
J Stat Phys (2009) 136: 875–901
DOI 10.1007/s10955-009-9819-9

Density-Profile Processes Describing Biological Signaling
Networks: Almost Sure Convergence to Deterministic
Trajectories

Roberto Fernández · Luiz R. Fontes · E. Jordão Neves

Received: 26 May 2009 / Accepted: 1 September 2009 / Published online: 18 September 2009
© Springer Science+Business Media, LLC 2009

Abstract We introduce jump processes in R
k , called density-profile processes, to model

biological signaling networks. Our modeling setup describes the macroscopic evolution of
a finite-size spin-flip model with k types of spins with arbitrary number of internal states
interacting through a non-reversible stochastic dynamics. We are mostly interested on the
multi-dimensional empirical-magnetization vector in the thermodynamic limit, and prove
that, within arbitrary finite time-intervals, its path converges almost surely to a deterministic
trajectory determined by a first-order (non-linear) differential equation with explicit bounds
on the distance between the stochastic and deterministic trajectories. As parameters of the
spin-flip dynamics change, the associated dynamical system may go through bifurcations,
associated to phase transitions in the statistical mechanical setting. We present a simple
example of spin-flip stochastic model, associated to a synthetic biology model known as
repressilator, which leads to a dynamical system with Hopf and pitchfork bifurcations. De-
pending on the parameter values, the magnetization random path can either converge to a
unique stable fixed point, converge to one of a pair of stable fixed points, or asymptoti-
cally evolve close to a deterministic orbit in R

k . We also discuss a simple signaling pathway
related to cancer research, called p53 module.

Keywords Density-profile processes · Biological signaling networks · Spin-flip dynamics ·
Non-reversible stochastic dynamics · Thermodynamic limit · Dynamical system · Mean
field

R. Fernández
Laboratoire de Mathématiques Raphaël Salem, UMR 6085 CNRS-Université de Rouen, Avenue
de l’Université, B.P.12, 76801 St Etienne du Rouvray, France
e-mail: roberto.fernandez@univ-rouen.fr

L.R. Fontes (�) · E.J. Neves
University of São Paulo, Rua do Matão, 1010, Cidade Universitária, CEP 05508-090, São Paulo, SP,
Brasil
e-mail: lrenato@ime.usp.br

E.J. Neves
e-mail: neves@ime.usp.br

mailto:roberto.fernandez@univ-rouen.fr
mailto:lrenato@ime.usp.br
mailto:neves@ime.usp.br


876 R. Fernández et al.

1 Motivation and Introduction

The interest in the analysis of the dynamical processes driving biological systems and the
corresponding signal-processing mechanisms, together with recent successes in molecular
biology and advances in computer technology, spurred a revival of systems biology ideas [1].
This approach [3, 4], which exploits ideas from dynamical systems and control theory [5],
can be traced back at least to Erwin Schrödinger’s meditation on What is life? [6], sixty five
years ago.

1.1 Signaling Pathways

A central problem in biology is to understand how cells manage to communicate among
themselves and respond properly to noisy signals from their environment. Most biological
signals are received and transmitted through sequences of chemical reactions that may ex-
hibit a striking similarity to electrical circuitry. Extra-cellular information is often transmit-
ted through cell-membrane receptors activated by chemical entities known as ligands, such
as hormones, neurotransmitters or growth factors (see Fig. 1). These signals trigger complex
time-dependent cascades of internal cellular biochemical interactions that may lead to sev-
eral different cellular responses, like embryogenesis, motility, differentiation and apoptosis
(carefully controlled cell suicide) [7]. Such sequences of chemical reactions—called signal-
ing pathways when the main interest is on the associated flow of information—can achieve
complex signal processing tasks and participate in the control of larger and even more com-
plex multifaceted cellular behaviours. Signaling pathways usually involve the interaction of
a large multi-scale hierarchy of subsystems, from processes occurring at molecular level
within small intra-cellular compartments to the coordinated dynamics of cells in tissues and
organs across the life span of an organism. To illustrate some of the scale and complexity
that may be involved in a real signaling pathways the reader could check a recent compre-
hensive overview in [8] of the important epidermal growth factor (EGF) signaling pathway,
associated to the control of growth, survival, proliferation and differentiation in mammalian
cells. This work, based on the molecular interactions documented in 242 papers accessible
from PubMed (http://www.ncbi.nlm.nih.gov/pubmed), identified 211 associated chemical
interactions involving 322 types of biochemical components.

The systems biology approach suggests multi-level analyses where the whole system is
considered in terms of a hierarchy of interconnected functional modules [9, 10], usually
small subset of interacting components capable to perform some basic useful functionality
which contributes to the behavior of the whole system. An example of basic functionality is
the capability of generating oscillations which enables time-periodic processes like circadian
rhythms and cell cycle. Two other examples of functionalities that may be required in a
given signaling pathway are filters, which allow responding to an input signal only when
it is within a particular range of amplitude or frequency, and the gradient sensor module
that allows detection of variations in concentrations, as required for chemotaxis. Our basic
modeling setup, described below, can easily describe modules capable of exhibiting these
simple functionalities and, to illustrate this, we discuss a simple class of modules, called
cyclic interaction modules, capable of generating oscillations.

Signaling pathways may exhibit control mechanisms remarkably similar to those found
in engineered systems [11] as they had to survive strong selective pressures for good per-
formance and therefore had to be able to deploy efficient strategies to prevent inappropriate
physiological responses. Malfunctions in this biochemical circuitry and its control mecha-
nisms may lead to several pathological conditions, like cancer [12].

http://www.ncbi.nlm.nih.gov/pubmed
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Fig. 1 Overview of Signaling Pathways [2] associated to the decision between proliferation and apoptosis;
pointed arrows indicate some sort of activation interaction from the biochemical component at the source of
the arrow on the component on its tip; similarly, blunt arrows indicate inhibition

Fig. 2 Basic flow of sequence
information processing in the cell

Despite the large amount of information available for a number of pathways [13], the
actual biochemical mechanisms are frequently unknown. In fact biochemical components
involved in a signaling pathways may frequently be quite large molecules which are, by
themselves, information processing machines. Two important biochemical components in
signaling pathways are proteins and genes (RNA strings). They are closely related through
the central dogma of molecular biology [7]: genomic DNA—that contains essentially all
genetic information and is copied on each cell division—is read (or transcribed) into genes
(RNA strings) which is then read (or translated) into proteins (Fig. 2). The dynamics of
the available quantity of each protein may be regulated by controlling the production of the
associated gene in a process known as gene regulation [7].

Progress in the understanding of these pathways and their associated control mechanisms
demands the development of mathematical models that manage good balance between sim-
plicity and usefulness. Mathematical models should not only provide some understanding
for the pathway’s dynamical behaviour but also generate experimentally verifiable predic-
tions. In view of the inherent complexity of most signaling pathways, toy models, in the old
tradition of physics literature, may be particularly useful to illuminate how simple signaling
pathways, or modules, manage to perform their basic functionalities and how these func-
tionalities are further integrated into the whole pathway. To some extent, the recent increase
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of interest in this systems biology approach came about from recent technological advances
that allow exploring cellular processes with very fine experimental detail. Microarrays [14],
for instance, which allows—in principle at least—measuring the activity of all the estimated
30,000 human genes in a given cell, is an important new tool in cancer research [15] with
great potential in the clinical setting [16]. They also provide a most important tool for ex-
perimentally checking model predictions in situations where gene regulation is involved.

1.2 Modeling Signaling Pathways

Systems of chemical reactions where spatial inhomogeneities can be neglected and which
involve a large number of molecules can be naturally modelled as nonlinear continuous-
time dynamical systems. It is frequently the case that a molecule of a given biochemical
component may be able to play different roles according to some internal state, say whether
its spatial conformation exposes a particular catalytic region or not. Thus, suppose there are
different types of components T = {i1, . . . , ik} and that each one of the large number N of
molecules of component i can be in the internal states Si = {a1, . . . , asi }. Macroscopically,
the system is described by giving, for each component i, the si densities of molecules in
each state (only si−1 of the densities are independent, because the total number of particles,
N is fixed). Thus, if E =∏

i∈T Si , the macroscopic description of the system is given by
the dynamics of a density-profile {xt }t≥0 where xt ∈ R

E . If the total number of molecules is
large, the dynamics of this density-profile should be well described by a dynamical system
of the form

ẋt = f (x) − g(x) (1.1)

where f and g are bounded smooth functions from R
E to R

E+, indicating the velocity at
which each one of the |E | component-states are, respectively, produced and degraded when
the global density-profile is given by x. Behind this macroscopic view provided by the
density-profile dynamics there is a microscopic system describing the interactions at mole-
cular level. A key problem is, precisely, how to derive reasonable macroscopic descriptions
though equations like (1.1) on the basis of the available information and of reasonable as-
sumptions concerning the microscopic components and their interactions. Once this is done,
a general framework based on dynamical systems ideas [18], often relying on numerical
methods, can be applied to analyse the corresponding model [19, 20].

A typical method to deduce the dynamical system (1.1) describing a given pathway is to
exploit ideas from chemical kinetics, like the law of mass action [21]. In fact, a particular
type of equation (Michaelis-Menten) developed originally, under several strong simplifying
assumptions, to model a particular type of interaction (enzymatic reaction) is frequently used
in the literature as some sort of default equation for most reactions. An important drawback
associated to this approach is the difficulty in evaluating to what extent the conclusions
of a given analysis depend on these somewhat arbitrary choices of equations. Moreover,
beyond reasonability issues regarding the models themselves, this approach is hampered by
its dependence on too many parameters that can not be measured in vivo, that is, inside a
living cell.

Our modeling setup In the present work we propose an alternative approach—a toy model
approach—to derive the associated dynamical systems, which only seeks to incorporate
the essential qualitative information about the biochemical interactions in a given signal-
ing network. This approach borrows ideas from interacting particle systems [27], in such
a way that spins represent the internal states of components of the signaling pathway and
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Fig. 3 Graphical representations
of p53/Mdm2 interactions as
given in Zhang et al. [25]; ovals
represent proteins, solid arrows
represent chemical reactions,
dashed arrows represent
activation effect of a protein on a
reaction, and a set of five small
circles represent degradation
products

the global system evolves through a non-reversible Glauber spin-flip stochastic dynamics as
explained in detail in Sect. 5 below. This stochastic spin system is projected onto a jump
process in R

k—called the density-profile process—which drives the discretized densities of
the biochemical components in the signaling pathway. In the limit of a very large number
of spins, these densities converge to time dependent functions satisfying the deterministic
dynamical system 1.1. Thus, in statistical mechanics notation [34], the stochastic spin sys-
tem and the density-profile process provide, respectively, the microscopic and macroscopic
views of the same model. Rates with which molecular states change, which correspond to
spin flips—transitions in the spin internal state—in our model, are chosen to depend on the
global density-profile is such a way as to mimic the qualitative description of the associated
interactions. In fact, the intermediate density-profile process may be of independent interest
to analyse biochemical pathways where stochasticity plays an important role [22].

Note however that a comprehensive discussion of interesting signaling networks, like
those described in [13] for instance, and their mathematical modeling can not be given here
as it would unavoidably require delving into far too many biological considerations. Thus,
as a compromise we will illustrate our modeling approach and its potential in basically two
simple—but real—biological problems. Both may be thought as modules [10], rather than
complete signaling pathways, as both of them, while involving a small number of compo-
nents, still manage to provide some basic cellular functionality. We start with the discussion
of the dynamics of a synthetic biologic system implemented in vivo in a bacteria [23]. First
this is done informally, but in some detail, as a motivation for our approach. A more detailed
explanation is given later in Sect. 6, where we also derive the corresponding differential
equations and discuss the associated bifurcation analysis (Theorem 6.1). Next we present
the second example, which concerns the puzzling response [24] of p53—an important tumor
suppressor gene [7] involved in preventing cancer—to DNA damage. A graphic representa-
tion of the interactions described in this module is given in Fig. 3. From the corresponding
dynamical equations we find that, as for the usual strategy based on chemical kinetics ideas
[25], our approach can also explain the dynamical behavior of p53 by the presence of a
sub-critical Hopf bifurcation with respect to the parameter associated to DNA damage (see
Fig. 4).

2 Examples

2.1 Cyclic-interaction Module

Our first example is called the cyclic-interaction module and provides the basic function-
ality of generating oscillations. Such functionality is essential to organise time-modulated
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Fig. 4 Bifurcation diagram for our toy model for the p53 module. There is a sub-critical Hopf bifurcation
with respect to γ , the parameter associated to DNA damage; solid lines indicate stable points; dotted lines
indicate unstable points; white circles indicate maximum and minimum values of unstable orbits and black
circles indicate the same for stable orbits; bifurcation diagram obtained with xpp-aut [26]

Fig. 5 Basic clock module based
on a loop of feedback inhibition
among three components
indicated by A, B and C. The
blunt arrows indicate inhibition

biological functions like, for instance, the required periodic adjustment of an organism’s
physiology to the circadian rhythm.

Basic clock The simplest cyclic-interaction module, which will be called basic clock mod-
ule, has only three components that we call A, B and C. They interact cyclically through a
loop of feedback inhibition where each component acts upon the next one along the loop so
that A represses B, B represses C and C represses component A (see Fig. 5). More precisely,
the rate of change of component A density at each time depends only on C density in an
inhibitory manner: the density of A tends to decrease if the concentration of C is high. In a
biological setting, A and C could represent, for instance, proteins with C being an enzyme
that accelerates the rate of degradation of A. A similar dependence holds between C and B
and between B and A. For large inhibition strengths, dynamical instabilities would be ex-
pected where concentrations of all three components oscillate. A precise general definition
is given in Sect. 6.

Repressilator A slightly more complex version of the cyclic-interaction module is known
in the literature as repressilator. It was implemented (that is, biochemically engineered) in
the bacteria Escherichia coli [23] and is a milestone in synthetic biology. Three genes, that
for simplicity sake we will call a, b and c, instead of their biological identifications λcl, Lacl
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Fig. 6 A synthetic biology oscillatory network of transcriptional regulators [2] engineered in E. coli. Blunt
arrows indicate inhibition through the gene regulation process described in the text

Fig. 7 Cyclic-interaction
module with three genes,
indicated by a, b, and c, whose
product proteins, indicated
respectively by A, B and C,
repress the transition of the
following gene. Pointed arrows
indicate activation while blunt
arrows indicate inhibition

and TetR (check Fig. 6), were introduced into the genome of the bacteria so that the corre-
sponding proteins, denoted by A, B and C, interact in an cyclic inhibition loop. The fourth
component, indicated by GFP in Fig. 6, plays no role in the dynamics and serves only as a
fluorescent marker [17] for the concentration of TetR. The directed inhibition loop between
components A, B and C arises from gene regulation as follows. Each gene, since it is trans-
lated into the corresponding protein, can be said to promote that protein; thus, a large density
of a given gene in the cell indicates that the density of the corresponding protein tends to
increase. On the other hand, each protein inhibits the production of the gene associated to
the next protein in the same loop as before. That is, if a, b and c denote genes and A, B
and C the corresponding proteins, protein A inhibits the production of gene b while protein
B inhibits gene c and protein C inhibits gene a. See Fig. 7 for a graphical representation
of these interactions. As before, if interaction strengths are large enough, oscillations are
expected to occur. Indeed, these oscillations were experimentally verified in the synthetic
biology system in E. coli engineered to have these extra genes. Our toy model (Theorem 6.1
below) explains this dynamical behaviour through a (supercritical) Hopf bifurcation with
respect to the interaction strength parameter.

Modeling approach for the basic clock model Let us first discuss informally our basic
mathematical modeling approach for the three component cyclic-interaction module that
leads to what we call the basic clock model. The general case, which includes the repres-
silator model, will be considered later. Suppose the three types of biochemical components
of this simple module interact inside some cellular container where N sites, labelled from 1
up to N , are available for each one of the types A, B and C. We write ηt (i, n) = +1 if there
is a component of type i ∈ {A,B,C} in site n, 1 ≤ n ≤ N , at time t and write ηt (i, n) = −1
otherwise. The numbers ηt (i, n) are thought as spins (up or down) for type i at site n in the
usual nomenclature of statistical mechanics. For each i ∈ {A,B,C} denote by c(i) the type
of the component that inhibits it, that is, c(A) = C, c(B) = A and c(C) = B . (Remark: to
simplify our notation and treat arbitrarily large numbers of types, below we label them with
numbers rather than letters.) Now assume that each spin ηt (i, n) flips with rates that depend
only on the density at time t of the component c(i). We write ηt ∈ {−1,+1}{A,B,C}×{1,...,N}
for the global configuration space of the system at time t and denote by c(i, n, η) the rate
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with which the spin of type i at site n flips when the present configuration is η. Several
choices of flip rates would be natural to represent this inhibition loop. A simple choice is
given by

c(i, n, η) = exp

{

Jη(i, n)
1

N

N∑

l=1

η
(
c(i), l

)
}

(2.1)

where J is the parameter measuring inhibition strength. The region J > 0 is of interest for
mimicking the inhibition loop, as the resulting rates favors spins of type i pointing opposite
to the majority of spins of type c(i). In the Interacting Particle Systems setting this stochas-
tic model is a spin-flip model with mean-field Glauber dynamics. Due to the asymmetric
nature of the interaction among the three types of spins the stochastic dynamics is no longer
reversible and interesting new phenomena may occur.

In this paper we analyse the thermodynamic limit (that is, the limit as N goes to infin-
ity) of these stochastic spin flip models and the main result is given by Theorem 4.1. In
this limit, both the simplest cyclic-interaction module model (k = 3) and the repressilator
model (k = 6) give rise to deterministic dynamical systems of type (1.1) with Hopf bifurca-
tion (Theorem 6.1) at J = 4 and J = 4

√
3/3, respectively. Therefore these toy models are

capable of exhibiting the qualitative behaviour observed for the associated real biological
signaling pathway.

2.2 p53 Module

Let us now describe our second simple biological example, the p53 module. p53 is a tumor
suppressor gene coding for a protein that plays an important role in maintaining cellular ge-
nomic integrity and preventing cancer. Recent experiments [24] verified that DNA damage
elicits—in each single damaged cell—a number of pulses of p53 which have essentially the
same amplitude and shape instead of, as expected originally, damped oscillations. This be-
havior can not be explained by the usual Hopf bifurcation, as is the case for the repressilator
model. Several publications dealt with this problem and tried to understand the source of this
dynamical behaviour via mathematical models. For instance, Zhang et al. [25], described
four simple mechanisms by which p53 could be regulated and proposed mathematical mod-
els describing them, based on the usual chemical kinetics ideas and additional simplifying
assumptions.

We consider here one of these mechanisms which involves positive and negative feedback
loops between p53 and another type of molecule, called Mdm2, as described graphically in
Fig. 3. As indicated in the figure, Mdm2 is a protein that has a dual role activation/inhibition
with respect to p53: Mdm2 in the cytoplasm enhances translation of p53 RNA strings into
p53 protein (thus activating p53) while Mdm2 in the nucleus mediates p53 degradation (thus
inhibiting p53). Finally, Mdm2 transcription is induced by p53 itself. Thus three states are
required to describe the different roles of Mdm2, say state 0 to indicate Mdm2 not present
(or degraded), state 1 for Mdm2 present in the cytoplasm and state 2 for Mdm2 present in
the nucleus. On the other hand, only two states (present/absent) are enough to describe p53.

The set of possible state transitions at each n ∈ {1, . . . ,N} is indicated in Fig. 8. Solid
arrows indicate transitions that are compatible with the graphical description given by Fig. 3.
For instance, the transition of Mdm2 from state 2 to state 0 is allowed as it corresponds to a
molecule of Mdm2 at the nucleus being degraded while the reverse transition, from 2 to 0, is
not allowed as Fig. 3 indicates that Mdm2 can only be produced in the cytoplasm, by RNA
translation. Dotted arrows from a state of a given component terminating in a solid transition
arrow indicate, in Fig. 8, that transition is regulated by the associated density. For instance,
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Fig. 8 Possible transitions
corresponding to p53/Mdm2
interactions from Zhang et al.
[25]; solid arrows indicate
possible transitions while dotted
arrows from a state to a solid
arrow indicates that the rate of
the target transition is regulated
by the density of the initial state

the transition where p53 is produced, that is, goes from state 0 to state 1, is regulated by
Mdm2 in state 1, that is, it depends on the density of Mdm2 in the cytoplasm.

Our heuristic prescription for setting up models The intuitive idea is simple: first we as-
sume that each transition may depend on the density profile in such a way as to represent
qualitatively the putative interactions. Next, the differential equations are formally derived
from Kolmogorov’s equations, as in (7.1).

Let us denote by x, y and z the densities of p53, Mdm2 in the cytoplasm and Mdm2
in the nucleus, respectively. The rates that are not regulated, for instance the transition cor-
responding to the degradation of Mdm2 (state 1 to state 0) are taken to be constants to be
chosen later. The choices of these constants should be guided by the available biochemical
information but we assume that their precise values are not crucially important. This robust-
ness assumption with respect to parameter changes is justified by the fact that processes that
depend on fine tuning would not be reliable in the extremely noisy cellular environment.

All three regulated rates indicated in Fig. 8 are qualitatively similar and correspond to
activation. For instance, the rate of production of p53 depends on the density of Mdm2 in
the cytoplasm in such a way that larger (smaller) densities of Mdm2 in the cytoplasm imply
larger (smaller) rates of production of p53. To represent this we should assume that the rate
of production of p53 is an increasing function of y, the density of Mdm2 in the cytoplasm.
A simple choice for this function (related with (5.12)) is given by

S(u,V,α, a) = V

1 + e−α(u−a)
(2.2)

where V , α and a are parameters.
The density-profile process along the lines of Fig. 3 is defined in the following way. There

are two types, T = {p,M} (for p53 and Mdm2), with internal spin spaces Sp = {0,1} and
SM = {0,1,2}. The respective densities are

x(p,1) = x,

x(p,0) = 1 − x,

x(M,2) = z,

x(M,1) = y,

x(M,0) = 1 − y − z

(2.3)
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while the transition rates are

λ0→1
p = S(y,Vyx,αyx, ayx),

λ1→0
p = S(z,Vzx, αzx, azx),

λ0→1
M = S(x,Vxy,αxy, axy),

λ1→2
M = q12,

λ1→0
M = q10,

λ2→1
M = q21,

λ2→0
M = γ.

(2.4)

Here qij indicates the (constant) rate of transition of Mdm2 from state i to state j and S is
the function defined above. The parameter γ measures the input of the dynamical system,
namely, the strength of DNA damage.

The resulting differential equations for the p53 are, therefore,

ẋ = (1 − x)S(y,Vyx,αyx, ayx) − xS(z,Vzx, αzx, azx),

ẏ = (1 − y − z)S(x,Vxy,αxy, axy) − y(q12 + q10) + zq21,

ż = yq12 − z(q21 + γ ).

(2.5)

The main output of interest, the response of the system, is the density of p53, given by x.
The bifurcation diagram for this variable, with respect to γ is presented in Fig. 4. There is
a sub-critical Hopf bifurcation at a particular value of γ , say γc , such that the concentration
of p53 remains stable for γ < γc but oscillates with large amplitude as soon as γ increases
past this threshold. This diagram is in agreement with the findings of Zhang et al. [25] based
on the usual approach based on chemical kinetics ideas.

3 Overview of the Paper

The density-profile process and our almost sure convergence result is presented in Sect. 4.
Density-profile processes are random walk jump-processes in R

k with jumps of size 1/N ,
whose expected drift velocity V (x) does not depend on N . The main result of this paper
(Theorem 4.1) is the proof that, within arbitrary but fixed time intervals, the paths of such a
process converge almost surely to the trajectories of the dynamical system having V as the
velocity field with explicit bounds for the distance between the stochastic and deterministic
trajectories. As we show, the resulting dynamical systems can exhibit a very rich behavior,
including oscillations.

The microscopic setup is presented in Sect. 5. We introduce the type-dependent stochastic
spin model with non-reversible dynamics in Sect. 5.1. The mean-field version of this model,
which is motivated by our biological interest and for which our convergence result applies,
is also presented here.

Similar problems where considered in the literature [29]. It should be pointed out that
ideas from the so called martingale problem and random time changes developed by T. Kurtz
[30, 31] provide an alternative method to prove almost sure convergence for our models
(see also [32] for analogous models and results in a discrete time setting). It is, however,
not immediately clear to us whether these techniques also lead to an explicit control of
the difference between the stochastic and deterministic trajectories similar to that stated in
Theorem 4.1. The pathwise approach presented here, which strongly exploits coupling ideas
[37], is quite natural within the Interacting Particle Systems setting we adopt. It would, for
instance, also be natural to consider metastability issues [33]. One interesting problem, that
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we leave for a further investigation, is the analysis of the density-profile fluctuations as
bifurcations of the associated dynamical system are crossed.

In Sect. 6 we describe bifurcation results for the repressilator model. Finally, the main
section of this paper, Sect. 7, presents the proof of our convergence result. The main mathe-
matical steps in this proof are the following:

(i) A graphical construction (Sect. 7.2) that allows a coupled simultaneous construction of
density-profile processes for different N .

(ii) An auxiliary process {m̂x0,N
t }t≥0 (Sect. 7.1) defined through a simple spin-flip model

(independent flips with time-dependent rates) which shadows the deterministic dynam-
ical system (Lemma 7.1).

(iii) A coupling between the auxiliary and the density-profile processes that keeps both
processes close to each other (Sect. 7.4). Instants where they may move further apart
define a process of discrepancies. Bounds on the rate of these discrepancies yield our
convergence theorem (Theorem 4.1).

4 Convergence of Density Profile Process to Dynamical Systems

In this section we define our basic processes and state the main mathematical result of the pa-
per. In next section we shall discuss how this density-profile process can be realized through
the dynamics of stochastic Ising models.

4.1 Density-profile Processes {mx0N
t }t≥0

The general set-up is as follows. There is a finite family of types (components, elements,
molecules) T with cardinal |T | = k. Each type i has an associated space of internal states
Si = {a1, . . . , asi }. We denote

E = {
i = (i, a) : i ∈ T , a ∈ Si

}
. (4.1)

A density-profile process on E is a continuous-time jump-process in the hypercube DN =
(− 1

N
,1 + 1

N
)E , for N ≥ 1. At each jump, a point x ∈ DN changes two coordinates

simultaneously—one by 1/N and the other by −1/N—, both corresponding to the same
type . The rates of these transitions depend smoothly on x and are defined in the following
way. We start with a family of matrices of bounded Lipschitz functions (λa→b

i )a,b∈Si
, one for

each type i ∈ T , with each λa→b
i : R

E −→ R
E+ and λa→a

i = 0. They, in turn, define functions
f a→b

i : R
E −→ R

E+ through the relations

f a→b
i (x) = x•

(i,a)λ
a→b
i (x•) (4.2)

for i ∈ T , a, b ∈ Si , where

x•
i =

⎧
⎨

⎩

xi if 0 ≤ xi ≤ 1,

0 if xi < 0,

1 if xi > 1
(4.3)

and (x•)j = x•
j .

A density-profile process {mx0N
t }t≥0 is a random-walk process in DN which starts at x0

and evolves in continuous time through jumps of the form

x −→ x − e(i,a)

N
+ e(i,b)

N
(4.4)



886 R. Fernández et al.

where ei denotes the unit vector along direction i. From each position x ∈ DN such a tran-
sition occurs with rate Nf a→b

i (x), that is,

Nf a→b
i (x) = d

dt
P

(

mxN
t = x − e(i,a)

N
+ e(i,b)

N

)∣
∣
∣
∣
t=0

. (4.5)

In our applications, each variable x(i,a) represents the density of objects of type i that
have internal state a, and the function λa→b

i is the rate at which an object of type i changes
its state from a to b. Thus, Nf a→b

i is the total rate of transitions a → b for all the N objects
of type i present at the different sites. As we are fixing the total number N of particles, we
shall assume that the initial conditions x0 belong to

HE =
{

x ∈ [0,1]E :
∑

a∈Si

x(i,a) = 1, i ∈ T
}

. (4.6)

In the sequel we assume the choice of a common probability space where the density-
profile processes (and other auxiliary processes defined below) are simultaneously realized
for all N and x0. The corresponding probability measure will be denoted P . (The graphical
constructions introduced in Sect. 7 offer, in fact, a concrete way of defining this common
space.)

4.2 Convergence to a Dynamical System {xx0

t }t≥0

Let {mx0N
t }t≥0 be the density-profile process in DN defined as above for appropriate func-

tions λa→b
i , and let V : R

E −→ R
E+ be its associated drift velocity field:

V (x) = lim
t↓0

E(mxN
t − x)

t
, (4.7)

that is,

V(i,b)(x) =
∑

a∈Si

x•
(i,a)λ

a→b
i (x•) − x•

(i,b)

∑

a∈Si

λb→a
i (x•). (4.8)

Let {xx0

t }t≥0 be the solution of the dynamical system

ẋt = V (xt ) (4.9)

starting at x0 ∈ HE . The global trajectory exists by the smoothness of the field V . Further-
more, the flow does not leave [0,1]E if the initial condition is in HE . Indeed, in this case,
each Vi becomes strictly positive if xi reaches 0 and strictly negative if xi reaches 1.

The main result of this paper is the convergence of the sequence of density profile
processes (mx0N

t )N to the trajectory xx0

t . For ε > 0 let τN
ε be the stopping time

τN
ε = inf

{

t ≥ 0 : |mx0N
t − xx0

t | > 1

N
1
2 −ε

}

(4.10)

where |x| indicates the �1-norm of x in R
E ,

|x| =
∑

n∈	

∑

i∈E

∣
∣x(i,n)

∣
∣ . (4.11)
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For a given T , 0 ≤ T < ∞, let us write

AT
Nε = {τN

ε < T }. (4.12)

The following is our main result.

Theorem 4.1 Let λa→b
i , a, b ∈ Si , i ∈ T be bounded functions from R

E to R
E+ satisfying the

Lipschitz condition
∣
∣
∣λa→b

i (x) − λa→b
i (y)

∣
∣
∣≤ K |x − y| (4.13)

for some K > 0, all x, y ∈ [0,1]E and all i ∈ T and a, b ∈ Si . Then, for any finite T , initial
position x0 ∈ HE and ε > 0,

P
(

limN AT
Nε

)
= 0. (4.14)

That is, for typical realizations, there exists some Nε,T such that for N > Nε,T each
process {mx0N

t }t≥0 stays within a distance N−1/2+ε of the deterministic path {xx0

t }t≥0 at least
up to time T .

Dynamical systems of the form (4.9)/(4.8) can exhibit quite complex dynamics—even
for simple choices of the rates λ—, including stable orbits and chaotic behavior.

5 Type-dependent Stochastic Models and Density-profile Processes

5.1 Type-dependent Stochastic Spin Models

We define here a family of stochastic spin-flip models which extends the usual definition
[27] to allow asymmetric dependence of rates on the energy function, the Hamiltonian.
This family of models—that we call type-dependent stochastic models—have mathematical
interest in themselves. Given our biological motivation though, our main interest here will
be on the mean-field type-dependent model which provides our basic theoretical framework
for generating useful models for signaling pathways.

We consider a finite set 	 of (spatial) positions, at each point of which there is a copy
of the set-up of Sect. 4.1, namely a family T , of cardinal k, of spin types; each type i ∈ T
having available a set of internal states Si = {a1, . . . , asi }. We call sites the pairs formed by a
type and a spatial position. Thus in the usual statistical mechanics notation, our spin system
has site-space V = T ×	 and configuration space 
 =∏

i∈T S 	
i . For a configuration η ∈ 
,

the value of a spin at site (i, n)—that is, of the spin of type i at position n—is denoted η(i, n).
For simplicity sake we assume here that only single-spin flips (more precisely, single-

site internal-state transitions) are allowed in our continuous-time stochastic dynamics. The
corresponding rates are determined in terms of a function H : 
 → R, the Hamiltonian or
energy function of the spin system, that we define presently.

The Hamiltonian is determined by a family of interaction matrices In,� : E × E → R, one
for each pair of spatial sites n, � ∈ 	. Due to the applications in sight, we do not assume
the matrices In,�[·; ·] to be symmetric. Rather, the quantity In,�[(i, a); (j, b)] will indicate
the strength of the influence that a spin at a site (i, n) ∈ V in internal state a ∈ Si has upon
a spin at site (j, �) ∈ V that is in internal state b ∈ Sj . This influence may be noticeably
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different that the one in the opposite direction (e.g. activation vs. deactivation). Asymmetries
associated with types are natural in our modeling setup, as illustrated in Sect. 2. For instance,
in our basic clock example, presented there, type A components act upon type B components
while the reciprocal interaction does not occur.

The Hamiltonian is then defined by

H(η) =
∑

(i,n)∈V

H(i,n)(η) (5.1)

with

H(i,n)(η) = −
∑

(j,�)∈V

I�,m[(j, η(j, �)); (i, η(i, n))]. (5.2)

Thus, H(i,n)(η) describes the collective influence of the global configuration η upon the
spin at (i, n) which is in an internal state η(i, n).

The Hamiltonian (5.1)–(5.2) generalizes usual Potts interactions in statistical mechan-
ics on two counts: First, the coupling parameters {In,�}n,�∈	 depend on the internal spin
states, and second and more importantly, we do not assume interactions to be symmetric.
We restrict, however, our model by assuming that the asymmetry of the interaction is only
associated to types, that is

In,�[(i, a); (j, b)] = I�,n[(i, a); (j, b)] (5.3)

for n, � ∈ 	, i, j ∈ T , a ∈ Si and b ∈ Sj .
Given a configuration η ∈ 
, a site (i, n) and an internal state a ∈ Si let us denote ηa

(i,n)

the configuration with

[
ηa

(i,n)

]
(j, �) =

{
a if (j, �) = (i, n),

η(j, �) otherwise.
(5.4)

Now consider the energy cost �a→b
(i,n) (η) of the transition ηa

(i,n) → ηb
(i,n), given by

�a→b
(i,n) (η) = H(ηb

(i,n)) − H(ηa
(i,n)). (5.5)

The asymmetry of the interaction leads naturally to the decomposition

�a→b
(i,n) (η) = �[ upon

self ]a→b
(i,n) (η) + �[ unto

others ]a→b
(i,n) (η). (5.6)

The term

�[ upon
self ]a→b

(i,n) (η) =
∑

(j,�)∈V

[
I�,n[(j, η(j, �)); (i, b)] − I�,n[(j, η(j, �)); (i, a)]] (5.7)

collects the change in the influence of the configuration η upon the site (i, n) when the
internal state there changes from a to b. On the other hand,

�[ unto
others ]a→b

(i,n) (η) =
∑

(j,�)∈V

[
I�,n[(i, b); (j, η(j, �))] − I�,n[(i, a); (j, η(j, �))]] (5.8)

collects the change of the influence that the site (i, n) has on all other sites when its internal
state jumps from a to b.
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For the dynamics we adopt what can be labeled a heat-bath prescription: each transition
rate depends only on the energy changes brought upon the site; the rest of the configuration
acts as a “heat reservoir” that remains unperturbed. Formally, the rate ca→b

(i,n) (η) of a transition
flipping ηa

(i,n) to ηb
(i,n) depends only on �[ upon

self ]a→b
(i,n) (η),

ca→b
(i,n) (η) = �

(
�[ upon

self ]a→b
(i,n) (η)

)
(5.9)

where � is a non-increasing R+-valued function satisfying the “detailed-balance” condition

�(E)eE = �(−E)e−E. (5.10)

The natural choices are the usual heat-bath rates

�(E) = e−E, (5.11)

or the Metropolis form

�(E) = e−2[E]+ (5.12)

where [x]+ = max{0, x} is the positive part of x ∈ R.
Let us formalize our definitions.

Definition 5.1

(i) The prescription contained in (5.1), (5.2) and (5.3) is a type-dependent interaction.
(ii) A type-dependent stochastic spin model is the continuous-time process defined by a spin

model with a type-dependent interaction and a dynamics with rates (5.9).

Let us comment that in usual stochastic spin models the transition rates depend rather on
the total change of energy associated to the flip, in the form

ca→b
(i,n) (η) = �

(
�a→b

(i,n) (η)
)
. (5.13)

This total energy cost includes, thus, also the change of energy brought to other sites by
the transition at (i, n). If the matrices In,� are symmetric, �a→b

(i,n) (η) = 2�[ upon
self ]a→b

(i,n) (η) and
both definitions become equivalent [modulo a factor 2 in the argument of � in (5.9)]. They
yield the so called stochastic spin models [27] which are reversible with respect to the Gibbs
measure

μ(η) = e−H(η)

∑
ξ∈
 e−H(ξ)

. (5.14)

In the asymmetric case, however, there is an important difference. With rates given by (5.13)
the symmetry or asymmetry of the couplings plays no role and the process is always re-
versible with respect to the Gibbs measure (5.14). With our rates (5.9), the type-dependent
interaction process with asymmetric couplings is no longer reversible for the Gibbs measure
(5.14). This dynamics, however, is the one leading to the right Kolmogorov equations (7.1)
and hence to the right dynamical system (4.9)–(4.8). The lack of reversibility may lead to a
frustrated dynamics as illustrated in Sect. 6 below for a mean-field model.
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The simplest type-dependent stochastic spin model, which is nevertheless important both
for mathematical and biological reasons, is when all internal spin space are binary. Two
standard choices are the Ising spins Si = {−1,+1}, representing deactivation/activation,
and the lattice-gas variables Si = {0,1}, representing absence/presence. The Hamiltonian
for Ising spins may be written as

H(i,n)(η) = η(i, n)

[ ∑

(j,�)∈V

J(n,�)(i, j)η(j, �) + h(i, n)

]

(5.15)

which corresponds to the choice of interaction matrix given by

In,�[(i, a); (j, b)] = aJn,�(i, j)b (5.16)

for (i, n) 	= (j, �) and

In,n[(i, a); (i, a)] = ah(i, n) (5.17)

for a ∈ {−1,+1} and i, j ∈ T .

Definition 5.2 A type-dependent stochastic Ising model is a continuous-time process de-
fined by:

(i) A configuration space 
 = {−1,+1}T ×	.
(i) A type-dependent Ising interaction defined through the prescription (5.1), (5.15) and

(5.3).
(ii) A dynamics with rates (5.11) or (5.12).

Given our motivation in biology we will focus on the following family of models.

Definition 5.3 A type-dependent stochastic spin model is mean-field if the Hamiltonian
parameters in (5.2) are of the form

In,�[(i, a); (j, b)] = α(i,a),(j,b)

|	| (5.18)

where {αi,j }i,j∈E , is a real matrix .

5.2 Density Profile Processes Defined by Stochastic Spin Models

For each stochastic spin model, an empirical density profile of a configuration η, m(η) =
(mi(η)) ∈ R

E+, where

m(i,a)(η) = |{� ∈ 	 : η(i, �) = a}|
|	| (5.19)

for i ∈ T , a ∈ Si .
The following proposition is immediate from the fact that the density profile process in

this case satisfies the conditions of the previous section and thus Theorem 4.1 applies.

Proposition 5.4 Let {ση0
t }t≥0 be the mean-field spin-flip process starting at the configura-

tion η0 ∈ 
 with rates defined by (5.9), (5.1) and � given by (5.11). Then, if |	| = N , the
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density-profile process m(σ
η0

t ) approximates, in the sense of Theorem 4.1, the dynamical
system (4.9)/(4.8), defined by rates λ as in (4.2) given by

λa→b
j (x) = exp

(∑

i∈T
d∈Si

x(i,d)[α(i,d),(j,a) − α(i,d),(j,b)] + h(j,a) − h(j,b)

)

(5.20)

for j ∈ T and a, b ∈ Sj .

In the Ising case, the only independent variables are the densities of activated types that
we denote xi . Replacing x(i,1) = xi , x(i,−1) = 1 − xi in (5.20) we obtain that the Ising density
profile process is defined by rates

λ−1→1
j (x) = exp

(∑

i∈T

αi,j xi + hj

)

, (5.21)

λ1→−1
j (x) = exp

(

−
∑

i∈T

αi,j xi − hj

)

. (5.22)

where αi,j and hj are real numbers for i, j ∈ T .

6 Bifurcation Results for the Cyclic-interaction Module

The cyclic-interaction model is an Ising stochastic model defined through a simple choice
of the parameters (5.18), which nevertheless leads to interesting (deterministic) dynamical
behavior in the thermodynamic limit. Two particular cases of these models, the basic clock
module and the repressilator, were informally presented in the introduction. We think the
spin types as points {1, . . . , k} on the circle and, for each i ∈ T , we denote c(i) the nearest-
neighbor of i in the counter-clockwise direction. We assume that αji = 0 unless j = c(i)

and, furthermore, that all non-zero terms in α have the same absolute value. That is,

αji =
{

siJ if j = c(i),

0 otherwise
(6.1)

where si ∈ {−1,+1} and J > 0. We also set hi = −J/2, for 1 ≤ i ≤ k. In this way, once the
interaction signals {si}k

i=1 are chosen, J is the only free parameter of the model.
If si = 1, the rate with which spins of type i flip from −1 to +1 (+1 to −1) [defined in

(5.21) and (5.22), respectively], is an increasing (decreasing) function of xc(i), the density
of spins +1 of type c(i). Borrowing statistical mechanical nomenclature, we say that the
interaction of spins of type c(i) with those of type i is ferromagnetic [28]. In the biochemical
context, where xi measures the density of some chemical component i, this means that the
component c(i) activates the production of component i. On the other hand, if si = −1
the rate for a spin of type i to flip from −1 to +1 (+1 to −1), decreases (increases) as
a function of xc(i), and the interaction of spins of type c(i) with those of type i is said to
be anti-ferromagnetic. In biochemical terms, the component c(i) inhibits the production
of component i. Figure 5, representing the basic clock module, graphically represents the
situation with k = 3 and si = −1, i ∈ {1,2,3} such that α is given by

α =
⎛

⎝
0 −J 0
0 0 −J

−J 0 0

⎞

⎠ . (6.2)
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For the flipping rates given by (5.21) and (5.22) one easily checks that the dynamical
system (4.9) associated to the cyclic-interaction model (6.1) is:

ẋi = esiJ (xc(i)− 1
2 ) − xi

(
esiJ (xc(i)− 1

2 ) + e−siJ (xc(i)− 1
2 )
)

(6.3)

for 1 ≤ i ≤ k. If J is small, this system has a single stable equilibrium point at
(1/2, . . . ,1/2) ∈ R

k , whichever the choice of signs si . For larger J , the behavior of the
dynamical system (6.3) crucially depends on whether the product of signals is positive or
negative. If

∏k

i=1 si = −1—a frustrated model in statistical mechanical terms—there is no
(global) density-profile where all pairs of types of spins minimize their mutual interaction.
In the notation introduced by E. Sontag [35] the associated directed graph is not consistent.
This system exhibits a Hopf bifurcation [18] as J exceeds a critical value, which depends
on k. In the non-frustrated case, the model behaves as the Curie-Weiss model. Formally:

Theorem 6.1 Consider the dynamical system (6.3) with k ≥ 3

(a) If
∏k

i=1 si = 1, there is a bifurcation at Jc = 2: the fixed point (1/2, . . . ,1/2) looses
stability and two stable points appear for J > Jc .

(b) If
∏k

i=1 si = −1, there is a Hopf bifurcation at Jc = 2/ cos(π/k).

Proof Write s =∏k

i=1 si . A simple computation shows that near 1/2 = (1/2, . . . ,1/2) ∈ R
k

the dynamical system (6.3) is close to ẋ = A(x − 1/2), where A is a k × k real matrix with
eigenvalues sJ e

2πl
k

i − 2, l = 0,1, . . . , k − 1. The fixed point is stable if the real parts of all
eigenvalues are strictly negative, and stability is lost when one of the real parts becomes
positive. Thus, if s = 1 the fixed point 1/2 loses stability at Jc = 2 when the eigenvalue
corresponding to l = 0 crosses the imaginary axis through the origin. On the other hand, if
s = −1, the stability is lost when two eigenvalues, symmetric around the real axis, cross the
imaginary axis. This occurs at Jc = 2/ cos(π/k). �

Remark 6.2 For instance, for the basic clock model where k = 3 and all interactions are
antiferromagnetic (si = −1 for i = 1,2,3), as indicated by Fig. 5, the dynamical system has
stable orbits for J > Jc = 4. The convergence result, Theorem 4.1, implies that, within any
finite time interval, the stochastic density-profile process evolves as close to this determin-
istic orbit as wished, for N sufficiently large.

7 Proof of the Convergence Theorem

7.1 The Auxiliary Process {m̂x0,N
t }t≥0

To prove Theorem 4.1 we introduce an auxiliary stochastic spin model with independent
spins flips but time-dependent rates.

Let 	 = {1, . . . ,N} and let {ηt (i, n) : (i, n) ∈ T × 	}t≥0, be Nk independent Markov
chains. Each chain ηt (i, n) has state space Si . Thus, for each t ≥ 0, ηt ∈ 
 = ∏

i∈T S	
i

tells the internal state of each type i ∈ T at each site n ∈ 	 at time t . Each Markov
chain {ηt (i, n)}t≥0 undergoes transitions from state a to state b with time-dependent rate
λa→b

i (xx0

t ), where {xx0

t }t≥0 is the solution of the dynamical system (4.9) from the initial
position x0. We initialize these chains with the uniform distribution on configurations η0

with empirical density profile m(η0) = x0 [m(ηt ) is defined in (5.19)]. The total number of
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spins of each type and internal state i is, thus, fixed and equal to Nx0
i , but the initial state

at each site is chosen independently for each type. We denote {m̂x0,N
t }t≥0 the corresponding

density-profile process.
We observe that the chain at each (i, n) ∈ T ×	 satisfies Kolmogorov’s equation. Hence,

for pn
t (i, a) = P (ηt (i, n) = a), we have

ṗn
t (i, b) =

∑

a∈Si

pn
t (i, a)λa→b

i (xx0

t ) − pn
t (i, b)

∑

a∈Si

λb→a
i (xx0

t ). (7.1)

Therefore each function t → pn
t ( i ) is a solution of the differential equation (4.9) with V as

in (4.8). Hence

pn
0 (i) = (x0)i =⇒ pn

t (i) = (xx0

t )i ∀t ≥ 0, (7.2)

for all i ∈ E and n ∈ 	. While (7.2) is true for the auxiliary process {m̂x0,N
t }, we are inter-

ested in following the actual empirical densities. The next lemma proves that also the path
followed by these densities remains, at all times, close to the trajectories of the dynamical
system.

Lemma 7.1 For δ > 0 there exists c > 0 such that

P
(∣
∣m̂x0,N

t − xx0

t

∣
∣> Nδ−1/2

)
< exp(−cNδ) (7.3)

for t ≥ 0.

Proof Let us introduce yet another auxiliary process, denoted {m̂B(x0),N
t }t≥0, defined exactly

as {m̂x0,N
t }t≥0 but with initial spins chosen independently for each pair (i, n) ∈ T × 	 with

P (η0(i, n) = a) = (x0)(i,a). Hence, the density vectors mi(η) are independent for different
types i ∈ T , and for each a ∈ Si each [mi(η)]a has a binomial distribution with parameters

N and p(i,a) = (x0)(i,a). (This means that, for large N , m̂
B(x0),N
t starts at a random position

in HE close to x0, while m̂
x0,N
t starts precisely at x0.)

This new auxiliary process also satisfies (7.2) but has the advantage that the spin chains
for different types and sites remain independent at all times, and, by (7.2), the expected
proportion of spins of each type having each internal state coincide with the components

of xx0

t . We may therefore describe Nm̂
B(x0),N
t as an array N(m̂

B(x0),N
t )i∈T of independent

multinomial vectors

N
(
m̂

B(x0),N
t

)

i
∼ Mult(N, (xx0

t )i ) (7.4)

for fixed t ≥ 0 and i ∈ T , where (xx0

t )i = ((xx0

t )i,a)a∈Si
. Thus each coordinate of each vector

is a binomial random variable, i.e.,

N
(
m̂

B(x0),N
t

)

i
∼ Bin(N, (xx0

t )i ) (7.5)

for each t ≥ 0 and i ∈ E ; in particular its variance is bounded above uniformly by 1/N . Now
the large-deviation properties of binomial distributions [36] imply that for any δ > 0 there
exists a constant c such that

P

(
∣
∣m̂B(x0),N

t − xx0

t

∣
∣>

1

2
Nδ−1/2

)

< exp(−cNδ) (7.6)
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for any t ≥ 0.

To conclude the proof of the lemma we must show that both auxiliary processes m̂
B(x0),N
t

and m̂
x0,N
t remain close to each other. This is more easily done through a coupling argu-

ment [27, 37]. We construct a coupled realization (η
B(x0),N
t , η

x0,N
t ) of the spin systems defin-

ing both processes as follows. Spins in both systems flip with the same time-dependent rates

given in (7.1). At coordinates (i, n) with η
B(x0),N

0 (i, n) = η
x0,N
0 (i, n), the spins evolve to-

gether. Otherwise, the spins for both processes evolve independently until transitions bring
them to a common value. They evolve together ever after. The distance between the cor-
responding coupled density profiles equals 2/N times the number of pairs (i, n) where

η
B(x0),N

0 (i, n) 	= η
x0,N
0 (i, n). The coupled construction causes this number to decrease with

time, thus

∣
∣
∣m
(
η

B(x0),N
t

)− m
(
ηx0,N

t

)∣∣
∣ ≤

∣
∣
∣m
(
η

B(x0),N

0

)− m
(
η

x0,N
0

)∣∣
∣

=
∣
∣
∣m
(
η

B(x0),N

0

)− x0
∣
∣
∣ (7.7)

and, therefore,

P
(∣
∣m̂x0,N

t − xx0

t

∣
∣> Nδ−1/2

)
≤ P

(∣
∣m̂x0,N

t − m̂
B(x0),N
t

∣
∣>

1

2
Nδ−1/2

)

+ P
(∣
∣m̂B(x0),N

t − xx0

t

∣
∣>

1

2
Nδ−1/2

)
. (7.8)

To prove (7.3) we bound the right-hand side using (7.7) and (7.6) (for t = 0) for the first
term and again (7.6) for the second one. �

To prove Theorem 4.1 we will show that, for N large, m̂
x0,N
t and m

x0,N
t remain close

within arbitrary finite time intervals. To achieve this we will couple both stochastic evolu-
tions with the help of a graphical construction.

7.2 Graphical Construction: The Process {gx0,N
t }t≥0

We resort to a graphical construction of density-profile processes with different N through

time-rescaling of auxiliary processes {gx0,N
t }t≥0. The latter is defined through paths deter-

mined by Poissonian “marks”. This construction will be adapted in next section to couple

the processes m̂
x0,N
t and m

x0,N
t .

To each y ∈ DN and i ∈ T , we associate |Si |(|Si | − 1) independent Poisson processes:
N

i,a→b
t (y), i ∈ T , a, b ∈ Si , a 	= b, with respective rates f a→b

i (y). We associate a particular
type of mark for the events of each type of process and place these marks along the time
axis of y. A Poisson mark associated to the process N

i,a→b
t (y) carries the instruction to add

1/N at coordinate (i, b) and subtract the same amount at (i, a).

The process {gx0,N
t }t≥0 is defined by open paths in DN × R+ determined by the marks.

These are piecewise linear curves that move along the positive time axis until a Poisson
mark is met. At these times the trajectory moves by ±1/N along two coordinate directions

according to the type of mark. The process {gx0,N
t }t≥0 is at position x at time t if there exists

an open path from (x0,0) to (x, t).
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We see that the evolution of {gx0,N
t } differs from that of {mx0,N

t } only in that the rates
of the latter [given by (4.5)] are N times those of the former. Thus, one process can be
constructed from the other by a simple change in the time scale:

mx0,N
t = g

x0,N
Nt . (7.9)

In words: a density-profile time t corresponds to a graphical-construction time Nt .

7.3 Main Coupling and Discrepancy Process

We now use the graphical-construction strategy to produce coupled realizations of the

density-profile processes m
x0,N
t and m̂

x0,N
t with an appropriate control of their distance. Our

coupling forces both processes to keep their relative distance as much as possible, evolv-
ing as a rigid system. Of course, since their rates are not equal, they will make occasional
asynchronous moves that may take them increasingly apart with the passing of time. The
coupling is designed so to control this asynchrony.

The coupling involves a number of Poissonian mark processes at different sites which
are updated every time there is an asynchronous move. The successive times of these moves
correspond to a sequence of stopping times {τn}n≥1; the coupling is defined in a recursive
fashion within successive time intervals [τn−1, τn), n ≥ 1. The auxiliary processes, which
arise directly from such graphical coupled construction will be denoted, respectively, by

g
x0,N
t and ĝ

x0,N
t . They differ from the density profiles m

x0,N
t and m̂

x0,N
t only in the time

scale, which in the graphical construction is slower by a factor N .

Initial stage of the coupling Initially, gx0

0 = ĝ x0

0 = x0 and up to the first stopping time τ1

(to be defined) we couple them through what is known as basic coupling in particle systems.
For each y ∈ DN and coordinate direction (i, a) we define 3(|Si | − 1) Poissonian mark
processes N̂

i,a→b
t (y), Ê

i,a→b,m
t (y) and Ê

i,a→b,m̂
t (y), b 	= a, with respective rates

û i,a→b
t (y) = min

{
y(i,a)λ

a→b
i (y), y(i,a)λ

a→b
i (xx0

t/N )
}
,

ê i,a→b,m
t (y) = y(i,a)λ

a→b
i (y) − û i,a→b

t and

ê i,a→b,m̂
t (y) = y(i,a)λ

a→b
i (xx0

t/N ) − û i,a→b
t .

(7.10)

Note the rescaling in time for the deterministic path {xx0

t } needed to represent it on the
graphical construction time scale.

As before, we think that occurrence of each of these processes are associated to particular

marks indicating where to jump. The jumps of the process {gx0,N
t } occur at the marks of

{Êi,a→b,m
t (y)} and N̂

i,a→b
t (y), while those of the process {ĝ x0,N

t } are at {Êi,a→b,m̂
t (y)} and

N̂
i,a→b
t (y). The marks of the processes {Êi,a→b,m

t (y)} and {Êi,a→b,m̂
t (y)} are thus seen by

only one of {gx0,N
t } or {ĝ x0,N

t } and will be called (potential) discrepancies. The basic Poisson

processes {N̂ i,a→b
t (y)}, on the other hand, are introduced to ensure that {gx0,N

t } and {ĝ x0,N
t }

remain equal until they find the first discrepancy. This defines a stopping time τ1 at which
the processes get separated by a distance of 1/N . At this time we can not continue using the
basic coupling.

Formally, we define a first-discrepancy process

D0
t =

∑

i∈T

∑

a,b∈Si
a 	=b

[
Êi,a→b,m

t (y0) + Êi,a→b,m̂
t (y0)

]
(7.11)
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where y0 is the density-profile path defined by the preceding (level-0) construction. The first
discrepancy time τ1 is the time of the first event of this process. A new coupling definition
must be introduced at this time, which will be applied until the second discrepancy time τ2.
This iterative procedure continues up to the time T chosen in Theorem 4.1. We now present
the recursive step in the definition of such a coupling.

l-th stage of the coupling Suppose that the graphical construction has been defined up to
time τl , l ≥ 1, determining xl,�l ∈ DN such that

gx0,N
τl

= xl, ĝ x0,N
τl

= xl + �l. (7.12)

[Thus, mx0,N
τl/N

= xl and m̂
x0,N
τl/N

= xl +�l .] From time τl we start a new graphical construction,
which defines the evolution of both processes until the next discrepancy appears at time
τl+1. For each y ∈ DN and coordinate direction (i, a) we define 4(|Si | − 1) Poissonian mark
processes N̂

i,a→b,m
t (y), N̂

i,a→b,m̂
t (y), Ê

i,a→b,m
t (y) and Ê

i,a→b,m̂
t (y) with respective rates

û i,a→b,m
t (y,�l) = min

{
y(i,a)λ

a→b
i (y),

(
y(i,a) + �l

(i,a)

)
λa→b

i (xx0

t/N )
}
,

û i,a→b,m̂
t (y,�l) = min

{
y(i,a)λ

a→b
i (xx0

t/N ),
(
y(i,a) − �l

(i,a)

)
λa→b

i (y − �l)
}
,

ê i,a→b,m
t (y,�l) = y(i,a)λi(y) − û i,a→b,m

t (y,�l) and

ê i,a→b,m̂
t (y,�l) = y(i,a)λi(x

x0

t/N ) − û i,a→b,m̂
t (y,�l).

(7.13)

We observe that û
i,a→b,m
t (y,�l) = û

i,a→b,m̂
t (y + �l,�l) for any y ∈ DN , so we identify

N̂ i,a→b,m
t (y) = N̂ i,a→b,m̂

t (y + �l). (7.14)

Except for this identification, the processes are mutually independent for different (i, n) and
independent of all previous Poisson mark processes.

The process {gx0,N
t } jumps only at the marks placed by the processes {Êi,a→b,m

t (y)} and

N̂
i,a→b,m
t (y), while process {ĝ x0,N

t } does so at the marks of {Êi,a→b,m̂
t (y)} and N̂

i,a→b,m̂
t (y).

Due to identifications (7.14), the basic Poisson marks {N̂ i,a→b,m
t (y)} seen by {gx0,N

t } at a

given position y coincide with the basic marks seen by {ĝ x0,N
t } at its corresponding position

y + �l . Hence, the two graphic processes evolve rigidly, keeping a separation �l , until a
discrepancy is met, that is, until one of the processes responds to a Poisson mark that the

other ignores. This happens either because {gx0,N
t } at a certain position y meets a mark of

{Êi,a→b,m
t (y)} or because {ĝ x0,N

t }, at the corresponding position y + �l , meets a mark of
{Êi,a→b,m̂

t (y + �l). This discrepancy defines the stopping time τl+1 and is the first event of
the l-th-discrepancy process {Dl

t }t∈[τl ,∞), given by

Dl
t =

∑

i∈T

∑

a,b∈Si
a 	=b

[
Êi,a→b,m

t (yl
t ) + Êi,a→b,m̂

t (yl
t + �l)

]
(7.15)

where yl
t is the density profile path defined by a realization of the (level l) construction done

at this stage.
The construction done at the l-th stage makes sense, and has the correct rates, for

t ≥ τl . Thus, together with the assumed graphical construction for t ∈ [0, τl), it yields a
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well defined coupling for g
x0,N
t and ĝ

x0,N
t at all times. Such a (level-l) coupling, however,

loses precision after the next discrepancy is encountered, so we ignore it for t ≥ τl+1, and
replace it by the level-(l +1) construction corresponding to the l +1 stage. This stage begins
with gx0,N

τl+1
− ĝ x0,N

τl+1
= �l+1 with |�l+1 − �l | = 2/N .

This recursive construction is continued, for each trajectory, until the time t = NT is
achieved. The procedure involves, almost surely, a finite number of stages, since rates are
bounded above. The process

Dt = Dl
t if t ∈ (τl, τl+1] (7.16)

l = 0,1, . . . (τ0 = 0), counts the number of discrepancies. It satisfies the relation {Dt ≥ l} =
{τl ≤ t}.

7.4 Discrepancy Rates

The proof of Theorem 4.1 requires the control of the distance between m
x0,N
t and m̂

x0,N
t . As

each discrepancy brings an additional separation of at most 2/N ,

∣
∣mx0,N

t − m̂x0,N
t

∣
∣≤ 2DNt

N
. (7.17)

To estimate the right-hand side we first determine upper bounds on the time-dependent rate
of the process {Dt }.

Lemma 7.2 Consider N ∈ N, T ≥ 0 and δ > 0. For each l ∈ N, let Rl
t be the instantaneous

rate of the level-l discrepancy process Dl
t , t ∈ [τl, τl+1] defined above and let Rl = sup{Rl

t :
t ∈ [τl, τl+1] ∩ [0,NT ]}. Then there exists a constant A > 0 such that the events

RNT
δ =

{

Rl ≤ Nδ−1/2 + Al

N
∀l s.t. τl ≤ NT

}

(7.18)

satisfy

P
(
limN RNT

δ

)= 1. (7.19)

Proof Let �t be the distance between the coupled geometrical realizations g
x0,N
t and ĝ

x0,N
t :

�t =
∑

l≥0

�l1t∈[τl ,τl+1). (7.20)

The discrepancy process can be written as

Dt =
∑

i∈T

∑

a,b∈Si
a 	=b

[
Êi,a→b,m

t (gx0,N
t ) + Êi,a→b,m̂

t (gx0,N
t + �t)

]
. (7.21)

The rate of this process is zero at t = 0, but it increases as the processes {gx0,Nt }, {ĝ x0,N
t }

and {xx0

t } move away from each other during the stochastic evolution.
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We see from (7.13) that to bound this rate we must compare values of xλa→b
i (y) for

different densities x and y. Due to the Lipschitz hypothesis (4.13), these differences increase
at most linearly, and there exists a constant A such that the rate of Dt is bounded above by

A
∣
∣̂g x0,N

t − xx0

t/N

∣
∣+ A

∣
∣gx0,N

t − ĝ x0,N
t

∣
∣. (7.22)

For a given realization of the graphical construction, the second term in (7.22) is bounded
above by 2Dt/N , as remarked in (7.17). Therefore

∣
∣gx0,N

t − ĝ x0,N
t

∣
∣≤ 2l

N
if t ∈ [τl, τl+1]. (7.23)

For the first term in (7.22) we apply first the probabilistic bound

P

(
∣
∣̂g x0,N

t − xx0

t/N

∣
∣>

1

2A
Nδ−1/2

)

= P

(
∣
∣m̂x0,N

t/N − xx0

t/N

∣
∣>

1

2A
Nδ−1/2

)

< exp(−cNδ) (7.24)

valid for each t > 0. The last inequality follows from (7.3). We need, however, a bound valid
for all t ∈ [0,NT ]. To this end, we apply (7.24) to a sufficiently thick collection of times.
We pick a positive real γ (soon to be chosen larger than 3) and denote M the integer part of
Nγ . For each 0 ≤ j ≤ M let

Cj =
{∣
∣̂g x0,N

jNT/M − xx0

jT /M | ≤ Nδ−1/2
}

(7.25)

and

� = inf
{
t : ∣∣̂g b(x0),N

t − xx0

t/N

∣
∣> Nδ−1/2

}
. (7.26)

Then,

P (� ≤ NT ) ≤ P

(

� ≤ NT,

M⋂

l=0

Cl

)

+
M∑

l=0

(
1 − P (Cl)

)

≤ M
[
1 −

(
1 − dNT

M

)
exp(−dNT/M)

]
+ M exp(−cNδ)

≤ cN2−γ (7.27)

where d and c are positive constants. In the second line we used (7.24) to bound the last
term; as for the other term, we just observe that the conditions � ≤ NT and

⋂M

l=0 Cl together
imply that the process must have at least two transitions during the time interval of length

NT/M containing �. The constant d bounds the rate of flips of the process {ĝ b(x0),N
t }t≥0

(we can take d =∑
i∈T

∑
a,b∈Si

‖λa→b
i ‖∞). The choice γ > 3 yields a summable bound in

(7.27), which implies

P
(

limN

{
� ≤ NT

})= 0 (7.28)

This result together with the bound (7.23) proves (7.19). �
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7.5 Conclusion of the Proof

Due to Lemma 7.1 and relation (7.17), the following lemma concludes the proof of Theo-
rem 4.1.

Lemma 7.3 For any ε > 0 and 0 ≤ t ≤ T ,

P
(

limN

{
DNT ≥ Nε+1/2

})= 0. (7.29)

Proof Let us denote Ñt = DNt . This process—which has rates N times higher than those of

{Dt }t≥0—counts discrepancies in the time scale of {mx0,N
t }t≥0. Let TN be the time needed

for the latter to collect Nε+1/2 discrepancies:

TN = min
{
t : Ñt ≥ Nε+1/2

}
. (7.30)

It can be written in the form

TN =
N

ε+1/2
+∑

i=1

Ti (7.31)

where T1, T2, . . . are the independent successive times spent in between jumps and N
ε+1/2
+

is the smallest integer following Nε+1/2.
We now choose some δ with 0 < δ < ε. By Lemma 7.2, the events

Dr = {
condition (7.18) is valid for N ≥ r

}
(7.32)

satisfy

P

(⋃

r∈N

Dr

)

= 1. (7.33)

In the sequel we shall show that

∑

N

P
(
TN < T ; Dr

)
< ∞ (7.34)

for each natural number r . This concludes the proof because it implies that

P
(

limN

{
TN < T

})≤
∑

r

P
(

limN

{
TN < T

}; Dr

)
= 0. (7.35)

To prove (7.34) we partially re-sum the decomposition (7.31) in blocks of size

Q = N
ε+1/2
+

N
δ+1/2
+

∼ Nε−δ−−−→
N→∞ ∞. (7.36)

We consider intervals Il = [(l − 1)N
δ+1/2
+ + 1, lN

δ+1/2
+ ] and write

TN =
Q∑

l=1

Gl, Gl =
∑

j∈Il

Tj . (7.37)
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Within Dr the process {Ñt }t≥0 jumps from i to i + 1 with rates bounded above by
Nδ+1/2 + Ai. Thus, for each i ∈ Il the rate of Ti is bounded above by Nδ+1/2 + Al, which is
smaller than (l + 1)Nδ+1/2 if N is large enough. This shows that, for such N ’s, the output of
each variable Gl is smaller than that of a sum of N

δ+1/2
+ i.i.d. exponential random variables

with rate (l + 1)N
δ+1/2
+ . Hence,

P
(
TN < T ; Dr

)≤ P

(
Q∑

l=1

Gl(N
δ+1/2
+ )

(l + 1)N
δ+1/2
+

< T

)

(7.38)

where {G(Nδ+1/2)}l≥1 denotes an i.i.d. sequence of Gamma random variables with parame-
ters n = N

δ+1/2
+ and λ = 1. The large-deviation properties of these distributions imply that

each variable Gl,N = Gl(N
δ+1/2)/Nδ+1/2 satisfies

P (Gl,N < 1/2) ≤ exp(−cNδ+1/2) (7.39)

for some positive constant c and all 1 ≤ l ≤ Q and N large enough.
Denoting Al,N = {Gl,N ≥ 1/2)} ∩ Dr and BQ,N =⋂Q

l=1 Al,N ∩ Dr we have

P
(
TN < T ; Dr

)≤ (
1 − P (BQ,N)

)+ P
(
TN < T,BQ,N

)
. (7.40)

On the event BQ,N , TN is bounded below by

1

2

Q∑

l=1

1

l + 1
∼ logQ−−−→

N→∞ ∞. (7.41)

Therefore the second term in the right-hand side of (7.40) is zero for N large enough. Bound-
ing the first term by the large-deviation estimate (7.39) we conclude that

P
(
TN < T ; Dr

)≤ Q exp(−cNδ+1/2) (7.42)

for N large enough. This proves (7.34). �
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