A): 

A point of maximal coexistence where r pure phases coexist. 

r one-dimensional open manifolds, each bounded by this maximal- 
coexistence point, where exactly r - 1  phases coexist. 

r ( r -  1 )/2 two-dimensional open manifolds, each bounded by pairs 
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of the previous one-dimensional manifolds, where exactly r - 2  
pure phases coexist. 

r open (r-1)-dimensional manifolds, each bounded by the 
(r-2)-dimensional two-phase-coexistence manifolds, and such 
that the closure of their union is the whole parameter space, where 
there is only one pure phase. 

Usually, the pure phases are defined by fixing the boundary conditions 
according to some parameter-independent set ~U of reference configurations 
(or, more generally, measures). Typically, Y is the set of ground-state 
configurations at the point of maximal coexistence at T=  0. One can then 
label each pure phase according to the boundary condition employed in its 
definition. One calls the K-stratum ( K c X )  the manifold in parameter 
space where the coexisting phases are precisely those labelled by elements 
of K. For instance, in Fig. 13, the different strata are labeled by the 
boundary conditions " + ' ,  "0", and " - " .  There are, therefore, seven strata: 
(+), {0), (-}, {+,0}, {+,-},  {0,-), {+,0,-}. 

A more abstract (topological) way of visualizing such a phase diagram 
is provided by the following equivalent characterization: an r-regular phase 
diagram is a diagram that can be homeomorphically mapped onto the 
boundary of the positive octant in r dimensions, 

g ~ Q r = { ( t l  ..... tr)~[Rdo " min t/=0} 
l <~i<~r 

(B.25) 

in such a way that the point of maximal coexistence corresponds to the 
origin, the curves of ( r -1)-phase  coexistence correspond to the positive 
coordinate axes excluding the origin ..... the open sets with only one pure 
phase correspond to the (r-1)-dimensional coordinate hyperplanes 
excluding their ( r -  2)-dimensional boundaries. In brief, the different strata 
are mapped into the different submanifolds of the boundary of the r-octant. 

General phase diagrams need not obey the Gibbs phase rule. A typical 
situation is for some of the pure phases to always appear together 
throughout the diagram. Such a situation is called a degeneracy, and it is 
usually associated with some symmetry of the system (if no symmetry can 
explain it, the degeneracy is called fortuitous). The addition of further inter- 
actions (not respecting the symmetry) can produce a phase diagram 
without degeneracy. These extra interactions are said to break the 
degeneracy of the pure phases in question. An interaction is said to 
completely break the degeneracy of the pure phases if its addition yields a 
regular phase diagram. 
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B.3.2. Zero-Temperature  Regular Phase Diagrams. For 
zero-temperature phase diagrams, it is relatively simple to give conditions 
on the extra interactions needed to ensure a regular phase diagram. Indeed, 
at zero temperature, degeneracy means equal specific energy for all values 
of the parameters, and its breaking involves adding interactions producing 
a different set of specific energies for each of the initially degenerate pure 
phases. This is usually done perturbatively, that is, each additional inter- 
action is multiplied by an overall "turn-on" parameter. Suppose we start 
with an interaction 4 o having r degenerate zero-temperature pure phases 
#1 ..... #r. Then, to completely break the degeneracy one usually considers 
r - 1  additional interactions ~b I ..... ~br_ 1 and constructs the "perturbed" 
interactions 

r - - 1  

@~ = r + ~ 2,~i (B.26) 
i = 1  

[Examples: (i) For the Ising model at zero field, 21 =h;  (ii) for the 
Blume-Capel interaction defined by (B.34) below, 41 = g  and 42 = h in the 
"perturbation" (B.35).] The parameters ,~=(21,...,2r 1) usually take 
values in a certain neighborhood of the origin. The degree of degeneracy 
for the perturbed interaction ~ depends on the r-tuple of specific energies 

0(2) = (e~  (#,),..., e ~  (#r)) (B.27) 

In fact, if we denote 

Q()~) = { i: #i minimizes e ~  (#) } (B.28) 

then the strata of the zero-temperature phase diagram are the sets 

Sx= {2: Q(2)=  K} (B.29) 

for each subset of labels K ~  { 1,..., r }. The perturbed interaction completely 
breaks the degeneracy if the phase diagram formed by the strata (B.29) is 
r-regular. 

It is of interest to translate the requirement of regularity into condi- 
tions on the perturbations q5 i. One way to do it is to notice that, as the 
specific energy depends linearly on the parameters 2 ,  it can be written in 
the form 

r - - I  

0(~)= ~ 2,g(4~,) (B.30) 
i = 1  
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with 

C((i~i) = (e~i(~l)  ..... e~i(~lr) ) (B.31) 

One of the conditions for the phase diagram to be r-regular is that the 
origin )7 = 0 be the only point of maximal coexistence. This implies that no 
nonzero vector of the form (B.30) can have all its coordinates equal. A little 
bit of linear algebra shows that all the other conditions for regularity 
are satisfied if the vectors {0(qsi)}t<i<r_ 1 are, in addition, linearly inde- 
pendent. Therefore, the perturbations ~bl,..., q5 r ~ completely break the 
degeneracy of q5 o if and only if  the vectors Y(q)i) are linearly independent and 
they do not span the vector (1,..., 1)E W. 

Alternatively, if we resort to the previous geometrical description of 
regularity, we conclude that it is equivalent to require that the vector 
Y(,~)--shifted so it always has at least one coordinate equal to zero--sweeps 
over the boundary c~Qr of the positive octant. Precisely stated, if we denote 

ei(#i) = e ~ ( p i ) -  min e~(/%) (B.32) 
l<~j<~r 

the perturbation qsi completely breaks the degeneracy of q~o if and only if  the 
map 

~1--+ (e,~ (~1),--., e.~ (~r)) (B.33) 

is one-to-one; in other words, if  such a map is a bijection from a 
neighborhood of 0 ~ ~d 1 to a neighborhood of 0 ~ OQr. For each particular 
value of ~, the coexisting pure phases are those #i with g~ (#~) = 0. 

B.3.3. Low-Temperature Phase Diagrams. Scope of Pirogov- 
Sinai Theory, If nature is fair, one expects that low-temperature phase 
diagrams should look very similar to the corresponding zero-temperature 
ones. This is not always so, however, and the question of stability or 
w-stability of Gibbs measures is an important issue. Pirogov-Sinai theory 
has been precisely designed to single out some important cases in which 
indeed the low-temperature diagrams are only a small deformation of the 
ones at zero temperature. When the theory applies, one is guaranteed that 
the regularity of the diagram is preserved at least for small temperatures; 
and, furthermore, that the low-temperature pure phases look very "similar" 
to the zero-temperature ones. 

As an input to the Pirogov-Sinai theory one must determine the zero- 
temperature phase diagram and show that two key hypotheses are satisfied. 
The first hypothesis refers to the number of zero-temperature deterministic 
pure phases: In its original version, (3~176 Pirogov-Sinai (PS) theory 
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applies to a system with a finite-range periodic interaction, exhibiting a 
finite number of  periodic rigid ground-state configurations. (This has subse- 
quently been generalized to some extent: see Section B.4.4.) The second 
hypothesis is that the interaction satisfy the so-called "Peierls condition," 
to be stated more precisely below, which roughly requires that for each 
rigid periodic ground-state configuration the energy cost of introducing a 
droplet of spins aligned as in a different ground state must grow typically 
as the area of the boundary of the droplet. This condition allows the energy 
cost of creating excitations to beat the entropy gain, preserving the long- 
range order observed at zero temperature. However, the Peierls condition 
has this desired effect only for d~> 2. The trouble is that for d =  1 the size 
of the boundary of a set does not grow with its volume. Therefore, 
Pirogov-Sinai theory is not applicable to one-dimensional models. On the 
other hand, for d~>2 the Peierls condition is certainly stronger than 
necessaryS~ there exist models with a finite number of rigid periodic 
ground-state configurations which have a nontrivial phase diagram and 
which do not satisfy the Peierls condition. (29s'268) Nevertheless, the Peierls 
condition applies in a large number of interesting models, and allows a 
very precise description of the low-temperature behavior. 

The output of the theory is a family of results involving extensions to 
nonzero temperatures. The main result of the theory is that for a system 
satisfying the Peierls condition the phase diagram involving these periodic, 
deterministic measures is stable: As the temperature increases, the 
coexistence manifolds deform continuously (in fact analytically). Moreover, 
the theory makes rigorous the intuitive picture of what each low- 
temperature pure phase looks like: its typical configurations consist of a 
"sea" of spins aligned as in the ground-state configuration with small and 
sparse "islands" of overturned spins. 

We remark that the theory does not have anything to say about the 
stability of the (possibly infinitely many) nonperiodic ground-state 
configurations and the zero-temperature Gibbs measures they support (but 
see Section B.4.4). Other techniques are needed to show, for example, that 
the flat-interface ground-state configurations (B.6)--which are rigid for 
d~> 2--are unstable for d =  2 (144't '195) and stable for d~> 3. (87,357) 

Moreover, the original version of PS theory gives only very limited 
information as to the specifics of the deformation of the phase diagram; in 
particular, it does not produce a useful criterion to determine which pure 
phases are stable for the different regions of the zero-temperature phase 
diagram. That is, it does not tell us in which direction the phase boundaries 

8o In some sense it is the strongest possible condi t ion :  see the c o m m e n t s  after Defini t ion B.19 
below. 
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move when the temperature is raised from zero. Therefore, for interactions 
lying on a phase-transition manifold of the zero-temperature phase 

diagram, the original PS theory does not tell us in which phase(s) ~ ends 
up at T> 0; that is, it does not tell us which one(s) of the coexisting zero- 
temperature pure phases is/are stable, and which are only w-stable for the 
family of interactions adopted. However, Slawny's extension of PS 
theory (33a) provides this additional information. 

To clarify this point, let us borrow a very instructive example from the 
review by Slawny. (338) Consider the spin-1 Blume-Capel model defined by 
the formal Hamiltonian 

Ho = �89 ~ (COx_ 0)y)2 (B.34) 
<xy> 

where 0)x = -1,  0, 1 and the sum is over pairs of nearest-neighbor sites in 
2U, d>  1. Such a model has three periodic (in fact translation-invariant) 
ground-state configurations: all-"+", all-"0", and all-"-".  They are all 
rigid. To obtain a 3-regular phase diagram one can consider, for instance, 
the family of interactions defined by the formal Hamiltonians 

H ( g ,  h)  = H o - g  ~ 0) 2 - h ~ cox (B.35) 
x x 

The corresponding zero-temperature phase diagram is presented in 
Fig. 13a. Pirogov-Sinai theory tells us that for T> 0 low enough the phase 
diagram is just a continuous deformation of the one depicted, but to 

h 
two-phase coexiste :e 

-~ -pure phase 

"0"-pure phase 
/ %  8' 

/ thlee-phase coexistence 

~" "-"[pure phase 

h 

"0"-pure ph~~e 

.... pine phase 

Fig. 13. 

(a) (b) 

"+"-pure phase 

Phase diagrams of the model with interaction (B.35). (a) Zero temperature. (b) Low 
temperature. 
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conclude that such deformations look as in Fig. 13b we need some extra 
information which is not directly obtainable from PS theory, although it is 
probably contained in it. This extra information is presented explicitly, for 
instance, in Slawny's theory of asymptotics of phase diagramsJ 338) From 
the latter diagram we see, for instance, that of the three deterministic pure 
phases of H ( g  = 0, h = 0) only the all-"0" is stable, while the other two pure 
phases are w-stable. The well-studied ferromagnetic Ising model provides 
an example of an exceptional nature: its phase diagram remains unde- 
formed at low temperatures; for all values of the magnetic field the periodic 
zero-temperature Gibbs measures are stable. 

B.4. Pirogov-Sinai Theory 

We summarize now the main aspects of PS theory. In the first two 
subsections we carefully discuss the basic hypotheses required by the 
theory; in the third subsection we present a somewhat detailed account of 
the results (for finite-range interactions). Of course, we omit all proofs; 
these can be found in the references cited. As already pointed out, the 
theory does not apply for d =  1; therefore in the rest o f  this appendix we 
restrict ourselves to d>~ 2. 

B.4.1. Boundary of a Configuration. The Peierls Condition. 
Typical configurations of a low-temperature pure phase are expected to be 
small fluctuations around those of a corresponding zero-temperature pure 
phase. These fluctuations result in the appearance of "droplets" ("bubbles," 
"islands") of spins aligned according to a different zero-temperature pure 
phase--or, more generally, a "metastable phase ''(379) as we discuss below. 
These droplets are surrounded by a transitional region or "boundary" of 
sets of spins not aligned according to any zero-temperature pure phase, 
which therefore raises the energy of the configuration. The probability of 
such fluctuations is determined by the competition between two factors: the 
energy cost of introducing a boundary and the entropy gain due to the 
different possible shapes and locations of the droplets. If the energy cost is 
large enough to overcome, at low temperatures, the entropy gain, then 
each zero-temperature pure phase gives rise to a low-temperature one 
which differs only in the presence of few and small droplets of overturned 
spins. In particular, this would prove that there are precisely as many 
coexisting pure phases at low temperatures as there are at zero tem- 
perature, and hence that there is a phase transition. This type of argument 
was first introduced by Peierls (296'84"1vl) to prove the existence of a phase 
transition in the d-dimensional Ising model for d>~ 2, and hence it is 
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often referred to as the "Peierls argument." Pirogov-Sinai theory is a 
generalization (and, thus, a more abstract version) of such an argument. 

To formulate the Peierls argument in a rigorous form we need a 
criterion to determine when the energy cost of a boundary is "large 
enough" to defeat the entropy gain. The Peierls condition is precisely one 
such (sufficient) criterion. It relies, however, on a suitable definition of the 
"boundary" of a configuration, which is not a uniquely defined concept. In 
fact, two complementary notions are introduced at this stage: the boundary, 
which roughly corresponds to the collection of sites where the spins are 
misaligned, and the contours, which are the different components of this 
boundary together with the corresponding spin configurations. The latter 
allow a complete determination of the energy of a given configuration. 

Let us motivate the general definitions via examples. In the original 
case of the ferromagnetic Ising model, the boundary of a configuration 
can, for instance, be defined as all the pairs of nearest-neighbor sites with 
opposite spins. As each such pair contributes equally to the energy of the 
configuration, regardless of which spin of the pair is up and which is down, 
one does not need to specify the actual configuration on the boundary to 
compute the energy. Therefore contours are defined with no reference to 
configurations, by considering the polyhedral surface formed by lattice 
( d -  1)-cells perpendicular to the bonds joining misaligned spins, and taking 
its connected components. (84,1vu The same definition of boundary works 
for the Blume-Capel model (B.34), but to compute the energy we now 
must specify the configuration of each pair of misaligned spins, as different 
combinations have different energies. The definition of contours requires 
hence that we consider polyhedra labeled by the configurations on the 
immediately adjacent (internal and external) shells of spins. The next 
complication appears for models with interactions extending beyond 
nearest neighbors and/or involving more than two spins at a time. An 
example of practical interest is the antiferromagnet on a face-centered 
cubic lattice (ref. 338, p. 145, and references therein). Such models require 
"thicker" boundaries and contours defined specifying the configurations of 
larger groups of spins. 

Therefore, to define boundary and contours in a general fashion, 
we must check whether sets of spins are aligned or misaligned, but 
this checking has to be done on sufficiently large collections of spins 
at a time. Following closely ref. 337, Chapter II, we consider a set 
o~-=- {o(u ..... O(r)} of periodic configurations (r~> 1). For the standard 
statement of the Peierls condition Jg will be the set of periodic (deter- 
ministic) ground-state configurations of some interaction, but the definition 
can be done (and must be done, as we shall discuss in next section) for 
general sets of periodic configurations. Let us call JU the set of reference 
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configurations. (379) We also consider for some fixed a~>0 the cubes 
W~(x) = {y  ~ W_a: l y e -  x~I <~ a for 1 ~< i ~< d}- - the  sampling cubes. 

D e f i n i t i o n  B.18. The boundary of  a configuration co--with respect 
to the set o f  reference configurations S and sampling cubes W~(x)--is the 
set of  sites 

oco= U {Wo(X):COI~(~)~Iw=<x) WO_ ~X}  (B.36) 
x E  /Td 

Typically we will consider configurations co equal to some _co e o f  except for 
a finite set of spins. In this situation the boundary is a finite set. 

Let us now state the simplest and most popular version of the Peierls 
condition; in the following section we discuss a more general definition. We 
consider an interaction q~o and, for each fixed O E oU, construct the relative 
Hamiltonian 

H~~ ] - co) = ~ [q~oa (co) - q~0A (Cp)] (B.37) 
A : A  c 2vd finite 

defined only for configurations m coinciding with O except on a finite set. 
Let us denote by favreLo(q~o) the set of periodic ground-state configurations 
of D0. 

D e f i n i t i o n  B.1 9. The interaction D o satisfies the (original) Peierls 
condition if  there exists a constant Po > 0 such that for each ~ ~ ~e~o(~o)  

H*~ ~ Po [0co[ (B.38) 

for every configuration co coinciding with ~ except possibly on a finite set of  
sites. Here ~co is the boundary of  co with respect to J~ff =~PeLo(#o) and 
sampling cubes defined by some f ixed choice of  a >10. 

We shall call a constant Po satisfying (B.38) a Peierls constant for the 
interaction Do (and the chosen ~ff and a). The Peierls condition 
immediately implies that each periodic ground-state configuration is 
rigid, and hence defines a deterministic zero-temperature pure phase 
(Section B.2.3). The converse is not true. ~295'268) We also notice that an 
upper bound of the form H~0(co[_co),.<~o]Sco I is always true, hence the 
Peierls condition is basically a requirement for the energy cost to grow as 
fast as possible with the size of the boundary of the configuration. There 
are important models where this is not true, i.e., in which the energy 
cost grows more slowly than the area of the boundary: for example, the 
balanced model (135'49) and the ANNNI model (ref. 49, and references 
therein). 
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We notice that the validity of the Peierls condition does not depend on 
the particular choice of the parameter a >~ 0 adopted for the definition of 
the boundary, but the actual value of the Peierls constant does. Indeed, 
following ref. 337, we notice that if 0'c0 indicates the boundary defined via 
sampling cubes W a, with a'>~ a (other cases left to the reader), then 

OocO'o= U W~,(x) (B.39) 
x E 0o.)  

Thus, 

I~ot ~ I~'~1 ~ (2a'+ 1) a I~ol (B.40) 

Therefore, different choices of a change the actual value of Po, 

p o  , laol 
(2a, + l )d~Po=pos~p l-~ml ~Po (B.41) 

but not its nonzero character. One has the freedom of adjusting a 
according to future convenience. However, the actual value of Po is related 
to the range of temperatures where PS theory is valid (this range is 
proportional to Po). Hence, for the sake of quantitative predictions one 
should employ a value of Po as large as possible, which means a as small 
as possible. An extremely favorable case is exemplified by the ferromagnetic 
Ising model, and its generalizations to higher spins, for which the boundary 
of configurations can be defined via polyhedra of "zero width" [and we 
may even have equality in (B.38)]. Strictly speaking, the corresponding 
"zero-width" (or thin) contours are not included in the formalism to be 
introduced below, but we shall keep them within our discussion through 
appropriate comments. 

The actual verification of the Peierls condition is a model-dependent, 
generally nontrivial, procedure. The starting point is, in principle, the 
determination of all periodic ground-state configurations--an often tedious 
process. A slight simplification follows from the observation tha t / f  we find 
that (B.38) is satisfied for some finite set Y of periodic configuations, 
automatically these must be all the periodic ground states. Indeed, (B.38) 
implies that such configurations _m are ground states; and if there were 
others, (B.38) would not be satisfied, because arbitrarily large boundaries 
could be constructed without extra energy cost, simply by interposing 
regions occupied by the ground states not accounted for. In practice, this 
observation is of little help, as the determination of ground states is made 
using some sort of contour ideas, so checking the Peierls condition and 
finding the ground-state configurations are almost simultaneous processes 
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(however, see ref. 218). The only real shortcut available is a sufficient 
condition due to Holsztynski and Slawny, ~198) which we will use for almost 
all the applications in this paper. 

Defini t ion B.20. A potent&I q~ is an m-potential tf  there exists a 
configuration co simultaneously minimizing each [A I-body function: 

qsA(co) = min ~bA (<5) k/A eS~ (B.42) 
c S ~ Q  

For such an interaction let us denote by fgr_0(q~) the (nonempty) set 
of configurations minimizing all ~A. The sufficient condition is: 

Theorem B.21 ( H o l s z t y n s k i - S l a w n y ) .  A finite-range m-poten- 
tial ~ with Nr=0(@)finite satisfies the Peierls condition. 

Resorting to an alternative--and suggestive--terminology, we can say 
that an m-potential is one for which there are ground states "satisfying" 
all bonds. An immediate example is any Ising model with ferromagnetic 
interactions (q~A=--JAff A with JA~>0 for all A): clearly the a l l -"+"  
configuration simultaneously minimizes all q5 A. The opposite case is that of 
the potentials with "frustration," i.e., for which every configuration has 
bonds that give an energy contribution larger than the minimum possible 
("frustrated bonds"). However, these notions of m-potentials and "frustra- 
tion" must be taken modulo physical equivalence, because equivalent 
potentials have the same statistical-mechanical properties. This adds an 
extra twist to the matter. A popular example is the antiferromagnetic Ising 
model in a triangular lattice. It is easy to see that when the model is given 
its usual formulation in terms of two-spin interactions, no configuration 
can "satisfy" simultaneously the three bonds of a triangular plaquette. 
But this seemingly frustrated potential can equivalently be written by 
considering the triangular plaquettes themselves as the bonds, with an 
energy contribution obtained by a suitable combination of the contributions 
of the original two-spin bonds around the plaquette. In this formulation 
the model is now an m-potential (although one cannot use Theorem B.21 
because there are infinitely many periodic ground-state configurations). In 
this regard, probably the most difficult aspect of the application of this very 
convenient theorem is the verification of whether the potential of interest 
can be rewritten as (i.e., is physically equivalent to) an m-potential. 
It would be very nice to complement Theorem B.21 with some simple 
sufficient criterion for an interaction to be physically equivalent to an 
m-potential, but this may not be an easy task. For instance, the natural 
conjecture that every finite-range translation-invariant interaction is 
equivalent to a (translation-invariant finite-range) m-potential is false. (26v) 



Renormalization-Group Pathologies 1123 

At any rate, once the m-potential character has been verified, 
Theorem B.21 is an extremely convenient tool. It has, however, an impor- 
tant drawback: its proof is not constructive, so it does not provide any 
explicit expression for the Peierls constant. Therefore, arguments based on 
this theorem do not allow any determination of the range of temperatures 
where the PS theory remains valid. 

B.4.2. Contours.  The General ized Peierls Condit ion.  In the 
presence of the Peierls condition for an interaction 450, the usual Peierls 
argument can be repeated for those zero-temperature pure phases of 45o for 
which the entropy factor can be shown to grow at most exponentially with 
the size of the boundary. Indeed, the Peierls condition ensures that the 
energy cost grows as least as fast but with an exponent including a factor 
fl; hence the energy cost beats the entropy gain for large enough fi, and 
only small boundaries are present. However, this energy-beats-entropy 
phenomenon is in general not true for all the pure phases, only for the 
stable ones. It turns out that to obtain a situation in which the entropy is 
beaten by the energy for all the rigid periodic ground-state configurations 
of 450--and hence all of them coexist--one must consider a perturbed inter- 
action 45 = 45o + $ for a suitably adjusted $ (shift in the point of maximal 
coexistence). In general, not all the ground-state configurations for 45o are 
ground-state configurations for 45; hence this process of "tuning" 45 
requires us to consider a set oU not reduced just to configurations with 
minimal 45-energy. 

Another reason to generalize the Peierls condition appears when 
studying a whole region of the phase diagram. In such a situation one is 
interested in estimates valid uniformly throughout the region; but a uniform 
Peierls condition, as stated in Definition B.19, is not in general possible. 
For example, consider the Ising model in the presence of a strictly positive 
magnetic field. The only ground-state configuration is the a l l -"+"  (to be 
denoted co~+)), and hence [~e)l is proportional to the number of " - "  
present. For instance, for the configurations cow equal to + 1 everywhere 
except inside a cube W, the relative energy is H(cowlco(+))=2YIOWI + 
2h vol(W), while I~?cowl ~ vol(W). A simple calculation shows that for the 
Peierls condition to be valid for all these cow we need po<h. Thus the 
(original) Peierls condition is not satisfied uniformly in a neighborhood of 
the point h = 0, which is precisely the most interesting region. 

A generalized Peierls condition must therefore allow configurations 
that are not necessarily ground states and also must satisfy some "unifor- 
mity" requirement. Such a condition is already contained in the work by 
Pirogov and Sinai, where the main results are shown to be consequences 
of a further generalized condition for the perturbed 45 that follows from the 
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Peierls condition satisfied by ~b o. Zahradnik (376) was, however, the first to 
point out that this generalized condition is a more natural starting point 
from the conceptual point of view. We initially had a more concrete 
motivation: the uniformity requirement is important for our example of the 
Kadanoff transformation (Section 4.3.3). In fact, this application demands 
only a particular case of uniformity (Corollary B.25 below), and, moreover, 
the result we need is exactly given by a theorem due to Zahradnik 
(Theorem B.30 below). However, we shall take here the time to discuss the 
uniformity issue in some generality, because we feel that it has not been 
sufficiently emphasized in the literature. 

Let us first introduce the notion of contour. We fix a set Y of 
reference configurations and a choice of sampling cubes (value of a). The 
idea is to decompose the boundary into components: two sets A and B of 
sites are called connected if dist(A, B) ~< 1 in lattice units. A contour of a 
configuration co is a pair F =  (M, ~OM), where M is a connected component 
(= maximal connected subset) of the boundary of co. The set M is often 
called the support of the contour F. At this point we start introducing 
constraints on the size of the sampling cubes. We require: 

(C1) The value 2 a +  1 must be strictly larger than all the periods of 
the reference configurations O ~ X .  

Such a requirement implies the following extension property (nomenclature 
taken from ref. 338): if a configuration co coincides with a reference 
configuration O ~ ~{" on the sampling cube Wa(x) and with O ' e  S on the 
cube Wa(y) with dist(x, y) ~< 1, then ~o = O'. This has the key consequence 
that we can reconstruct uniquely a configuration ~ starting from its family 
of contours. 

Each contour with a finite support divides Z a \ M  into several discon- 
nected components: One of them is unbounded, and is called the exterior 
of the contour; the others are bounded and are collectively called the interior 
of the contour. Each of these components has a reference configuration 
associated to it, namely that of the sampling cubes centered on sites adja- 
cent to the support of the contour. The contour is a O-contour if its exterior 
corresponds to the reference configuration O. On the other hand, the O (i)- 
interior--denoted Int~,~(F) is the union of the components of the interior 
of F associated to a reference configuration O ~i~. In general, O will have 
other contours besides F, some of which may be in the interior of F. Hence 
O may not coincide with ~o ~i) on the whole Int~i~. The generalized Peierls 
condition is a requirement on the minimum energy cost of introducing a 
contour. This can be estimated by considering the configuation co r that has 
F as its only contour. If F =  (M, ~OM) is an O-contour, o~ r coincides with 
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e) on the exterior of F, with O (i) on the whole Into, ii), and with COM on the 
support M. 

Let us introduce now a periodic interaction cb. The energy cost of the 
O-contour F is given by the relative energy He(corlo) ,  which can be 
decomposed in the form 

r 

H|  ~ ( F ) +  ~ [ee(_O(i ) ) -ee(o) ]  IInt~o(i)l (B.43) 
i - - 1  

The second term in the RHS is, up to terms proportional to I c?MI, the 
energy contribution due to the configurations in the interior of F. This 
term is absent if all the co (i) are ground-state configuration of ~b. The 
contour functional 7t(F) is defined by the identity (B.43); it is roughly equal 
to 5-',a c M [~bA (mr) --~bA(-CO)], but it also includes the just-mentioned terms 
proportional to l~?MI. 

Defini t ion B.22. An interaction q~ satisfies the generalized Peierls 
condition--with respect to a set ~f" of  reference configurations--if there 
exists a constant p > 0 such that for each contour F = (3/I, tOM) we have 

5U(F)/> p tM[ (B.44) 

The (original,) Peierls condition (B.38) corresponds to the particular 
case in which ~r = fq~e20(~ ). We remark that this generalized condition is 
sometimes called just the "Peierls condition" or "Gerzik-Pirogov-Sinai" 
condition. We shall also call a Peierls constant--for the interaction qS--a 
constant p satisfying (B.44). 

To understand why Definition B.22 has the desired uniformity, let us 
return to the example of the Ising model with magnetic field h > 0. We 
must now consider s f =  {co(+), co(-)}, where co <+) and co (-~ are the 
a l l - "+"  and a l l - " - "  configurations, respectively. We notice, however, that 
co ( ) is not a ground state. With this choice of of ,  the contours can be 
taken to be "thin" as in the zero-field case, and we have that for any 
co(+ )-contour F 

He(co r ] co (+)) = 2J]~? W] + 2h [Int~o~ ~(F)I (B.45) 

while for an co(- )-contour 

H e ( o r [  co ( ~ )  = 2JIOW] - 2h Ilnt~o,+,(/')l (B.46) 

So, comparing with (B.43), we see that the generalized Peierls condition is 
satisfied with p = 2J, uniformly in h. We see that this uniformity is gained 
by including the extra configuration co (-), which is not a ground state, but 
rather could be interpreted as a "metastable state." 

822/72/5-6-18 
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In general, the uniformity property of the generalized Peierls condition 
is a consequence of an estimate valid for sampling cubes larger than the 
period and range of the interaction; that is, we impose the following extra 
condition on the sampling cubes: 

(C2) The value 2a + 1 must be strictly larger than the period and the 
range of the interaction r 

We emphasize that due to requirements (C1) and (C2), the value chosen 
for a - - tha t  is, the definition of the contours-~lepends on the set X and on 
the interaction(s) present. The reader should keep this in mind especially 
because, to keep formulas simple to read, the notation will not make this 
dependence explicit. In particular, a change in the interaction--for 
instance, the addition of an arbitrarily small perturbation--will require the 
redefinition of the contours. 

Under condition (C2), 

2 
A : A  c~ [Into,(/) ~ Oext Inter(i)] ~ 

~< 2(2a+ 1)a[[~[[~01~ext InG,,[ 

~bA (co r) - IInt ~_)o~l e~(_~ ~'~) 

(B.47) 

which implies the following key estimate: If F =  (M, toM) is a o0-contour, 
then for any periodic interaction 

H'~(corl ~_) - ~ Ilnt,o~o[ [e~(o  ~i)) - e,~(O)] 
i = l  

~< 2(2a + 1)"ll~ll~olMi 

Therefore: 

(B.48) 

T h e o r e m  B.23 (Uniformity p r o p e r t y ) .  I f  a periodic interaction 
~5 o satisfies the genera/Eed Peier/s condition with constant p, then for any 
interaction ~ with 14~ll~o~Cp/(2a+l) d, the sum ~ o + ~  satisfies the 
generalized Peier/s condition with constant p ( 1 -  2c). 

Another useful result, which basically follows from (B.48), is the 
following (ref. 337, Lemma 2.2): 

Proposition B.24. Consider a periodic interaction ~o satisfying the 
original Peierls condition (B.38) with constant Po. Then, for any other 
periodic interaction ~, 

= aJp~ it. ~ (B.49) ][~[]~o<p/(2a+l) a ~ ~per 0((/)0 --1- (~) = T=O\,~O! 
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We present two corollaries of Theorem B.23. For  our study of the 
Kadanoff transformation we need the following trivial consequence: 

Corollary B.25. Consider a periodic interaction q~o satisfying the 
original Peierls condition (B.38) with constant Po, and another interaction 
such that ~Pe~o(qSo)=~PC~o(~bo+~). Then if Ll~ll~o<~Cpo/(2a+ l)  d, the 
sum q5 o + ~ satisfies the original Peierls condition with constant po(1 - 2c). 

However, the corollary more often used is: 

Corollary 15.26. I f  q5 o satisfies the original Peierls condition with 
constant Po [and oU = N~0(q~o)] ,  then a "perturbed" interaction 
q ~ = q s o + ~  satisfies the generalized Peierls condition with constant 
po(1 -- 2c) (and the same Jd) if ][~1[~0 ~< cpo/(2a + 1) d. 

This corollary generalizes what was observed regarding the Ising 
model in nonzero field. 

As the inclusion in (B.49) is in general strict, the last corollary implies 
that, from the point of view of q~ = q~o + ~, the uniformity is gained at the 
cost of including some extra reference configurations that are not ground 
states (e.g., ~o ( ) in the above example). These extra configurations can be 
interpreted as "metastable states" or "local ground states" for q~.(379) On 
the other hand, any system with a finite number of periodic ground-state 
configurations ought to satisfy the generalized Peierls condition if one adds 
all the local ground states of the model (379~ (or allows more complicated 
types of reference states). 

At the risk of being considered almost patronizing, we emphasize 
again that the size a in the previous results is chosen so as to satisfy (C1) 
and (C2) for the total interaction ~b 0 + ~. Often, ~b o is a simpler or more 
standard interaction that one studies independently or for which one can 
borrow results from the literature. The Peierls constant determined in this 
manner corresponds, hence, to a value of a chosen without reference to 
anything but q50. When considering in addition perturbations ~, no matter 
how small, this size may need to be redefined to a new value a' suitable for 
the total interaction. If so, the Peierls constant Po appearing in the previous 
results is smaller than the one initially determined. The simplest procedure 
at this point, if one does not want to completely redo the analysis with the 
new definition of contours, is to adopt for P0 the initial value divided by 
(2a '+  1) d [-leftmost inequality in (B.41)]. Note that the Peierls constant 
chosen in this way goes to zero with increasing range of the perturbations. 
In fact, in general one cannot do much better than this. In particular, it is 
known (cf. Remark 4 in Section 2.6.7) that arbitrarily weak perturbations 
with long-range interactions can destroy the phase diagram. 

To conclude this section, we observe that the notion of contour can be 
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presented in a slightly more general (and abstract) fashion. Indeed, the key 
properties supporting the rest of the theory are the unique reconstruction 
of a configuration from a set of contours [here a consequence of the exten- 
sion property, requirement (C1)], estimates (B.44) and (B.48), and that the 
entropy gain be beaten by the energy cost at low temperatures. As long as 
these properties are satisfied, contours need not be defined via sampling 
cubes. An illustration of this observation is the use of "thin" contours in 
ferromagnetic nearest-neighbor Ising models or, more generally, models 
whose ground-state configurations are constant. The boundary in such a 
model can be defined as a set of polyhedra, and the contours are non-self- 
intersecting closed (hyper)surfaces (uniquely defined via suitable fixed 
prescriptions to handle intersections), labeled by the configurations of the 
adjacent spins. The labeling allows for a unique reconstruction of the 
configuration; and the thin contours satisfy estimate (B.44) with IM] 
replaced by IF] = area of the polyhedra = number of unit-cells forming its 
faces, and estimate (B.48) with a determined on the basis of ~. Moreover, 
they have smaller entropy than the "thick" contours. Note, however, that 
the remark discussed in the previous paragraph is especially relevant in 
connection with thin contours: in general, if the interaction is perturbed, 
one cannot use the value of P0 determined via thin contours; one must, 
for instance, divide it by a factor (2a+ 1) a, where a depends on the 
perturbation ~ considered. 

B.4.3. Results  of  the Theory. We present here the main results 
of PS theory. We include some general comments on the underlying ideas, 
but we do not discuss the details of the proofs. These can be consulted in 
the bibliography. We mention that there are two approaches to PS theory: 
the original one, based on "contour models with parameters," and the 
more recent one, due to Zahradnik, based instead on a classification of 
contours into "stable" and "unstable" ones. References for the first 
approach are the seminal papers by Pirogov and Sinai, (3m'3~ Sinai's 
book, (337) and Slawny's review article. ~338) The second approach was 
introduced in ref. 376; a concise presentation is given in ref. 36 and a 
pedagogical one in ref. 379. This second approach is intuitively more 
appealing, provides some more information--for instance, the complete- 
heSS (376) and analyticity (378) of the phase diagram--and has served as a 
basis for further extensions and applications of the theory. (377,292,293.197.36,37) 

In the comments below we mostly have in mind such an approach. 
The essence of Pirogov-Sinai theory--inherited from the Peierls 

argument--is the definition of maps from the original spin ensemble into 
ensembles of contours that interact only by volume exclusion, that is, into 
gases of contours. The families of contours in the latter do not necessarily 
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correspond to an actual collection of contours of a spin configuration, 
because they are not required to "match" exteriors with interiors. For 
instance, a set of two " -" -contours ,  one inside the other, is an allowed 
element of one of the contour ensembles, even when there is no spin 
configuration having it as its family of contours (in a spin configuration 
there would be a n  intermediate "+"-contour) .  This lack of "matching" 
requirement makes the contour ensembles much simpler systems to work 
with. The maps are defined so that each stable pure phase is equivalent to 
a contour ensemble in the sense that both have the same distribution of 
external contours. The low-temperature picture of only small "islands" 
of overturned spins can then be precisely proven by estimating the 
probabilities of (external) boundaries using the contour ensembles. 

One considers r different contour ensembles, one for each reference 
configuration ~(i) E 24#. The ith ensemble is formed by all the _m(~ 
interacting only via the restriction of being separated by two or more 
lattice units. The statistical weight of each contour is given by an activity 
e x p [ - F ~ ~  with a functional F(j)(F) determined via a relation 
[formulas (1.14) or (1.19) in ref. 376] that roughly compares the "work 
needed to install a contour ''(379) in the spin and contour ensembles. {In the 
original PS theory, some extra weights exp[-bU)lInt(F)[] are assigned to 
the external contours, (337) and both the "parameters" b (~ and the functional 
F (~ are also determined by comparing "works" [formula (2.43) in ref. 337]. 
We prefer to follow here Zahradnik's approach in which the "parameter 
degree of freedom" is absorbed into the functional F~ ~ } 

Each contour ensemble is a statistical-mechanical system of its own, 
which can be studied without any reference to the original spin system. 
Properties of these contour models can then be transcribed into results for 
the spin system via the identification between the ensembles. This is the 
usual policy in the standard expositions of the theory, all of which include 
an "interlude" in which abstract contour ensembles are analyzed per se 
(Sections 7-9 in Chapter 2 of ref. 337; Section 2 in ref. 376; etc.). Basically, 
contour models are studied via cluster-expansion techniques: this is the 
method of choice for systems at "high temperature" or "low density." All 
the contour ensembles satisfy one of the key ingredients of the Peierls argu- 
ment: the entropy factor grows at most exponentially with the size of the 
contours (ref. 337, Lemma 2.7) (this fact is false for d =  1!). Therefore, there 
is a marked difference according to whether or not the functional F~ ~ 
defining the contour activity satisfies a bound of the form 

F~~ F) >>- v(j) IMI (B.50) 

with r~o> 0. I f  this is the case, it is customary to say that F~ 0 is a r~)- 
functionaL [For  the original PS approach, the big difference is whether the 
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corresponding parameter b (i) is zero; all the functionals F ~z) in the PS 
approach are r-functionals.] 

The contour models defined by z-functionals enjoy several remarkable 
properties if  z is large enough to overcome the entropy growth. This growth 
is characterized by an exponential factor bounded by (ref. 337, Lemma 2.7) 

= max{dlog(2a + 1), log IK2ol -t- 3 a} (~.51) 

If the contour model has a convergent cluster expansion, which occurs at 
least if (ref. 337, Lemma 2.8 and Propositions 2.1 and 2.2) 

r~)~> 4~ (B.52) 

then it has a well-defined thermodynamic limit, with a well-defined pressure 
and infinite-volume probability measure. For this measure, infinite contours 
have zero probability of occurrence; more generally, the probability for a 
given contour to be present decreases exponentially with the size of its 
support. Moreover, the measure satisfies exponential mixing conditions for 
disjoint families of external contours. (See, for instance, Sections 7-9 of 
ref. 337.) Furthermore, each such contour measure is equivalent to a Gibbs 
measure in the spin system: i f  F~ ~ is a z~)-functional, with z~ ) >>. 4~, then the 
(infinite-volume) probability density of  external contours of the contour 
ensemble is equal to that of  the Gibbs measure--at inverse temperature f l - -of  
the spin model defined by the o~ ~i) boundary condition. Thus, this Gibbs 
measure inherits the sparsity of (external) contours characterizing the 
contour ensemble and its mixing properties. It is, therefore, an extremal 
periodic Gibbs measure (pure phase) which is only a small perturbation of 
the reference (in fact ground-state) configuration _co (i) . The precise result of 
this argument is: 

T h e o r e m  B.27 ( P i r o g o v - S i n a i - Z a h r a d n i k ) .  Assume d>>.2. I f  a 
finite-range periodic interaction �9 satisfies the generalized Peierls condition 
(B.44) with respect to a finite set of periodic reference configurations ~ = 
{_o9(1) ..... O(r)), then there exists/~0< oo such that for each/~>~/~o: 

(a) All the pure phases are Gibbs measures #(B i) deft'ned by the 
boundary conditions co (i) with F(j ) being a r(~i)-functional. In this case, 
z ~ ) --. oo as [1 ~ oo. 

(b) Each pure phase kt(p i) is concentrated on configurations with finite 
boundaries and, moreover, the probability that a given boundary be present 
tends to zero as ~ --* oo. More precisely, i f  1"= (M, toM), 

~t~)(F external contour) ~< e ~lMI (B.53) 
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This theorem was proved by Pirogov and Sinai (see, for instance, 
ref. 337, Propositions 2.6 and 2.2), except for the word "all" in part (a), 
which was incorporated by Zahradnik/376) ("completeness"). One of the 
consequences of this completeness is that if the interaction r has a u n i q u e  

periodic ground-state configuration and it satisfies the Peierls condition, 
then there is also a unique pure phase at low temperature. In fact, 
Martirosyan (264~ has proven that, in this situation, in d~>2 there are no 
other extremal Gibbs measures, periodic or not. 

The parameters ~)  characterizing the pure phases are of the form (see 
the proof of Proposition 2.3 in ref. 337) 

~(i) d ~)  >//~p -- e (0 with e (i) <~ 2e- ~ 3 (B.54) 

where p is the PS constant of the interaction ~. From this expression one 
can obtain some (far from optimal) estimates of the parameters involved. 
Indeed, for example we can choose 

with ra satisfying 

ra=  tip - 2e-~3 d 

Then, using (B.51) and (B.52) we obtain the bound 

and hence 

(B.56) 

4~ + 1/(2e) 
/~o (B.58) 

P 

Note that as/~-~ ~ one also obtains, from (B.56), 

z~ =/~p + O(e -~0) (B.59) 

In principle, Theorem B.27(a) provides a criterion for the stability 
of a ground-state configuration, but it is quite useless for practical 
applications. The work of Zahradnik (376'379) provides a different criterion 
which could be employed for a computer-based procedure. It is based on 
the computation of the pressure/~(F~ i)) for the O(")-contour ensemble, but 
including only s m a l l  (or stable) contours. These are contours whose 
interior volume is at most proportional to the size of the support. At low 
temperature, the coexisting pure phases are those minimizing 

h(~ ) - er (i)) - -  ~(F(j ) ) (B.60) 

v~ i> tip _ 1 >~ 4a (B.57) 
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It can be proven (376) that /~(F~i))~0 as r~)--* ~ (i.e., f l~oo) ,  thus the 
minimizing configurations are ground states. Hence, (B.60) means that the 
stable ground-state configurations are those maximizing the contour- 
ensemble pressure; that is, those admitting the larger number of low-energy 
small contours. A related stability criterion was developed by Slawny, (33s) 
employing the pressure of  a gas of  elementary excitations instead of the 
contour-ensemble pressure. The stable phases are therefore determined 
as those with the larger number of low-energy excited configurations 
(dominant ground-state configurations). This criterion is simpler to apply for 
paper-and-pencil calculations. 

The preceding theorem is the main tool used to prove the stability 
of the whole phase diagram. Let us denote U ~ ( ~ , ) = { y e ~ d  1: 

r 1 Zi=  

T h e o r e m  B.28 ( P i r o g o v - S i n a i - Z a h r a d n i k ) .  Consider a finite- 
range periodic interaction q5 o in dimension d>~ 2 such that (i) it has r < oo 
periodic ground-state configurations and (ii) it satisfies the original Peierls 
condition (B.38). Consider a perturbation q~i qSo r-1 = q- ~ i =  1 2 i ~ i '  with each 
~ periodic and of  finite range, that completely breaks the degeneracy of  qb o. 
Then there exist positive constants rio, ~o such that." 

(a) For each fl >~ flo there exists a nonempty open set V, ~ Na- 1 such 
that for  parameters 2 e V~ the phase diagram at inverse temperature fl "is 
r-regular. For each ;t e Va, results (a) and (b) o f  Theorem B.27 hold for 
the interaction q~i with J~ff being a 2-dependent set o f  periodic ground-state 
configurations of  q~o. 

(b) Moreover, there exists an invertible map 

Ia: U~o(0 ) --* V~ (B.61) 

(the "underlying deformation of  the parameter space" (379)), which maps each 
zero-temperature coexistence manifold onto the corresponding coexistence 
manifold at inverse temperature fl (more generally, stratum onto stratum). 
The map I B converges to the identity as fl--* oo. In fact, it is a 
homeomorphism, and even C~ 

(c) The phase diagram deforms analytically with temperature in the 
following local sense." Consider a point (2', fl') of  the phase diagram, with 
121 <~o and fl' large enough [its minimum value depends on the distance 

from 2' to the complement o f  U~o(O)]. Let ~ "  be the set o f  reference 
configurations giving rise to the pure phases for the interaction ~ ,  at inverse 
temperature fl'. Then there exists an analytic function 

fl~--*2(fl) (B.62) 
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such that for fl close to fl' and 2(fl) close to ~', the pure phases for the inter- 
actions qsi(~l at inverse temperature /3 correspond to the same set )if '  of  
reference configurations. 

Pirogov and Sinai proved parts (a) and (b) of the theorem except for 
the completeness of the phase diagram and the homeomorphic and C a 
character of I~. These additional results are due to Zahradnik, (376'379~ who 
also proved part (c). (378) 

As remarked in ref. 379, maps other than (B.62) need not be analytic. 
In particular, the (fl-dependent) maps V~ ~ r establishing the regularity 
of the phase diagram at inverse temperature fi are, in general, not analytic. 
Such a map can be defined, for example, (376'379) analogously to the  zero- 
temperature map (B.32) (B.33) but replacing ee~(#i) by h~ ) [see (B.60)]: 

2~-+ (h~)(,~)- min h~)(~) ..... h~r)(~)- min h~)(~)) (B.63) 
l~ i<~r  l~ i<~r  

[In the original PS formulation, the parameters b ~~ played the role of the 
h (~) here.] Such a map is in general not analytic, because if it were it would 
imply that the free energy of a pure phase could be analytically continued 
in J, into the metastability region; and already for the Ising model it has 
been shown (2~ that such an analytic metastable extension does not exist. 
On the other hand, the map (B.63) is of limited physical significance, 
because for ~(o not defining a pure phase, the corresponding quantity 
h(n(2) is only an auxiliary concept, not even uniquely defined. (379) The 
physically interesting objects are the strata 

SK(fl) = {,~: Q~(2)= K} (B.64) 

for each K c Y ,  where 

Q~(,~) = {i: h~)(,~)= min hJ~(,~)} (B.65) 
l<~j<~r 

These strata deform (locally) analytically with the temperature, by part (c) 
of Theorem B.28. 

Nonoptimal estimates for the limit values fl0 and eo of Theorem B.28 
can be obtained by combining Corollary B.26 with (B.58): If ~b o satisfies 
the Peierls condition with constant P0, then at most 

if at least 

4~ + 1/(2e) 
/30 (B.66) 

po(1 --2c) 

cpo (B.67) 
eo = (2a + 1)d 
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These bounds are an explicit example of a general fact about the proof of 
Theorem B.28. As all the results follow from studying the equivalent 
contour ensembles, the relevant magnitudes are those actually used to 
construct these ensembles: the Peierls constant Po and the exponential 
entropy factor ~. In addition, the dimension d and the size a of the 
sampling cubes appear via the uniformity property. As a consequence, we 
have: 

C o r o l l a r y  B.29. Consider a family of  original interactions 
{~bo(b) }p~ ~c ~m satisfying the Peierls condition uniformly, that is, with the 
same constant Po and the same family of  periodic ground-state configurations 
~ff for  all ~ ~ P (e.g., in the conditions of  Corollary B.25). Then Theorem 
B.28 holds also uniformly for all the interactions q~o(P) [i.e., one can choose 
the same flo and eo in parts (a) and (b), and the same fl and )T intervals in 
part ( c ) ]. 

More generally, Theorem B.28 can be extended to situations in which 
there is a further smooth dependence of the interactions on the extra 
parameters/5. 

T h e o r e m  B.30. Assume d >~ 2. Consider interactions q~o(fi), 
r ~br_l(/] ) depending analytically on parameters ~ taking values in 
an open set P ~ ff~", and with bounded period and range. Assume that there 
exists a p o ~ P  such that (i) r r < ~  periodic ground-state 
configurations and (ii) ~o(bo) satisfies the original Peierls condition (B.38). 
Assume also that for each f i ~ P  the perturbation ~ ( f i ) = ~ o ( / ~ ) +  
z r s  completely breaks the degeneracy of  q~o(P). Denote 
fl=_ (fl, fi). Then there exist positive constants flo, 5o, and 51 such that the 
results (a), (b), and (c) o f  Theorem B.28 hold replacing fl by fl and the 
condition "/~ ~>/30" by "/~/>/~o, ]/~ -/)o] ~< 51-" 

There are no simple explicit formulas for the values/~o, ~o, and 51. 
As mentioned at the end of the preceding Section B.4.2, the theory can 

be adapted to slightly more general notions of contours. In particular, 
it applies for the "thin" (polyhedral-like) contours of models with 
constant ground-state configurations (e.g., the ferromagnetic Ising model, 
Blume-Capel models, etc.). Such contours provide the best (largest) 
estimate of Po (e.g., for Ising models, Po = 2J), and have an entropy growth 
with an exponential factor bounded by (see, for instance, ref. 172) 

0~thin = l o g ( 2 d -  1 ) (B.68) 

This bound is smaller than (B.51), and therefore yields another source of 
improvement on the estimates of/~0 in (B.58) or (B.66). Moreover, in the 
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bound (B.67) for Co, we can use 2a=range  of the perturbation Z)-iq~, 
which is the minimal possible choice. 

B.4.4.  Extensions of  t h e  Theory .  The  R a n d o m  Case. 
Pirogov-Sinai theory has been extended in several directions. For example, 
we mention the extensions to systems with long-range, (292'293~ quasi- 
periodic, (224) and complex (22"3~176 interactions; systems with continuous 
spins(99'377); systems on a continuous space(46'47); field-theoretic 
systems(Z~176 and systems with infinitely many periodic ground-state 
configurations.(47-49,79 82,x82) Among these are models with energy cost 
growing slower than the area of the boundary, such as the balanced 
model (135'49) and the ANNNI model (ref. 49, and references therein). Also 
worth mentioning are the applications to the study of interfaces, (377"379'197) 
random surfaces, (265) and finite-size scaling. (37) 

These extensions generalize the theory chiefly in two directions. First, 
ensembles of interacting contours are introduced. (2~176 22,47,81,79.292,293,49) 
The interaction among contours (on top of volume exclusion) must be 
weak, to allow the convergence of the cluster expansions. Second, the set 
of reference configurations is replaced by a set of reference measures. These 
can be supported on whole classes of ground-state configurations ~182~ or, 
more generally, on families of configurations--restricted ensembles-- 
suitably chosen so as to include entropy contributions. In many cases, these 
restricted ensembles are formed by low-energy excitations of ground 
states,(79 82,49,265) but other definitions are in principle possible. For 
instance, the ensemble for the disordered phase of the large-q Potts 
model--and for other examples pertaining to the study of liquid-gas phase 
transitions(47~--is supported on "maximally disordered" configurations. (47) 
The latter corresponds to a "pure-entropy" restricted ensemble, (47) as 
opposed to the "pure-energy" (just one ground-state configuration) or 
"almost-pure-energy" (ground state plus excitations) used in most of the 
applications. In general, the restricted ensembles are chosen so to have 
minimal (restricted)free energy at the temperature of interest. Often, inter- 
acting contours and reference measures are alternative procedures; it is a 
matter of taste to choose one or the other. 

A third direction in which PS theory has been extended--and one 
which is crucial for our application to the proof of RG pathologies in non- 
zero magnetic field (Section 4.3.6)--is toward the incorporation of random 
interactions. In work unpublished so far, Zahradnik~38~ 
the work of Bricmont and Kupiainen(44'as)--has proven that for d>~ 3 the 
addition of a small enough random interaction only produces small 
deformations in the phase diagram. An important issue is the meaning 
of "small enough." In the original work, (38~ the random interaction was 
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required to be uniformly small respect to the nonrandom part. Later we 
were informed (3sl) that the proof also applies to random contributions that 
are small in probability. We state the latter version, which is the one suited 
to our applications. 

T h e o r e m  B.31. Consider the lattice y_a, d>~3, and an interaction 
= + Z i = 1 2 s ~  satisfying the hypotheses of TheoremB.28. Add a 

finite-range random interaction q~raom= {~Aaom(., ~)}A~S~, where ~ is a 
random variable with probability distribution P, such that the random 
variables ~ Ard~ tO) and =A'm~a~ to) have the same distribution i f  A' is a 
translate of A and are independent i f  A c~ A' = ;23. Assume, in addition, the 
following smallness condition: For 6 o small enough, we have that for each 
6 > 6o there exists e(6) small enough such that 

P([ ~d~ ~C)[ ~> 6) ~ e (B.69) 

for all A ~ 5 P, co ~ (2. Then, for fl large enough the phase diagrams for q~i and 
~,~ + ~rdom are homeomorphic. More precisely, for ~ large and ~ small, there 
exists a homeomorphism 

Lp.~: V'~.~--. V'~',~ (B.703 

between two open sets V'~,~, V'~'~ c Nr-1 mapping an r-regular qs~. phase 
diagram onto an r-regular qsi + ~raom phase diagram. The homeomorphism 
L~,~ is not random, in the sense that it gives rise to the same phase diagram 
for almost all choices of the random perturbation (almost all values of ~), 
moreover it tends to the identity as ~--* O. 

B.5. Appl icat ion to the Examples of Sect ion 4 

B.5.1. General  Strategies.  In principle, the verification of the 
Peierls condition for a certain interaction ~b o is a two-stage process: 

(a) Find all the periodic ground-state configurations of ~b 0. This 
stage usually involves counting how many "frustrated bonds" each 
candidate configuration has. This should be followed by a proof showing 
that indeed no other periodic configuration has the same or less energy 
density, but this proof is usually omitted because it is either considered to 
be obvious or too messy to write down. Furthermore, as remarked before 
Definition B.20, this proof is not really necessary if the Peierls condition 
(next stage) can be successfully verified. In this regard, the tedious process 
of finding these reference configurations is a natural candidate for a com- 
puter-assisted procedure. However, this may not be possible, in general: the 
problem of checking whether a given periodic configuration is a ground 
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state may not be algorithmically decidable (see ref. 318, Section 4.15, and 
ref. 324 and references therein for some related undecidability results, and 
see also ref. 267). In any case, this problem may be alleviated in practice if 
one works in the framework of PS theory. Indeed, the further steps of the 
theory work as a correcting mechanism: if too few configurations have been 
found, the Peierls condition will fail and the configurations of large 
contours with very low energy density will give a hint of how additional 
ground-state configurations look. On the other hand, if too many 
configurations have been selected, the spurious ones will be eventually 
ruled out in the sense that they will not give rise to pure phases; they lead 
to contour ensembles with high free-energy cost, which are not associated 
to >functionals. [We owe this insight to conversations with Milog 
Zahradnik. ] 

(b) Devise a suitable notion of contour and show that the energy 
grows proportionally to its support. This is an extremely model-dependent 
process. 

Often, the determinations of ground-state configurations and of 
contour energies are done simultaneously: The comparison between the 
energies of different candidate configurations is done already with the help 
of contours. This is a manifestation of what we have repeatedly commented 
upon: the contour energy is the essential quantity; the crucial stage is (b). 
If we manage to show that contour energies are large enough, then we do 
not need to care about the nature of the reference configurations; they are 
ground states automatically. Yet again, the same argument used to prove 
the appropriate growth of contour energies usually shows the ground-state 
character of the configurations. Proving (b) directly is not a substantial 
saving of misery. 

Below, we shall use this canonical approach for handling the decimation 
and Kadanoff-p prescriptions, where we can resort to the Ising type of 
contours: polyhedra drawn on the dual lattice with elementary cells 
perpendicular to each unsatisfied bond. For the studies on other RG 
transformations, we shall use instead the Holsztynski-Slawny criterion 
(Theorem B.21) based on the notion of m-potentials (Definition B.20). The 
corresponding procedure usually starts by rewriting the interaction into an 
equivalent form which is indeed an m-potential. This is the hard part of the 
game; it involves some knowledge of what the ground-state configurations 
look like. Once the rewriting is done, the actual verification of which 
configurations have minimal energy is in general simple; one studies one 
bond at a time. As already remarked, the disadvantage of this approach is 
that it does not supply a value for the Peierls constant, a fact that, in our 
case, prevents us from producing any estimate of the range of temperatures 
for which the pathologies of the RG transformations occur. 
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We observe that for Steps 1-3 in the proofs of existence of pathologies, 
we do not need the full information on phase diagrams provided by PS 
theory. Rather, we are only interested in the point of maximum coexistence 
(for Step 1), and regions of uniqueness of Gibbs measure (for Step 2). 
Moreover, the two types of questions refer to different systems: The 
maximum-coexistence point must be determined for internal-spin systems 
obtained when the image spins do not favor any phase of the original 
system (this amounts, in general, to block spins chosen in an alternating or 
random way). In these cases, the symmetry-breaking perturbation is chosen 
simply as a uniform magnetic field, and symmetry considerations imply 
that maximum coexistence is achieved only when this field is zero. There- 
fore, this symmetry-breaking interaction plays an almost invisible role, and 
it is only briefly mentioned. The only case in which the symmetry-breaking 
deserves careful consideration is that of systems which already initially 
have a magnetic field (Sections 4.3.6 and B.5.7). On the other hand, the 
uniqueness of Gibbs measures is of interest for internal-spin systems corre- 
sponding to block spins chosen so as to definitely favor one of the phases. 
It is not wise to think of these two internal-spin systems (determined by 
block spins eithert favoring or not favoring one pure phase) as living in the 
same phase diagram with block-spin flipping as symmetry-breaking inter- 
action. The problem is that such an interaction cannot be considered a 
perturbation: it goes by finite steps and hence may throw us out of the 
small-parameter region Va (see Theorem B.28) of the phase diagram where 
PS theory holds. 

Let us now discuss the different applications, starting from the 
simplest ones. 

B.5.2. Internal-Spin System with Unique Ground-State 
Configurations. In all the applications of Section 4 there is a step 
(Step 2.2) which involves showing that at low temperature the ensemble of 
internal (or original) spins has a unique Gibbs measure for some particular 
choice of image spins. These are all cases in which there is only one 
(periodic) ground-state configuration, due to the presence of a periodic 
single-sign magnetic field. The uniqueness of the Gibbs measure is, basi- 
cally, a consequence of PS theory plus Zahradnik's completeness result (see 
the comment immediately following Theorem B.27). However, this would 
only prove uniqueness among the periodic Gibbs measures; we need 
Martirosyan's extension of this result (264) to prove uniqueness among the 
set of all Gibbs measures. 

B.5.3. Internal Spins  under Dec imat ion .  In this case we can 
apply the canonical two-stage process described above to verify the Peierls 
condition. As discussed in detail in Sections 4.1.2 and 4.2 (Step 0), the 
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ensemble of internal spins for a given image-spin configuration is just the 
ensemble of configurations of original spins with some of the spins 
constrained to be fixed. To the latter we can apply the usual Peierls 
construction of polyhedral contours. We shall therefore use the "thin" 
notion of contours discussed at the end of Sections B.4.2 and B.4.3. The 
internal-spin contours are obtained from the original-spin contours by 
removing the plaquettes adjacent to an image spin (thick lines in Fig. 14a). 
The argument that follows is thus based on comparing internal-spin with 
original-spin ( = internal + image) quantities. 

We fix the image spins in the fully alternating " + / - "  configuration, so 
the two obvious candidates for ground-state configurations in the resulting 
system of internal spins are the same as for the original system: ~(+) equal 
to + 1 everywhere, and ~(- )  equal to - 1  everywhere. That is, in terms of 
original spins, ~(+) (resp. ~(-))  corresponds to all spins " + "  (resp. " - " )  
except for a sublattice of period 2b--with b being the decimation spacing-- 
where the spins are flipped. The symmetry-breaking perturbation 21 q~l can 
be taken to be a magnetic field at each (internal) site. However, the sym- 
metry of the problem (i.e., of the choice of block spins), implies that the 
coexistence of the " + "  and " - "  measures occurs at zero values of 
this field. We therefore forget about this extra field, and concentrate on 
proving that the zero-temperature phase diagram deforms little for low 
temperatures. 

If we wish only to prove that ~(+) and ~( - )  are all the internal-spin 
ground-state configurations, we can, for instance, consider the corre- 
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Fig. 14. System of internal spins (small circles) under decimation, when the image spins 
(squares) are fixed in the fully alternating " + / - "  configuration. (a) A " - "  contour F (thick 
lines). (b) The fundamental bonds (bounded by thick lines) of an equivalent m-potential. 
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sponding set of original-spin contours, which is just an array of 2b-spaced 
unit cubes surrounding each flipped spin, and show that all other original- 
spin configurations lead to a system of (original-spin) contours with a 
larger area. This is not hard to do; for instance, we can argue as follows: 
Observe that every interval parallel to the axis between two nearest- 
neighbor image spins necessarily contains at least one broken bond, as two 
nearest-neighbor image spins always have opposite signs. The choice of all 
internal spins either all + or all - has precisely this minimal choice of 
exactly one broken bond in each interval, and no other broken bonds. 

However, such an argument is not really needed. As commented 
above, a more convenient approach for our purposes is to show directly 
that the insertion of a contour in _o0 ~+~ has an energy cost proportional to 
its area. Consider then the (internal-spin) configuration ~o r obtained by 
inserting a " + "  (internal-spin) contour F inside the configuration _co (+), 
that is, a region of " - "  bounded by F (Fig. 14a). Its relative energy can be 
written in the form 

H(ogrI~_ ~+ ) )= 2JIFI - A E  + A E  + (B.71) 

where IFI is the area of the contour (number of elementary cells, or length 
of the thick lines for the two-dimensional example of Fig. 14a), A E _  is the 
energy gain due to the fact that the " - "  image spins inside of, or visited 
by, F acquire " - "  neighbors (e.g., the sites ai in Fig. 14a), and AE+ is the 
additional energy due to " + "  image spins in F. 

To prove the Peierls condition, we have to check that the extra con- 
tribution L I E  -- AE+ is proportional to the area of the contour with a not- 
too-large proportionality constant. The intuition is clear: The contributions 
corresponding to " + "  and " - "  image spins inside the volume cancel each 
other, except possibly for a layer of image spins placed close to the 
contour. This correction is hence of the order of the area of the contour, 
with proportionality constant given roughly by the inverse of the separa- 
tion between these image spins. However, this last bound is not applicable 
if the contour involves few (e.g., one) image spins. In this sense, it is natural 
to distinguish between contours surrounding and contours avoiding the 
image spins. While the former "feel" the sublattice of image spins, the 
energy contribution of the latter is almost the same as for the usual Ising 
model. This produces an estimation of the Peierls constant (and hence of 
the critical temperature) with two competing terms: one depending on the 
decimation period b (and tending to 0 as b tends to infinity), and another 
independent of b and close to the Peierls constant for the Ising model (the 
closer, the higher the dimension). 

To formalize these ideas, we choose one coordinate axis, say the one 
labeled 1, and perform the cancellations by sweeping in order along it. To 
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abbreviate, let us call "left" the direction in 7/d toward smaller 
1-components, and "right" the opposite direction. As we deal with energy 
contributions associated to image spins, we must consider original 
contours. We shall say that an internal spin has "l faces inside an (original) 
contour" if 1 of the faces [ = elementary ( d -  1)-cells-] of the unit cube cen- 
tered on it lie in the interior of the contour (e.g., in Fig. 14a, the internal 
spin at am has one face inside the contour, the one at a 4 has three, etc.). 
Note that, in such a case, the energy contribution of the image spin is 

AE =21JIl  (B.72a) 

AE+ = 0 (B.72b) 

if it is a " - "  spin, and the reverse for a " + "  image spin. The cancellation 
can be done, for instance, as follows: For  each line in the left-right 
direction intersecting the original contour, we choose the image spin inside 
the contour located farthest to the left and look for the next image spin 
inside the contour, of opposite sign and located to the right and along the 
same line. If the " + "  image spin has the same or larger number of faces 
inside the contour as does the " - " ,  we cancel both contributions (obtain- 
ing a lower bound for the energy if the number of faces is not the same). 
Otherwise we do nothing. We then proceed to the next uncanceled image 
spin along the same line, always traveling toward the right. Once all the 
left-right lines have been scanned, we obtain a lower bound for the energy 
of the form (B.71), but where AE_  and AE+ refer only to a layer of image 
spins inside the original contour placed at a distance not exceeding b + 1 
from it (remaining spins). The energy gain due to these remaining spins 
cannot exceed that of the case in which there are no " + "  image spins left 
and all the " - "  spins have their 2d faces inside the original contour. We 
therefore bound 

AE - AE + <~ 2dJN_ (B.73) 

where N is the number of " - "  image spins inside the above-mentioned 
layer. 

To complete the Peierls bound, we have to relate N to the internal- 
spin contour area ]FI. At this point we must distinguish between original 
contours with N >~2 ("wide contours") and those with N ~< 1 ("narrow 
contours"). For  the wide contours, the key observation is that each two 
" - "  image spins must be at least a distance 2b apart in each coordinate 
direction and the contour must pass at a distance b + 1 or less from each 
of them. Therefore, the number of remaining " - "  image spins for a given 
value of [F[ cannot exceed that of the case in which all of the spins are 

822/72/5-6-19 
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located so as to form a "tube", separated by 2b units from each other, with 
F being the wall of such a "tube": 

Irl 
N_  < (B.74) 

2 ( d -  1 )(b - 1 ) 

(Note that the bound contains b - 1 ,  rather than b, because the faces 
corresponding to " + "  image spins are not part of the internal-spin 
contour.) From (B.71)-(B.74), we conclude that 

H(corl_oo<+))~2J 1 - 2 ( d _ l ) ( b _ l  ) Irl for N_ >~2 (B.75) 

This bound is not useful for the limit case d =  2, b = 2; but for it we have 
already good bounds for the critical temperature (Section 4.1.2). 

Let us now consider the narrow contours (N_ ~< 1). It is not hard to 
convince oneself that the worst case is when the original contour includes 
only one " - "  image spin, which has l faces inside the contour. The contour 
must then include the opposite l faces plus the faces needed to join these 
among themselves or/and to the cube surrounding the " - "  image spin, 
so as to form a closed surface. One can check that the worst situation 
(smallest ratio l/IF] ) is when the I faces of the cube are not consecutive, in 
which case the contour includes the I opposite faces and the 2 ( d -  1)l faces 
needed to join them to the cube. Hence, 

Irl ~> l [ 2 ( d -  1)+ 13 (B.76) 

Therefore, using (B.72), 

2J 
AE_ - ~ E +  ~ 2 ~ - ~  1 IFI (B.77) 

and 

( ' )  H(o~rl~+))>~2J 1 2 d - l  ]FI for N_~<I (B.78) 

(Another way to interpret this Peierls bound is to note that the narrow 
contour with the least energy cost is the one produced by a single flipped 
internal spin adjacent to a " - "  image spin.) 

Formulas (B.75) and (B.78) show both that the configurations (p~+) 
and _m ~-) are indeed the only periodic ground-state configurations and that 
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the Peierls condition is satisfied for the internal-spin system with Peierls 
constant 

Po ~> 2J( 1 - Md, b) (B.79) 

where 

1 d t (R.80) 
Ma, b = m a x  2d~_ 1' 2 ( d -  1 ) (b -  1) 

This value of Po, together with the estimates (B.58) for/30 and (B.68) for 
the entropy factor :~ of thin contours, implies there is a phase transition at 
least for 

/3/> 4 log (2d-  1) + 1/(2e) (B.81) 
2J( 1 -- Md, b) 

This estimate is probably very weak, and it increases with d and with b. In 
fact, if b is large, the alternating fields are very far apart, and the system 
becomes almost indistinguishable from a zero-field Ising model. Therefore 
we expect, but cannot prove, that this limit temperature approaches the 
Ising-model critical temperature when b tends to infinity. 

Inequality (B.81) determines the range of temperatures for which we 
can prove that the decimation transformation has pathologies (Sections 4.2 
and 4.3.2). 

As a warmup for the following sections, let us sketch how the Peierls 
condition can be verified in the present example using the Holsztynski- 
Slawny criterion (Theorem B.21). The argument depends slightly on the 
decimation spacing b. For b = 2 the internal-spin interaction is already an 
m-potential because it is just a ferromagnetic two-body interaction in a 
"diluted" lattice (Sections 4.2 and 4.3.1). For b >~ 3 a periodic m-potential 
is obtained by grouping all the bonds inside cubes containing at least one 
period of the image-spin configuration (Fig. 14b). Explicitly, if r . . . .  1 is 
the interaction for the internal-spin system, the equivalent 2b-periodic 
m-potential q~m-pot has m-pot ~A = 0  unless A is a periodic translate, with 
period 2b, of the cube 

(here L ' J  denotes integer part), or of the inter-cube bonds formed by 
nearest-neighbor pair (x, y )  with, say, x in the (internal) boundary of V. 
For these pairs ~r/~m-p~ ~ ~A){xy} = --aT, and for the cube V 

~]5 m - p ~  - -  t4) i n t e r n a l  
v - Z r A  ( B . 8 3 )  

A ~ V  
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It is not hard to verify that the configurations co (+) and co ( ~ are the only 
minimizers of the (bm'p~ and they obviously also minimize the energy of ~ V  

the inter-cube bonds. Therefore, 05m-pot is an m-potential with a finite 
number of ground-state configurations. By Theorem B.21, the Peierls 
condition is satisfied. No estimation of flo follows from this approach. 

B.5.4. Internal Spins under the Kadanoff Transformation. 
Uniformity. For this case we have to apply the uniformity results that we 
so carefully stated above. The Hamiltonian (4.33) can be decomposed in 
the form 

Her r = H o + / t p  (B.84) 

where H o is the usual Ising Hamiltonian and Hp corresponds to the inter- 
action ~(p,  fl) defined by 

I 
- ( p / # ) a "  a ,  if A = { i } a n d i ~ B  x 

if A = B x  (B.85) 

otherwise 

(We recall that in this appendix we are "unabsorbing" fl, which in (4.33) 
is absorbed only in J.) We choose CO'speoia ~ as  some alternating configura- 
t i o n - w i t h  as many pluses as minuses--so that, by symmetry, the 
coexistence of the " + "  and " - "  internal-spin Gibbs measures does not 
require any additional field. That is, as before, we forget about symmetry- 
breaking interactions. 

The interaction 05 o satisfies the original Peierls condition with Po = 2J 
(thin contours, or = {~+~, o9(-~}). We can then resort to Corollary B.25 
to conclude that the whole interaction 05o+ ~(P,  fl) satisfies the original 
Peierls condition. However, to estimate the Peierls constant, we must 
correct rio so as to satisfy (C1) and (C2) for the total interaction. For 
instance (see remarks at the end of Section B.4.2), we can replace it by 

2J 
Po (2a+ 1)a 

with a equal to half the length of the largest side of the block. We then 
conclude that for each p there exists a value fl~(p) defined by 

p_ 1 2cJ 
fll + ~ log(2 cosh p JBI) = (2a + 1) 2a (B.86) 
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such that for fl>~fll(P) the effective internal-spin interaction for the 
p-Kadanoff transformation satisfies the Peierls condition with constant 

2J(1 - 2 c )  
P -  (2a+ 1) d (B.87) 

In the last two formulas, the constant c is arbitrary as long as 0 < c < 1/2. 
We shall find an optimal choice below. 

At this point we can apply, for instance, Corollary B.29 to obtain that 
for each finite p there exists a value flo(P) such that for f l ) f lo(P)  the 
system of internal spins corresponding to a p-Kadanoff transformation has a 
nontrivial phase diagram with a first-order phase transition between a " + "  
and a " - "  Gibbs measure. The formulas (B.66) and (B.68) imply the 
estimate 

{ ( 2 a + l ) a  ]" 
flo>~ max ill(P), [ 41og(2d -1 )+ (2e )  -1] 2 J ( l _ 2 c ) Z j  (B.88) 

From the point of view of this bound, the optimal choice of c is when fl~(p) 
equals the competing term in the RHS of (B.88). This produces the rather 
ugly-looking bound 

(2a + 1)a 2 
rio/> 8Le, IBI,d (B.89) 

2J 4Lp, IBI,d+ M a -  x /Ma(Ma+ 8Lp, tBi,d) 

with 

Md = 4 log(2d-- 1) + (2e) 1 

Lp, IBL,d --~ [P + log(2 cosh p IB] )] (2a + 1 )d 

Formula (B.89) gives a lower bound for the temperature up to which 
a Kadanoff p-transformation exhibits pathologies (Section4.3.3). This 
bound goes to zero if p tends to infinity, hence it is useless for majority-rule 
transformations. 

B.5.5. Internal  Spins under Major i ty  Rule, For this case, 
we use the Holsztynski-Slawny criterion (Theorem B.21). The system of 
internal spins subjected to the constraint of a doubly-alternating 7 • 7 
block-spin configuration can be written as a periodic m-potential with 
period 28. The fundamental bonds of this potential are the squares of size 
28 x 28 depicted in Fig. 8a, and all the bonds connecting neighboring 
squares. It is straightforward to check that the configurations of Fig. 8b are 
the only ones satisfying all the bonds of this m-potential. Hence, the system 
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has a finite number (two) of ground states, which, by Theorem B.21 and 
PS theory, give rise to different and coexisting Gibbs measures at low 
enough temperature. By symmetry considerations, this coexistence takes 
place at zero values of the symmetry-breaking field. An analogous 
argument can be used for all the other block sizes bk given in (4.35). 

B.5.6. Internal Spins under Block-Averaging Transfor- 
mations. Again, we resort to the Holsztynski Slawny criterion 
(Theorem B.21). The system of internal spins subjected to the constraint of 
zero average spin in every 2 x 2  block can again be written as an 
m-potential which is periodic (with period 2). The fundamental bonds are 
the 2 • 2 squares and the bonds connecting them, and the only four 
periodic ground states satisfying every bond are easily seen to be the ones 
depicted in Fig. 9. Thus at sufficiently low temperature PS theory provides 
the phase transition needed in Step 1. Again symmetry allows us to dispose 
of any symmetry-breaking field to follow the coexistence point. 

B.5.7. Internal Spins when h 5 0 .  Random Field. The result 
needed to prove the presence of pathologies for nonzero field in the 
decimation and Kadanoff examples of Section 4.3 is a direct consequence of 
Zahradnik's Theorem B.31. We apply this theorem with ~b 0 equal to the 
interaction for the system of internal spins with fully alternating image 
spins, and the symmetry-breaking perturbation q~l taken to be a uniform 
magnetic field. The random interaction is the random magnetic field 
induced by those block spins that were flipped from " + "  to " - "  with 
probability e/(2J), as discussed in Section4.3.6. By Theorem B.31, the 
resulting low-temperature and low-e phase diagram is only a small pertur- 
bation of the phase diagram for the nonrandom part, which is itself a small 
perturbation of its zero-temperature phase diagram. In particular, for 
sufficiently small, the ground-state energy for almost all realizations of the 
Hamiltonian is an "almost linear" function of the parameters h and e (i.e., 
the difference between it and the linear function valid when the random 
part of the interaction is zero is small and smooth). Therefore, the compen- 
sating uniform field (that is, the value of h as a function of e needed to keep 
the system on a coexistence surface) is a strictly increasing function. 

APPENDIX C. SOLUTION OF THE DIOPHANTINE 
EQUATION (4.34) 

Consider the pair of Diophantine equations b 2 -~ 2 c  2 ~ 1 (b, c integers 
>~ l). The following intuition was suggested to us by Vincent Rivasseau: If 
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(b, c) satisfies either of these equations, then b/c must be an excellent 
rational approximation to .,f2, in the sense that 

~ Ib2/c2-21 1 (C.1) 
- = b/c+  

(Note that, by contrast, for "typical" integer denominators c, one has 
infb~ ~ Ib/c-x/2[ ~ 1/c>> 1/C2.) Now, the best rational approximations to 

~ c a n  be obtained from the continued fraction (23v'3zS) 

1 
x / 2 -  1 : (C.2) 

1 
24 

1 
2 + - -  

2 4 . - -  

This suggests that we consider the recursion 

1 
= (C.3) Xn + l 2 + x .  

which converges to . , / 2 - 1  as n ~ oe (for any X o > - 2 ) ;  equivalently, 
defining y .  = x.  + 1, we find the recursion 

2 + y .  
(C.4) 

Y~+I l + y n  

which converges to x/2 (for any Y0 > -1) .  In particular, setting y~ = b./c. 
with b., cn positive integers, we find the linear recursion 

bn + 1 ~-- b. + 2c, (C.5a) 

Cn+ 1 = b n  + c n (C.5b) 

Now this recursion has the remarkable property that 

~. 2 2 b2.+1 - 2c2+1 - ( b . -  2c,,) (C.6) 

2 2C 2 + 1, then 2 = 2e2 + 1 -T- 1. Therefore, if we start In particular, if b n = _ b. + i 
from (b0, Co)= (1, 1), we generate pairs (b., c.) which satisfy b]=2c]-1 
(resp. b 2. = 2c~ + 1) for even (resp. odd) values of n. The explicit formula is 

1 
b,, = ~  [(1 + N ~ ) n +  1 + (1 _ ~ ) . + 1 ]  (C.7a) 

1 
c. = 2/-:.x/z [(1 + ~ ) ' + 1 -  (1 - x / 2 1  "+1 ] (C.7b) 
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To prove that this sequence constitutes the complete set of integer solutions 
t o  b 2 -= 2 c  2 ~ 1, we run the iteration (C.5) backward: given (b, c), we define 

b' = - b  + 2c (C.8a) 

c' = b - c (C.8b) 

and show that repeated application of this map must eventually lead to the 
pair (1, 1). 

L e m m a  C.1. Let  b, c >~ 1 be integers satisfying b 2--- 2 c 2 •  1. Then 
b', c' are integers satisfying 0 < b' <~ b, 0 <~ c' < c, and b '2 = 2c '2 -T- 1. 

Proof. (a) c ~> 1 implies b 2 = 2c  2 -I- 1 /> 2C 2 -- 1 >~ 2C 2 -- C 2 = c 2. Hence 
b >~c and c'>>.0. Also, b - b ' =  2(b-c)>>.O, so b' <~ b. 

(b) c~>l implies b 2=2c  2 + 1 ~ 2 c  2+1~<2c 2 + c  2=3c 2<4c 2. Hence 
b < 2 c  and b'>O. Also c - c ' = 2 c - b > O ,  so c' <c.  

(C) b ' 2 - 2 c ' 2 = ( 2 c - b ) 2 - 2 ( b - c )  2= - ( b 2 - 2 c 2 )  = -T-1. | 

Since c strictly decreases at each iteration of (C.8), we must eventually 
reach c = 1, hence b = 1. Since (C.8) is the inverse of (C.5), the original pair 
(b, c) must be (b,, c,) for some n. We have therefore proven: 

T h e o r e m  C.2. A pair o f  integers b, c >~ 1 satisfies the Diophantine 
equation b 2 = 2c 2 - 1 (resp. b 2 = 2c 2 + 1) i f  and only i f  (b, c) = (b,, cn) for  
some even (resp. odd) integer n >~ O. 

In particular, the block sizes b for which the majority-rule construc- 
tion in Section 4.3.4 works are b2, b4, b6,... = 7, 41,239, 1393, 8119 ..... 

Remarks .  1. After completing this proof, we learned that it was 
previously published by Theon of Smyrna (353) circa 130 A.D., and probably 
goes back to the Pythagorean school(3~ the identity (C.6) is proven 
geometrically in Euclid's Elements (Book II, Proposition 10). The special 
case b = 7, c = 5 is mentioned in Plato's Republic (546 C), though without 
the renormalization-group application. For a history, see Heath, (194) 
Dickson (ref. 78, Chapter XII), Tannery (ref. 352, p. 51), and Mugler. (275) 

2. One might wonder about the rational approximants to xfl2 
obtained by using Newton's method y F-. �89 + 2/y). Setting y = b/c, we 
obtain the nonlinear recursion (b, c) ~ (b 2 + 2c 2, 2bc) =- (b, ~). It is 
straightforward to prove by induction that if (b, c) = (b,, cn), then (/~, 0) = 
(b2n+l, c2n+1). So Newton's method generates a subsequence of the 
continued-fraction sequence. 
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It  is na tura l  to ask whether  our  const ruct ion in Section 4.3.4 can be 
extended to Ising models  in d imension d>~ 3. Clearly this works  if and only 
if the block size b and  island size c satisfy the Diophan t ine  equat ion  

1 + b d = 2c d (C.9) 

Unfor tunate ly ,  we suspect that  for d~> 3 there are no posit ive-integer solu- 
tions to (C.9) other  than  b = c = 1. The  best results we have been able to 
glean f rom the mathemat ica l  l i terature are summar ized  in Theorems  C.3 
and  C.4: 

T h e o r e m  C.3. Let  l be a positive integer satisfying any one o f  the 

fol lowing three conditions: 

(a)  l =  3. 

(b)  l = 4 .  

(c)  l is a regular prime81 such that the exponent  o f  2 mod l is s2 either 
( l - 1 ) / 2  or even, and such that 2 l-1 ~ 1 (mod  12). 

Let  d be any multiple o f  l (including I itself).  Then the only positive-integer 
solutions to x d + ya = 2z a are x = y = z. In particular, the only positive- 

integer solution to 1 + b a = 2c a is b = c = 1. 

Theo rem C.3 has a long history. Obviously,  if the theorem holds for 
any given power  /, it trivially holds also for multiples of that  power. The 
case l =  3 was p roven  by Euler  somet ime before 1770 (ref. 78, p. 572); much  
more  general  results are now known  (ref. 270, pp. 126, 203, 220). The  case 
l =  4 is a specialization of a theorem proven  by Schopis in 1825 (ref. 78, 
p. 618; ref. 270, p. 18); again, more  general results are now known (ref. 270, 
pp. 271,274,  276). The  case l - -  5 was p roven  in the mid-nineteenth  century, 
but  the p roper  a t t r ibut ion is unclear. D6nes (76) credits Dirichlet, (83) but  our  
reading of Dirichlet 's  pape r  indicates that  he t reated numerous  cases of  
x S +  y S =  A z  5 but  not A = 2 (see also ref. 78, p. 735). The correct  a t t r ibut ion 
seems to be Lebesgue in 1843 (239) (ref. 78, p. 738). See also ref. 78, 
pp. 755-756, and ref. 270, p. 276, for generalizations.  

The  case (c) was p roven  by D~nes (76) in 1952. To  interpret  it, note  that  
the first i r regular  pr imes are 37, 59, 67, 101 ..... The first regular primes for 
which the exponent  condi t ion fails are 31, 73, 89, 127 ..... Finally, the only 
pr imes l <  6 x 10 9 (and indeed the only ones currently known)  for which 
2 t -1  = 1 (mod  l 2) are 1093 and 3511 (ref. 313, pp. 263-264). Thus,  the first 

81A prime l> 3 is called regular if it does not divide any of the numerators of the Bernoulli 
numbers B2, B4,..., Bz_ 3 expressed in lowest terms. 

82 The exponent of 2 mod l is the smallest integer n ~> 1 such that 2 n - 1 (rood l). 



1150 van Enter et al. 

primes for which condition (c) fails are 31, 37, 59, 67, 73, 89, 101 ..... In 
particular, Theorem C.3 holds for all exponents d~< 100 except possibly 31, 
37, 59, 62, 67, 73, 74, 89. 83 

T h e o r e m  C.4. For arbi trary d>~ 3, there is at most  one posit ive- 

integer solution to 1 + b d = 2c a other than b = c = 1. 

Theorem C.4 is a special case of a result of Domar ,  (1~176 who proves 
that for arbitrary integers A, B~> 1 and d>~ 5, the equation ] A x a - B y  a] = 1 

has at most  two solutions in positive integers x, y. See also ref. 113. 
The conjectured unsolvability of x d + yd = 2z a for d ~> 3 is a special case 

of an "extended Fermat 's  last theorem" which might conceivably be 
true(145,63): 

C o n j e c t u r e  C.5. L e t  d and a be integers, with d>~ 3 and 1 <~ a <~ d. 

Then there are no solutions o f  x d + ya  = az d in nonzero integers, except  f o r  

x = y = z  in the case a = 2 .  

We find it amusing that a real problem in physics should be connected 
with Fermat 's  last theorem, but we think that this is an artifact of our 
method of proof  and not  an intrinsic fact about  majority-rule transforma- 
tions. Indeed, we suspect that Theorem 4.5 holds for all block sizes b ~> 2 
and all dimensions d>~2, without regard for subtle number-theoretic 
properties. But we could be wrong. 

N o t e  Added .  Enrico Bombieri has kindly drawn our attention 
to recent literature bear ing  on the Diophantine equation 1 + b d = 2 c  d. 
Adapting a result of Mignotte and Waldschmidt (ref. 269, Corollary 1.1 
and following remarks), Bombieri has sketched a proof that if d is a prime 
>~730651, then the only solution is b = c =  1. Furthermore, Chudnovsky 
and Chudnovsky (ref. 64, p. 228) have stated an "effective Thue theorem" 
which apparently implies the same result for d~> 89; but they have not yet 
published the proof. 

N O T E  A D D E D  IN P R O O F  

As the reader is by now surely aware, Andrew Wiles of Princeton 
University has announced (in June 1993) a proof of Fermat 's  last 
theorem. 383 It  will be very interesting to learn whether Wiles' methods can 
be employed to study the equation 1 + b a =  2c a, or more generally to study 
Conjecture C.5. 

83 D6nes' paper ~76) contains a list of all primes l < 619 for which condition (c) fails. This list 
has, however, a few mistakes: The primes 389 and 613 should be added to the list of 
irregular primes~251); the exponent of 2 mod 281 (resp. rood 563) is 70 (resp. 562); and the 
final list in his article should read 31, 73, 89, 127, 151, 223, 337, 431, 439, 601. 
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