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Abstract. A general construction of ferromagnetic systems with many phase 
transitions is given. It is based on two new results: an extension of one of the 
GKS inequalities to not necessarily ferromagnetic interactions, and a unique- 
ness of the Gibbs state theorem for perturbations of some simple systems at all 
temperatures. 

I. Introduction 

This work arose from an attempt to understand the global structure of phase 
diagrams of classical ferromagnetic lattice systems. Several techniques have been 
developed to study the low temperature phase diagrams; among them the Peierls 
argument [27, 19, 6], reflection-positivity techniques [14-16], Pirogov-Sinai 
theory [29, 34, 32] and its extensions [3, 9, 25, 34, 4, 5], and algebraic methods 
peculiar to ferromagnetic systems [21, 23, 28, 32, 26]. However, very little is known 
about how this phase diagram changes with the temperature, especially in systems 
with multispin interactions. Here we explore a general mechanism explaining 
occurrence of many phase transitions in some ferromagnetic systems as the 
temperature is varied. In particular we construct models for which the existence of 
several phase transitions can be proved. Later, in this introduction and in Sect. 5.4, 
we comment on the relation of this work to an earlier related work by Pfister [28]. 

The systems considered here are ferromagnetic in the sense that the configu- 
ration space is an (abelian) group and the Hamiltonians H are negative definite, i.e. 
they are linear combinations of characters with negative coefficients. Such systems 
have a distinguished Gibbs state ( ) +  which breaks the symmetry of the 
Hamiltonian in a maximal way. Let alp(H) denote the set of characters a for which 
(a)~n=~O, where fl is the inverse temperature. By a general argument, [30, 28], ~¢p 
is becoming larger as fl increases, it always contains the group N(H) generated by 
the characters appearing in H and it stabilizes both at low and high temperatures, 
to d~o(H) and to do(H) (= N(H)) respectively. If d~(H)  is strictly larger than 
~¢o(H) one has a phase transition as the temperature is varied. The problem is to 
investigate at how many temperatures alp(H) is changing. 
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Now, one can think about  many chains ... C d k -  t C ~4k C ~k+ 1 C... of trans- 
lation invariant groups. For  instance, one could consider splitting the Hamiltonian 
H into a sum Z H,  of smaller and smaller summands so that when the temperature 
is lowered d is enlarged by adding to it first the characters which are the order 
parameters of the largest summand, then changed again when the order 
parameters of the second largest summand develop non-zero expectation values, 
and so on. In this paper one has the finite abelian group Zp at each lattice site 
("Zp-models'). In the examples of [28] p is composite, the interaction is between 
nearest neighbors and dk+ ~ =2rig;  in the cases considered here p is prime and 
S~k+l is obtained from dk  by adding to it the generator Dk of d~(Hk) (see the 
theorem of Sect. 3.2). The Hamiltonians H k are quite arbitrary, apart from a 
requirement that Dk has to be of a regular shape, in a sense. The general case 
should be some "mixture" of the situation considered here and in [28], but this has 
not been worked out (see the comments at the end of the paper, where we also show 
how Pfister's examples fit into our framework). 

To explain our general result we start with a discussion of a simple model with 
several phase transitions. This model will be referred to in the sequel as the 
"benchmark model." It is defined on a simple square lattice Z z, has spin ½ and 
Hamiltonian with nearest neighbor vertical bonds, next nearest neighbor hori- 
zontal bonds and four-point "plaquette" bonds: 

H = - ~ {ao'xo'~ + e2 + baxax+ 2el + CtTxO'x+elffx+eZffx+el +e2}, 
x 

where the sum is over all points x of the lattice, and ~x is the usual spin-½ variable at 
the point x. The same Hamiltonian is also written as 

H= - a  • tTA+:,--b Z %+x--c Z ~rc+x a,b,e>O, (1.1) 
X X X 

where A = {0, e2}, B = {0, 2e ~ }, C = {0, e 1, e 2, e 1 + e 2 }; A + x denotes the translate of 
A by x e Z z, and 

( S  A ~ 1 7  G x " 
x e A  

We discuss now the number of phase transitions in this system as the temperature 
is varied. 

If c = 0 and a and b are strictly positive one has two mutually non-interacting 
Ising models. Therefore the magnetization ( % )  + is non-zero at temperatures tow 
enough. By the GKS inequalities this is also true for positive c. 

Let now a=O and let z~=o'~a~+el (=aD+~, where D={O,e~}). Then 

H= - b  ~ z~zx+ ~, - c  y, Z~Zx+,~, (1.2) 
x 

i.e. in terms of the r-variables one has an Ising model. This suggests that at low 
enough temperatures, or large fl, and a = 0 

(1.3) 
while this expectation value is zero at temperature high enough. That  this is indeed 
the case follows from [23] (see the next section). Moreover, by [23] expectation 
values in the Gibbs states of(1.2) o f %  which are not products of a finite number of 
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zx are zero at all temperatures. In particular one obtains that for a--0, 

@0)~-H=0 for any fl=t=0; (1.4) 

we want to show that (1.4) holds also for small a for some fl for which (1.3) holds. 
Note that a proof of this may require a somewhat subtle argument for one needs a 
kind of a stability result for Hamiltonians for which the Gibbs state is non-unique 
[see (1.3)]. Such a result must depend on the observable one considers: with a~ay in 
place of o-~ one has that (axo-y)~)~+0 as soon as a + 0  (by the Griffiths-Kelly- 
Sherman (GKS) inequalities [20, 24]). 

In conclusion, for a, b, c > 0  we have that at low temperatures ( % ) +  > 0  and 
(o-D) + > 0, while at high temperature both expectations are zero. The question we 
focus on is whether both order parameters become non-zero at the same time or, 
on the contrary, there is an intermediate range of temperatures for which 
( a o ) + = 0  and (O-D)+>0 (by GKS, if the magnetization is non-zero then 
@D) + > 0  too). 

We prove below that if a is non-zero but small compared with b and c then the 
latter possibility holds, and there are two phase transitions ocurring at different 
inverse temperatures fll >f12, where 

and 

Monte Carlo calculations 
temperatures coincide. 

t2 = inf {fl: (O-D)~H > 0} 

fll = inf  {fl" (aO)~U > 0}. 

[13] seem to indicate 

(1.5) 

(1.6) 

that for a large the two 

The proof has two ingredients. First, we establish a correlation inequality to 
majorize the (magnetic) correlation functions of the ( )+-state of (1.1) by the 
corresponding expectation values in the ( )+-state of the Hamiltonian 

- a  2 aA+~--f(b,c) Y. aD+x, (1.7) 
X X 

where f is an increasing function of b and c (Sect. 3.3). If a = 0 the Hamiltonian (1.1) 
has a unique Gibbs state which is easily computed and for which the magnetiza- 
tion is zero. By the above mentioned inequality (or by [23]), this implies that the 
magnetization is also zero for the system with Hamiltonian (1.1) if a = 0. However, 
in order to prove the existence of two phase transitions for the interaction (1.1) we 
need to show that the magnetization of (1.1) is zero for small but non-zero values 
o fa .  

This follows from our second general result, which is deduced from a general 
uniqueness criterion of Dobrushin and Shlosman [-8]. It states that small 
perturbations of a Hamiltonian of the form J y, o-D+x with D of a regular shape (a 

X 

factorizable trivial system of Sect. 3.2), but otherwise arbitrary, have a unique 
Gibbs state. We note that this is a uniqueness result which is valid at all 
temperatures, not only in the high- or the low-temperature region. 

(In the present example, (1.7) is the Hamiltonian of the Ising model, and the 
vanishing of the magnetization for small values of a can be deduced either from the 
well known explicit formula for the magnetization of the two-dimensional Ising 
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model, or a result of Fisher [-12]. The later approach works also in higher 
dimensions. Neither of these methods generalize to our more general setting: the 
result of [ 12J depends on a self-avoiding walk representation of the system and on 
some additional properties characteristic for systems with two-body interactions.) 

The paper is organized as follows. After introducing the notation and 
reviewing some well known results (Sect. 2), we state the two new "ingredients": the 
inequality and the uniqueness theorem (Sect. 3.1); we deal first with the spin-½ case. 
This allows us to describe the construction of models with many phase transitions 
as soon as possible (Sect. 3.2), leaving the rest of the paper for the details of the 
proofs and for extensions of the results. The proof  of the inequality is the subject of 
Sect. 3.3, and we devote Sect.4 to the proof of the uniqueness theorem. In 
Sects. 5.1-5.3 we sketch how the results can be extended to the situation when one 
has at each lattice site Zp, with p prime, instead of Z2, and in Sect. 5.4 we compare 
our work with Pfister's. In the appendix we collect some results whose proofs have 
a stronger algebraic flavour. 

2. The Framework 

The lattice L is a discrete Z~°invariant subset of R~; in most of the paper we will 
deal with the cage of a simple lattice, i.e. L = Z ~. In the spin-½ case, which is 
considered first, the configuration space of the system is 

x={-1,1)', 
which is an abelian group with pointwise multiplication 

(X" Y)a= XaYa; 

a topological space with the product topology; and a measure space with the 
a-algebra generated by the cylindrical sets. If A C L, we shall denote X A the set of 
configurations on A : X A = { - 1, 1 }A, and for X e X its restriction to A is denoted by 
X A. The configuration equal 1 everywhere will be denoted 1. 

We will consider systems with translation-invariant finite-range interactions. 
For  such system the Hamiltonian is uniquely written in the form 

H = - -  E J(B)a, ,  
Be~ 

where ~ = ~(H) is a Z~-invariant family of finite subsets of L (the "bonds"), and 
J(B) = 0 if diameter of B exceeds certain value. 

The function aB is a character of X; moreover 

a,a  c = t~, + c, (2.1) 

where B + C = ( B u D ) \ ( B c ~ D )  is the symmetric difference. Hence, the group 
structure of the dual group to X is isomorphic to the group ~f(L) of finite subsets of 
L with the symmetric difference as the group operation. We will consider similarly 
defined group structure in the set of all subsets of any set. 

For  a finite set A C L, a configuration Y on its complement defines a boundary 
condition. More generally, we shall consider boundary conditions in which some of 
the spins of the boundary have been removed. Hence, every partial configuration 
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Y e Xu  with M ( A', defines a boundary condition with the spins on M set in the 
configuration Y, and those outside of M removed. The Hamiltonian on A for a 
boundary condition Y e XM, M C A c, is the function 

X~HA(XI  Y) = E J(B)~r~,~M(Y)an~,A(X) (2.2) 
B c A u M  
B n A * O  

defined for X ~X a. The Gibbs state in A for the boundary condition Y~XM, 
Hamiltonian H and inverse temperature fl is the probability measure Ca(" [ Y) on 
X a such that 

e - p H . , ( x  t Y) 

CA(X] Y)= Z(A l Y) ' (2.3) 

where Z(AI Y) is the normalization factor and fi is the inverse temperature. The 
(infinite volume) Gibbs states are the probability measures on X whose conditional 
probabilities on X A given a configuration Y e X A. are precisely the measures 
~A(" I Y)" The set of such Gibbs states will be denoted as A(fiH). We shall denote by 
( )+,  or 0 +, the Gibbs state obtained as the vague limit of the net {OA(" 11)} as A 
tends to L through the family of all finite subsets of L directed by inclusion. This 
Gibbs state is translation-invariant. 

If the system has a unique Gibbs state - as is the case at high temperatures - 
then this state coincides with O;n and it has the property that all the correlation 
functions Q~n(aA) vanish unless o- A is a product of characters a B with B e ~ .  
Equivalently, we have that if there is a unique Gibbs state then 

da(H) = {A e #s(L):  O;n(aA) 4= 0} (2.4) 

satisfies 

~ = ~ ,  (2.5) 

where ~ = N(H) is the subgroup of Ns(L) generated by ~ .  
In general d p  is a subgroup of NI(L) which by the GKS inequalities is 

becoming larger as fl increases. It contains always s4 o = N(H), to which it is equal 
at sufficiently high temperatures. Elements of d p  which are not in N(H) can be 
considered as order parameters since they tell which part of the (internal) symmetry 
group of the system is broken (see [33, 30, 21, 28], and [32] for a review). We are 
interested here in the problem of how d~  is changing with the temperature. 

By a general argument [23], d~  stabilizes at low temperatures, i.e. there is an 
inverse temperature, say rico, such that d p  is the same, say d ~ ,  for all fl > fi~o. s4¢(H) 
can be determined from ~(H)  in a purely algebraic way [23, 32]. For  simple lattices 
s~oJH) is always generated by translations of a (unique, up to translations) element 
D (D = {0, e 1} for the "benchmark model" (1.1) with a=0) .  To compute D, and to 
prove its existence, one introduces in Ns(Z ~) the structure of a ring with product 

C'D-- Z O+a. (2.6) 
aEC 

This allows the identification of ~I(L) with the group algebra Z2[Z"] of Z" with 
coefficients in Zv Zz[Z"] is a unique factorization domain, and D is the greatest 
common divisor of ~ (see [23, 32]): 

D =g.c.d.(N).  (2.7) 
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In particular 

C(~ , )>0  (2.8) 
at low enough temperatures. (In case of general lattices ~(H) is a Z2[ZV]-module, 
and d~o is identified with the second dual of this module, [31-]). Generalization of 
this structure to the Z,-case is described in Sect. 5. 

Let us finally recall the high temperature expansion (HTE) [33, 21]. Given a 
Hamiltonian H on a finite subset A of L: 

H=-- Z a(c)trc, 
Cerg 

where cg is some family of subsets of A [and J(C) need not be positive], the partition 
function 

Z(A; H) = Y, exp-- H(X) 
X e X A  

is written as follows: 

Z(A;H)=21al (cO~e c°shJ(C)) Z°(A;H)" (2.9) 

The non-trivial part in this expression is the "reduced partition function" 

Z°(A;U) = Z II tanha(C), (2.10) 
a e ag(~g) C e a  

where Jd(g a) denotes the set of cycles associated with the family ~g of bonds: 

aU(g)={families ~Ccgl 2 C=O}. (2.11) 
C ~ t  

We note that if aC(cg) 4= {0}, then the decomposition of each set a e g into a sum of 
bonds of g is not unique. Indeed, if ~a is a family of sets in cg with sum A, then for 
each ~ e aC(g) the family ~ + ~a (where " + "  is the symmetric difference of sets) also 
adds up to A. The HTE of the correlation functions takes the form 

0 if A 6 g  
((gA)(A;H)= [Z°(A;H)] -1 2 [I tanhJ(C) if AeCg, (2.12) 

~e~(~d) Cea+ctA 

where in the second line aA is any fixed family of bonds whose symmetric difference 
is A. 

3. Spin ½ 
For the ease of the exposition we deal first with the spin-½ case. Extension of these 
results is given in Sect. 5. 

3.1. Two New Results: An Inequality and a Uniqueness Theorem 
The first new result which will be used in our discussion of the examples of models 
with several phase transitions is the following inequality, which will be proved 
in Sect. 3.3. 
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Theorem 3.1. Consider two ferromagnetic translation invariant finite range 
interactions: 

H i = - -  E JI(B)°'B, H 2 = - - E  Jz(B)°'~ 
B ~ I  BE~2 

such that each bond of the first  interaction is a symmetric d~ference of a number of 
bonds of the second one, i,e., 

~ 1 C ~ 2 .  (3.1) 

Then there exists a smooth, strictly increasing function fl~--~ f (fl) with the properties 

f(fl) x~ 0 as fi',~ 0, f(fl) : oo as fl,,~ oo, (3.2) 

and such that 
+ + 

e f l H 1  + K(ffA) ~ e f(fl)H2 + K(O'A) (3.3) 
for every ferromagnetic interaction K (not necessarily of a finite range), and every 
finite A C L. 

For the second result the Hamiltonian H e will be of a very simple form: We will 
call a system trivial if its fundamental family of bonds N0 consists of exactly one 
bond, i.e. 

Y)= {C + a : a e Z  ~} (3.4) 

for some finite C C Z v called the fundamental bond; and 

H =  - J  y. Crc+ x. (3.5) 
2¢ 

A system is factorizable if all its bonds are cartesian products of one-dimensional 
bonds. In particular, a fundamental bond of afactorizable trivial system is of the 
form 

C=C1 x. . .  x C~, 

where each Ci is a subset of the i th coordinate axis of Z ~. Note that this is equivalent 
to 

C = C I ' . . . . C ~ ,  

with "'" defined in (2.6). We note that a product of two sets is factorizable if and 
only if each of the sets is (the "only if" part follows from the fact that Z2[Z v] is a 
unique factorization domain). 

Factorizable trivial systems are simple to analyze and they have a unique 
Gibbs state at all temperatures. However, we will need the following stronger 
result. 

Theorem 3.2. Consider a trivial interaction H = - J  ~ ac+ x with a factorizable C. 
x 

Then for any positive r there exists Rr, c . j > 0  such that for any perturbation 
K = ~ K(B)as with range less than r and 

sup [K(B)I <Rr, c,s (3.6) 
B 
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the Hamiltonian H + K has a unique Gibbs state, i.e. A(H + K) has exactly one 
element. 

[Note that we are absorbing the inverse temperature fi in the couplings J and 
K(B).] This will be proved in Sect. 4. We have no doubt that the theorem, thought 
not the proof of Sect. 4.3, holds without the assumption that C is factorizable. 

In our construction of models with many phase transitions we will use only the 
following corollary of Theorem 3.1 and 3.2. If ~ . . . . .  ~k are (families of) subsets 
of the lattice then [N1,..., Nk] denotes the subgroup of Ns(L) generated by the 
translates of these subsets. 

Corollary 3.3. Let H' and H" be any two ferromagnetic translation invariant finite 
range interactions and assume that D : =  g.c.d.N(H') is factorizable. Then for all 
small enough ~ > O, 

o V A ¢ [D, 
Proof Since ~(H') C [D], by Theorem 3.1 there is a constant a > 0 such that for any 
positive e and any finite A C L 

+ < + 0 < Qn" + ~H"(~A) = ~aHo + ~H"(0"A) • (3.7) 

By Theorem 3.2 for all small enough ~ the Gibbs state of aHD + ~H" is unique and 
hence by (2.5) Q+rfo+,n,,(aa) = 0  if A 6 [D, N(H")]. Now the corollary follows from 
the inequality (3.7). [] 

3.2. Construction of Spin I- Models with Several Phase Transitions 

We will show now how the preceding corollary can be used to prove that there are 
several phase transitions in suitably constructed models. 

Theorem 3.4. Let H 1, . . . ,H,  be ferromagnetic translation invariant finite range 
interactions, let B~ be the family of the bonds of H~, and let 

D~= g.c.d.(B1, ..., Bi), i = J  . . . .  ,n.  

Assume furthermore that 

D16[B1,. . . ,B,]  and Di(~[Di_I,B~,,..,Bn], i = 2  . . . .  ,n,  (3.8) 

and that all D i, i = 1,..., n, are factorizable. Then there exist ~1, ..., ~, > 0 such that 
the Hamiltonian 

H ~'~- ~ I H 1  --I- 0~2H 2 + . . .o~nH n 

has at least n phase transitions. More precisely, there exist inverse temperatures 
ill, ...,fin such that 0< i l l  < ... <fin and 

O;z(ao~)=0 for ~<Pi ,  and ~;n(av,),O for f i>~, .  (3.9) 

Remarks, 1. We introduced el for the sake of symmetry. Rescaling, one can set 
el = 1, as is done in the following. 

2. The theorem proves a perturbative version of a conjecture by Holsztynski 
[22] which states that in case J(Bi)= 1 there are precisely n changes of d~  if 
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cq < ez <. . .  < e,. Numerical results on the "benchmark model" seem to contradict 
Holsztynski's conjecture in its original form. Also, we do not know if the only 
possible changes ofd~ are those associated with splitting of the Hamiltonian, as in 
the theorem. 

Proof The proof has an inductive character. We wiI1 go through more initial steps 
than is logically necessary to facilitate the reading and to have a complete proof for 
the "benchmark model" before the induction starts. 

By the uniqueness of the Gibbs state at high temperatures, by (2.5), and by (3.8), 
there exists/~] such that 

Qp-)m+...+H,)(o'm)=0 for B</~]. 

By (2.8), there exists/~ such that 

O'~ul(Crvl)4=O for /~>/~'~, 
hence, by GKS inequalities 

+ O~(HI-[-,.+Hn)([~Ol):~-O for fl>/~'~. 
Therefore the model with Hamiltonian H 1 +. . .  + H, exhibits at least one phase 
transition. To obtain a second phase transition we consider the Hamiltonians 
H 1 4  ~2(H2 4 . . .  + H,). By the previous argument there is one phase transition for 
any ~2__>0 with order parameter am. We then pick a / ~ > / ~  and apply 
Corollary 3.3 to H ' =  fl~H 1 and H"=/~(Hz 4 . . .  + H,) to conclude that there exists 
g2, 0 < g 2 < l ,  such that 

Op+(ul +~(n~ +... +n,))(aA) = 0 if A ¢ [D~, B2,..., B,]. 

By GKS we have that 

Q~+~m+g~n~+...+H,))(aa)=O if /~--</~i (3.10) 

for all A $ [D1, Bz,..., B,]; in particular for A =Oz. 
We now repeat the above construction with a slight variation. An inverse 

temperature fi~ > fl~ is chosen in such a way that 

0p~m+~j~)(o'D~)>0 for /~>fl~. 

Such a / ~  exists by (2.8). Then by GKS inequalities, 

Ofl+(HI+~z(H2+...+H.))(~D2)=]=O if fi> fl~; (3.11) 
and the model has a second phase transition associated to the order parameter o-o~. 
The requirement/3~ > fi~ implies that for the chosen g2 both phase transitions occur 
at different temperatures. 

To obtain a model with a third phase transition we resort to Hamiltonians of 
the form HI+gz[H2+~3(H3+...+H,) ] for ~3>0. Reasoning as above we 
conclude that these models have two phase transitions corresponding to the order 
parameters o- m and o-D=. We pick any /~;>//~ and apply Corollary3.3 to 
H'=fl'3(HI÷ ~zH2) and H"=~'3e2(t13+...+H,). We find that there exists 
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g3 ~]0, 1[ such that 

~a'~n~+~2n~+~m~+...+n.))(o'A)=0 if [t<[3' 3 

for all A ¢ [Dz, B3 .. . .  , B,], in particular for A = D 3. By (2.8) we can choose [3; > fl; in 
such a way that 

~ n ,  +~n~+~H~)(ao~) > 0  for [3 > [3;, 

and hence, by GKS inequalities, 
+ ct 

0am~+a,n~+~(n~+...+n,))(aD~)*0 for [3>[33. 

This proves the existence of the third transition line. It is certainly different from 
the previous two since fl'3 > [3~. 

It is now clear that by induction with respect to k__< n we can define [3'~, [3~, and g~ 
satisfying 

O<fii<fl'~<fi'Z<fi~<...<ffk<[3'~ and 0 < g 2 < . . . . < g k < l  , 

and such that for [3 N [3~, 
+ Op(n~+.~2n2+-,~n~+...+-~.....-,k_~H~_~+-~.....-,k(Hk+...+n,,))(aa)=O (3.12) 

if A ¢ [O k_ 1, Bk, ..., B,], and for fl > fl~ 
+ 

Ot~(n~ +~n~ +-~n~ +... +-~.....-~,,- ~m, -~ +~.....-~kn~)(aD,) 4= O. (3.13) 

and 

Now, let 

~1 = 1, a2=gz,  % =gzga,---,a,=g2~3".-. ' g,, 

H = a l H  1 +e2He + ... + e ,H,  ; 

since 0 < e i <  1, the Hamiltonian in (3.12) is "more ferromagnetic" than H and 
therefore (by GKS) for fl =< fl~ 

0~-H(aA) = 0 if A q~ [D k_l, Bk . . . . .  B,] ,  

and in particular, by (3.8), 

q;H(O'ok) = 0 for fi < fl~. 

Similarly, since the Hamiltonian in (3.t 3) is "less ferromagnetic" than H, again by 
GKS 

O~;H(aOk ) :4= 0 for B > a" 

Let 

[3k = inf  {[3: * 0} ; 

by GKS (3.9) holds, and since fl'i ~ fli <-- fl'i' and fl'i + 1 > fl~' one sees that fli + 1 is strictly 
larger than fit. This finishes the proof. [] 
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The following corollary yields a concrete class of examples, of which the 
"benchmark model" is a particular case. 

Corollary 3.5. I f  g.c.d.(D,A)= 1, 1 ¢ [D,A] and D is factorizable then for  any n 
there exist  a2,. . . ,  an > 0 such that 

H =  H o , +  H o , - ,  "A AV °~2HD . . . .  A + ' ' "  + Otn-- 1HD.A + ~nH A 

exhibits at least n phase transitions. M o r e  precisely, there exist  0 < fll < f12 < . . .  < fin 
such that 

a;H(aon-,) = 0  for  fl < fl,, and Q;H(aD~-,)#O for  fl > fli, 

where D o = 1 = {0}. 

Proo f  All one has to check is that D i = D n- i and that the condition (3.8) is satisfied. 
We apply the theorem to H1 = H Dn + H o , -  I . a, H2 = H , , -  2 . A, ..., H~_ 1 = H o. a 

and H , = H  A. We have: Dl=g.c .d . (Bl )=g.c .d . (D n, D " - I . A ) = D  ~-1 and 
D"- 1 ¢ [D ~, D ~- 1. A], since otherwise t ~ [D, A]. Similarly, D 2 = g. c. d.(B1, B2) 
= g.c.d.(D"-1, D . -  2. A)= D n-2 and again D n- 2¢ [D . -  1, D"-2 .  A]. It should be 
now obvious that the claim follows from the theorem. []  

Remark.  Both by inspection of the proofand  by a continuity argument one can see 
that if the theorem, or the corollary, holds for some values a~ of the parameters it 
holds for all values of the parameters in some neighborhood of a~. 

3.3. Proo f  o f  the Inequali ty (Theorem 3.1) 

By the hypothesis (3.1) of Theorem 3.1 each bond o f ~  1 is a symmetric difference of 
bonds of ~2. This implies that there exists a map from ~1 to finite subsets of ~2, 
B ~ - ~  B, which commutes with translations and such that 

1-1 a c = a ~ .  
Ce~s 

Moreover, we can choose the families c~ B in such a way that (gB contains no non- 
trivial cycle, i.e. 

s¢(c~B) = {O}. (3.14) 

Furthermore, for each C e N  1 we define an interaction Jn with bonds cg B in such a 
way that B~--~J B commutes with translations and 

2 J~(C)<=J2(C) (3.15) 
B:Ce~B 

for any C ~  2. For  any B ~  1 we now set 

• 2 C~Cgs 

(~B)B~ is a translation invariant finite range interaction in an obvious sense. 
Note, however, that ~B(X) depends on the restriction of the configuration X to 

s(B)= U C, 
C~s 

which may be larger than B. 
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Because of (3.15) and the second GKS inequality, it is enough to prove the 
theorem with Hz replaced by 

H ~  = - Y~ %. 
B 

This is what we will do. 
We consider a finite subset A of the lattice. We let L1 and Lz denote the 

Hamiltonians in A defined by fill1 + K and f(fl)H'2 + K, respectively, and by the 
"1"-boundary conditions in the complement of A. Let Za and Zz be the 
corresponding partition functions. Our goal is to define f(fl) such that 

(Z2) -1 E qA(X)e-L2(X)--(Z1) -1 Z qA(X) e-t''(x)>O 
XEXA X~XA 

for every A and every A CA. This is equivalent, [-17], to 

0 - - < ( Z i Z 2 )  - 1  ~. [O'A(X)--(TA(Y)]e -L2(X)-LI(D 
X,Y~XA 

= ( Z  1Z2) - 1 E [1 --  ~A(Y)JtTA(X)e-  L2(X)- zl (x .  r) 
X, YeXA 

where the last line was obtained by making the change of variables Y~--~X. Y, 
X~--~X. Since 1--(rA(Y)>O , it is enough to show that 

Z GA(X)e - L2(X) - L,(X" r) > 0 
x 

for each Y~X A. That is, we must show that 
e -  L2(X) - LI(X. Y) 

=exp L [f(fi) ": s(B~A*O)n (~B(X V l)'~-fl .:BtaA*OE JI(B)GB( X "  Y)  

+ , : ,  ~A • ¢ J 3(B) E 1 + a,(Y)] aB(X)l (3.16) 

is a positive definite (p.d.) function of X for each Y~XA; here X v I denotes the 
configuration equal to X on A and to 1 on the complement of A. Up to this point 
we followed Ginibre's [17] proof of one of the GKS inequalities, 

Now, (3.16) can be written as a product of factors of the form 

exp [,:,~A*0 Js(B) [1 +an(YlJa,(X)l, (3.17) 

exp[f(fi)~,(Xv 1)] with s(B)nA4:0, B n A = 0 ,  (3.18) 

and 

exp[f(fi)~bB(Xv I)+flJI(B)O'BnA(X" Y)] with BnA#:O. (3.19) 

Expressions (3.17) and (3.18) are p.d. functions of X because they are exponentials 
of p.d. functions (see [17, first GKS]). Thus it is enough to prove that one can 
choose f in such a way that (3.19) is p.d. 

We note first that it is enough to consider the case of s(B) contained in A. For 
otherwise the function (3.19) of X can be considered as a restriction to 
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X A X {IA, \A},  where A'3A is big enough, of the function 

X~--~exp [f(fl) c~ .  Jn(C)ac(X)+ fiJl(Bla.(X" V)]. 

And since a restriction of a p.d. function to a subgroup is p.d., our claim follows. 
Thus we reduced the problem to showing that 

R(A)~ xexa2 aA(X)exp [f(fl) cs~e,2 JB(C)ac(X)+flJx(B)aB(X" Y)] ~0 

for each finite subset A of the lattice, A C A, and each B such that C C A for all 
C e ~  8. This we do by resorting to the HTE (2.12). 

According to (2.12), R(A)=0 if A¢{B}wCd,=cg B. Hence it is enough to 
consider the case of A ~ c6 B, that is, of such A C A for which there is an a A C crib such 
that aa = [] aC [since ~f(c~,) = 0 such eA is unique]. The HTE of R(A) involves a 

Ceg.A 
sum over all cycles a e •(cdBw {B}). By (3.14), there are exactly two such cycles: the 
trivial one, a = 0, and the one formed by all the bonds, a = {B} WCdB . Therefore, the 
HTE of R(A) for A = ~ is 

2 lal cosh[flJl(B)aB(Y)] [cl-[" cosh[f(fl)Jn(C)]J 

x [ c ~  tanh[f(fl)d.(C)] +tanh[flJl(B)a"(Y)] c~.\~a[I tanh[f(fi)J.(C)]]. 

Since Itanhx[ < 1, we see that R(A) is made non-negative choosing f(fl) in such a 
way that 

I-I tanh[f(fl)JB(C)] >_ [tanhflJl(B)aB(Y)] = [tanhflJ~(B)[ (3.20) 
C E ~  

for each B eg~.  Since J1 is translation invariant and of a finite range one has 
here a finite number of inequalities which certainly admit a solution f satisfying 
the condition (3.2). This ends our proof of Theorem 3.1. 

We note that the condition that H1 be ferromagnetic is not essential. In the 
general case Q + of the left-hand side of (3.3) can be replaced by any Gibbs state of 
flHI+K. We also note that our proof shows that for the Hamiltonian 
fill1 + f(fl)H2 + K both the first and the second GKS inequality hold, and that one 
obtains the following stability property of the inequalities: if H z is ferromagnetic 
then for any small enough H1, ferromagnetic or not, for which N(H1) C ~(H2), the 
GKS inequalities hold for H1 + H2. [] 

4. The Uniqueness Result 

This section is devoted to the proof of Theorem 3.2 using a criterion due to 
Dobrushin and Shlosman [8] (DS-criterion) which we review and slightly adapt in 
the sequel. In this section we absorb fl in the definition of the interaction. 

4.1. The Basic Criterion 
Let us introduce the notation needed to state DS-criterion. For a separable metric 
space X with metric 5 let Ro be the Kantorovich-Wasserstein metric on the space of 
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measures on X: 

R~(#, e) = sup 
tflL=< 1 

where the Lipschitz seminorm I" IL on 
functions is: 

I# ( f ) -~( f ) l ,  (4.1) 

the space of real-valued measurable 

I f (X)- f (Y) l  ]g]L = sup (4.2) 
x* r 3(X, Y) 

(Definition (4.1) can be stated equivalently [10, lecture 20] in terms of joint 
distributions.) In particular, if X is finite and Z is the discrete metric 
z(X, Y)= 1 - 3 x ,  r; the metric (4.1) coincides with the variational metric 

Rz(#, ~) = Var(#, e) - sup 1/~(A)- 0(A)I • (4.3) 
A measurable 

DS-criterion consists in a bound on the Kantorovich-Wasserstein distance for 
Gibbs measures on a finite configuration space X a with metric 

(~A(Y~Z) = 2 z ( Y t ,  Z t )  " (4.4) 
tEA  

We remark that then 

R~A(/z, e) ~ 1AI Var(#, e) (4.5) 

for any measures #, e on XA. 
We consider the space A~ of interactions of a fixed range r < ~ ,  with the norm 

14,1 = s u p  t~nl~ ,  and for a finite A C Z  ~ we denote a A = { x c A * : d i s t ( x , A ) < r } .  We 
B e ~  

then have: 

Theorem 4.1 (Dobrushin-Shlosman). Assume that there exists a finite A C Z ~ such 
that for all pairs of configurations X, Z differing at most at one point 

(1 -~)JAI 
R~A(OA('J Y), Oa(" ] Z)) < ] 3 A ~  (4.6) 

for some ~ > O. Then for all the interactions in an open nonempty neighborhood of  
in "~r, the Gibbs state is unique. 

We will use a sufficient condition for this theorem almost identical to 
Theorem 3,3 of [8]. For finite sets A C M C Z  ~ and a (partial) configuration Y we 
denote by QM, A(: [Y) the projection of Q~t(" [Y) on XA: 

QM, A ( f [ Y ) = Z ( M ] Y ) - I  ~ dX  ~ dZ f (X )e  -n~tx 'z tr) .  
X A  XM~ A 

In addition we consider two integers n, d which will be chosen eventually large 
enough and such that n >> d. The integer n is the size of the side of a (large) cube 
Da={t~Z~:O<ti<_n, i=1,  ...,v}, while d is the size of much smaller cubes of 
"excluded" volume placed inside D n adjacent to its boundary. These cubes are 
defined as follows. We take d in the range 2r < d < n/3 and for each t o ~ 0D, we 
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t to~ d~ . . . .  1"0  0_0,r 
-h. d 

Fig. 1. Possible choices of the cubes A~to) for a site to at a distance d~ from an edge of a 
parallelepiped D,. The figure on the left corresponds to the case dl >d-r,  while the one on the 
right to dl<d-r.  The dashed lines represent the boundary of the parallelepipeds T~ of the 
decomposition (4.7). Each A'n(to) is chosen so that the point to is at least a distance r away from 
An(to) and all sides of the parallelepipeds T~ are at least of size d -  2r 

choose a cube A'a(to)CD n of side of length d such that, if Ad(to)=-Dn\A'a(to) we 
have: 

C1) No spin in Ad(tO) interacts with the spin at to, i.e. I t -  toJ > r for all t ~ Ad(to). 
C2) The set Ad(to) can be decomposed into a disjoint union of a finite number k 

of large enough parallelepipeds T~; explicitly: 
k 

A~(to)= U T~, l<i<_k,  (4.7) 
i = l  

where k = k(Ad) does not exceed a certain integer p(v) that depends only on the 
dimension, and each T/has sides of size at least d -  2r. 

Such a choice is always possible (see Fig. 1). In the sequel the to dependence of 
the sets A d and A~ will not be written explicitly in order to simplify the notation, 
which we try to keep close to that of [8]. 

Our proof of Theorem 3.2 is based on a slight adaptation of a theorem by 
Dobrushin and Shlosman: 

Lemma 4.2. I f  for n, d large enough with 2r < d < n/3 and each to ~ OD,, 

Var (~o,, ad(" [ Y), QDn, Ad(" [ W))  ~_~ ce - ?d (4.8) 

for some c, 7>0,  for each pair of configurations Y,, W coinciding off  to; then (4.6) 
and therefore also the conclusions of  Theorem 4.1 hold. 

Remark. This result is basically proven in [8] (Theorem 3.3). For  the sake of 
completeness we present an alternative proof  based on the expression (4.1) for the 
Kantorovich-Wasserstein metric. 

Proof Choose a to e D, and consider a pair of configurations g W coinciding off 
to. Take an arbitrary measurable function f on D, with JfJz < 1 for the distance 60, 
[defined in (4.4)], i.e., such that 

I f ( X ) -  f(Y)l < I{i ~ M:  X i + Yi}]- (4.9) 

The idea is to write the average o f f  as the sum of two contributions: one due to 
the averaging over configurations inside A d and the part  corresponding to 
flippings of spins in A&. The former is insensitive to the boundary conditions by 
hypothesis (4.8); and the latter contribution can be bounded by the sum of the 
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oscillations o f f  in A~ - which is a small correction if the volume of A~ is negligible 
compared to that of D,. 

Let us then define a new function f *  - which can be identified with a function 
on Xa~ - obtained by fixing the spins in A~ at some value g. That is, if ga'd denotes 
the configuration that at each site takes value g: 

f * (X)= f ( X  ad, gA~ ) . (4.10) 

Obviously 

We have: 

If*lL = IflL £ 1. (4.11) 

lOD.(f I Y ) -  eD.(f I W)I 
< 10D.(f I Y ) -  eD.(f* [ Y)I + leD.(f* I I1) - eD.(f* ] W)I 

+ [eD.(f* I W ) -  eo.( f lW)l ,  
which implies 

leD.(fl Y ) - eD. ( f l  W)I <= 2 I f - f * l ~  
+ sup { IOo.(h I Y) - Qo.(h I W)l: h on XAd with I hlL < 1 }. (4.12) 

If X is the configuration for which I f - f * l  o~ is achieved, we obtain from (4.9) and 
(4.10): 

I f -  f * t ~  = I f ( X )  - f(XAd, ga;,)l < IA~I. (4.13) 

On the other hand, the second term in (4.12) is precisely 

RaA(OD.,Aa(" I Y), ODn, Aa(" l Z))~ IAnl Var(oD.,aa(" [ Y), 0,,,A~(" [Z)) 
<= IAatce- ~n . (4.14) 

The first inequality is due to (4.5) and the second one to the hypothesis (4.8). If the 
bounds (4.13) and (4.14) are substituted into (4.12) we obtain: 

R,~D.(QD,~,Aa(" I Y), QO,,Ad(" I W)) _-< 2IA~I + clAale-rn 
< 2d v + c,n~e-.:d 

uniformly in to. It follows that if one chooses d v = zn with ~ < 1/2 the condition (4.6) 
is satisfied for A = D, with n large enough, []  

Furthermore, condition (4.8) of Lemma 4.2 can be obtained from a bound on 
the reduced partition function. Indeed, as the Hamiltonian on Ad does not depend 
on the value of the spin at to (condition C1 above), it is straightforward to obtain 

Var(eD,,ad(" [Y),Qo,,A~(" ]W)) 

< Z(Ad I Y) sup Z(A'd I ~X)  
= x~xA, Z(D, IY) 

Z°(A'd I Y_,_ X) 
= Z°(Ad i Y) sup ZO(D" [ y) XEXA a 

Z(A f W_, X) (4A 5) 
Z(D. I W) 
Z°(A  E W,, X) 
~6-(~j~ ~-W) . (4.16) 
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Therefore, we see that to prove (4.8) it is enough to show that all the reduced 
partition functions in (4.16) tend to one exponentially fast with d uniformly in the 
boundary conditions. Moreover, using the decomposition (4.7) we have the bound 

inf [[  Z°(T/IXi) < Z°(Aal Y) < sup y[ Z°(Ti I Xi), 
(Xi) i (Xd  i 

which shows that it is enough to prove the exponential behavior of Z ° only on 
parallelepipeds. We thus have: 

Proposition 4.3. I f  an interaction (a is such that there exist positive a and 7 with the 
property that for each parallelepiped A = [0, N1] x . . .  x [0, N~] and each boundary 
condition Y 

IZ°( A I Y ) -  1] < ~e -~ '"f'n', (4.17) 

then (4.8) holds and hence all interactions in some open neighborhood of dp in -4r have 
unique Gibbs states. 

4.2. Partition Functions for Factorizable Trivial Systems 

To conclude the proof of Theorem 3.2 we use the HTE to show that the bound 
(4.17) on Z°(A I Y) holds for factorizable trivial systems. We notice that for general 
spin-½ systems, the set of bonds defined by a given boundary condition Y e XM, 
M c EA,  depends only on the set M; and the corresponding set of cycles increases 
with M. If we denote by ~r a the set of cycles for the boundary condition 1 (or any 
boundary condition Y e Xac), we have from the HTE (2.10) that for a trivial system 
with Hamiltonian H =  - J ~, ac + ~; 

x 

IZ°(A I Y ) - l l  < t I~1 (4.18) Z 
a e .~rA 

a $ O  

with t = tanh jJ[. 
The result (4.17) will be obtained from (4.18) plus the fact that the cycles for 

factorizable trivial systems are superpositions of periodic arrays of bonds parallel 
to the coordinate axis. Therefore each cycle involves a large number of bonds, 
which causes the right-hand side of (4.18) to decrease exponentially with the linear 
dimensions of A. 

To state this crucial property of the cycles it is notationalty convenient to 
identify families of bonds with subsets of Z~: 

a+*{x ~ Z~ : C + x ~ ~} . (4.19) 

We adopt such identification for the rest of this section; in particular the cycles 
~ JU a are identified with subsets of A* = {x e Z * : (C+ x)wA 4= 0}. 

To follow the argument it may be useful to keep in mind a simple example 
(Fig. 2). Consider the system in Z 2 with the unit square as fundamental bond: 

C = {(0, 0), (0, 1), (1, 1), (1, 0)}. (4.20) 
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Fig. 2a--e. Part a is a cycle with fundamental bond (4.20) on a 3 x 3 square A; and, on the right, the 
corresponding subset of the lattice obtained through the identification (4.19). Parts b and e show 
two different decompositions of g in the form (4.21). The decomposition in part b is economical 
while that in part e is not. The symbol "+"  stands for the symmetric difference 

Its cycles-for  "1" boundary conditions - are formed by the superposition of arrays 
of bonds parallel to each coordinate axis, with period 1. In the left part of Fig. 2a we 
show an example of a cycle when A is a three-by-three square. The corresponding 
set e, obtained via (4.19), is formed by the heavy dots in the diagram of the right; 
where we have used dashed lines to depict the set A*. 

In the appendix we prove the following characterization of the cycles of 
factorizable trivial systems. 

Proposition 4.4. For a factorizabte trivial system there exists an integer q such that 
every element e of J l  a has a decomposition 

e =  ~ e(i), (4.2/) 
i = 1  

where "~" stands for the symmetric difference and each e(i) is a subset of A* periodic 
in the i th direction with period q. This decomposition is far from unique. 

Let us fix q in the sequel and denote for each set A and for 1 <i<v; 

L~,q(A) = {e c A : e l  A is periodic in the i th direction with period q}, 

L~v(A)=_ { e =  j=l ~ e(j):e(j)~L~q(A)}., 
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With such notation, Proposition 4.4 can be succinctly stated as 

fft'A C L<_v(A* ) . (4.22) 

From (4.18) and (4.22) we see that to obtain the bound (4.17) for factorizable trivial 
systems, it is enough to prove the following proposition. (Note that if A is a 
parallelepiped, the set A* is a larger parallelepiped.) 

Proposition 4.5. Assume A = [0, N1] x . . .  x [0, N~]. Then, for each t< 1 there exist 
ca, c 2 > 0 depending on t, q, v but independent of N 1 . . . .  , Nv such that 

t I~l < cle - c~ ,  (4.23) 
ae L <_ v(A) o~-0 

where N =  min Nj. 
l<j=<v 

Proof We will show, by induction in i, that 

t I~t <cae -c2N , (4.24) 
a~L__<i(A) 

for every 1 _<_ i_< v. 
For  i=1 ,  ~(1) is formed by (N2+t ) . . . (Nv+ 1) periodic one dimensional sets 

parallel to the first axis; hence 

(4.25) a~L~(A) tl°:I= [o~LI([O,N1]) tI'I] (N2+ ')'''(N'+ I)" 

The fact that each set ofLa([0, N~]) has period q implies that there are at most 2 q 
different such sets, and all except the empty one have at least N~/q points; hence: 

Z tl'l < 1 + 2qt s~/q. (4.26) 
aeLl([O,N1]) 

The bound (4.23) for i=  1 follows from (4.25) and (4.26). 
For  the inductive step we use the following lemma. []  

Lemma 4.6. If  2_<_ k < v, 

tl~l<= [z~(A) tlzl/3 ] ~ (4.27) • ~L~u(A) [O~L~t,-~(A) tiOI/3]" 

Proof Every b~L~k(A) is of the form 

= Z + 0 (4.28) 

with X eLk(A) (set of "columns") and O~L<=k_ I(A) (set of "horizontal sections," 
which in Fig. 2 are in fact "rows"). The decomposition (4.28) is not unique, and to 
prove (4.27) we need to restrict this degeneracy and to select those decompositions 
for which IZt + 10l does not differ too much from I~l. That is, we need to exclude 
decompositions as that or part c of Fig. 2 where there are many "annihilations." 
For  such purposes we adopt the following definition. 

Definition 4.7. The decomposition (4.28) is economical if every other decompo- 
sition (~', 0') of the same ~ satisfies 

Izl _-< IEI. (4.29) 
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For  each element ofL<=k(A ) there may be several economical decompositions, 
hence: 

Z till<= ~, tlx+°l, (4.30) 
a e L =< k(A) (X, 0) ~ n(A) 

where ~(A) denotes the set formed by all the economical decompositions of the 
elements ofL~k(A). From (4.30) we see that to prove (4.27) it suffices to show that 
for all economical decompositions 

But the fact that 

tzl I01 (4.31) lz+Ol~ 3 3 

I. (Izl-lzc~0l)+ ] (fol-2lzc~ol) 

shows that (4.31) - and hence (4.27)- is a consequence of the following property of 
economical decompositions: 

Claim. For an economical decomposition 0(, 0): 

101 ~ 21zc~01. (4.32) 
Indeed, consider the "section" of 0 at "height" j: 

O~=O~{a~Z~:ak=j}.  

If (4.32) were false there would exist some Jo such that 

10jo I < 21zn 0jo I . (4.33) 

In such case we could define another decomposition (Z', 0') with Z + 0 = X'+ 0', 
obtained by adding a copy of 0io every q sections (so not to destroy the 
q-periodicity): 

O' = 0 + ~ (0~o + nqek), 
n~D 

Z' = X + Z (Ojo + nqej ,  
n e d  

where D is the set of integers n such thatjo + nq ~ [0, Nk], and e k is the unit vector in 
the direction of the k t~ coordinate axis. Certainly )(~ Lk(A) and 0'~ L<__k-I(A) and 
moreover: 

Iz ' l :  Izl + E EI0jol-21z•0jol]. (4.34) 
n~D 

Hence, by (4.33) 
Iz'l < Izl 

against the assumed economicity of the original decomposition (L0). This 
contradiction proves (4.32), hence the lemma and with it the inequality (4.23). [ ]  

The combination of Proposition 4.5 with (4.18) and Proposition 4.3 yields the 
uniqueness result of Theorem 3.2. 
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5. More General Abelian Groups 

The results summarized in Sect. 3.2 generalize to systems where the spin at each site 
takes values in the group Zp= {0, 1, . . . , p -1}  of integers modulo p. Theorem 3.2 
requires the restriction that p be a prime. In this section we sketch the proofs of 
these extensions. 

5.1. Definitions and Notation 

As for spin-½, the configuration space 

X = Z  z~ 

is endowed with the product group structure and topology. The characters of X are 
functions of the form 

O-R(X)= 1~ e2~iB(a)X(a)/v= H O-a B(a) ' (5.1) 
a 

where B - a multiplicity fimction - is an element of Ztp zv), i.e., a Zp-valued function 
which is zero except on a finite set of points of Z ~, called support of B and denoted 
suppB. For p = 2 (spin 1/2) we recover the notions of Sect. 3. The set of characters 
forms a group denoted X*, which is isomorphic to the group of multiplicity 
functions with coordinatewise sum modulo p. The latter is in fact a ring with 
product 

A.  B(x)= Z a(y)B(z) 
y + z = x  

which is also written as 

A.  B = Z A(x)B + x ,  (5.2) 
x 

which is a generalization of (2.6). Here "Z" is the coordinatewise sum modulo p, 
A(x)B is defined by (A(x)B) (y) = A(x)B(y) (modp), and for C s Z~v z~) and x e Z ~, C + x 
denotes the translated (C + x) (y) = C(x - y). The ring so obtained, in fact an algebra 
over Zp, is the standard group algebra Zp[Z ~] of Z v with coefficients in Zp. 

The Hamiltonians are functions of the form 

H = - -  E J(B)a, ,  
B e ~  

where ~ is a Z~-invariant family of multiplicity functions, and the complex 
numbers {J(B)) satisfy J ( - B ) =  J(B) so that Hamiltonians are real-valued. The 
range of the interaction is the supremum of the diameters of the supports of the 
multiplicity functions in g .  The interaction is real if J(B) is real for each B, and 
ferromagnetic ff J(B) > 0 for each B. The Gibbs state a + is defined by placing as 
boundary condition the function 1, where 1~ = 0zp for each a ~ ZL 

All the results summarized in Sect. 3.1 have natural generalizations to the 
present setting. The ring structure of the set of bonds is now that of Zp[Z'],  which 
is also a unique factorization domain if p is prime. Results (2.8) and (2.5) hold, 
being the ideal of Zv[Z ~] generated by ~ .  
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5.2. Proof of  Theorem 3.1 for a General Finite AbeIian Group 
at Each Lattice Site 

We discuss here only the points where the proof differs from that of Sect. 3.3. 
We first note that even when the characters (5.1) are complex-valued, for 

ferromagnetic Hamiltonians the correlations Q +(an) are real (Bochner's theorem), 
in fact nonnegative [18, 28]. Proceeding as in Sect. 3.3, we see that we must show 

~, [Reaa(X)--ReaA(Y)]e-L2~X)-Lltr)>=O. (5.3) 
X, YEXA 

We then observe that to prove this is enough to show that 
e-L2(X)+LI(X) (5.4) 

is positive definite for every A +~s(Z~). Indeed, if this is true, then there are 
numbers tc > 0 such that 

e - L 2 ( X )  + Lt(X) = ac~X~ tc Reac(X) ' (5.5) 

and hence 

LHS of (5.3) = Z [ReaA(X)-ReaA(Y)]  e-L2~x)+L'(x)e-Ll(x)-Lt~r) 
X, YEXA 

= ~ , tc ~ Reac[RetrA(X)--ReaA(Y)]e -LaX)-L~(Y) 
ac~X.4 X,Y~X~4 

1 
= ,cZ~x tc 2 x, r~x~Z [Reac (X) -Reac (Y) ]  

× [Reaa(X)--Reaa(Y)]e -L~(x)-LI~Y) 

>0 .  

The last inequality is a well known result (see e.g. [18, Example 4]). 
The positive definiteness of (5.4) is a particular case of the following lemma. 

Lemma 5.1. Let f# be a .finite AbeIian group; f, g real valued functions on (~ such 
that 

i) f is positive definite, 
ii) the Fourier transform ~ of g is real-valued, and 

iii) for any a ~ f#*, 

Then the fimction 

f"-'(a)=0 for all n=>~(a)=0. (5.6) 

e s f  + g 

is positive definite for s ~ R large enough. 

Proof. We could proceed as in the spin-½ case using the HTE. However we prefer 
to deduce the lemma from a corresponding result on positive definite matrices, 
which is of independent interest. 
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First, in a standard way, by considering convolution operators, we let to any 
function f on f9 correspond a fg* × f¢* matrix F: 

F~= f(a'c- a). (5.7) 

The relation 

1) = Z 1) 

proves that (5.7) is an algebra isomorphism between the real-valued functions off9 
and a commutative algebra of matrices with indices on fg*. It is simple to check 
that the isomorphism is such that: 

f is real ~ F is Hermitian 

and 

f is positive definite ~ F has non-negative entries. 

Moreover, hypothesis (5.6) is equivalent to the property 

(F"L,,=OVn~(GL.~=O. (5.8) 

Therefore we see that the lemma is a consequence of the following claim. 

Claim. Let F, G be real symmetric commuting matrices. In addition assume that F 
has non-negative entries and that the matrices satisfy (5.8). Then the matrix 

e sF+G (5.9) 

has non-negative entries for s large enough. 

Proof of the Claim) Property (5.8) allows us to assume without loss of generality 
that for each o-, z ~ fg* there exists some n for which 

(F%,~>0.  (5.10) 

Indeed, otherwise we could classify the indices into groups lk such that (F")~,~ = 0 
for every n when a and z belong to different I k. This classification is well defined 
because F is symmetric, By (5.8) also G,,~ = 0 when tr and z belong to different I k. 
Therefore F decompose into block matrices along the diagonal for which (5.10) is 
true, and it is enough to study (5.9) for each such block. 

The inequality (5.10) is exactly what we need to be able to apply Perron- 
Frobenius Theorem to the matrix F. As a consequence, of all the eigenvalues 2k of 
F there is one of them, 20, such that 

12kl<2o, k + 0 .  (5.11) 

The eigenvalue ,~o has multiplicity one, and the components (volei) of the 
corresponding eigenvector Vo with respect to the canonical basis e~ are strictly 
positive: 

(Vo l e~)> 0 i =  1 . . . .  lfg*[ - (5.12) 

1 We owe this proof to Michael Aizenman 
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Moreover, F and G can be diagonalized simultaneously because they commute 
(and are symmetric). If {Vk} is the set of simultaneous eigenvectors and 7k the 
G-eigenvalues; we have 

(ei teSF+%i)= 2 (ei t vO(Vk l eSV+aej) 
k 

= Y, (ei I Vk) (Vk I e~)e ~" +'' 
k , j  

=(eilvo)(Vo[ej)eS~'°+~°+ F, Y, (ei[vl,)(vklej)e ~'~+''~. (5.13) 
j k*O 

By (5.11) and (5.12) the first summand in (5.13) dominates for large s. Therefore 

(ei[e*e+aej)>O (5.14) 

for large s. This proves the claim, and hence Lemma (5.1) and Theorem 3.1. 
Combining (5.13) with the requirement (5.14) one could obtain an explicit relation 
for s of the type (3.20). [] 

5.3. Generalization of Theorem 3.2 
for an Abelian Group of Prime Order at Each Lattice Site 

A system is trivial if ~ is formed by translating multiples of a single multiplicity 
function C, called fundamental bond: 

~ c = { k C  + x : k ~ Z v ,  xEZ"} .  

A system is factorizable if every multiplicity function of ~ is the tensor product of 
one-dimensional functions. In particular a factorizable trivial system has a 
fundamental bond of the form 

C(x)= Cl(xl)...CJxO, 
where Ci : Z--+Zp, 1 < 1 <_ v. Equivalently, C = C, . . . . .  C~ with " . "  defined in (5.2). 

Theorem 5.2. Let p be prime, and consider the factorizable trivial system defined by 

H = - -  Z J(B)aB (5.15) 
B e ~ c  

such that 

IJ(B)I <- J <_ ~ .  

Let r be a positive number and let the interaction K = - ~ J a(B)aB have range smaller 
than r. Then, there exists a number Rr, c(J) such that if 

sup IJ3(B)I < Rr, c(J), (5.16) 
B 

the set of Gibbs states A(H + K) has exactly one element. 

Sketch of the Proof. Basically, we only need to discuss how to define the reduced 
partition functions in the present more general setting. The proof is then a 
straightforward generalization of that for spin ½. 
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The HTE for a trivial system takes the following form [21]. We introduce the 
potentials H(,~) obtained by summing all the terms of (5.15) corresponding to 
multiples of the same bond, i.e., by writing (5.15) as 

H = -  E Z J(kC+x)akC+x= E H(x)" 
x E Z  v k ~ Z p  x E Z  v 

We also identify families of bonds with subsets of Z ~ x Zp [cf. (4.19)] 

eCN~{(x ,k ) :kC + x s e } .  (5.17) 

In particular, the family of bonds of the Hamiltonian HA('] Y), with boundary 
condition Y ~ Xu, M C A ~, is identified with N(A I Y) = {(x, k): supp(kC + x) inter- 
sects A and A uM}; and the corresponding set of cycles is identified with 

We remark that both N(A I Y) and ~ ( A  I Y) depend on Y only through M, and 
moreover ~ (AI  Y)CX(A I1)-~Va. 

The HTE of the partition function Z(A I Y) is obtained by expanding each 
factor e-n(~) in Fourier series and taking the trace. The result is 

with 

where 

Z°( A [ Y)= Y~ I7t t(x, k I Y), 
ct~K(A[ Y) (x,k)~a 

ak c + x(X) e- n(x)(X l r) 
t(x,  k l Y )  = x e-n(x)(Xl r) 

X 

(5.18) 

It is simple to check that the bound (4.16) remains valid in the present setting, 
and hence so does Proposition 4.3. Moreover, by a Griffiths inequality [28]: 

It(x, k I Y)I < tlJl(X, k I IM), 
where tl~ I corresponds to the interaction in which all the J(kC + x) are replaced by 
the upper bound IJI and Y is replaced by 1 u. Also, tljl(x, k ] l u ) <  1 for each 
(x, k) e N(A I 1)-= A*. Therefore 

[Z°( A I Y) -  11 < ~, z(J) I~"p~I • 
~e~e'A 
a*O 

With z(J)=max(tlzl(x,k I 1):(x,k)~A*} < 1. It is shown in the appendix that 
Proposition 4.4 is valid as long as p is prime (this is the only part of the proof of 
Theorem 5.2 where the prime character ofp is used), using "~" as the sum modulo p 
and A* =~(A I 1). The proof of Proposition 4.5 can then be repeated replacing 
throughout the symmetric difference by the sum modulo p. [] 
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5.4. Comparison with Other Works and Concluding Coments 

Our work on many phase transitions started with Monte-Carlo stimulations of the 
Benchmark Model. The present construction was essentially completed in the 
spin-½ case during the Summer of 1982, before we became aware of [28] and, more 
recently, of [1, 2]. Theorem 3.2 was proved at first in a more involved way using the 
Dobrushin-Pechersky uniqueness theorem [7] (cf. [13]). Since the work [28] 
appeared so much earlier, comparison of the present construction with that of 
Pfister is in order. 

In both constructions, to show that certain order parameters are zero one 
compares the original model with another one, using correlation inequalities. In 
[-28] the comparison model, about which one has to have an independent 
information, is either defined on a reduced lattice, as in the case of the Ashkin- 
Teller model, or has a reduced configuration space. Thus to define models with 
more and more phase transitions one has to consider larger and larger 
configuration spaces. The comparison of the models is done with a help of an 
inequality by Ginibre. 

In our case Theorem 3.1 yields a comparison with a model on the same lattice, 
so that one can construct spin-½ models with many phase transitions on the simple 
lattice. Vanishing of correlations in the comparison model is obtained from the 
uniqueness Theorem 3.2. We do not know how one could use Pfister's method 
to obtain our results. 

To further elucidate these comments we discuss an example of [1, 2] and [28] 
using our method. Let n = k. m, k, m 4:1, and consider the system with configura- 
tion space Z zv and Hamiltonian 

H = - p  ~ ~a~b- Y~ o-~b~-k, (5.1) 
n . n .  n . n .  

where 

o.a(X)=exp 2rciX,/n. 

(The case of the circle is reduced to the one considered here using Lemma 5.2 of 
[28], as in 1-28]; see also [11]). One wants to show that for # small enough there are 
at least two changes in da :  at low temperatures ( % )  + 4:0, at high temperatures 
both (ao)  + = 0 and (o. k) + = 0, whereas at intermediate temperatures (O-o) + = 0  
while (o-~) + 4:0. The only nontrivial point is the proof of the last statement. 

We first choose a fl' so large that for # = 0 

(o-ko);~t*O for f l>f f .  (5.2) 

By GKS (5.2) holds for # > 0  too. Then applying Theorem 3.1 to HI E ~ -~ ~ _  - -  o . a o - b ,  

H2 = -- ~ (o-k + 6k) and K = --fl# ~ %6b, we obtain the majorization .... 
a n . n .  

+ 
+ i( < ( o-o)s(a)H~ + K. 

Now, H 2 has "one-point" interaction only. Therefore the Dobrushin- 
Shlosman Theorem 4.1 applies to it trivially: Qa(" [ Y) is independent of Y and the 
right-hand side of (4.6) is zero. Hence small perturbations of f(fl)H 2 have unique 
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Gibbs states, and since H 2 and K are invariant under shifting all the spins by m, we 
conclude that + (ao)r~a)n2+r is zero for fl close to fl' and # small enough. This 
concludes the proof. Choosing n = kl- . . . -k~ one can define systems with r phase 
transitions. 

One could try to combine our construction with Pfister's to describe the 
situation for general Z,-models, with composite n. The case when n is a product of 
distinct primes should present no new problems since for this case one has a 
description of ~¢~ through a greatest common divisor, as when n is prime [26]. 
However, while for the Hamiltonian (5.1) the choice of the comparison Hamil- 
tonian H 2 was obvious, and H2 was easy to analyse, the description o f ~ Q  through 
generators has not been worked out in the general case, although one does have a 
reduction process for general n (and general lattices). Though we consider it likely 
that s¢~o should in general have a set of generators which define a model for which 
an analogue of Theorem 3.2 is true; even with this problem solved, the problem of 
determination of most general chains ... C ~¢,_ 1 C sO, C ~¢, + ~ C... of order pa- 
rameters would still be open. 

A. Cycles for Factorizable Systems 

We present here the proof of Proposition 4.4 for the general case of a discrete set of 
prime cardinality at each lattice site. The proof relies on the properties of the 

• . Z v • ^ Z v algebraic structure of the configuration space X = Zp and its dual X = Z~ ). Both X 
and X have a canonical (product) group structure and, moreover, X is an algebra - 
the group algebra Zp[Z ~] of Z ~ with coefficients in Zp, with the product defined by 

(A" B) (y) = E A(x)B(y-  x). (A.1) 
x 

If p is prime, Zp is a field and Zp[Z ~] is a unique factorization domain. In the 
sequel we shall adapt our notation to the simpler case of a trivial system by 
resorting to the identification (5.17). For a fixed multiplicity function C (which can 
be thought of as the fundamental bond of a trivial system). We shall denote 

Sc={X~X:ac+~(X)=  I for every a ~ Z  ~} 

(symmetry group for C), 

H 1). 
z¢ 

The elements of ~{c are called infinite cycles for (the trivial system with 
fundamental bond) C. Note that the product makes sense because C has finite 
support. The annihilator of Sc: 

S~ : {A ~ z~. e Zp . aA(X) = I VX e Sc} 

is known to be generated by the set 

~ y(C) = {A . C: A ~ Zp[Z*]}. 

Let us also introduce the involution I : Z p [ Z  *] ~Zp[Z*] defined by 

I ( B ) ( x ) = B ( - x ) .  
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We then have the following relation between infinite cycles and symmetry 
groups: 

c~ E ~,-c ~ Z B e Si(c), (A.2) 
B~cz 

which is a consequence of the identity 

valid for every s e Z". 
Therefore, to characterize the cycles of trivial systems it is equivalent to study 

the symmetry group of the inverted of the fundamental bond. This task can be 
further decomposed when the fundamental bond can be factored into coprime 
factors. 

Proposition A.1. I f  C, C 1, C 2 ~. Zp[-Z v] - p prime - are such that C = C 1 • C2 with C 1 
and C2 coprime; then Sc is generated by Scl and Sc2. 

Proof. Let us denote ~ the subgroup generated by S% and Sc2. Then S± is 
generated by ~f(C,)  c~0~y (C2) C ~I(C), which implies S~ C S ±. Indeed, ifA e ~y(C1) 
c~f(C2) there exist multiplicity functions Q(I), Q(2)~ z p [ z  v] such that 

Q(1). C I =A = Q(2)- C 2. 

As X* is a unique factorization domain and C1 and C2 are coprime, this implies 

A = Q ' C I ' C ~ = Q ' C  

for some Q ~ Zp[Z~]. Hence A E ~f(C). [] 

A factorizable trivial system is defined by a fundamental bond of the form 

C=C1. . . . -C~ ,  

where each C~ has support contained in the i t~ coordinate axis. Then 
1(C)=1(C,). . . . .1(C~) is also the (ring) product of multiplicity functions with 
supports along each axis. By (A.2) and Proposition A.1, the properties of the cycles 
of such system can be deduced from the study of one-dimensional trivial systems. 

Proposition A.2. Consider a trivial system with configuration space Z z, p prime, and 
fundamental bond C. Then, if ]supp(C)[ =m: 

i) I f  X ,  Y ~ Sc agree on a set of  m -  1 consecutive points, then X = Y 
ii) IScI = P ' -  1. 

iii) There exists a positive integer q such that every X ~ S c has period q. 

Proof i) Let T be the subset of Z where X and Y agree. We claim that max(T) = oo. 
Indeed, if max(T)=b<oG then we can consider the bond C + b - m + l  with 
support in [ b - m + 1 ,  b + l l .  For p prime it is easy to see that the condition 
1 = ~C+b-m+ I(X) = O'C+b-m+ I(Y) implies Xb+ 1 = Yb+ 1 against the maximality ofb. 
The proof that min(T)= - o o  is analogous. 

ii) By i) [Sc[ Np'~-1. The opposite inequality follows from the fact that every 
configuration on [0,..., m -  2] can be uniquely extended to an element of S c. 
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iii) By ii) each X ~ Sc has period smaller than pro-1. Choose  q as the lowest 
c o m m o n  multiple of  the periods of  the pm- 1 configurat ions of  Sc. [] 

Finally, we obta in  the desired characterization.  F o r  a finite set A e Z ~, let 
A* = {x e Z " : supp(C + x)c~A :I: 0}, and 

:(CA= { e s Z Z ~ ' s u p p ( c 0 e A  *, supp ( ~  e(x)C +x)c~A=O}. 

Theorem A.3. For a factorizable trivial system with single spin space Zp, p prime, 
there exists an integer q such that Jbr each parallelepiped A 

c~6o~{'A~o~= ~ o~(i) 
i=i 

with supp(cOCA* and each a(OIA* periodic in the i th direction. 

Proof F o r  A = Z  ~ the result is just  a combina t ion  of  the previous three 
proposit ions.  Fo r  A with some side of  finite size, the result follows f rom the fact 
that  each e E O~a can be extended to an infinite cycle. [ ]  
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