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Foreword

Simple random walks — or equivalently, sums of independent random vari-
ables — have long been a standard topic of probability theory and mathemat-
ical physics. In the 1950’s, non-Markovian random-walk models, such as the
self-avoiding walk, were introduced into theoretical polymer physics, and grad-
ually came to serve as a paradigm for the general theory of critical phenomena.
In the past decade, random-walk expansions have evolved into an important tool
for the rigorous analysis of critical phenomena in classical spin systems and of
the continuum limit in quantum field theory. Among the results obtained by
random-walk methods are the proof of triviality of the ϕ4 quantum field theory
in space-time dimension d ( )

≥ 4, and the proof of mean-field critical behavior
for ϕ4 and Ising models in space dimension d ( )

≥ 4. The principal goal of the
present monograph is to present a detailed review of these developments. It is
supplemented by a brief excursion to the theory of random surfaces and various
applications thereof.

This book has grown out of research carried out by the authors mainly from
1982 until the middle of 1985. Our original intention was to write a research
paper. However, the writing of such a paper turned out to be a very slow process,
partly because of our geographical separation, partly because each of us was
involved in other projects that may have appeared more urgent. Meanwhile,
other people and we found refinements and extensions of our original results, so
that the original plan for our paper had to be revised. Moreover, a preliminary
draft of our paper grew longer and longer. It became clear that our project
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II Foreword

— if ever completed — would not take the shape of a paper publishable in a
theoretical or mathematical physics journal. We therefore decided to aim for
a format that is more expository and longer than a research paper, but too
specialized to represent something like a textbook on equilibrium statistical
mechanics or quantum field theory.

This volume reviews a circle of results in the area of critical phenomena in
spin systems, lattice field theories and random-walk models which are, in their
majority, due to Michael Aizenman, David Brydges, Tom Spencer and ourselves.
Other people have also been involved in these collaborations, among whom one
should mention Jan Ambjørn, Carlos Aragão de Carvalho, David Barsky, An-
ton Bovier, Sergio Caracciolo, Bergfinnur Durhuus, Paul Federbush, Giovanni
Felder, Ross Graham, Gerhard Hartsleben, Thordur Jónsson and Antti Kupi-
ainen. This work, carried out between roughly 1979 and the present, was much
inspired by Symanzik’s deep article “Euclidean Quantum Field Theory”, which
appeared in the proceedings of the 1968 Varenna school on “Local Quantum
Theory” [494]. Papers by Schrader [451, 454, 452] and Sokal [481] devoted to
an analysis of ϕ4

d theory in d ≥ 4 space-time dimensions, and work by Dvoret-
sky, Erdös, Kakutani, Taylor and Lawler [327, 158, 164, 350, 351, 353, 352] on
intersection properties of Brownian paths and simple random walks and on self-
avoiding walk, provided much additional stimulation for the work described in
this volume.

Symanzik’s article was fundamental, because it showed that Euclidean ϕ4

field theory can be represented as a gas of weakly self-avoiding random paths
and loops. This is the main approach explored in this book. The articles by
Dvoretsky-Erdös-Kakutani, Erdös-Taylor, and Lawler were important, because
they showed that Brownian paths do not intersect in dimension d ≥ 4 and
that (weak) self-avoidance is an irrelevant constraint in dimension d ( )

≥ 4.1 Jim
Glimm and Tom Spencer contributed much to making these ideas and results
popular among mathematical physicists.

It appeared that, with the ideas of Symanzik and the results of Erdös, Taylor
and Lawler at hand, one might be able to prove a no-interaction (“triviality”)
theorem for continuum ϕ4

d theory in space-time of dimension d ( )
≥ 4. It was

pointed out in Sokal’s thesis [481] that, for d > 4, it would be enough to prove a
tree-diagram bound on the connected four-point function to conclude triviality.
The right version of such a bound was first proven by Aizenman [4, 5], using a
“random-current representation” to prove new correlation inequalities. Shortly
afterwards, Fröhlich [213] proved a slightly different version of this bound, using
Symanzik’s random-path representation which also yields suitable correlation
inequalities. Their proofs were based, in an essential way, on the intuition that
random walks in dimension d > 4 do not intersect.

These results triggered much activity in developing random-current and
random-walk representations into a systematic tool for proving new correlation
inequalities which yield rigorous qualitative and quantitative information on

1See also the important recent work of Brydges and Spencer [93], Slade [471, 473, 472] and
Hara and Slade [297, 293, 294] on self-avoiding walks in dimension d > 4.
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critical phenomena in lattice field theories and lattice spin systems. The best re-
sults emerged for Ising models (sharpness of the phase transition, behavior of the
magnetization, bounds on critical exponents) and for the superrenormalizable
ϕ4

d field theories in d = 2 and 3 dimensions (simple new proofs of existence and
nontriviality in the single-phase region, positivity of the mass gap, and asymp-
toticity of perturbation theory). These ideas and methods were later extended
to percolation theory and to the theory of polymer chains, branched polymers,
lattice animals and random surfaces. In comparison to renormalization-group
constructions, the random-walk and random-current methods are somewhat soft
and less quantitative. They have, however, the advantage of closely following
simple and appealing intuitions, being mathematically precise and at the same
time technically rather simple.

This book has three parts of rather different flavor. Part I is an overview of
critical phenomena in lattice field theories, spin systems, random-walk models
and random-surface models. We show how field-theoretic techniques can be used
to investigate the critical properties of random-walk models, and how random-
walk representations can be used to analyze the critical properties of lattice
field theories and spin systems. We review the basic concepts involved in the
construction of scaling limits and in the renormalization group. The emphasis
is on ideas and concepts, not on complete mathematical arguments (which can,
however, be found in literature quoted). Chapter 7, co-authored by Gerhard
Hartsleben, contains a fairly detailed exposition of random-surface theory and
its various applications in statistical physics, quantum field theory and two-
dimensional quantum gravity.

In Part II we systematize three different random-walk representations:
the Brydges-Fröhlich-Spencer (BFS) representation of lattice spin systems, the
Aizenman (ARW) representation of the Ising model, and polymer-chain mod-
els generalizing the self-avoiding walk. We introduce a common framework and
show that all the relevant results follow from just two properties of the weights:
repulsiveness “on the average” between walks, and attractiveness (or noninter-
action) between nonoverlapping walks. This provides a unified explanation for
most of the correlation inequalities obtained in Chapter 12. Unfortunately, Part
II is somewhat technical; it will be of interest mainly to readers with specific
research interests in the random-walk representation.

In Part III we present a fairly systematic survey of what can be proven with
random-walk methods about critical exponents and the scaling (continuum)
limit for ϕ4 lattice field theories and Ising spin systems. In particular, we give
a detailed explanation of the triviality theorems for ϕ4

d models in space-time
dimension d > 4 and d = 4. We have tried hard to make Part III accessible to
readers who may not have read Part II.

A detailed overview of Parts II and III can be found in Chapter 8. We
remark that Parts II and III contain some previously unpublished results.

Our book is certainly not complete or exhaustive. Many things are only
sketched, others are not treated at all. For example, the new construction of
superrenormalizable ϕ4

d (d < 4), based on random-walk representations and
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correlation inequalities, is reviewed only briefly in this book (Section 6.3). Re-
sults on percolation theory, the superrenormalizable Edwards model of polymer
chains, branched polymers, . . . are not included at all.

If one thinks of all the progress that the renormalization group has made in
recent years, or if one thinks of the revolution that has recently occurred in our
understanding of two-dimensional conformal field theory and hence of critical
phenomena in two-dimensional statistical systems, one might argue that the
time for a book like ours has passed. However, we feel that some of the ideas
and methods explained in this book are interesting enough, or at least pretty
enough, to justify our attempt to collect and preserve them in the present form.
All the basic ideas underlying the main results reviewed in this book express
simple and appealing (physical or mathematical) intuitions. This feature distin-
guishes this book from some of the recent scientific production in mathematical
and theoretical physics which is growing more and more abstract and math-
ematically sophisticated. We have the modest hope that our book is at least
agreeable scientific entertainment.

This book would never have seen the light of the day without the work of
Michael Aizenman, David Brydges and Tom Spencer, with whom we have had
the pleasure of several collaborations and countless interesting and important
discussions. Chapter 7 is the result of a collaboration with Gerhard Hartsleben,
whose deep insight helped to clarify our understanding of random-matrix models
and non-perturbative quantum gravity. He contributed with enormous enthusi-
asm and devoted his best effort to the preparation and writing of this chapter.
Finally, Aernout van Enter, Takashi Hara and Gordon Slade read and made
helpful comments on parts of the manuscript. We wish to express our sincere
thanks to all these people, and to the many colleagues and friends whose work
and ideas have helped to determine the shape of this book.

Austin, Zürich and New York, Roberto Fernández
December 1987»»» 1988»»» 1989»»» 1990 Jürg Fröhlich

Alan D. Sokal
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1. General introduction

1.1 Phenomenology of phase transitions and critical phe-
nomena

We start by describing the different kinds of phase transitions encountered in
the study of condensed matter in thermal equilibrium.

Consider a system like H2O in thermal equilibrium at some pressure p which
is neither very low nor very high. For this system, there is a temperature T0 =
T0(p) at which two phases of H2O, liquid and vapor, coexist. If one plots e.g. the
equilibrium density of H2O at pressure p as a function of temperature (T ), it is
discontinuous at T = T0(p). For T < T0(p), the density is large (“liquid”), while
for T > T0(p) the density is very small (“vapor”). Moreover, the evaporation
of water at T = T0(p) requires energy: heat must be pumped into the system.
Let ∆v be the difference in molar volume (inverse density) between the liquid
and vapor phases at T = T0(p), and let ∆Q be the heat necessary to convert
one mole of liquid into vapor at T = T0(p). Then the dependence of T0 on p is
related to ∆v and ∆Q by the Clausius-Clapeyron equation

dT0

dp
= T0

∆v

∆Q
. (1.1)

What we are describing here is a typical example of a first-order (discontinuous)
phase transition.

Lines of first-order transitions in the (T, p)-plane often end in a critical point
(Tc, pc). This is so for the H2O liquid-vapor system [Figure 1.1(a)]. The density
difference between the liquid and vapor phases, ∆̺ ≡ ̺L − ̺V , which is defined
along the phase-transition line, vanishes as the critical point is approached.
Thus, in a tiny vicinity of (Tc, pc), there is no clear distinction between liquid and
vapor; moreover, the system exhibits fluctuations on essentially all length scales,
and correlations between local measurements in distant regions of the system
decay quite slowly in the separation distance (power-law decay, as compared to
the exponential decay encountered in the highly disordered vapor phase). If we
plot the density difference ̺L − ̺V as a function of T , then it is continuous but
non-differentiable at Tc: in fact, ̺L−̺V has a power-law singularity of the form
[Figure 1.1(b)]

̺L − ̺V ∼ |Tc − T |β̂
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(a)

(b)

Fig. 1.1. Qualitative phase diagrams for the H2O system. (a) Phase-transition lines
in the (T, p)-plane. Only the liquid-vapor phase transition will concern us in this
book. (b) Qualitative behavior of the density ̺ as a function of T at p < pc, p = pc

and p > pc near the liquid-vapor critical point
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where experimentally the critical exponent β̂ is found to be approximately 0.32.
The transition encountered at pressure pc and temperature Tc is called a con-
tinuous transition (in our example, a second-order transition, because second
derivatives of the free energy are divergent).

Our aim in this book is to analyze statistical systems in thermal equilib-
rium near critical points. We would like to understand, for example, how the
density ̺ behaves as a function of T and p in a neighborhood of the critical
point (Tc, pc). Of course, we are not capable of determining the exact behavior
of ̺(T, p) for H2O, which is after all a very complicated quantum-mechanical
system. However, a very striking simplification occurs in the critical region (and
only there): it is found experimentally that many different fluids, with radically
different chemical properties and radically different values of Tc and pc, nev-
ertheless have identical critical behavior, i.e. the function ̺(T, p) is universal
(modulo trivial changes of scale) in a small neighborhood of (Tc, pc). Even more
strikingly, it is found that many other physical systems, such as binary alloys
and anisotropic ferromagnets, have the same critical behavior as do the fluids.
This phenomenon is called universality; physical systems are divided, according
to their critical behavior, into a relatively small number of classes, called univer-
sality classes. Roughly speaking, the universality class of a system depends only
on rather general attributes of the system, e.g. its spatial dimensionality, the
symmetry group of its order parameter, the short- or long-ranged nature of the
interactions, and so on. Thus, not knowing the exact dynamics of a statistical
system need not prevent us from predicting its exact critical behavior.

The phenomenon of universality is explained, at least in general terms, by
the renormalization group. In this approach, the critical behavior of statistical
systems is governed by a fixed point of some renormalization transformation
and the behavior of that transformation in a small neighborhood of the fixed
point. Consider, for example, a situation in which the unstable manifold of the
renormalization-group fixed point is n-dimensional. Then all families of sta-
tistical systems depending on n thermodynamic parameters (e.g. temperature,
pressure, concentrations, etc.) which, under the renormalization transformation,
are attracted towards the unstable manifold of that fixed point tend to exhibit
the same critical behavior (i.e. have the same critical exponents). These notions
will be made more precise in Chapter 4; see also [520, 379, 24, 136].

Thus, it may happen that a complicated liquid-vapor system occurring in
the “real world”, which we are not able to theoretically investigate directly,
exhibits the same critical behavior as some simple model system. In this book we
study some of the simplest statistical-mechanical models, such as lattice gases,
using precise mathematical methods. The physical relevance of our results on
the critical behavior of such idealized systems stems from the fact that real
systems of experimental interest may belong to the same universality class and
thus exhibit critical behavior identical to that in the models we are able to
analyze. (If there were nothing like universality, then the study of very special,
idealized systems would be an exercise without physical interest.)



6 1. General introduction

The simplest lattice gas is the Ising model. Consider a simple (hyper-) cubic
lattice ZZ

d. Each site j ∈ ZZ
d may either be empty or else occupied by one “atom”

(multiple occupancy of a site is forbidden). This is described by associating to
each j ∈ ZZ

d a random variable nj taking the values 0 or 1. Atoms on neighboring
sites are assumed to attract each other, but there is no interaction between
atoms on sites which are not nearest neighbors. The chemical potential of a
single atom is denoted by µ. Thus, the Hamiltonian of the system confined to
a bounded region Λ ⊂ ZZ

d is given by

HΛ = −4J
∑

〈i,j〉⊂Λ

ninj + µ
∑

j∈Λ

nj, (1.2)

where 〈i, j〉 denotes a pair of nearest-neighbor sites in ZZ
d (each pair taken once),

and J > 0 is a coupling constant describing the strength of the attraction.
Setting

σj = 2nj − 1 (1.3)

the Hamiltonian becomes

HΛ = −J
∑

〈i,j〉⊂Λ

σiσj +
(

µ

2
− 2dJ

) ∑

j∈Λ

σj + const(Λ)

≡ −J
∑

〈i,j〉⊂Λ

σiσj − h
∑

j∈Λ

σj + const(Λ) . (1.4)

But now we may reinterpret σj = ±1 as a spin variable (spin up: σj = 1; spin
down: σj = −1), J as an exchange coupling and h as an external magnetic field
acting on the spins of the system.

Thus, certain liquid-vapor systems may exhibit the same critical behavior
as certain anisotropic (σj = ±1), ferromagnetic (J > 0) spin systems. Moreover,
that critical behavior is believed to be independent of the precise choice of the
interaction between different spins, or of the lattice structure. If, for example,
the term

−J
∑

〈i,j〉⊂Λ

σiσj

is replaced by
−

∑

{i,j}⊂Λ

J(i − j)σiσj,

where J(i − j) > 0 is rapidly decreasing as |i − j| → ∞, then, after taking
the infinite-volume limit Λ ↑ ZZ

d, the critical behavior of the modified model is
expected to be the same as the critical behavior of the model with Hamiltonian
(1.4).

For these reasons, it is of considerable physical interest to study the model
with Hamiltonian (1.4) — the nearest-neighbor ferromagnetic Ising model — in
detail and with mathematical precision. From now on, we shall use magnetic
language — speaking of spins, magnetic fields, magnetic susceptibility and so
forth — but the reader should keep in mind that our results can be applied also
to other systems, such as liquid-vapor systems and binary alloys.
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The equilibrium distribution for the Hamiltonian (1.4) at inverse tempera-
ture β is, by definition,

dµΛ(σ) = Z−1
Λ e−βHΛ(σ) , (1.5)

where the normalization function (partition function) ZΛ is

ZΛ =
∑

{σ}

e−βHΛ(σ) . (1.6)

We now wish to take the infinite-volume limit Λ ↑ ZZ
d. It can be shown [309, 274]

that the probability measures µΛ have a weak limit as Λ ↑ ZZ
d; such a limit is

called an infinite-volume Gibbs measure for the system (1.4). It can furthermore
be shown [309] that the finite-volume Gibbs free energy densities

ΦΛ(β, h) = − 1

β|Λ| log ZΛ(β, h) (1.7)

have a limit as Λ ↑ ZZ
d; this limit is called the (infinite-volume) Gibbs free energy

density Φ(β, h) . It can be proven that Φ(β, h) is independent of boundary
conditions. It is not hard to see that Φ(β, h) is a concave function of β and h.

Thermodynamic quantities are the derivatives of Φ(β, h) with respect to β
and/or h:

• the magnetization M = − ∂Φ

∂h

• the magnetic susceptibility χ =
∂M

∂h
= − ∂2Φ

∂h2

• the entropy S = β2 ∂Φ

∂β

• the internal energy U = Φ + β−1S + hM

• the specific heat Ch = −β3 ∂2Φ

∂β2

By a formal calculation using (1.5)–(1.6), these thermodynamic quantities can
be related to correlation functions in the infinite-volume Gibbs measure:

M = 〈σ0〉 (1.8)

χ =
∑

x

〈σ0; σx〉 (1.9)

U = −J
∑

|i|=1

〈σ0σi〉 (1.10)

Ch = β2J2
∑

x, i, j

|i| = |j| = 1

〈σ0σi; σxσx+j〉 (1.11)
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where we have used the convenient notation 〈A; B〉 ≡ 〈AB〉−〈A〉〈B〉. Relations
like (1.8)–(1.11) are called sum rules (or fluctuation-dissipation theorems). The
rigorous proof of such relations is not entirely trivial, as it involves an inter-
change of differentiation with the infinite-volume limit; for details, see [479].

The Hamiltonian (1.4) has a symmetry,

σj → −σj, h → −h

that is also encountered in real ferromagnets (though not in real fluids). Think-
ing about the consequences of this symmetry, it is not surprising that phase
transitions occur only at zero magnetic field. This is actually a rigorous theo-
rem due to Lee and Yang [363, 360].1 There is a line of first-order transitions
{h = 0, 0 ≤ T < Tc} in the (T, h)-plane [Figure 1.2(a)]. A convenient parameter
to study these transitions is the magnetization, M = M(T, h), which is the ana-
logue of the density in liquid-vapor systems. The behavior of M(T, h) is shown
in Figure 1.2(b).2 In particular, let us define the spontaneous magnetization

M0(T ) ≡ lim
h↓0

M(T, h) . (1.12)

The spontaneous magnetization vanishes for T > Tc and is strictly positive for
T < Tc; it is expected (and in some examples actually proven [12, 523, 388])
to be continuous at T = Tc. Its qualitative behavior is therefore as indicated
in Figure 1.2(c). Moreover, the point (h = 0, T = Tc) is a critical point, in the
sense that the correlation length diverges there [31, 445, 259, 464, 372, 96, 6, 10].
(All these facts will be discussed more fully in Chapter 14.)

Our main goal in this book is to study the behavior of ferromagnets, in
particular those in the universality class of the nearest-neighbor ferromagnetic
Ising model, in the vicinity of the critical point (h = 0, T = Tc). One would like
to show, for example, that the thermodynamic quantities behave as a power
law in the vicinity of the critical point, e.g.

M(Tc, h) ∼ |h|1/δ (1.13)

M0(t) ∼ (−t)β̂ (1.14)

χ(t) ∼ |t|−γ (1.15)

for suitable exponents δ, β̂, γ; here t ≡ T − Tc. In (1.13)–(1.15), the statement

f(x) ∼ xλ (1.16)

means that there are finite, strictly positive constants f− and f+, such that

f− xλ ≤ f(x) ≤ f+ xλ (1.17)

1See [371] for a list of references through 1981.
2We remark that in an actual experiment, carried out in a finite time span, the magnetiza-

tion M(T, h) will exhibit hysteresis when h is varied at fixed temperature T < Tc. Hysteresis
is a dynamic phenomenon which is beyond the scope of equilibrium statistical mechanics; it
will not be pursued in this book.
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(a)

(b)

(c)

Fig. 1.2. Phase transition and critical behavior in a magnetic system. (a) Phase
diagram. (b) Magnetization M as a function of magnetic field h. (c) Spontaneous
magnetization M0 as a function of temperature T
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as x ↓ 0.
The exponents δ, β̂, γ are so-called critical exponents.3 The expected be-

havior of the Ising model (and other related models) depends on the spatial
dimensionality d:

(a) For d > 4, (1.13)–(1.15) are expected to hold, with the critical exponents
taking their mean-field values

δ = 3, β̂ =
1

2
, γ = 1. (1.18)

At the end of this section we give a brief discussion of one version of
mean-field theory.

(b) For d = 4, the mean-field critical behavior is expected to be modified by
multiplicative logarithmic corrections

(c) For d < 4, (1.13)–(1.15) are expected to hold, with the critical exponents
satisfying the strict inequalities

δ > 3, β̂ <
1

2
, γ > 1. (1.19)

Some of the reasoning underlying these expectations will be presented in the
following chapters. Moreover, for a variety of models related to the Ising model,
some of these expectations can be rigorously proven [388, 5, 213, 10, 290, 298],
as we discuss in detail in Chapter 14.

Of course, in a laboratory, all that is available to us are finite samples of
three-dimensional or approximately two-dimensional ferromagnets. But in the-
ory one can study d-dimensional infinite ferromagnets, where d is an arbitrary
natural number4, and that study is useful to understand the properties of real
three-dimensional ferromagnets. Moreover, the four-dimensional case is relevant
to quantum field theory, where space-time now plays the role of “space” (see
Section 1.5).

At first sight, it is quite surprising that the critical exponents δ, β̂ and γ are
independent of dimension above four dimensions. But the reader who makes it
to the end of Part III will not be surprised any more. For d < 4, the exponents
δ, β̂ and γ do depend on d, but not on the details of the model: within rather
wide classes of models (and real physical systems), the critical exponents are
universal.

While there are calculations of critical exponents for d < 4 in terms of power
series in various expansion parameters (e.g. ε = 4− d) which yield very precise

3In this book we denote by β̂ the critical exponent that is traditionally called β, in order
to avoid confusion with the inverse temperature β = 1/(kT ).

4Physicists like to go further, and imagine arbitrary real (or even complex!) dimensions.
There have been two different approaches: one based on analytic continuation ([485, 518, 66,
31, 278] and references therein), which preserves Euclidean symmetry but has problems with
reflection positivity; and another based on the use of fractal lattices [250, 431, 165, 166], which
preserves reflection positivity but has problems with Euclidean symmetry and universality.
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values, the mathematical status of these series is still rather mysterious. Our
methods are too soft to shed much light on this question, but they are good
enough to produce various rigorous bounds on critical exponents which are not
entirely without interest. The situation in two dimensions is special. Thanks to
important recent advances in two-dimensional conformal field theory [58, 104,
103, 209, 526], one might not be too far from a reasonably complete classification
of all possible critical behavior in two-dimensional statistical systems. But these
astonishing and profound developments are beyond the scope of our book.

Let us conclude this discussion by giving a brief sketch of one approach to
mean-field theory, the so-called Landau-Ginzburg theory. We consider the above
example in which the Gibbs free energy Φ is a function of only two parameters,
β and h. The Landau-Ginzburg theory is based on the assumption that in the
vicinity of the critical point, the Helmholtz free energy F (β,M) — which is the
Legendre transform of the Gibbs free energy Φ(β, h) — is a smooth function of
t ≡ T − Tc = (kβ)−1 − (kβc)

−1 and M . [This assumption is false in dimension
d ≤ 4, which is why mean-field theory is incorrect in that case.] By general
arguments, it can be concluded that, following a smooth change of variables, F
takes the form

F (t,M) =
1

4
M4 +

1

2
tM2 (1.20)

— or, more precisely, F (t,M) is the convex hull of the graph of this function
[so as not to violate the convexity requirements for F ]. The thermodynamic
prescription h = ∂F/∂M implies that for h 6= 0 the magnetization must be the
solution of the equation

M3
LG + tMLG = h (1.21)

with the additional constraint that M2 ≥ −t. In particular, by setting t = 0
we conclude that (1.13) holds with δ = 3. For h = 0, the magnetization MLG

vanishes for t > 0; for t < 0, the form of the convex hull of (1.20) implies
that the magnetization can be any number between −√−t and

√−t. The line
(t < 0, h = 0) is a line of first-order phase transitions (the first derivative of the
Gibbs free energy with respect to h is discontinuous); the physical interpretation
is that at each of its points there are coexisting phases. The extreme values
MLG = ±√−t correspond to pure phases. Hence (1.14) holds with β̂ = 1/2. In
an analogous manner one obtains the value γ = 1 for the remaining exponent in
(1.18). For further discussion of mean-field theory, see Sections 2.3 and 14.2.1.

1.2 Multicritical points

In the preceding section we have described the simplest phase-transition sit-
uation, in which there are two thermodynamic parameters (β and h). This
corresponds to a “single-component” or “pure fluid” system, characterized by a
phase diagram of the type of Figure 1.2(a): a line where two phases coexist —
the line of first-order phase transitions — terminating in a point — the critical
(end)point — where the two phases become identical .
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Fig. 1.3. Phase diagram of a binary mixture: (a) The generic situation; (b) “lucky
accident”

More complicated behavior can arise in models involving n ≥ 3 thermody-
namic parameters [273, 280, 365, 277, 276, 511, 354, 341]. Consider, for example,
a binary mixture, like water and oil. Such a system can exist in three distinct
phases: a high-density phase rich in substance A (“liquid A”), a high-density
phase rich in substance B (“liquid B”), and a low-density phase (“vapor”). To
describe the state of such a system we need three thermodynamic parameters
(preferably “fields” in Griffiths’ nomenclature [280, 277]), for instance pres-
sure, temperature and the difference between the chemical potentials of the two
species A and B. (Another choice could be temperature and the two chemical
potentials.) With this third parameter, the liquid-vapor coexistence line of Fig-
ure 1.2(a) expands into a coexistence surface, and the critical point becomes a
critical curve limiting that surface. These manifolds correspond respectively to
the surface SLV and the L–V critical line in Figure 1.3. Diagrams like the one
in Figure 1.2(a) are obtained for the sections x = const.

Moreover, besides the liquid-vapor coexistence surface, there appears a
liquid-liquid coexistence surface — SAB in Figure 1.3 — bounded by its own
(liquid-liquid) critical curve. The curve where the two coexistence surfaces in-
tersect (note that the surface SAB does not cross to the other side of SLV )
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indicates three-phase coexistence (liquid-liquid-vapor), that is, it is a curve of
triple points . The endpoint of this curve is a critical endpoint at which, in the
generic situation [Figure 1.3(a)], two phases become identical in presence of a
different (vapor) phase — the “spectator phase” [204]. If the system is enclosed
in a test tube [277], then for parameters with values along the line of triple
points, the system will exhibit two meniscusses: the bottom one separating A
from B and the top one separating the liquid from the vapor. If the system is
brought along this line towards the critical endpoint, the arrival to the latter
will be signaled by the disappearance of the A–B meniscus.

A more dramatic possibility [Figure 1.3(b)] is that this critical endpoint
of the liquid-liquid critical curve also belong to the liquid-vapor critical curve,
that is, that the two critical curves intersect. At such an intersection point, the
three phases would become identical (both meniscusses would disappear at the
same time); such a point is termed a tricritical point . In that extreme case, the
phase diagram of the mixture would consist of three two-dimensional manifolds,
corresponding to the A–V , A–B and B–V coexistence surfaces intersecting at
a common line of triple points which is bounded by a tricritical point.

The occurrence of a tricritical point in a binary mixture is, however, ex-
tremely rare (except in the presence of additional symmetry): the intuitive ar-
gument is that two lines do not intersect in three dimensions except by a “lucky
accident” [277]. In order to see generic tricritical behavior, we need to consider
instead a ternary mixture, that is, a system characterized by four thermody-
namic parameters. Such a mixture will, in general, exhibit two-phase coexistence
on a variety formed by several three-dimensional manifolds (= hypersurfaces) in
the four-dimensional parameter space. The boundaries of these hypersurfaces
define two-dimensional manifolds of critical points where two phases become
identical; and the intersections of these hypersurfaces form two-dimensional
manifolds of triple points. The boundaries of the latter form one or more curves
of tricritical points.

In general, one expects that for a system with n thermodynamic parameters
[(n− 1)-ary mixture] there is a variety of dimension n− 1 on which two phases
can coexist, formed by several manifolds whose intersections determine a variety
of dimension n − 2 on which three phases can coexist, and so on; this is the
so-called Gibbs phase rule. Each (n− k)-dimensional manifold of (k + 1)-phase
coexistence is bounded by an (n−k−1)-dimensional manifold of (k+1)-critical
points.

A simple phenomenological approach to these phenomena is based on a
Landau-Ginzburg ansatz [277]. For instance, the simplest such situation can be
deduced from a Helmholtz free energy

F (t, x,M) =
1

6
M6 +

x

4
M4 +

t

2
M2 (1.22)

(more precisely, F is the convex hull of this formula). The coefficient 1/6 (and
the symmetry M → −M) are chosen so that a tricritical point does appear
in the resulting phase diagram. The pure phases correspond to the absolute
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minima of F − hM as a function of M for fixed x, t, h. The phase diagram for
this system is shown in Figure 1.4. There are three surfaces in (x, t, h)-space
along which two phases coexist. These three surfaces intersect in a common
line (x < 0, t = 3

16
x2, h = 0), along which three phases coexist (line of triple

points). The boundaries of the two-phase-coexistence surfaces are curves of crit-
ical points (two phases become identical), which arise when the bump between
the two minima degenerates into a single fourth-order minimum [Figure 1.5(a)–
(c)]; these curves are

• x > 0, t = 0, h = 0 [corresponding to a minimum at M = 0]

• x < 0, t = 9
20

x2, h = ± 6
25

√
3
10

(−x)5/2

[corresponding to a minimum at M = ±(− 3
10

x)1/2]

The three curves of critical points intersect at the tricritical point (x, t, h) =
(0, 0, 0), which corresponds to a single sixth-order minimum [Figure 1.5(d)].

The mean-fieldcan be easily predictions for tricritical exponents read off
from (1.22). Indeed, the hardest problem is inventing names for the plethora of
exponents arising from different paths of approach to the tricritical point [275].
These mean-field predictions are expected to be valid in dimension d > 3, with
multiplicative logarithmic corrections for d = 3. More generally, at an n-critical
point (corresponding to a Landau-Ginzburg polynomial of order 2n), the upper
critical dimension is expected to be dc = 2n/(n − 1).

1.3 Spin systems, quantum field theory and random walks:
An overview

One of the main purposes of Part I is to explain the mathematical relations and
connections between the following three areas in physics:

(A) Classical lattice spin systems, with emphasis on their critical behavior.

(B) Relativistic quantum field theory — in particular, the Euclidean(imagi-
nary-time) formulation.

(C) Random walks, intersection properties of random walks, and gases of in-
teracting random walks.

The realization that (A), (B) and (C) are intimately related is an important and
deep idea which is at the basis of enormous progress in understanding critical
phenomena in statistical mechanics and in constructing models of relativistic
quantum fields.

The connections between (A) and (B) were explored in the pioneering work
of Symanzik [493, 494] and Nelson [405, 406, 408, 407] on Euclidean quantum
field theory, in the work of Wilson and others on the renormalization group
[323, 516, 517, 520, 324, 325, 317, 106, 202, 77, 83, 136, 505, 500, 24], and most
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Fig. 1.4. Phase diagram corresponding to the Landau-Ginzburg ansatz (1.22). The
curve of three-phase coexistence (x < 0, t = 3

16x2, h = 0) resembles the keel of a
canoe. On this curve three surfaces (here shaded) of two-phase coexistence meet: two
of these surfaces correspond to the sides of the canoe, and one is the part of the
vertical plane terminating in the keel. Each of these surfaces terminates in a curve of
critical points (here bold). These three curves of critical points meet at the tricritical
point
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Fig. 1.5. Shape of the function F (M) − hM on the critical curves and at the
tricritical point [see Figure 1.4]. (a) Critical curve x < 0, t = 0, h = 0.

(b) Critical curve x < 0, t = 9
20x2, h = − 6

25

√
3
10(−x)5/2. (c) Critical curve

x < 0, t = 9
20x2, h = + 6

25

√
3
10(−x)5/2. (d) Tricritical point x = t = h = 0
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recently in the study of conformal field theory [436, 396, 58, 104, 103, 209, 105].
We discuss these connections in more detail in Section 1.5 and Chapters 3
and 4. The upshot is that massless (resp. massive) quantum field theories can
be obtained as the scaling limits of statistical-mechanical models which are at
(resp. approaching) a critical point. Conversely, the large-scale behavior of a
statistical-mechanical system at (resp. near) criticality is described by the con-
formal quantum field theory corresponding to the renormalization-group fixed
point to which the system is attracted (resp. by the non-conformal-invariant
quantum field theories corresponding to the unstable manifold of that fixed
point).

Conformal field theories are heavily constrained, and one may therefore ex-
pect that there are not too many of them. If made precise, this idea provides a
concrete version of universality. Indeed, the program of understanding critical
properties of statistical systems by studying conformal field theories has been
very successful in two dimensions. In more general situations, the renormaliza-
tion group has been an extremely versatile tool.

The connection between (A)/(B) and (C) was first elucidated by Symanzik
[493, 494], and in recent years it has been developed into a precise tool for study-
ing lattice spin systems and their continuum (scaling) limits. In this approach
[92, 213, 5], lattice spin systems are represented as gases of interacting random
walks. The basic intuition, which is made precise in these papers, is that (in
certain cases) the critical behavior of the spin system can be analyzed in terms
of the intersection properties of the associated random walks. For example, the
results of Erdös and Taylor [164] and Lawler [351] on simple random walks,
together with Symanzik’s loop-gas representation of ϕ4 field theory [494], sug-
gested a no-interaction (“triviality”) theorem for ϕ4 field theoryin dimension
d ≥ 4. Such a theorem was later proven for d > 4 (together with partial results
for d = 4) by methods which follow closely the random-walk intuition [5, 213].
This circle of ideas is the central theme of this book. We give an overview in
Chapters 5 and 6.

In the next three sections, we introduce the main models of lattice spin
systems, relativistic quantum fields and random walks, and outline the principal
problems concerning them which will occupy us in the remainder of this book.

1.4 Classical lattice spin systems

In this section we consider lattice systems of N -component classical “spins”
ϕx = (ϕ(1)

x , . . . , ϕ(N)
x ) ∈ IRN for x ∈ ZZ

d. The a priori distribution of the spin
ϕx is given by a spherically symmetric finite measure dPx on IRN :

dPx(ϕx) = g(ϕ2
x) dϕx , (1.23)

where

ϕ2
x ≡

N∑

α=1

ϕ(α)2

x (1.24)
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and dϕx is Lebesgue measure on IRN . The key example is the (isotropic) ϕ4

model

g(ϕ2) = exp
[
−λ

4
ϕ4 − B

2
ϕ2

]
(λ ≥ 0) (1.25)

which includes as limiting cases the Gaussian model (λ = 0)

g(ϕ2) = exp
[
−B

2
ϕ2

]
, (1.26)

which is exactly solvable, and the N -vector model

g(ϕ2) = δ(ϕ2 − 1) (1.27)

(obtained by letting λ → ∞ with B = −λ). Special cases of the N -vector model
are the Ising model (N = 1), the plane-rotator (XY ) model (N = 2), and the
classical Heisenberg model (N = 3). The Hamiltonian is given formally by

H(ϕ) = −1
2

∑

x,y

Jxy ϕx · ϕy −
∑

x

h · ϕx . (1.28)

For simplicity we shall take the magnetic field h to point in the 1-direction, i.e.
h = (h, 0, . . . , 0). We shall usually also assume that the pair interactions J are
ferromagnetic, i.e. Jxy ≥ 0 for all x, y.

The formal expression (1.28) is, however, ill-defined due to the infinite-
volume sums (which are almost surely divergent). We therefore define first the
system in a finite region Λ ⊂ ZZ

d: the Hamiltonian is

HΛ(ϕ) = −1
2

∑

{x, y}:

{x, y} ∩ Λ 6= ?

Jxy ϕx · ϕy −
∑

x∈Λ

h · ϕx (1.29)

and the equilibrium (Boltzmann-Gibbs) distribution at inverse temperature β
is

dµΛ(ϕ) = Z−1
Λ e−βHΛ(ϕ)

∏

x∈Λ

dPx(ϕx) dBΛc(ϕ) . (1.30)

Here dBΛc is a probability measure on the configurations {ϕx}x∈Λc of spins
outside Λ, which fixes some boundary condition, and ZΛ is a normalization
factor (the partition function) chosen so that

∫
dµΛ(ϕ) = 1. It is then necessary

to construct the infinite-volume (thermodynamic) limit

dµ(ϕ) = lim
Λ↑ZZd

dµΛ(ϕ) (1.31)

(with a suitable notion of convergence). This is a conventional problem treated
in many excellent books; see e.g. [447, 274, 309].

The equilibrium properties of such spin systems in the infinite-volume limit
can be derived from a study of the correlation functions

〈ϕ(α1)
x1

. . . ϕ(αn)
xn

〉 ≡
∫ 


n∏

j=1

ϕ(αj)
xj


 dµ(ϕ) , n = 1, 2, 3, . . . . (1.32)



1.4 Classical lattice spin systems 19

In a pure phase, the correlation functions factorize as the points x1, . . . , xn

move apart, so it is useful to introduce the truncated (or connected) correlation
functions

〈ϕ(α1)
x1

〉T ≡ 〈ϕ(α1)
x1

〉 (1.33)

〈ϕ(α1)
x1

ϕ(α2)
x2

〉T ≡ 〈ϕ(α1)
x1

ϕ(α2)
x2

〉 − 〈ϕ(α1)
x1

〉〈ϕ(α2)
x2

〉 (1.34)

〈ϕ(α1)
x1

ϕ(α2)
x2

ϕ(α3)
x3

〉T ≡ 〈ϕ(α1)
x1

ϕ(α2)
x2

ϕ(α3)
x3

〉 − 〈ϕ(α1)
x1

〉 〈ϕ(α2)
x2

ϕ(α3)
x3

〉
−〈ϕ(α2)

x2
〉 〈ϕ(α1)

x1
ϕ(α3)

x3
〉 − 〈ϕ(α3)

x3
〉 〈ϕ(α1)

x1
ϕ(α2)

x2
〉

+2〈ϕ(α1)
x1

〉 〈ϕ(α2)
x2

〉 〈ϕ(α3)
x3

〉
≡ 〈ϕ(α1)

x1
ϕ(α2)

x2
ϕ(α3)

x3
〉 − 〈ϕ(α1)

x1
〉T 〈ϕ(α2)

x2
ϕ(α3)

x3
〉T

−〈ϕ(α2)
x2

〉T 〈ϕ(α1)
x1

ϕ(α3)
x3

〉T − 〈ϕ(α3)
x3

〉T 〈ϕ(α1)
x1

ϕ(α2)
x2

〉T

−〈ϕ(α1)
x1

〉T 〈ϕ(α2)
x2

〉T 〈ϕ(α3)
x3

〉T (1.35)

and in general

〈 n∏

i=1

ϕ(αi)
xi

〉T

≡
〈 n∏

i=1

ϕ(αi)
xi

〉
−

∑

P ∈ partitions

of {1, . . . , n}

∏

I∈P

〈∏

i∈I

ϕ(αi)
xi

〉T

. (1.36)

The truncated correlation functions are also called Ursell functions and are
denoted u(α1,...,αn)

n (x1, . . . , xn). We also use a convenient semicolon notation

〈A; B〉 ≡ 〈AB〉 − 〈A〉 〈B〉
〈A; B; C〉 ≡ 〈AB C〉 − 〈A〉 〈B C〉 − 〈B〉 〈AC〉 − 〈C〉 〈AB〉

+2〈A〉 〈B〉〈C〉
etc.

for truncated correlation functions of arbitrary observables A, B, C, . . . .
For simplicity let us first restrict our attention to one-component models

(N = 1). Then, away from a critical point, the truncated correlation functions
are expected to decay exponentially in the spatial separation |xi − xj|. In par-
ticular, the two-point function is expected to decay as

〈ϕx; ϕy〉 ∼
|x−y|→∞

e−|x−y|/ξ . (1.37)

The quantity ξ is called the correlation length, and is defined more precisely as

ξ ≡ lim sup
|x|→∞

−|x|
log〈ϕ0; ϕx〉

. (1.38)

It is also common to use the inverse correlation length

m = ξ−1 , (1.39)
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which in quantum field theory (Section 1.5) has the interpretation of a mass .
Other important quantities are the magnetization

M ≡ 〈ϕ0〉 (1.40)

and the susceptibility
χ ≡

∑

x

〈ϕ0; ϕx〉 . (1.41)

A formal computation using the Hamiltonian (1.28) shows that

χ =
∂M

∂h
. (1.42)

The validity of this relation in the infinite-volume limit is a nontrivial fact,
called the “fluctuation-dissipation relation” (or “sum rule”) [274].

When 〈ϕx〉 = 0, an important role will be played by the truncated four-point
correlation function, which in this case simplifies to

u4(x1, x2, x3, x4) = 〈ϕx1ϕx2ϕx3ϕx4〉 − 〈ϕx1ϕx2〉〈ϕx3ϕx4〉
− 〈ϕx1ϕx3〉〈ϕx2ϕx4〉 − 〈ϕx1ϕx4〉〈ϕx2ϕx3〉 , (1.43)

and by its summed (“zero-momentum”) version

u4 ≡
∑

x2,x3,x4

u4(x1, x2, x3, x4) . (1.44)

In particular, the dimensionless renormalized four-point coupling constant

g ≡ −u4

χ2ξd
(1.45)

will be crucial in analyzing the triviality or non-triviality of quantum field the-
ories (Section 1.5 and Chapter 15).

Among the important questions one might wish to ask about such spin
systems are:

(a) Does the system exhibit phase transitions? Are they accompanied by
symmetry-breaking? Consider, for example, the spontaneous magnetization
M0(β) ≡ lim

h↓0
M(β, h). It is easy to show that when β is small enough (i.e.

the temperature is high enough), M0(β) = 0. Now increase the value of β. Is
there some β0 such that for β > β0, M0(β) > 0?

(b) Is there a critical point βc ≤ β0 such that

ξ ↑ ∞ as β ↑ βc with h = 0 ;

ξ ↑ ∞ as h ↓ 0 with β = βc ?
(1.46)

If so, is βc = β0?
If a critical point exists one can ask:
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(c) What does the approach to the critical point look like? Do the thermo-
dynamic quantities behave as power laws near the critical point? If so, one may
introduce critical exponents :

〈ϕxϕy〉β=βc,h=0 ∼
|x−y|→∞

|x − y|−(d−2+η) (1.47)

ξ ∼ (βc − β)−ν (1.48)

χ ∼ (βc − β)−γ (1.49)

etc.

One may then ask:

(d) What are the values of these and other exponents? Why are γ ≥ 1,
ν ≥ 1

2
, η ≥ 0 for short-range J? Why are γ = 1, ν = 1

2
, η = 0 for short-range J

in dimension d > 4? Why is γ = (2 − η)ν?

(e) How does the dimensionless renormalized coupling g behave, for h = 0
and β ↑ βc?

Answers to (a) and (b) are sketched briefly in Chapter 2. A fairly detailed
treatment of (c), (d) and (e) appears in Chapter 14. This will be one of the
main topics to be discussed in this book.

In the multi-componentcase (N ≥ 2), these definitions must be adapted to
distinguish between components parallel to the magnetic field (“longitudinal”)
and perpendicular to it (“transverse”). Thus, we define

ξ−1
‖ = m‖ = lim

x→∞
− 1

|x| log〈ϕ(1)
0 ; ϕ(1)

x 〉 (1.50)

ξ−1
⊥ = m⊥ = lim

x→∞
− 1

|x| log〈ϕ(α)
0 ; ϕ(α)

x 〉 any α = 2, . . . , N (1.51)

χ‖ ≡
∑

x

〈ϕ(1)
0 ; ϕ(1)

x 〉 (1.52)

χ⊥ ≡
∑

x

〈ϕ(2)
0 ; ϕ(2)

x 〉 any α = 2, . . . , N . (1.53)

We remark that multi-component models below the critical temperature (at
zero magnetic field) have additional subtleties due to the Goldstone modes
[264, 502, 24, 361]. In this book we shall usually focus on one-component spins
(N = 1), but shall sometimes indicate results for N = 2 (plane rotator) and
“N = 0” (which we shall later see is equivalent to the self-avoiding walk).

1.5 Relativistic quantum field theory and Euclidean field
theory

Relativistic quantum field theory is an attempt towards combining quantum
mechanics and the special theory of relativity into one mathematically consis-
tent (and hopefully physically correct) theory. It is a particular type of quantum
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theory in which the observables are fields and the invariance group contains that
of special relativity (the Poincaré group).

Let us first recall the general structure of quantum mechanics:

• The (pure) states of the system are the unit rays of a complex Hilbert
space H.

• The observables are self-adjoint operators on H.

• The expectation value of an observable A in a state ψ is (ψ,Aψ).

• Symmetries of the system are represented by unitary (or sometimes an-
tiunitary) operators on H.

In particular, a relativistic quantum theory should carry a (projective) repre-
sentation U(a, Λ) of the proper orthochronous Poincaré group5

P↑
+ = ISO(d − 1, 1)↑ ,

which is the invariance group of d-dimensional Minkowski (special-relativistic)
space-time. A quantum field theory should include observables ϕ(x, t) which
represent the strength of some field (e.g. the electric field) measured at spatial
location x and time t. (We use the Heisenberg picture.)

There is really only one subtlety: It turns out that a relativistic quantum
field is too singular at short distances to be a pointwise-defined operator-valued
function ϕ(x, t); indeed, the physical impossibility of measuring a quantum field
at a space-time point was noticed already in the 1930’s by Bohr and Rosenfeld
[69].6 Rather, a quantum field is an operator-valued distribution in the sense of
Schwartz. Physically this means that the only sensible observables are smeared
fields ϕ(f), where f is a smooth test function; heuristically one makes the
interpretation

ϕ(f) “=”
∫

ϕ(x, t)f(x, t) dx dt . (1.54)

We are now ready to write down a set of properties which any physically
sensible relativistic quantum field theory ought to possess. A mathematically
precise statement of these properties was first given by G̊arding and Wightman
[514]. We shall first state the G̊arding-Wightman axioms, and then comment on
their physical meaning. For simplicity we restrict attention to the case of a single
Hermitian scalar field. Henceforth we use the notation x = (x0, x1, . . . , xd−1) ≡
(t,x) ∈ IRd.

(GW0) States. The states of the system are the unit rays of a separable
complex Hilbert space H. There is a distinguished state Ω, called the vacuum.

(GW1) Fields and temperedness. There exists a dense subspace D ⊂ H,
and for each test function f in the Schwartz space S(IRd) there exists an (un-
bounded) operator ϕ(f) with domain D, such that:

5See [488, 321] for a detailed description of the Poincaré group.
6See [513, 522, 109] for proofs that a relativistic quantum field (in space-time dimension

d ≥ 2) cannot be a pointwise-defined operator.
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a) For all ψ1, ψ2 ∈ D, the map f 7→ (ψ1, ϕ(f)ψ2) is a tempered distribution.

b) For real-valued f , the operator ϕ(f) is Hermitian, i.e. (ψ1, ϕ(f)ψ2) =
(ϕ(f)ψ1, ψ2) for all ψ1, ψ2 ∈ D.

c) The vacuum Ω belongs to D, and ϕ(f) leaves D invariant, i.e. ψ ∈ D
implies that ϕ(f)ψ ∈ D.

d) The set D0 of finite linear combinations of vectors of the form ϕ(f1) . . .
ϕ(fn)Ω with n ≥ 0 and f1, . . . , fn ∈ S(IRd) is dense in H.

(GW2) Relativistic covariance. There is a strongly continuous unitary rep-
resentation U(a, Λ) of the proper orthochronous Poincaré group P↑

+, such that

a) U(a, Λ) leaves D invariant, i.e. ψ ∈ D implies U(a, Λ)ψ ∈ D.

b) U(a, Λ)Ω = Ω for all (a, Λ) ∈ P↑
+.

c) U(a, Λ)ϕ(f)U(a, Λ)−1 = ϕ(f(a,Λ)), where

f(a,Λ)(x) ≡ f(Λ−1(x − a)) . (1.55)

(GW3) Spectral condition. The joint spectrum of the infinitesimal generators
of the translation subgroup U(a,1) is contained in the forward light cone V + =
{p ≡ (p0,p) ∈ IRd: p0 ≥ |p|}.

(GW4) Locality. If f and g have spacelike-separated supports, then ϕ(f)
and ϕ(g) commute, i.e. [ϕ(f)ϕ(g) − ϕ(g)ϕ(f)]ψ = 0 for all ψ ∈ D.

We now make some brief remarks on the mathematical and physical meaning
of the axioms:

(GW0) The separability of H is actually a consequence of (GW1d) [321, p.
64].

(GW1) The smeared fields ϕ(f) are in general unbounded operators7; for
this reason, they cannot sensibly be defined on the whole Hilbert space H,
but only on a dense subspace D. We leave D unspecified, but remark that D
clearly contains D0, and that all of the physical information of interest to us
(i.e. vacuum expectation values) is contained in the restriction of the operators
ϕ(f) to D0. So there would be little loss of generality in assuming that D equals
D0.

The interpretation of the smeared fields as physical observables requires
that the operators ϕ(f) be self-adjoint (on a suitable domain) and not merely

7See [514, pp. 135–136] for a discussion of the reasons why the smeared fields ϕ(f) cannot
be bounded operators, at least in the bosonic case. In particular, already for the scalar free
field the operators ϕ(f) are unbounded, in any spacetime dimension d ≥ 1.
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Hermitian.8 This assumption is not contained in the G̊arding-Wightman ax-
ioms; it is noteworthy how much information can be gained without it. Self-
adjointness of the field operators can, however, usually be proven in specific
models (see e.g. [146, 260]).

(GW2c) says that ϕ transforms as a scalar field under Poincaré transfor-
mations; it can be written heuristically as

U(a, Λ)ϕ(x)U(a, Λ)−1 = ϕ(Λx + a) . (1.56)

If ϕ were a non-gauge tensor (or spinor) field, the appropriate generalization of
(1.56) would be

U(a, Λ)ϕ(x)U(a, Λ)−1 = R(Λ−1) ϕ(Λx + a) (1.57)

where R(Λ) is a finite-dimensional representation of the proper orthochronous
Lorentz group L↑

+ = SO(d − 1, 1)↑ (or its universal covering group). However,
gauge theories require considerable changes in the G̊arding-Wightman frame-
work [489].

(GW3) It is physically natural to assume that the energy H (which is the
infinitesimal generator of time translations) is bounded below. This, together
with the existence of the Poincaré group representation U(a, Λ), implies the
spectral condition (GW3).

(GW4) It is a fundamental principle of special relativity that signals cannot
be transmitted faster than the speed of light. Thus, measurements of fields in
spacelike-separated regions of space-time cannot interfere with one another; in
quantum mechanics this means that the associated operators should commute.
(GW4) is a weak statement of this principle; for a stronger version, which can
be verified in some models, see [146, 260].

Remark. Usually axioms (GW0)–(GW4) are supplemented by the following
additional axiom:

(GW5) Uniqueness of the vacuum. The only vectors in H left invariant by
all the translation operators U(a,1) are the scalar multiples of Ω.

(GW5) essentially says that we are working in a “pure phase”. Any theory
satisfying (GW0)–(GW4) can be decomposed as a “direct integral” of theories
in which (GW5) holds [211]. For simplicity we omit (GW5) from our version of
the G̊arding-Wightman axioms.

The next step is to define the vacuum expectation values of products of field
operators

8See [441, 442] for definitions of “self-adjoint”, “essentially self-adjoint” and “Hermitian”,
and for the main theorems concerning self-adjoint operators.
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Wn(f1, . . . fn) = (Ω,ϕ(f1) . . . ϕ(fn)Ω) , (1.58)

known as the Wightman distributions. Heuristically (1.58) can be written as

Wn(x1, . . . , xn) = (Ω,ϕ(x1) . . . ϕ(xn)Ω) ; (1.59)

henceforth we shall write equations in this way and leave it to the reader to
supply the necessary smearing. The Wightman distributions of a relativistic
quantum field theory have the following properties [488, 321]:

(W0) Temperedness. The Wn are tempered distributions, i.e. Wn ∈ S ′(IRnd),
satisfying the hermiticity condition

Wn(x1, . . . , xn) = Wn(xn, . . . , x1)
∗ (1.60)

where ∗ denotes complex conjugation.

(W1) Poincaré invariance.

Wn(Λx1 + a, . . . , Λxn + a) = Wn(x1, . . . , xn) (1.61)

for all (a, Λ) ∈ P↑
+.

(W2) Positive definiteness (Wightman positivity). For any finite sequence
{fn}k

n=0 of complex-valued test functions fn ∈ S(IRnd), we have

k∑

n,m=0

Wn+m(fn ⊗ fm) ≥ 0 . (1.62)

Here we have defined

fn(x1, . . . , xn) = fn(xn, . . . , x1)
∗ (1.63)

and

(gn ⊗ gm)(x1, . . . , xn+m) = gn(x1, . . . , xn) gm(xn+1, . . . , xn+m) . (1.64)

(W3) Spectral condition.The Fourier transform

W̃n(p1, . . . , pn) =
∫

e
i
∑n

j=1
pj ·xj

Wn(x1, . . . , xn) dx1 . . . dxn (1.65)

is a tempered distribution supported in the set

{
(p1, . . . , pn):

n∑

j=1

pj = 0 and
k∑

j=1

pj ∈ V + for k = 1, . . . , n − 1
}

. (1.66)

[Here p · x ≡ p0x0 − p · x.]

(W4) Locality. If xj and xj+1 are spacelike-separated, then
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Wn(x1, . . . , xj, xj+1, . . . , xn) = Wn(x1, . . . , xj+1, xj, . . . , xn) . (1.67)

Most of these properties are straightforward consequences of the corre-
sponding G̊arding-Wightman axioms. The positive definiteness property (W2)
expresses the positive definiteness of the norm in the Hilbert space H; more pre-
cisely, it says that ‖P (ϕ)Ω‖2 ≥ 0, where P (ϕ) is a polynomial in the smeared
fields.

The first fundamental result of axiomatic quantum field theory is the Wight-
man reconstruction theorem [512, 488, 321]: it says that the properties (W0)–
(W4) are sufficient for the reconstruction of a relativistic quantum field theory
satisfying (GW0)–(GW4). In other words, all the essential information about
a relativistic quantum field theory is contained in its Wightman distributions.
This is an important simplification, as the numerical-valued quantities Wn are
easier to work with than the operator-valued fields ϕ.

One key consequenceof (W0)–(W4) is that the Wightman distributions Wn

are boundary values of analytic functions (the so-called Wightman functions)
defined in a rather large complex domain. Heuristically, the reasoning [488, 321]
is as follows: the Wn can be written as

Wn(x1, . . . , xn) = (Ω,ϕ(0)eiP ·(x2−x1)ϕ(0)eiP ·(xn−xn−1)ϕ(0)Ω) (1.68)

where U(a,1) = eia·P . By the spectral condition, Wn can be analytically con-
tinued to the domain

Tn = {(x1, . . . , xn): Im(xj − xj−1) ∈ V+ for j = 2, . . . , n} (1.69)

where V+ is the open forward light cone; this domain is called the forward tube.
Then a nontrivial argument using Lorentz invariance and locality [488, 321]
implies that the Wn can be analytically continued to a yet larger domain, the
permuted extended forward tube T pe

n . The importance of T pe
n for our purposes

is that it contains the non-coincident Euclidean region

En = {(x1, . . . , xn): t1, . . . , tn pure imaginary, x1, . . . ,xn real,

and xi 6= xj for i 6= j} (1.70)

where xi ≡ (ti,xi). This permits us to introduce the Euclidean Green’s functions,
or Schwinger functions, defined by

Sn(x1, . . . , xn) = Wn((it1,x1), . . . , (itn,xn)) (1.71)

for non-coinciding arguments x1, . . . , xn ∈ IRd. In other words, the vacuum ex-
pectation values of a G̊arding-Wightman quantum field theory can be analytically
continued to imaginary time.

The Schwinger functions Sn are, of course, analytic functions of their ar-
guments, but we have the right to forget temporarily about their analyticity
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and consider them simply as distributions belonging to S ′
6=(IRnd), the space of

tempered distributions defined at non-coinciding arguments [419, 420]. The key
properties of the Schwinger distributions were elucidated by Osterwalder and
Schrader [419, 420]:

First let S+(IRnd) be the set of all those functions in S(IRnd) with support in
the region {(x1, . . . , xn): 0 < x0

1 < x0
2 < . . . < x0

n}. Next let θ be the reflection
in the hyperplane x0 = 0, i.e.

θ(x0,x) = (−x0,x) . (1.72)

Let reflection act on functions fn ∈ S(IRnd) by

(Θfn)(x1, . . . , xn) = fn(θx1, . . . , θxn) . (1.73)

Finally, recall the definitions (1.63) and (1.64) of the operations and ⊗. Then
the Schwinger distributions of a relativistic quantum field theory have the fol-
lowing properties:

(OS0) Temperedness. The Sn are tempered distributions at noncoinciding
arguments, i.e. Sn ∈ S ′

6=(IRnd), satisfying the reality condition

Sn(θx1, . . . , θxn) = Sn(x1, . . . , xn)∗ . (1.74)

(OS1) Euclidean invariance.

Sn(Rx1 + a, . . . , Rxn + a) = Sn(x1, . . . , xn) (1.75)

for all (a,R) ∈ ISO(d).

(OS2) Osterwalder-Schrader (reflection) positivity. For any finite sequence
{fn}k

n=0 of complex-valued test functions fn ∈ S+(IRnd), we have

k∑

n,m=0

Sn+m(Θfn ⊗ fm) ≥ 0 . (1.76)

(OS3) Permutation symmetry. The Sn are symmetric in their arguments.

Most of these properties are straightforward to prove. The Euclidean in-
variance of the Sn is the obvious translation of the Poincaré invariance of the
Wn. Osterwalder-Schrader positivity for the Sn is the counterpart of Wight-
man positivity for the Wn. The symmetry of the Sn is a consequence of the
locality property (GW4): heuristically, all noncoincident Euclidean points are
spacelike-separated one from another.

The deep theorem proven by Osterwalder and Schrader is the converse: the
properties (OS0)–(OS3) are sufficient (modulo a weak technical condition) for
the construction of a G̊arding-Wightman relativistic quantum field theory hav-
ing the given {Sn} as its Schwinger functions. The technical condition, which
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we denote (OS0′), is a bound on the growth of the Sn as n → ∞. The properties
(OS0′)–(OS3) are called the Osterwalder–Schrader axioms, and the deep the-
orem is the Osterwalder-Schrader reconstruction theoremA detailed statement
of the OS axioms together with a proof of the reconstruction theorem can be
found in [419, 420, 418].

Thus, the Euclidean (Osterwalder-Schrader) and Minkowski (G̊arding-Wightman)
formulations of quantum field theory are mathematically equivalent; the Osterwalder-
Schrader reconstruction theorem guarantees free passage from either formula-
tion to the other. But the Euclidean approach has several advantages which
make it more convenient in applications:

• Euclidean vs. Poincaré invariance.The Euclidean inner product x · y =
x0y0 + x · y is positive-definite, while the Minkowski inner product x · y =
x0y0 − x · y is indefinite. This has two major consequences:

(a) The rotation group SO(d) is compact, while the Lorentz group SO(d−
1, 1) is noncompact.

(b) The Helmholtz operator −∆ + m2 is elliptic, while the Klein-Gordon
operator + m2 is hyperbolic. The greater simplicity of elliptic as compared to
hyperbolic problems is well known. Thus, the Helmholtz equation (−∆+m2)ϕ =
j has a unique tempered solution, while the Klein-Gordon equation ( +m2)ϕ =
j has multiple solutions which need to be distinguished by boundary conditions
at temporal infinity (retarded, advanced, etc.). In perturbation theory this is
familiar: the Euclidean propagator (p2 + m2)−1 has an unambiguous meaning,
while the Minkowski propagator is ambiguous and requires an iε prescription.

• Symmetry of the Schwinger functions.The Schwinger functions are sym-
metric under permutation of their arguments, while the Wightman distribu-
tions are not. This raises a tantalizing possibility: suppose that the Schwinger
functions Sn(x1, . . . , xn) could be written as the expectation values of some
“Euclidean field” ϕE(x) in some “Euclidean vacuum vector” ΩE belonging to a
“Euclidean Hilbert space” HE:

Sn(x1, . . . , xn)
?
= (ΩE, ϕE(x1) . . . ϕE(xn)ΩE) . (1.77)

Then the symmetry of the Schwinger functions would mean that the Euclidean
fields commute (unlike the Minkowski fields, which commute only at spacelike
separations). Hence the operators ϕE(x) could be simultaneously diagonalized,
i.e. simultaneously represented as multiplication operators on some probability
space, and the Schwinger functions would be moments of a probability measure:

Sn(x1, . . . , xn)
?
=

∫
ϕE(x1) . . . ϕE(xn) dµ(ϕE) . (1.78)

But then Euclidean field theory would be a branch of classical probability theory ,
or in physical terms, classical statistical mechanics !

This dream turns out to be only slightly over-optimistic. The situation is
essentially the following: Under mild but nontrivial regularity conditions, the
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Schwinger functions of a G̊arding-Wightman quantum field theory can be writ-
ten as moments of a complex measure [70]. However, simple examples [461] show
that the Sn cannot in general be written as moments of a positive measure (as
is of course necessary for the probabilistic interpretation of ϕE). Rather, the
representation (1.78) with a positive measure µ is a special property (called
Nelson-Symanzik positivity) which holds for certain quantum field theories and
fails for others. Nevertheless, the most important examples of quantum field
theories do possess (at least formally) Nelson-Symanzik positivity, as we now
proceed to show.

Example 1.5.1. Free scalar field. In Minkowski space, the free scalar quantum
field of mass m is an operator-valued distribution ϕ(x) satisfying the Klein-
Gordon equation

( + m2)ϕ(x) = 0 (1.79)

and having c-number commutators

[ϕ(x), ϕ(y)] = −i∆(x − y) , (1.80)

where

∆(x − y) =
i

(2π)d−1

∫
dp e−ip·(x−y) sgn(p0) δ(p2 − m2) (1.81)

with p · x ≡ p0x0 − p · x and p2 ≡ (p0)2 − p2. The Wightman distributionsare
given recursively by

Wn(x1, . . . , xn) =





n∑

j=2

W2(x1, xj) Wn−2(x2, . . . , 6 xj, . . . , xn) n even

0 n odd

(1.82)

where

W2(x, y) = −i∆+(x − y) ≡ 1

(2π)d−1

∫
dp e−ip·(x−y) θ(p0) δ(p2 − m2) (1.83)

and 6 xj means to omit xj. The Schwinger functions are [462, Chapter III]

Sn(x1, . . . , xn) =





n∑

j=2

S2(x1, xj)Sn−2(x2, . . . , 6 xj, . . . , xn) n even

0 n odd

(1.84)

where

S2(x, y) =
1

(2π)d

∫
dp

eip·(x−y)

p2 + m2
(1.85)

and p · x now denotes the Euclidean inner product p0x0 + p · x, and similarly
for p2. But (1.84) are precisely the moments of a Gaussian measure with mean
zero and covariance S2 = (−∆ + m2)−1:
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Sn(x1, . . . , xn) =
∫

ϕE(x1) . . . ϕE(xn) dµ0(ϕE) . (1.86)

This shows that the free field is Nelson-Symanzik positive.
Formally the Gaussian measure µ0 is given by

dµ0(ϕE) = N0 exp

[
−

∫ [1

2
(∇ϕE)2 +

m2

2
ϕ2

E

]
dx

]
DϕE (1.87)

where N0 is a normalization and DϕE ≡ ∏
x dϕE(x) is an uncountably infinite

product of Lebesgue measures. Rigorously, the individual pieces in the formal
expression (1.87) make no mathematical sense, but the measure µ0 is never-
theless a well-defined probability measure on S ′(IRd), the space of tempered
distributions [462, Chapters I and III]. The support properties of µ0 are not,
however, what one would expect naively from (1.87): if d ≥ 2, then with µ0-
probability 1, the Euclidean field ϕE is not a pointwise-defined function (much
less a once-differentiable function with square-integrable gradient!); rather, it is
a more singular distribution [109].

Remark. A generalized free field is, by definition, a quantum field theory whose
Wightman functions are given by (1.82) for some choice of W2. Equivalently, it
is a theory whose Schwinger functions are given by (1.84) for some choice of S2.
If the theory is Nelson-Symanzik positive (as it is for S2 not too singular), this
means that the representing measure µ is Gaussian. The free field of mass m is
the special case in which W2 and S2 are given by (1.83) and (1.85), respectively.
See [462] for details.

Example 1.5.2. Interacting scalar fields. One natural way to attempt to obtain
interacting (i.e. non-free) quantum fields is to perturb the free field. For example,
one might attempt to construct a non-Gaussian measure µ by perturbing the
Gaussian measure µ0, and then define the Schwinger functions as moments of
µ. Of course, it is necessary to satisfy the Osterwalder-Schrader axioms. The
most delicate property is Osterwalder-Schrader positivity: perturbations which
involve nonlocal interactions in the “time” direction are likely to destroy OS
positivity. On the other hand, by Euclidean invariance, locality in the “time”
direction implies locality in the spatial directions as well. So we are led to
consider local perturbations of the free field,

dµ(ϕE) = N exp

[
−

∫ [1

2
(∇ϕE)2 +

m2

2
ϕ2

E + V (ϕE)
]
dx

]
D ϕE , (1.88)

where V is, for example, a semibounded polynomial of degree > 2. Readers
familiar with conventional Lagrangian quantum field theory [310] will recognize
(1.88) as the Euclidean functional integral obtained by canonical quantization
of the theory with Minkowski-space Lagrangian density

L =
1

2
(∂µϕ)2 − m2

2
ϕ2 − V (ϕ) . (1.89)
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This is the theory whose Minkowski-space field formally satisfies the nonlinear
operator-valued wave equation (Heisenberg equation of motion)

( + m2)ϕ(x) = −V ′(ϕ(x)) . (1.90)

The simplest example is the ϕ4 theory, corresponding to V (ϕ) = λϕ4/4.
Unfortunately, the formal expressions (1.88) and (1.90) are plagued with

troubles at short distances whenever d ≥ 2. For example, we know that with
µ0-probability 1, the Euclidean field ϕE is not a pointwise-defined function; this
means that the perturbation term V (ϕE) is ill-defined. Likewise, the Minkowski
field ϕ is not a pointwise-defined operator-valued function, so the nonlinear
perturbation V ′(ϕ) is ill-defined. These troubles make themselves felt already
in perturbation theory, which is plagued with ultraviolet divergences.

The fundamental task of mathematical quantum field theory is, therefore,
to make sense of formal expressions like (1.88). The procedure for doing this is
called renormalization theory, and it involves three steps:

1) Regularization. Impose an ultraviolet cutoff Λ (or equivalently, a short-
distance cutoff a = Λ−1) so that the formal expression (1.88) is a well-defined
measure. This can be done in various ways. Of course, all of these regularizations
break either Euclidean invariance or OS positivity or both.

2) Renormalization. Allow the parameters in (1.88) [the so-called bare pa-
rameters] to be functions of Λ. For example, in the case of the ϕ4 theory we
consider

dµΛ(ϕE) = N (Λ) exp

[
−

∫ [A(Λ)

2
(∇ϕE)2 +

B(Λ)

2
ϕ2

E +
λ(Λ)

4
ϕ4

E

]
dx

]
DϕE

(1.91)
with A(Λ), B(Λ) and λ(Λ) being arbitrary functions of Λ [with λ(Λ) ≥ 0 in
order that the measure (1.91) be well-defined].

3) Continuum limit. Take Λ → ∞. For each choice of A(Λ), B(Λ), λ(Λ) we
ask:

a) Do the Schwinger functions SΛ
n (x1, . . . , xn) converge?

b) If so, do the limiting Schwinger functions Sn(x1, . . . , xn) satisfy the
Osterwalder-Schrader axioms?

c) If so, what are the properties of the resulting theory? In particular, is it
a free (or generalized free) field, i.e. is the corresponding measure dµ(ϕE)
Gaussian?

One convenient regularization is to replace continuous space IRd by a lattice
aZZ

d of lattice spacing a. The gradient ∇ϕE and the integral
∫
dx are then

replaced by their discrete analogues:

(∇µϕE)(x) −→ a−1 [ϕE(x + aeµ) − ϕE(x)]
∫

IRd

dx −→ ad
∑

x∈aZZ
d
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The ultraviolet-cutoff ϕ4 measure (1.91) is then recognized as nothing other
than the ϕ4 lattice spin model with nearest-neighbor interaction, (1.25)/(1.28),
with the identifications

λlat = adλFT (1.92)

Blat = adBFT + 2dad−2AFT (1.93)

Jxy =
{

ad−2AFT if x, y are nearest neighbors
0 otherwise

(1.94)

h = 0 (1.95)

between lattice and continuum quantities. We then wish to take the contin-
uum limit a → 0 so that physical correlation lengths (i.e. inverse masses) stay
bounded away from zero when distances are measured in centimeters. But this
means that the correlation length is going to infinity when measured in lattice
spacings. Hence, the bare parameters must be chosen so as to approach the crit-
ical surface of the ϕ4 lattice model. In other words, the problem of renormaliza-
tion in quantum field theory is equivalent to the problem of critical phenomena
in classical statistical mechanics !

One convenient measure of the non-Gaussianness of a continuum quantum
field theory is the truncated four-point Schwinger function

ST
4 (x1, x2, x3, x4) ≡ S4(x1, x2, x3, x4) − S2(x1, x2) S2(x3, x4)

−S2(x1, x3) S2(x2, x4) − S2(x1, x4) S2(x2, x3) ,

and its zero-momentum value

S
T
4 ≡

∫
dx2dx3dx4 ST

4 (x1, x2, x3, x4) . (1.96)

Clearly, if a quantum theory is Gaussian, then S
T
4 = 0 [cf. (1.84)]. Conversely,

for a large class of quantum field theories including the ϕ4 model (1.91), it can

be shown that S
T

4 = 0 implies that the theory is Gaussian [411, 52]. Now, it
is not too hard to see that the dimensionless renormalized four-point coupling
constant of the lattice theory,

g ≡ −u4

χ2ξd
, (1.97)

converges in the continuum limit (at least formally) to the corresponding ratio
of continuum quantities. Therefore, at least for a massive continuum limit (one
in which the physical correlation lengths stay bounded in centimeters), one can
test for the triviality (Gaussianness) of the continuum limit by asking in the
lattice theory whether g −→ 0 as the critical point is approached. We discuss
these issues in detail in Chapter 15.

1.6 Some random-walk models

In this section we introduce some random-walk models which, at first sight,
bear no obvious relation with spin systems or quantum field theory — in fact,
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their definition is purely geometric (and probabilistic). However, as will be seen,
these models exhibit critical phenomena closely analogous to those found in spin
systems; for this reason, they can serve as a simplified arena in which to test
methods (both heuristic and rigorous) for dealing with critical phenomena. The
random-walk models also have direct application as models of polymer molecules
[121]. Most importantly, suitable generalizations of the models defined in this
section arise as random-walk representations of spin systems, in which spin-
system correlation functions are represented as sums over random walks (see
Chapter 6). Moreover, connected correlation functions in the spin system can in
some cases be bounded in terms of the intersection properties of the associated
random walks. In this fashion, questions about the critical behavior of the spin
system can sometimes be reduced to geometric questions about intersections of
random walks, which in favorable cases can be answered nonperturbatively.

We consider some lattice L, typically ZZ
d or a finite subset of ZZ

d. Its elements
are called sites. Unoriented pairs {x, y} of sites in L with x 6= y are called bonds;
oriented pairs (x, y) are called steps with initial site x and final site y. A walk ω
on L is an ordered sequence (ω(0), ω(1), . . . , ω(k)) of sites in L (k ≥ 0). We call
|ω| ≡ k the length of ω, b(ω) ≡ ω(0) its initial site, and e(ω) ≡ ω(k) its final
site. If b(ω) = x and e(ω) = y we write ω: x → y. The support of a walk ω is
defined by

supp(ω) = {x ∈ L: ω(j) = x for some j}. (1.98)

A random-walk model is defined by assigning to every n-tuple of walks
ω1, . . . , ωn (n ≥ 0) a statistical weight ̺[n](ω1, . . . , ωn) ≥ 0, with ̺[0] = 1.
Typically, these weights will have the form

̺[n](ω1, . . . , ωn) =
( n∏

i=1

Jωi

)
exp[−Un(ω1, . . . , ωn)] , (1.99)

where

Jω =
|ω|−1∏

s=0

Jω(s),ω(s+1) . (1.100)

Here Jxy ≥ 0 is the “activity” of the step (x, y), and Un is the interaction energy
of the walks(which may be +∞ for forbidden configurations). Un is assumed to
be symmetric in its arguments. The interaction is called repulsive if

Un+m(ω1, . . . , ωn+m) ≥ Un(ω1, . . . , ωn) + Um(ωn+1, . . . , ωn+m) , (1.101)

that is,

̺[n+m](ω1, . . . , ωn+m) ≤ ̺[n](ω1, . . . , ωn) ̺[m](ωn+1, . . . , ωn+m) . (1.102)

Many properties of the random walks can be studied by considering gener-
ating functions (which we call “kernels”):

K(x1x2| . . . |x2n−1x2n) ≡
∑

ω1: x1 → x2

...
ωn: x2n−1 → x2n

̺[n](ω1, . . . , ωn) , (1.103)
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and in particular
K(x, y) =

∑

ω: x→y

̺[1](ω) . (1.104)

The Green functions for the model are defined by summing the kernels over all
possible pairings:

S2n(x1, . . . , x2n) =
∑

pairings π

K(xπ(1)xπ(2)| . . . |xπ(2n−1)xπ(2n)) . (1.105)

We now suppose that L = ZZ
d and assume that the weights ̺[n] are

translation-invariant, i.e.

̺[n](ω1, . . . , ωn) = ̺[n](ω1 + a, . . . , ωn + a) (1.106)

for all n and all a ∈ ZZ
d. Here ω + a is the walk visiting the sites ω(0) +

a, . . . , ω(N) + a (N = |ω|). For simplicity, we shall also assume that ̺[n] has
the form (1.99)–(1.100), with Jx+a,y+a = Jxy for all a ∈ ZZ

d. The model is
well-defined for activities J = {Jxy} ≥ 0 in the set

J = {J : K(x1x2| . . . |x2n−1x2n) < ∞ for all n, x1, . . . , x2n} (1.107)

Clearly J is a decreasing set, i.e. if J ∈ J and 0 ≤ J ′
xy ≤ Jxy for each x, y, then

J ′ ∈ J . The upper boundary Jcrit of J (suitably defined) is typically a critical
surface in the sense that

χ ≡
∑

x

K(0, x) (1.108)

diverges as J approaches this boundary. Moreover, the “correlation length”

ξ ≡ lim sup
|x|→∞

− |x|
log K(0, x)

(1.109)

is typically finite for J in the interior of J , and diverges for J −→ Jcrit.
As an example, consider simple (or ordinary) random walk . In this model

Jxy =





J if x and y are nearest neighbors in ZZ
d

0 otherwise
(1.110)

and
Un(ω1, . . . , ωn) = 0 for all n. (1.111)

Then the critical surface is given by

J∗ =
1

2d
. (1.112)

Moreover, if we define
m2 ≡ J−1 − 2d , (1.113)

then the kernels are given by
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K(x1x2| . . . |x2n−1x2n) = J−n
n∏

k=1

[
(−∆ + m2)−1

]
x2k−1x2k

, (1.114)

where ∆ is the finite-difference Laplacian, and [(−∆ + m2)−1]xy is the Green

function of −∆ + m2. The critical surface corresponds to m = 0. A central
remark for this book is that the correlation functions of the Gaussian model
(1.26) [or what is essentially equivalent, the free Euclidean field (1.84)] are
given precisely by a sum over pairings of the kernel (1.114).

〈ϕx1 , . . . , ϕx2n〉 =
∑

pairings π

K(xπ(1)xπ(2)| . . . |xπ(2n−1)xπ(2n)) . (1.115)

That is, from (1.105) and (1.115)

〈ϕx1 , . . . , ϕx2n〉 = S2n(x1, . . . , x2n) . (1.116)

This fundamental identity shows that the simple random walk can serve as a
random-walk representation of the Gaussian model. In Chapters 6 (Part I) and
9–10 (Part II) we will show how more complicated random-walk models can
serve as random-walk representations of more general spin systems. Formulas
like (1.116) justify somehow to refer to the Green functions S2n as the 2n-point
correlations of the model.

A much more difficult example is the self-avoiding walk (SAW). In this
model, Un(ω1, . . . , ωn) = +∞ whenever there is a site j ∈ ZZ

d that is vis-
ited by more than one walk or more than once by some walk ωi; otherwise
Un(ω1, . . . , ωn) = 0. In the simplest (nearest-neighbor) case, Jxy is as in (1.110).
In this model, J∗ is strictly larger than 1/(2d); in fact, it is not hard to show
that 1/(2d − 1) ≤ J∗ ≤ 1/d.

Typical problems for the random-walk models introduced here are the fol-
lowing:

(a) Given a subset S ⊂ ZZ
d and a site x /∈ S, what is the probability that a

walk ω, starting at x with weight ̺[1](ω) given by (1.99)–(1.100), visits S?

In particular, we can pose this question in the “scaling limit”:

(a′) Replacing x by ξ(J)x and S by ξ(J)S, where ξ is the least integer ≥ ξ,
how does the probability defined in (a) behave, as J → Jcrit?

(b) What is the typical end-to-end distance of a walk ω, as J approaches
Jcrit? To answer this question, one might analyze the quantity

〈ω(N)2〉 =

∑

ω: |ω|=N
b(ω)=0

̺[1](ω) ω(N)2

∑

ω: |ω|=N
b(ω)=0

̺[1](ω)
(1.117)

or
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〈e(ω)2〉 =

∑

ω: b(ω)=0

̺[1](ω) e(ω)2

∑

ω: b(ω)=0

̺[1](ω)
(1.118)

and try to prove a behavior of the form

〈ω(N)2〉 ∼ N2ν (1.119)

〈e(ω)2〉 ∼ dist(J,Jcrit)
−2ν (1.120)

for some critical exponent ν. The quantity dH = 1/ν can be interpreted as a
Hausdorff dimension for walks ω with weight ̺[1](ω).

(c) Consider n walks, ω1, . . . , ωn, with weight ̺[n](ω1, . . . , ωn), starting at
sites ξx1, . . . , ξxn, xi 6= xj for i 6= j. What is the behavior of the probability
that ω1, . . . , ωn intersect in a common site z ∈ ZZ

d, as J approaches Jcrit? How
does it depend on n and on d?

(d) Consider two walks ω1 and ω2, starting at 0, with weight ̺[2](ω1, ω2).
How does the probability that 0 is the only common site of ω1 and ω2 behave
as J approaches Jcrit?

Answers to (a)–(c), and a partial answer to (d), are known for simple random
walks, where they are non-trivial (see Chapter 5). In essentially all other cases,
there are at best heuristic, though conceivably exact, answers. Such answers
will turn out to be useful in analyzing the critical behavior of spin systems.



2. Phase transitions and critical points in

classical spin systems: A brief survey

In this chapter1, we describe some fairly recent results on phase transitions and
critical points in classical lattice spin systems. We emphasize the analysis of
explicit models and quantitative information on such models. A complementary
point of view is developed in [309]. See also [447, 469].

2.1 Existence of phase transitions

For a large class of models (including all those considered in this book),it is
relatively easy to prove that there is no phase transition at high temperature (β
small) or large magnetic field (|h| large); this can be done either by expansion
methods [459] or by the Dobrushin uniqueness theorem [465]. A deep fact is that
for ϕ4 and N -vector models (at least for N ≤ 3), phase transitions (if any) can
only occur at zero magnetic field : this is a consequence of the Lee-Yang theorem
(see the references in [371]).So we are reduced to the problem of determining
whether a phase transition occurs as β is varied at h = 0.

At present there are basically three or four general methods to establish
rigorously the existence of phase transitions in lattice systems of statistical
mechanics:

(a) Exact solutions. This technique applies only to a limited class of
models, such as one-dimensional systems with finite-range interactions2, the
two-dimensional nearest-neighbor Ising model (in zero magnetic field), the eight-
vertex models, etc. In recent years, the interest in exact solutions has been re-
vived through the work of Baxter [369, 57], Jimbo, Miwa, Sato and coworkers
[448, 314, 113, 315, 313], Faddeev and collaborators [470, 343, 169, 167, 168],
the Landau-Institute group [443], and others [499, 25, 26, 27, 426]. Exact so-
lutions tend to provide a fairly detailed description of the phase transition,
including quantitative information, but often somewhat obscure the physical
mechanisms leading to the transition. We shall not discuss any exact solutions
in the following.

1Parts of this chapter are adapted from [228].
2These models have no phase transition.
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(b) Energy-entropy (Peierls-type) arguments. In its most general
form this method can be viewed as a way of reinterpreting spin systems as
gases of “topologically stable” defects in an ordered medium [392, 395], and
then analyzing phase transitions in defect gases by estimating defect energies
and entropies. Examples of topological defects are Bloch walls (Peierls contours)
in the Ising model, vortices in the XY model, and magnetic monopoles in the
U(1) lattice gauge theory. This method can be applied to study thermodynamic
phases in which the defect gas is dilute.

The original Peierls argument [428] was invented in 1936 to analyze the
Ising model, and it was made rigorous by Griffiths [268] and Dobrushin [132]
in the 1960’s. We give here a brief account of the argument. Consider the Ising
model (Section 1.4) defined by the Hamiltonian

HΛ(ϕ) =
∑

x, y ∈ Λ

|x − y| = 1

(1 − ϕxϕy) (2.1)

for finite Λ ⊂ ZZ
d. For simplicity, let us consider the case d = 2. If the spins

outside Λ are fixed in the position ϕx = +1 for all x ∈ Λc (“+ boundary
conditions”), we expect that at low temperatures most of the spins in Λ will be
aligned with those on the boundary. Indeed, if an “island” of “−” spins were to
form, the energy of the configuration would rise by an amount

2 × number of bonds joining opposite spins ≈ 2 × perimeter of the island.

Therefore, the probability of occurrence of any particular island of perimeter
r is damped by a factor e−2βr. At β = ∞ (T = 0), this argument shows that
such islands are strictly forbidden; however, at nonzero temperatures, there is
another factor to be taken into account: the entropy. Even when a particular
island of perimeter r has small probability, the probability of occurrence of
some island of perimeter r may not be negligible due to the large number nr of
possible such islands:

Pr ≡ Prob(at least one island of perimeter r) ∼ nr e−2βr .

If we write nr = eSr we see that the probability Pr depends on the balance of
the entropy gain Sr and the energy cost 2βr:

Pr ∼ eSr−2βr .

This is a typical energy-entropy argument. At high temperature (β ≪ 1) entropy
wins, and arbitrarily large islands of “overturned spins” are possible: the system
is disordered. On the other hand, at low temperature (β ≫ 1) the energy cost
is expected to be the dominant factor, and only small and sparse islands are
possible: the system is ordered. These two facts imply the existence of some
temperature at which the transition from order to disorder takes place, that is,
the occurrence of a phase transition.
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Fig. 2.1. Peierls contours

This argument can be formalized as follows. (For simplicity we consider
dimension d = 2; the extension to d > 2 is straightforward.) Let ΩΛ = {−1, 1}Λ

be the space of configurations of Ising spins on the finite subset Λ ⊂ ZZ
2. We

use “+ boundary conditions”, that is, we fix ϕx = +1 for all x ∈ Λc. For
each configuration ϕ ∈ ΩΛ, we draw curves separating the regions of “+” and
“−” spins: that is, for each nearest-neighbor pair x, y with ϕx 6= ϕy we draw
a unit segment perpendicular to the bond 〈x, y〉 (see Figure 2.1). These curves
are closed (because of the + boundary conditions) and can be decomposed into
connected components called contours . By fixing a rule to “chop off” the corners
where four faces meet, the map from configurations to families of contours can
be made well-defined. Let us call compatible the families of contours coming
from configurations; they satisfy certain constraints, in particular they must be
nonoverlapping. The map from configurations to compatible families of contours
is one-to-one, since the entire configuration can be determined starting from the
+ boundary spins and working inwards. Finally, the energy of each configuration
can be calculated by adding to the energy of the ground state ϕ ≡ 1 an energy
2|Γ | for each contour Γ , where |Γ | denotes the length of the contour. We can
summarize this construction by saying that the configurations are mapped into
a gas of contours , characterized by an exclusion interaction and an activity
e−2β|Γ |.

The heart of Peierls argument is the observation that the statistics of the
Ising model can be related to the simpler statistics of this gas of contours.
Consider, for example, the probability that at some chosen site in Λ, say the
origin, the spin value is −1. This is the probability that the origin belongs to
an island of “overturned spins”. For this to happen, there must be at least one
contour Γ surrounding the origin:
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Prob+
Λ(ϕ0 = −1) ≤ Prob+

Λ(there exists a contour Γ surrounding 0)

≤
∑

Contours Γ
around 0

Prob+
Λ [Γ ] (2.2)

The “+” indicates the boundary condition being used. The probability Prob+
Λ [Γ ]

can be written purely in terms of the ensemble of contours:

Prob+
Λ [Γ ] =

∑

ϕ∈ΩΛ: ϕ has
Γ as a contour

e−βH+
Λ (ϕ)

∑

ϕ∈ΩΛ

e−βH+
Λ (ϕ)

=

∑

{Γ,Γ1,Γ2,...}
compatible

e−2β|Γ | e−2β
∑

|Γi|

∑

{Γ1,Γ2,...}
compatible

e−2β
∑

|Γi|
(2.3)

The crucial remark is that if {Γ, Γ1, . . . , Γn} is a compatible family of con-
tours, then {Γ1, . . . , Γn} is also a compatible family. Indeed, to obtain the cor-
responding spin configuration it suffices to take the configuration with contours
{Γ, Γ1, . . . , Γn} and flip all spins inside Γ . This operation preserves all the con-
tours nested inside Γ (and obviously those outside Γ ), but removes Γ because
the spins on both sides of it now have the same sign. Therefore, in (2.3) there
is a one-to-one correspondence between terms in the numerator and a subset of
terms in the denominator. It follows that

Prob+
Λ [Γ ] ≤ e−2β|Γ | (2.4)

and hence, by (2.2),

Prob+
Λ(ϕ0 = −1) ≤

∑

l≥4

nl e
−2βl (2.5)

where nl = #{contours Γ surrounding the origin with |Γ | = l}. It is a simple
combinatorial exercise to show that nl ≤ 4l23l−1, hence

Prob+
Λ(ϕ0 = −1) ≤ 4

3

∑

l≥4

l2(3e−2β)l ≤ const × e−8β <
1

2
(2.6)

for β sufficiently large, uniformly in Λ. This proves that islands of “−” spins
are very unlikely at low temperature, or alternatively that the magnetization

〈ϕ0〉+ = 1 − 2Prob+
Λ(ϕ0 = −1)

becomes nonzero at low enough temperatures. The symmetry ϕ → −ϕ, present
in the Hamiltonian (2.1), is broken, signaling the occurrence of a phase transi-
tion.
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The Peierls argument was generalized in the early 1970’s by Minlos, Pirogov
and Sinai [469] to systems in which the ground states are not related by a sym-
metry of the Hamiltonian (and hence one does not have an operation analo-
gous to “flipping the spins”, to remove contours). Glimm, Jaffe and Spencer
first applied it to quantum field models, introducing a new technique to analyze
contour probabilities [261]. Furthermore they combined a Peierls argument with
expansion methods, permitting the estimation of small fluctuations around de-
fect configurations [262, 263]. Their ideas were systematized and extended in
[219, 307, 308, 490, 210] and many other papers.

More recently, it has been shown that the basic elements of the Peierls ar-
gument, namely energy-entropy considerations, can be applied to rigorously an-
alyze a wide class of model systems equivalent to defect gases, including models
with long-range interactions and massless phases [224, 227, 226]. In particular,
one can set up Peierls-type arguments in systems with continuous (but abelian)
symmetry groups. Such techniques combine entropy (i.e. combinatorial) esti-
mates for suitably constructed blocks of defects with some kind of “block-spin
integration”, borrowed from the renormalization group, which serves to exhibit
self-energies of defects.

We now briefly describe some general elements of the simplest kind of Peierls
argument in this general setting. Consider a physical system whose configura-
tions can be described by a classical spin-field ϕ. We suppose for the moment
that ϕ is defined on continuous space IRd (rather than on a spatial lattice ZZ

d),
takes values in a compact manifold M (e.g. SN−1, the unit sphere in IRN) and
is continuous except on surfaces of codimension ≥ 1.

Consider, as an example, a configuration ϕ which is continuous except
on a manifold Hk of dimension k ≤ d − 1. The space of all configurations
ϕ: IRd\Hk → M can be decomposed into homotopy classes labelled by the
elements of the homotopy groups πd−k−1(M). A configuration ϕ labelled by a
non-trivial element of πd−k−1(M) is called a topological defect of dimension k.

The idea is now to interpret the equilibrium configurations of the spin field ϕ
as equilibrium configurations of a gas of interacting topological defects. The locus
of a defect δk in this gas, corresponding to a non-trivial element gk ∈ πd−k−1(M),
is a closed bounded surface Σk of dimension k. In the following we assume that
all homotopy groups of M are discrete.

It turns out that the main features of the statistical mechanics of defect
gases can often be described by an energy-entropy argument that parallels the
one given above for the Ising case. The energy of a defect δk corresponding to
a non-trivial element gk ∈ πd−k−1(M) can be estimated by

E(δk) >∼ ε(gk)|Σk| , (2.7)

where ε(gk) is the self-energy density of the defect and |Σk| is the k-dimensional
area of Σk. After introducing some coarse-graining (e.g. replacing continuum
models by lattice models) one can argue that the entropy S(gk, l) of the class of
all defects labelled by gk whose loci contain a given point, e.g. the origin, and
have area |Σk| = l is estimated by
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S(gk, l) ≤ c(gk) · l , (2.8)

where c(gk) is a geometrical constant. The density ̺(gk, l) of such defects is then
proportional to

̺(gk, l) ∼ e−βE(δk)+S(gk,l) <∼ e[−βε(gk)+c(gk)]l , (2.9)

provided that the interactions between distinct defects are, in some sense, weak.
Formula (2.9) suggests that when the inverse temperature β decreases below the
point

β(gk) ≈ c(gk)/ε(gk) , (2.10)

defects labelled by gk condense, and there are, with high probability, infinitely
extended defects of type gk. One expects, therefore, that there is a phase transi-
tion, as β is varied through β(gk), from an ordered (few defects) to a disordered
(extended defects) phase.

The energy-entropy argument sketched in (2.7)–(2.10) has been applied to
a large class of lattice spin systems with abelian symmetry groups3, to actually
prove that a transition occurs. This may sound confusing, because the notion of a
“topological defect” does not make sense when one considers spin configurations
on a lattice. It turns out, however, that in models with abelian symmetry groups
one can use a duality transformation (Fourier transformation on the group) to
exhibit what in the continuum limit corresponds to topological defects. Since
this will presumably sound rather vague, we now briefly describe two examples.

(1) The Ising model.The same argument described above works in any di-
mension. In this example M = {−1, 1} and the Hamiltonian is given by (2.1).
The defects are the Peierls contours, i.e. (d − 1)-dimensional closed connected
surfaces in the dual lattice separating a domain where ϕ takes the value +1
from a domain where it takes the value −1. By (2.1), the energy of a contour is
equal to its (d−1)-dimensional area. The interactions between defects are given
by an exclusion principle. An analogue of bound (2.6) holds in any dimension
with c = c(d) being a geometric constant:

Prob+
Λ(ϕ0 = −1) ≤ const ×

∞∑

l=2d

l2de−βlcl ≤ const × e−2dβ <
1

2
(2.11)

uniformly in Λ if β is large enough, and thus 〈ϕ0〉+ > 0 for large β. This shows
that in zero magnetic field (h = 0) and for large β there is a spontaneous mag-
netizationin the direction imposed by the boundary conditions. It is not hard to
show that for small β there is no spontaneous magnetization (the equilibrium
state in the thermodynamic limit is unique for small β).Thus there is a phase
transition.

(2) The two-component rotor (classical XY ) model. In this model M = S1,
dPx(ϕx) is Lebesgue measure on S1, and the Hamiltonian is given by

3Or non-abelian but discrete symmetry groups.
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HΛ(ϕ) =
∑

x,y∈Λ
|x−y|=1

(1 − ϕx · ϕy) =
∑

x,y∈Λ
|x−y|=1

[1 − cos(θx − θy)] , (2.12)

where θx is the angle parametrizing the unit vector ϕx.
Since π1(S

1) = ZZ, πi(S
1) = 0 for i > 1, the defects of this model are la-

belled by an integer and their loci have codimension 2. They are called vortices.
In order to study the transitions in this model, the idea is to invent a rigor-
ous version of the energy-entropy argument (2.7)–(2.10) for the gas of vortices
equivalent to the rotator model. The equivalence between the rotator model and
a vortex gas can be seen by Fourier series expansion of the equilibrium state
dµβ(ϕ) in the angular variables {θx} and subsequent application of the Poisson
summation formula; see e.g. [229, 226]. The problem that one meets when one
tries to analyze the vortex gas is that there are Coulomb interactions, which
have extremely long range, between individual vortices. In three or more di-
mensions, these interactions turn out to be quite irrelevant, and the arguments
(2.7)–(2.10) can be made rigorous. One concludes from (2.9) that, for large β,
the density of vortices is small, i.e. the number of defects per unit volume in
each equilibrium configuration ϕ is very small. Therefore one expects that, in
the average, ϕ has a fixed direction, i.e.

〈ϕ(x)〉 = M(β) 6= 0 , (2.13)

for large β; M(β) is determined by the boundary conditions. These arguments
are made rigorous in [226, 229] (a slightly non-trivial task). On the other hand,
it is well known that for small β,

〈ϕ(x)〉 = 0 . (2.14)

Therefore, for d ≥ 3 there is a ferromagnetic phase transition.
In two dimensions , the vortices are point-like objects. The interaction be-

tween two vortices of strength q1 and q2, respectively, separated by a distance l
is approximately given by

− q1q2

2π
ln l (2.15)

which is the Coulomb potential between two point charges, q1 and q2, in two
dimensions. Suppose now that q1 = 1, q2 = −1. The entropy S of the class of
configurations of a + vortex and a − vortex separated by a distance l, within
some distance ∼ l from the origin, is given by

eS ≈ const × l 3 . (2.16)

Thus, for β > 8π,
e−βEeS ≈ const × (l + 1)3−(β/2π) (2.17)

is summable in l. This means that configurations of one vortex of strength +1
and one vortex of strength −1, separated by a finite distance, are thermodynam-
ically stable. In fact, it can be shown by a rather difficult inductive construction
[224], extending over an infinite sequence of length scales, that for sufficiently
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large values of β all vortices can be arranged in finite, neutral clusters of finite
diameter and finite density. The conditions characterizing those clusters are
scale-invariant. This construction thus involves idea of scale-invariance and self-
similarity. Furthermore, it requires successive integrations over “fluctuations”
on ever larger length scales — a device reminiscent of renormalization-group
methods.

For small β, vortices unbind and form a plasma. Such Coulomb plasmas are
studied rigorously in [89, 91, 306, 177]. Thus, one expects a phase transition as
β is varied. It is non-trivial to show that the transition just described in the
two-dimensional vortex gas corresponds, in the two-dimensional classical XY
model, to one from a small-β phase in which 〈ϕ0 · ϕx〉 has exponential fall-off
in |x| to a large-β phase in which 〈ϕ0 · ϕx〉 falls off like an inverse power (≤ 1)
of |x| as |x| → ∞. This is proven rigorously in [224].

We now proceed to discussing the third general method in the theory of
phase transitions.

(c) Infrared bounds (rigorous spin-wave theory) [222, 218]. This
method, which originated in [222], is rather general and is the only known
method which gives satisfactory results in models where the spin takes values
in a non-linear manifold and the symmetry group is non-abelian. We describe
it in terms of an example, the ferromagnetic nearest-neighbor N -vector model:
Let ϕ be a lattice spin with N components, and let the a priori single-spin
measure be the uniform measure on the unit sphere,

dPx(ϕx) = δ(|ϕx|2 − 1) dNϕx , (2.18)

The Hamiltonian is

HΛ(ϕ) = β
∑

x,x′∈Λ
|x−x′|=1

(1 − ϕx · ϕx′) − h
∑

x∈Λ

ϕ(1)
x (2.19)

(β > 0), and let dµ(ϕ) be an equilibrium state as in (1.30)/(1.31). For h 6= 0,
dµ is believed to be unique (within some class of boundary conditions); this has
been proven for N ≤ 3. Let △ be a large finite (hyper-) cube, and define the
random variable

ϕ(△) =
1

|△|
∑

x∈△

ϕx (2.20)

(the average magnetization in △), where |△| is the volume of △. The basic idea
of spin-wave theory is that, for large β,

ϕ(△) ≈ Me1 + δϕ(△) (2.21)

where e1 is the unit vector in the 1-direction (the direction of the magnetic
field), M is the magnetization, and δϕ(△) is the fluctuation of ϕ(△) around
Me1, which one expects to be ∼ β−1/2 for equilibrium configurations at low
temperatures (large β).
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These ideas can be formalized as follows: in a pure phase (e.g. h 6= 0),
consider the truncated two-point function

G(x) ≡ 〈ϕ0 · ϕx〉 − 〈ϕ0〉2 , (2.22)

and let G̃(p) be its Fourier transform, which is a function on the d-dimensional
torus B = [−π, π]d (the first Brillouin zone). By using the so-called transfer-
matrix method, Fröhlich, Simon and Spencer [222, 218] have shown that

0 ≤ G̃(p) ≤ Nβ−1[2d − 2
d∑

i=1

cos pi]
−1 . (2.23)

The upper bound in (2.23) is called an infrared (or spin-wave) bound ; its proof
was inspired by the Källen-Lehmann spectral representation of the two-point
function in relativistic quantum field theory. [Note that the upper bound in
(2.23) would be equality in the massless Gaussian model.] By Fourier transfor-
mation, we obtain

0 ≤ G(0) ≤ Nβ−1Id , (2.24)

where

Id ≡ (2π)−d
∫

B
ddp [2d − 2

d∑

i=1

cos pi]
−1 . (2.25)

We note that Id is divergent for d ≤ 2, but finite for d > 2 (with Id ∼ d−1 for
large d).

By (2.18) it is obvious that

〈ϕ0 · ϕ0〉 = 1 . (2.26)

Thus for β > NId,

M(β, h)2 = 〈ϕ0〉2 = 1 − G(0) ≥ 1 − Nβ−1Id > 0 (2.27)

uniformly in h 6= 0, i.e.

M0(β) ≡ lim
h↓0

M(β, h) > 0 . (2.28)

On the other hand, it is easy to prove that M0(β) = 0 for sufficiently small β.
It follows that, if d > 2, there is a phase transition as β is varied.

The infrared bound (2.23) implies that

δϕ(△) <∼
√

Nβ−1|△|(2−d)/d , (2.29)

in accordance with heuristic ideas based on spin-wave theory. Note that for
d ≤ 2, this upper bound does not become small as the volume |△| tends to ∞.
This suggests that there should be no spontaneous magnetization when d = 1
or 2. Indeed, for models with continuous symmetry (N ≥ 2), this conjecture
is correct: there is no spontaneous magnetization and no continuous symmetry
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breaking in d ≤ 2. This is the well-known Mermin-Wagner theorem [393, 391,
386]; see also [220] for a proof which formalizes the above fluctuation argument.

The results reported here extend to a large class of spin systems, but the
hypotheses required for the known proofs of the infrared bound (2.23) impose
serious limitations on the class of Hamiltonians for which (2.23) is known to be
valid [222, 218].

(d) Renormalization group. A fourth method would consist of perform-
ing renormalization-group transformations (Chapter 4) on the state of a sta-
tistical system and grinding out information on its equilibrium phase diagram
by proving convergence of the nth iterate of a renormalization-group transfor-
mation applied to an equilibrium state to some high- or low-temperature fixed
points, as n → ∞. This strategy has been followed in [11, 196] and especially
[238, 86, 87]. But its rigorous implementations are still rather limited.

Often, a combination of methods (b)–(d), rather than a “pure method”,
leads to success. For all further details we refer the reader to the literature.

We conclude this section by mentioning some recent results on the structure
of the space of translation-invariant equilibrium states in the Ising model (N =
1) and the two-component rotor model (N = 2):

For h 6= 0, or for h = 0 but β so small that M(β) = 0, the translation-
invariant equilibrium state is unique [360, 220]. Next, suppose that h = 0,
M0(β) 6= 0 (i.e. there is a non-zero spontaneous magnetization) and that β is a
point of continuity of the internal energy density, −∂(βΦ)/∂β. (Since βΦ(β) is
concave in β, this is true for all except perhaps countably many values of β.)
Then:

(i) In the Ising model, there exist precisely two extremal translation-
invariant equilibrium states 〈·〉± with

0 < 〈ϕ0〉+ = −〈ϕ0〉− . (2.30)

See [358, 359]. A deeper result, due to Aizenman [3] and Higuchi [303], is that
in the two-dimensional Ising model this is true for all β > βc, without assuming
translation invariance.

(ii) In the N = 2 rotor model, the extremal translation-invariant equilibrium
states are parametrized by an angle θ ∈ [0, 2π) and are carried one into another
by global spin rotations; in particular,

〈ϕ0〉θ =
∣∣∣〈ϕ0〉0

∣∣∣


 cos θ

sin θ


 . (2.31)

For the proof, see [220].

The proofs of the results mentioned here are rather unintuitive, although
they involve some clever ideas.
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2.2 Existence of critical points

The next step, after proving the existence of a phase transition, is to obtain
information about its nature: is it discontinuous (first-order), or is it continuous
(passing through a critical point)? If the latter, one would like to compute (or
at least to prove bounds on) the critical exponents.

Almost all available rigorous results concerning the existence of critical
points and critical exponents concern the ferromagnetic ϕ4 and N -vector mod-
els with one or two components (or in some cases up to four components). We
therefore restrict our review to these models.

The first rigorous results on the existence of critical points and estimates
on critical exponents were proven by Glimm and Jaffe [256]. Let d ≥ 2, and let
βc be defined by

βc = sup{β: ξ(β) ≡ ξ(β, h = 0) < ∞} . (2.32)

Then Rosen [445] and Glimm and Jaffe [259] have shown that βc < ∞, and
that ξ(β) −→ ∞ as β ↑ βc. It has also been shown [259] that the magnetic
susceptibility χ(β) diverges as β ↑ βc. Simplified proofs were later given in
[464, 372, 96].

It has recently been proven [6, 10] that, in a class of Ising-type models, the
transition at (h = 0, β = βc) is sharp, in the sense that

• For β < βc, ξ(β) < ∞ and M0(β) = 0.

• For β = βc, ξ(β) = ∞.

• For β > βc, M0(β) > 0.

Moreover, for the Ising model, it can be shown that

M0(β) ↓ 0 as β ↓ βc , (2.33)

at least in dimensions d = 2 (exact solution [523]) and d ≥ 4 [12]. Unfortunately,
for some “silly” technical reasons, (2.33) is not yet rigorously established in three
dimensions. See [12] and Chapter 14 of Part III.

2.3 Critical exponents in some exactly solvable models
and standard approximations

Undoubtedly the most important exactly solvable model in statistical mechan-
ics is the Gaussian model (1.26)/(1.28): it serves as a reference model which has
“classical” critical exponents, and as a starting point for perturbation expan-
sions. All these properties arise from the fact that Gaussian integrals are trivial
to perform. The truncated correlation functions are (see e.g. [424])
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〈ϕ(α)
x 〉T = G̃(0)h(α) (2.34)

〈ϕ(α)
x ϕ(β)

y 〉T = δαβ (2π)−d
∫

[−π,π]d

dp eip·(x−y)G̃(p) (2.35)

〈ϕ(α1)
x1

. . . ϕ(αn)
xn

〉T = 0 for n ≥ 3 (2.36)

where

G̃(p) = Ẽ(p)−1 ≡ [B − J̃(p)]−1 (2.37)

J̃(p) =
∑

x

eip·xJ0x (2.38)

and we are assuming translation invariance Jxy = Jx+a,y+a. Note that Ẽ(p)
is precisely the energy per unit volume of a spin wave of wavenumber p. In
particular, for short-range (e.g. nearest-neighbor) ferromagnetic interactions,
J̃(p) reaches its maximum at p = 0 and behaves near p = 0 like

J̃(p) = J̃(0) − cp2 + o(p2) .

Criticality occurs when B = J̃(0), at which point the susceptibility χ = G̃(0)
and the correlation length ξ diverge. The critical exponents are easily found to
be

γ = 1 , ν =
1

2
, η = 0 , α = max

(
0, 2 − d

2

)
, αsing = 2 − d

2
.

Here α and αsing are, respectively, the exponents for the full specific heat and
for its singular part (see Chapter 13). In this model the specific heat is given
essentially by the “bubble integral”

CH ∼
∫

[−π,π]d

dp G̃(p)2 ,

which will play a key role in our analysis of critical behavior for Ising and
ϕ4 models (Chapters 14 and 15). Note, finally, that the Gaussian model is
undefined when B < J̃(0) [and when h 6= 0 with B = J̃(0)], since the relevant
Gaussian integrals are divergent (even in finite volume). Thus, unlike other
statistical-mechanical models, the Gaussian model has no low-temperature phase
(or critical isotherm).

Another solvable case is the limit N → ∞ of an isotropic N -component
spin model (e.g. the N -vector model) with the field strengths scaled as ϕ2 ∼ N .
This limit also serves as a starting point for a systematic expansion in powers
of 1/N . The basic idea is to Fourier-expand the a priori single-spin distribution
(1.23)/(1.24) by introducing an auxiliary variable ax conjugate to ϕ2

x:

gN(ϕ2
x) ≡ e−NV (ϕ2

x/N) =
∫ ∞

−∞
dax eiaxϕ2

x g̃N(ax)
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where, for example,

g̃N(ax) =





exp
[−N

λ
a2 +

iBN

λ
a
]

ϕ4 model

exp(−iNa) N -vector model

The ϕ integral is then Gaussian, and hence can be performed, yielding a deter-
minant; the a integral is then carried out by the saddle-point method, yielding
an asymptotic expansion in powers of 1/N . For more details, see [77, 378, 348].
The critical exponents at N = ∞ are found to be

γ =





2

d − 2
for 2 < d < 4

1 for d ≥ 4





, ν =
γ

2
, η = 0 ,

β̂ =
1

2
, δ =





d + 2

d − 2
for 2 < d < 4

3 for d ≥ 4





, αsing =
4 − d

d − 2
.

(2.39)

(modulo logarithms in d = 4). Moreover, critical exponents can be expanded
(non-rigorously) in powers of 1/N ; see [77, 378].

Finally, we remark that the N → ∞ limit of the N -vector model is equiva-
lent (in at least some aspects [486]) to the spherical model defined in the early
1950’s by Berlin and Kac [62]. In our opinion, the original spherical model is of
mainly historical interest; in this book, we sometimes use the term “spherical
model” simply as a shorthand for “N → ∞ limit of the N -vector model”.

The most famous nontrivial exactly solved model in statisticalmechanics is
the two-dimensional nearest-neighbor Ising model (in zero magnetic field). The
free energy was first computed by Onsager [417] in a 1944 paper which marked
the beginning of the modern theory of critical phenomena. The spontaneous
magnetization was computed in 1952 by Yang [524]. Previously, Kaufman and
Onsager computed a few two-point correlations [330]; while other correlation
functions have been computed in recent years as well [387, 1, 316, 421, 422].
The critical exponents are

γ =
7

4
, ν = 1 , η =

1

4
, β =

1

8
, δ = 15 , α = 0 (log) .

For reviews, see [388, 57, 456, 487, 438].

The ϕ4 model can be expanded formally in a perturbation series around
the Gaussian model, i.e. a Taylor expansion in powers of λ. For details, see
e.g. [424]. For d > 4, one obtains an asymptotic expansion for the critical
temperature which is finite order-by-order; the critical exponents coincide with
those of the Gaussian model (γ = 1, ν = 1

2
, η = 0, α = 0) but now include the

low-temperature and critical-isotherm exponents
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β̂ =
1

2
, δ = 3 .

Thus, for d > 4, the λϕ4 term in the Hamiltonian is irrelevant in the critical
region; this will be made precise by the renormalization group (Chapter 4). On
the other hand, for d ≤ 4 perturbation theory predicts its own downfall: the
coefficients in the perturbation series are infrared-divergent (i.e. divergent due
to long distances or small momenta) when the critical point is approached; and
the divergences get stronger at higher orders in the series. This is a signal of the
fact that, when d < 4, the critical temperature cannot be expanded in powers
of λ [85] and that the critical exponents are not those of the Gaussian model.

Rather, the critical exponents take on nontrivial values which are difficult to
compute; approximate values can be obtained by series extrapolation [237, 287],
renormalization-group-improved perturbation theory [77, 24], or Monte Carlo
simulation [65]. In this book we take on the more modest task of proving rigorous
nonperturbative upper and lower bounds on critical exponents.

Another important approximation method is mean-field theory , which can
be derived in several different ways:

1) Variational approach (see e.g. [424]). The Boltzmann-Gibbs distribution
is the probability measure which maximizes the entropy minus β× the mean
energy. By carrying out this maximization over a restricted set of probability
measures, we obtain an approximate solution of the model. Mean-field theory
is obtained by using product measures (i.e. measures in which the spins are
statistically independent). The result is a self-consistent equation for the mag-
netization, e.g. for the Ising model

Mx = tanh

[
hx +

∑

y

JxyMy

]
.

(This equation can alternatively be derived by focussing on one spin and re-
placing the effect of all the other spins by their mean values, hence the name
“mean field”.) From this equation one deduces the critical exponents

γ = 1 , β̂ =
1

2
, δ = 3 , α = 0 (2.40)

— the so-called mean-field (or classical) exponents. Of course, the neglect of cor-
relations between spins is a rather terrible approximation in the critical region,
so these predicted exponents should not be taken too seriously. The remarkable
thing is that these exponents are correct for d > 4: in this case the effects of
fluctuations are not so severe.

2) Landau-Ginzburg theory (see [487]). Here one simply postulates that the
Legendre transform of the free energy, written as a function of the magnetization
M and temperature T , is analytic (or at least sufficiently-many-times differen-
tiable) in a neighborhood of M = 0, T = Tc. One then imposes the known
qualitative behavior and deduces the critical exponents (2.40). Mathematically,
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this is catastrophe theory [29]; physically, it is wishful thinking. Surprisingly,
the predictions of Landau-Ginzburg theory are essentially correct for d > 4, as
we discuss in Sections 14.2–14.5.

The disadvantage of these two approaches to mean-field theory is that they
cannot be systematically improved. The third method avoids this failing:

3) Systematic expansion. Mean-field theory can be derived as the zeroth
order in a systematic perturbation expansion around the Gaussian model [77].
This perturbation expansion is finite order-by-order in d > 4, but infrared-
divergent order-by-order in d ≤ 4. This suggests that the mean-field exponents
may be correct for d > 4 and incorrect for d < 4; and this can be rigorously
proven (see Chapter 14).

2.4 Bounds on critical exponents

Though it is in general difficult to compute the exact critical exponents of
a nontrivial statistical-mechanical model, some information can be obtained
through rigorous inequalities involving one or more critical exponents. Indeed,
the proof of critical-exponent inequalities has become a minor industry.

Inequalities on critical exponents are best classified, and their physical
meaning understood, by examining the conditions under which they become
equality. In this way we obtain six classes of critical-exponent inequalities (see
Section 13.2 for definitions of exponents):

(a) Those that become equality in mean-field theory (or what is almost
the same, for the Gaussian model). Examples : γ ≥ 1, ν ≥ 1

2
, η ≥ 0, β̂ ≤ 1

2
,

β̂(δ − 1) ≥ 1, α ≤ (2− d
2
)γ. These inequalities are related to (but weaker than)

the fact that the deviation from Gaussianness is one-sided: for example, γ ≥ 1
is a consequence of the Lebowitz inequality u4 ≤ 0, while η ≥ 0 is a consequence
of the infrared bound (2.23).

(b) Those that become equality in the N → ∞ limit of an N -component
model. Example: γ ≤ 2/(d − 2). This inequality expresses the fact that the
“bubble sum” becomes exact as N → ∞: all other classes of diagrams are
suppressed by powers of 1/N [518, 110, 283].

(c) Those that become equality under the thermodynamic scaling hypothesis
(see [487, 289]). Examples : α′+2β+γ′ ≥ 2, α′+β(δ+1) ≥ 2. These inequalities
express the general thermodynamic properties (e.g. convexity) of the free energy.

(d) Those that become equality under the correlation scaling hypothesis
(see [487, 289]). Example: γ ≤ (2 − η)ν. These inequalities are related to (but
weaker than) the existence of the scaling limit (see Chapter 14).

(e) Those that become equality under the hyperscaling hypothesis (see [509,
323, 198, 201, 510, 200, 288]). Examples : dν − 2∆4 + γ ≥ 0, dν ′ ≥ γ′ + 2β,
dν ≥ 2−α, d(δ−1)/(δ+1) ≥ 2−η. These inequalities express deep facts about
the nature of critical fluctuations; they will play a prominent role in Chapter 15.
For example, the dimensionless renormalized coupling constant g behaves as
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g ∼ (βc − β)dν−2∆4+γ ; therefore, the inequality dν − 2∆4 + γ ≥ 0 states that g
stays bounded as β ↑ βc, while the hyperscaling relation dν−2∆4 +γ = 0 states
that g stays nonzero in this limit (and hence that the corresponding continuum
quantum field theory is non-Gaussian).

(f) Those that become equality under no reasonable condition. Examples :
η ≤ 1, ∆4 ≥ γ.

Unfortunately, many of these inequalities can only be proven for rather
restricted classes of models (e.g. Ising, plane-rotator, ϕ4), even though their va-
lidity is presumably more general. Much of Chapter 14 is devoted to inequalities
for critical exponents.



3. Scale transformations and scaling

(continuum) limits in lattice spin systems

In this chapter1 we discuss a method for constructing continuum Euclidean
field theories as scaling (continuum) limits of lattice spin systems approaching a
critical point. We show what the existence of a scaling limit gives us information
about the critical behavior of the lattice spin system.

In order to simplify our discussion, we consider a one-component spin field
ϕ on the lattice ZZ

d. Let {dµβ(ϕ)} be a family of equilibrium states parametrized
by β. (For simplicity, we imagine that β is the only thermodynamic parameter
that is varied, but there could also be dependence on a magnetic field h or on
other parameters.) We assume that each dµβ(ϕ) is translation-invariant. As in
Section 1.4, we define the correlation functions as the moments of dµβ, i.e.

〈ϕx1 . . . ϕxn〉β =
∫ n∏

k=1

ϕxk
dµβ(ϕ) . (3.1)

By a trivial re-definition of ϕ it is always possible to assume that

〈ϕx〉β = 0 . (3.2)

In the following we are interested in analyzing the long-distance limit of the
correlation functions defined in (3.1), and in relating existence and properties
of this limit to the behavior of the equilibrium state and the correlations as β
approaches a critical point βc [defined as in (1.46)]. We assume that, for β < βc,
the state 〈 · 〉β is extremal invariant (i.e. dµβ is ergodic under the action of lattice
translations) and that m(β) is positive, i.e. 〈ϕxϕy〉β tends to 0 exponentially fast
as |x− y| → ∞, with decay rate denoted m(β); see (1.38)/(1.39). Furthermore,
we assume that m(β) tends to 0 continuously as β ↑ βc. As mentioned in Section
2.2, these assumptions are known to hold in the Ising and plane-rotator models,
and more generally in ϕ4 models with 1 or 2 components.

We now define the scaled correlations

Gθ(x1, . . . , xn) ≡ α(θ)n〈ϕθx1 . . . ϕθxn〉β(θ) , (3.3)

where 1 ≤ θ < ∞, each xj belongs to the set

1This chapter is adapted from [228].
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ZZ
d
θ−1 ≡ {y: θy ∈ ZZ

d} , (3.4)

and β(θ) < βc and α(θ) are functions of the scale parameter θ which one tries
to choose in such a way that a non-trivial limit, as θ → ∞, exists. In the models
mentioned above it suffices to impose the following renormalization condition:
For 0 < |x − y| < ∞,

0 < lim
θ→∞

Gθ(x, y) ≡ G∗(x − y) < ∞ . (3.5)

It turns out that, in our class of models, (3.5) suffices to show that the limit

G∗(x1, . . . , xn) = lim
θi→∞

Gθi
(x1, . . . , xn) (3.6)

exists for some sequence {θi}, and that G∗(x1, . . . , xn) is a translation-invariant
distribution, for all n = 3, 4, . . . .

Let us henceforth assume that a scaling limit satisfying (3.5) does exist;
we shall show that from this hypothesis, along with some natural regularity
conditions, we can derive information on the critical exponents of the underlying
lattice model. Note first that the non-vanishing of G∗ at x− y 6= 0 implies that
the lattice theories 〈 · 〉β(θ) must be approaching a critical point,

β(θ) ↑ βc as θ → ∞ . (3.7)

If the limiting correlation G∗(x − y) is required to have exponential fall-off,

G∗(x − y) ∼ e−m∗|x−y| as |x − y| → ∞ (3.8)

(with m∗ > 0), it is natural to impose that the underlying lattice theories have
similar behavior, i.e.

θm(β(θ)) → m∗ as θ → ∞ . (3.9)

If m(β) is known to satisfy a scaling law

m(β) ∼ (βc − β)ν as β ↑ βc (3.10)

[cf. (1.48)], then (3.9) and this scaling law imply that we must choose β(θ) such
that

βc − β(θ) ∼ θ1/ν as θ → ∞ . (3.11)

Assuming now that G∗(x − y) is integrable at zero, it follows that

χ∗ ≡
∫

ddxG∗(x) (3.12)

is finite; and it is natural to expect that the rescaled lattice susceptibilities

χθ ≡
∑

x∈ZZ
d
θ−1

θ−dGθ(0, x) (3.13)

converge to χ∗ as θ → ∞. By (3.3),
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χθ = α(θ)2θ−dχ(β(θ)) . (3.14)

If χ(β) satisfies a scaling law

χ(β) ∼ (βc − β)−γ as β ↑ βc (3.15)

[cf. (1.49)], then we conclude that α(θ) must be chosen as

α(θ)2 ∼ θd−(γ/ν) as θ → ∞ . (3.16)

By assuming a little more regularity in the limit (3.5), we can relate (3.16)
to the critical exponent η defined in (1.47). Indeed, let us assume that the
same choice of α(θ) works for any value of m∗ ≥ 0. [That is, the “field-strength
renormalization” is the same in the massive and massless scaling limits.] Then,
imposing (3.5) with β(θ) ≡ βc (i.e. m∗ = 0), we conclude immediately that α(θ)
must be chosen as

α(θ)2 ∼ θd−2+η as θ → ∞ . (3.17)

Comparing (3.16) and (3.17), we deduce the scaling relation

γ = (2 − η)ν . (3.18)

It is worth remarking that in our class of models, the infrared bound (2.23)
holds, from which one can deduce that, for d > 2,

0 ≤ 〈ϕ0ϕx〉β ≤ cdβ
−1|x − y|2−d (3.19)

(at least for one- or two-component fields; see [481]); here cd is a universal
constant. On the one hand, it is immediate from (3.19), evaluated at β = βc,
that

η ≥ 0 . (3.20)

On the other hand, it follows from (3.5) and (3.19) that we must take

α(θ)2 ≥ const × θd−2 as θ → ∞ . (3.21)

Note that (3.20) and (3.21) are equivalent if (3.17) holds.

We can apply a similar argument to correlation functions of the field ϕ2.
Define the rescaled ϕ2–ϕ2 correlation function

G
(ϕ2)
θ (x, y) ≡ α2(θ)

2 〈ϕ2
θx ; ϕ2

θy〉β(θ) , (3.22)

where we have introduced a new field-strength renormalization factor α2(θ).
Assuming that with the same choice of β(θ), and for a suitable choice of α2(θ),
we have

0 < lim
θ→∞

G
(ϕ2)
θ (x, y) ≡ G(ϕ2)∗(x − y) < ∞ , (3.23)

for 0 < |x − y| < ∞, then an argument analogous to the preceding one shows
that we must choose
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α2(θ)
2 ∼ θd−(α/ν) , (3.24)

where α is the critical exponent defined by

∑

x

〈ϕ2
0 ; ϕ2

x〉β ∼ (βc − β)−α as β ↑ βc . (3.25)

And assuming that this choice of α2(θ) works also for m∗ = 0, we conclude that

α = (4 − d − ηϕ2)ν , (3.26)

where ηϕ2 is the critical exponent defined by

〈ϕ2
0 ; ϕ2

x〉βc ∼ |x|−(2d−4+ηϕ2 ) as |x| → ∞ . (3.27)

Let us mention, however, that this reasoning assumes that G(ϕ2)∗(x − y) is
integrable at zero, which we expect to fail in dimension d ≥ 4.

In summary, we have shown (modulo some regularity assumptions) that
the critical-exponent ratios γ/ν and α/ν, which describe the approach to the
critical point β ↑ βc, can be computed from the decay as |x| → ∞ of correlation
functions at the critical point βc.

Remark. Plausible (but by no means airtight) physical arguments [508, 326]
imply that the hyperscaling relation

dν = 2 − α (3.28)

ought to hold, at least in dimension d < 4. If hyperscaling holds, then (3.26)
becomes

ν =
2

4 − ηϕ2

(3.29)

α = 2 − 2d

4 − ηϕ2

(3.30)

so that the critical exponents ν and α (and not only their ratio) can be de-
termined from the critical correlations. Note that although the hyperscaling
relation dν = 2− α has not yet been proven, it has been proven [319, 480] that

dν ≥ 2 − α . (3.31)

We now must focus our attention on the question of why we are interested
in the large-scale behavior of a lattice spin system, i.e. in studying the limit
where θ → ∞. Here are some answers.

1) Suppose we are able to construct the limiting rescaled correlation func-
tions, G∗(x1, . . . , xn) ≡ limθ→∞ Gθ(x1, . . . , xn), such that the renormalization
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conditions (3.5) and (3.9) hold. Then we must have, in particular, a way of de-
termining the functions β(θ) and α(θ). But, as we have just shown, the choice
of β(θ) determines the critical exponent ν, and the choice of α(θ) determines η.
Thus an explicit construction of the θ → ∞ limit determines, in principle, the
critical exponents ν, γ and η.

2) As our derivation of relation (3.18) shows, proving merely the existence
of a θ → ∞ limit yields non-trivial relations between critical exponents.

3) But perhaps the main interest in constructing the limits, G∗(x1, . . . , xn),
of the rescaled correlation functions comes from the fact that these limits may
be the Euclidean Green’s functions of a relativistic quantum field theory , i.e.

G∗(x1, . . . , xn) ≡ Sn(x1, . . . , xn) , (3.32)

for some quantum field theory satisfying the G̊arding-Wightman axioms (GW0)–
(GW4). Indeed, in the models considered above, this is is the case provided that
the distributions G∗(x1, . . . , xn) are invariant under simultaneous rotations of
their arguments. [Even if rotation-invariance were to fail, the G∗’s would still
be the Euclidean Green’s functions of a non-Lorentz-invariant quantum field
theory.]

This observation is at the basis of understanding universality in the the-
ory of critical phenomena: Critical phenomena in lattice systems can be stud-
ied quantitatively precisely by analyzing the scaling limits of their correlation
functions which are the Euclidean Green functions of some Euclidean Field
Theory. But the manifold of Euclidean Field Theories has a simple structure
that is quite well understood, at least conjecturally. In particular, in d > 2
dimensions it is believed to be finite-dimensional. It contains special points
corresponding to scale-covariant (and hence, in general, conformally covariant
[195, 383, 455, 376, 435]) Euclidean Field Theories. In our class of examples,
these points, i.e. the Conformal Field Theories, are isolated. In d ≥ 4 dimen-
sions, there is a single conformal field theory describing critical behavior in the
class of lattice systems considered in this section: the massless, free (Gaussian)
field theory. In three dimensions, there appear to exist just two conformal field
theories describing critical phenomena in our class of lattice systems: the mass-
less free field theory, appropriate for the description of tri-critical behavior, and
critical λϕ4

3-theory, appropriate for the description of critical behavior. In two
dimensions, there is an infinite, discrete series of conformal field theories, the A-
series of minimal models [58, 209, 104, 103], which describe n-critical behavior,
for n ≥ 2, in the class of lattice systems considered in this section.

All critical exponents can be calculated, in principle, from Green functions
of conformal field theories, as explained above. This and the above remarks on
the structure of conformal field theories explain what universality in the theory
of critical phenomena means and where it comes from.

For some scaling (= continuum) limits of the models introduced in Section
1.4 in two and three dimensions and of the two-dimensional Ising model it has
been shown (see e.g [260, 229, 387, 316, 1, 421, 422]), that the distributions
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G∗ are the Euclidean Green’s functions of relativistic quantum field theories
satisfying all Wightman axioms (W0)–(W4).



4. Construction of scaling limits: the

renormalization group

In this chapter1 we sketch a specific method for constructing scaling (≡ contin-
uum) limits, G∗(x1, . . . , xn), of rescaled correlations, Gθ(x1, . . . , xn), as θ → ∞,
namely the Kadanoff block spin transformations. They shall serve as a typical
example of “renormalization group transformations.”

Of course, there are many other incarnations of the renormalization group
strategy, including ones in the context of dynamics, in particular the Feigen-
baum theory [180, 181, 349, 112]. One of them, the Gallavotti-Nicolò tree ex-
pansion [232, 434] — which is very close to Wilson’s original version [516, 517,
519, 520] — is briefly sketched in this chapter.

We also indicate how mathematical control of (Wilson) renormalization
group transformations enables one to calculate critical exponents.

4.1 Block spin transformations

We define a function K ≡ Kε on IRd as follows:

K(y) =





ε−d − ε
2
≤ yµ ≤ ε

2
, µ = 1, . . . , d

0 otherwise
, (4.1)

where y = (y1, . . . , yd) ∈ IRd and ε is an arbitrary positive number. Let

Kx(y) = K(y − εx) , x ∈ ZZ
d . (4.2)

Let Gθ(x1, . . . , xn) be a rescaled correlation function defined in (3.3). Then

Gθ(Kx1 , . . . ,Kxn) =
∑

y1,...,yn∈ZZ
d
θ−1

Gθ(y1, . . . , yn)
n∏

k=1

θ−dKxk
(yk)

= (α(θ)θ−d)n
∑

z1,...,zn∈ZZ
d

〈ϕz1 . . . ϕzn〉β(θ) ·
n∏

k=1

Kxk
(θ−1zk) .

(4.3)

We now set

1Sections 4.1 and 4.2 are adapted from [228].
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θ = θm = ε−1Lm , (4.4)

where L is some positive integer and m = 1, 2, 3, . . ., and define

rm(ϕx) = α(ε−1Lm) · L−dm
∑

z ∈ ZZ
d

− 1
2
≤ L−mzµ − xµ ≤ 1

2

ϕz , (4.5)

x ∈ ZZ
d, µ = 1, . . . , d. Then

Gθm(Kx1 , . . . ,Kxn) = 〈rm(ϕx1) . . . rm(ϕxn)〉β(θm) . (4.6)

Let dµ(ϕ) be an arbitrary, translation-invariant, finite, positive measure on the

space IRZZ
d

of all configurations {ϕx : x ∈ ZZ
d}. We define a transformation Rm

of µ by the equation

∫ n∏

k=1

rm(ϕxk
)dµ(ϕ) =

∫ n∏

k=1

ϕxk
d(Rmµ)(ϕ) , (4.7)

for all x1, . . . , xn in ZZ
d, n = 1, 2, 3, . . . .

Note that rm (resp. Rm) consists of a transformation increasing the scale
size (taking the average over all spins in a block) followed by a (in the present
example linear) coordinate transformation in spin space. Furthermore, we note
that if µ is ergodic then so is Rmµ.

In order to arrive at an interesting concept we now suppose that α(θ) is
proportional to some power of θ, i.e.

α(θ)2 ∼ θd−2+η , (4.8)

for some η. We then define

r(ϕx) = L(η−d−2)/2
∑

z ∈ ZZ
d

− 1
2
≤ L−1zµ − xµ ≤ 1

2

ϕz . (4.9)

Then
rm(ϕx) = α(ε−1) r ◦ . . . ◦ r︸ ︷︷ ︸

m times

(θ(x)) . (4.10)

Let Rµ be the unique measure such that

∫ n∏

k=1

r(ϕxk
)dµ(ϕ) =

∫ n∏

k=1

ϕxk
d(Rµ)(ϕ) , (4.11)

for all x1, . . . , xn, n = 1, 2, 3 . . . . [Note, R maps ergodic measures to ergodic
ones.] Then

d(Rmµ)(ϕ) = d(R ◦ . . . ◦ R︸ ︷︷ ︸
m times

µ)(α(ε)ϕ) ≡ d(Rmµ)(α(ε)ϕ) . (4.12)
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If we now choose dµ = dµβ, where {µβ} is a family of Gibbs states of our spin
system indexed by β we obtain, setting β = β(θm),

G∗(Kx1 , . . . ,Kxn) = lim
m→∞

Gθm(Kx1 , . . . ,Kxn)

= lim
m→∞

∫ n∏

k=1

ϕxk
d(Rmµβ(θm))(α(ε)ϕ) , (4.13)

provided the limit exists.
In order to prove existence of the limit in (4.13), one must analyze the

transformation R on (the boundary of) a suitably chosen cone of finite measures.
In particular, one has to construct fixed points of R, study the spectrum of the
linearization of R at the fixed points (the linearization of R acts on a linear space
of measurable (or continuous, or analytic) functions of spin configurations, ϕ),
and construct the stable and unstable manifolds of R near a fixed point. We
shall discuss some examples below.

Remarks.
1) By (4.8)–(4.11), the transformation R ≡ Rη depends on the exponent η.

The condition that the limit in (4.13) exist and be non-trivial fixes η.
2) We shall see that the critical exponents ν and γ are determined by positive

eigenvalues > 1 of the linearization of Rη at the appropriate fixed point of Rη.
3) It is usually expected that if a measure µ is a Gibbs measure for some

Hamilton function H, then Rηµ is again a Gibbs measure. This, however, is not
true in general. But if it is true on a suitably chosen space of Gibbs states then
Rη uniquely determines a transformation Rη acting on a space of (equivalence
classes of) Hamilton functions, or interactions. The simplifying feature of this
set-up is that the derivative of Rη acts on the linear hull of the same space.

4) Below, we shall briefly indicate how these ideas are applied to dynamics.

4.2 Fixed points of block spin transformations, stable and
unstable manifolds, critical exponents

Let M be some cone of finite measures, µ, on some space of spin configurations
ϕ = {ϕj}j∈ZZ

d . Let Rη be a renormalization (block spin) transformation acting
on M , as discussed in Section 4.1. (One ought to assume probably that M can
be given a differentiable structure such that the action of Rη on M is smooth.)
Of particular interest are the fixed points, µ∗, of Rη. It is usually not so hard
to convince oneself that there exists at least one fixed point. Supposing, for
example, that the spins are real-valued and that Rη is given by (4.11), it is easy
to see that Rη has at least a one-dimensional manifold of fixed points, µ∗

t , t ∈ IR,
which are Gaussian measures. Gaussian measures are uniquely characterized by
their mean and their covariance. Here the mean of µ∗

t if set to 0, the covariance
is of the form etC∗, where
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Fig. 4.1. Manifold M of measures in the vicinity of a fixed point µ∗. Unstable man-
ifold = Mu; stable manifold = Ms; relevant perturbations = R; irrelevant perturba-
tions = I; marginal perturbations = M

∫
dµ∗

t=0(ϕ)ϕxϕy ≡ C∗(x, y) = c∗(x − y) ∼ |x − y|2−d−η . (4.14)

See [468, 467] and the references given there. (Non-Gaussian fixed points have
been constructed, too, but no non-Gaussian fixed points interesting for statis-
tical physics appear to be known, in the sense of rigorous mathematics, except
in the two-dimensional models [58, 209, 103].)

There is an intimate mathematical connection between fixed points, µ∗, of
Rη and “stable distributions” in probability theory. It is worthwhile to note
that fixed points, µ∗, cannot be strongly mixing. See e.g. [468, 467, 318] and the
references given there for a discussion of these probabilistic aspects. We stress,
however, that the main concepts of the renormalization group are more general
than their probabilistic formulation!

Let Mfp = Mfp(Rη) be the manifold of all fixed points of Rη. Now choose
some particular fixed point µ∗ ∈ Mfp, and let Mfp(Rη, µ

∗) be the connected
component of Mfp that contains µ∗. Since a certain class of coordinate transfor-
mations, like

ϕj → αϕj , for all j ∈ ZZ
d , (4.15)

for some positive α independent of j, commute with Rη, the fixed points of
Rη are not isolated, and the linearization of Rη at some fixed point µ∗ will
generally have an eigenvalue 1 (and possibly further eigenvalues) corresponding
to coordinate transformations.

Under suitable hypotheses on Rη and M , one can decompose M in the
vicinity of µ∗ ∈ Mfp into a stable manifold, Ms(µ

∗), and an unstable mani-
fold Mu(µ

∗) [see Figure 4.1]. States on Ms(µ
∗) are driven towards µ∗, states on

Mu(µ
∗) are driven away from µ∗, under the action of Rη. The tangent space,
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R, to Mu(µ
∗) at µ∗ is the linear space spanned by eigenvectors of DRη(µ

∗) (the
derivative of Rη at µ∗) corresponding to eigenvalues of modulus > 1. It is called
the space of “relevant perturbations”. The space I of “irrelevant perturbations”
is the tangent space to Ms(µ

∗) and is spanned by eigenvectors of DRη(µ
∗)

corresponding to eigenvalues of modulus < 1. The space M of “marginal per-
turbations” is spanned by eigenvectors of DRη(µ

∗) corresponding to eigenvalues
of modulus 1. Generically M will be the tangent space, C, to Mfp(Rη, µ

∗), and,
in a neighborhood of µ∗, each point in Mfp(Rη, µ

∗) can be reached by applying
a coordinate transformation to µ∗. However, it may happen that the dimension
of M is larger than the one of C. In that case, linear analysis is insufficient.
It may happen that one can enlarge Ms, (or Mu, or both) by submanifolds of
points which are driven towards (away from) µ∗ with “asymptotically vanishing
speed”. This is precisely what appears to happen in the models introduced in
Section 1.4 in four dimensions: dimM = 2 = dim C+1; (moreover, dimR = 1).
However, all fixed points appear to be scale-invariant Gaussian measures, and
Ms can be enlarged by a one dimensional submanifold tangent to a direction in
M at µ∗.

In the situation described here one expects logarithmic corrections to scaling
laws.

[Another possibility compatible with dimM > dim C is the appearance of
a stable, periodic cycle. For the transformation Rη defined in (4.8)–(4.11) one
should be able to rule out this possibility.]

Suppose now that Rη depends on a continuous parameter, δ, and that δ0 is
some “critical” value of δ such that

dimM = dim C , for δ > δ0 ,

dimM > dim C , for δ = δ0 .
(4.16)

Then δ0 is a bifurcation point, and one expects the emergence of new fixed points
(or periodic cycles) for δ < δ0. In the study of the models mentioned above,
it was proposed by Wilson and Fisher [519] to identify δ with the dimension
d and to interpolate analytically in d.2 The critical dimension, corresponding
to δ0, is 4, and above four dimensions the fixed points governing the critical
behavior of those models are Gaussian, and η = 0. There are partial results
towards showing that the “relevant” fixed points in dimension 4 are Gaussian,
as well [5, 213, 15, 298]. This will be discussed in Chapters 6 and 15.

Next, we discuss how critical exponents are related to the spectrum of
DRη(µ

∗), where Rη is the transformation defined in (4.9)–(4.12). We consider
a simple case: In a neighborhood of µ∗, Mfp(Rη, µ

∗) is obtained by applying
suitable coordinate transformations in spin space to µ∗. By adopting some nor-
malization condition which fixes the choice of coordinates we can project out the
marginal directions associated with Mfp. We assume that, after this reduction,
the tangent space at µ∗ splits into a one-dimensional space of relevant pertur-
bations and a codimension-one space of irrelevant perturbations (in particular,

2Another possibility is to identify δ with the range of the interaction.
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there are no further marginal perturbations). Taking smoothness properties of
Rη in some neighborhood of µ∗ for granted, we conclude that in some neighbor-
hood of µ∗ there exist a one-dimensional unstable and a codimension-one stable
manifold passing through µ∗.

Next, let {µβ}β>0 be a family of Gibbs measures of some spin system crossing
the stable manifold, Ms(µ

∗), transversally at some value βc of the parameter β.
We assume that, for all β < βc, µβ is extremal invariant, and that the inverse
correlation length (or “mass”, see Section 1.4), m(β), is positive and continuous
in β, with

m(β) ց 0 , as β ր βc , (4.17)

as discussed at the beginning of Chapter 3. (The class of all spin systems whose
Gibbs states have these properties, for some given Rη and µ∗, is called a uni-
versality class.)

Now fix some number m∗ > 0, and let M(j,m∗) be the manifold of extremal
translation-invariant probability measures, µ, on the space of spin configura-
tions, ϕ, which have the property that

∫
dµ(ϕ) ϕ0ϕx (4.18)

has exponential decay rate (mass) L−jm∗, as |x| → ∞. If the space M of
measures on which Rη acts is chosen appropriately, M(j,m∗) will typically be
of codimension 1, and M(∞,m∗) = Ms(µ

∗), in some neighborhood of µ∗. Hence,
for j large enough, Mu(µ

∗) will typically cross M(j,m∗) transversally at some
point µj. We assume that {µβ}β<βc crosses M(j,m∗) transversally at a point
µβj

, for large enough j — which is consistent with (4.17). Clearly the sequence
{βj} converges to βc, as j → ∞. Furthermore, by the definition of Rη, see
(4.8)–(4.11), Section 4.1, and the definition of M(j,m∗),

RηM(j,m∗) = M(j − 1,m∗) , (4.19)

for all j.
Let λ be the unique, simple eigenvalue of DRη(µ

∗) which is larger than 1.
In a neighborhood of µ∗, Mu(µ

∗) can be given a metric such that

dist (µj, µ
∗)/dist (µj+1, µ

∗) → λ , as j → ∞ , (4.20)

as follows from (4.19). Thus if µβc is sufficiently “close” to µ∗ it follows from
our assumptions on {µβ}β>0 (see Figure 4.2) that

|βj − βc| ∼ λ−j , as j → ∞ . (4.21)

By the definition of M(j,m∗),

m(βj) = L−jm∗ . (4.22)

Thus, if we set t = βc − β and m(t) ≡ m(β), β < βc, we obtain from (4.21) and
(4.22)



4.2 Fixed points of block spin transformations 65

Fig. 4.2. Vicinity of a fixed point µ∗, with stable manifold Ms and unstable manifold
Mu. Here M(j, m∗) is the manifold of theories having mass L−jm∗, and {µβ} is
some one-parameter family of models. The renormalization transformation Rη maps
M(j, m∗) onto M(j − 1, m∗)

m(t) ∼ tln L/ ln λ as t → 0 . (4.23)

In terms of critical exponents,

ν = ln L/ ln λ . (4.24)

Thanks to relation (3.18), the exponent γ of the susceptibility is determined by
η and ν.

From what we have said so far, or by inspecting Figures 4.1 and 4.2, it
follows that the renormalization group transformation, Rη, drives every family
{µβ} of Gibbs states with the properties stated above (transversal crossing of
M(j,m∗), for j large enough; see Figure 4.2) towards the unstable manifold,
Mu(µ

∗),of the fixed point µ∗. More precisely, given a state µ̃ ∈ Mu(µ
∗), there is

a sequence of inverse temperatures (βn = βn(µ̃))n=1,2,3,... converging to βc such
that

lim
n→∞

Rn
ηµβn = µ̃ . (4.25)

Moreover, by (4.20)–(4.24),

|βn − βc| ∼ λ−n , as n → ∞ , (4.26)

with λ = L1/ν . Comparing (4.25) and (4.26) with (4.13), we see that µ̃ corre-
sponds to a scaling (≡ continuum) limit of µβ, as β ր βc. Hence, µ̃ corresponds
to some “Euclidean field theory.” In our example, all scaling limits of all models
whose Gibbs states form a one-parameter family crossing Ms(µ

∗) transversally
(i.e. which belong to the universality class of µ∗) form a one-parameter family
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of “Euclidean field theories,” Mu(µ
∗). By (4.20)–(4.24), the exponent ν can be

calculated by following the action of Rη along Mu(µ
∗). This explains why crit-

ical exponents of lattice field theories and spin systems can be computed from
continuum Euclidean field theory.

The fixed point, µ∗, is invariant under Rη and therefore scale-invariant;
see (4.11). But scale-invariant Euclidean field theories are (by non-rigorous but
plausible arguments) conformal-invariant theories. Therefore, fixed points of
the renormalization-group transformation Rη, and hence universality classes of
lattice models, correspond to conformal field theories.

The exponents η and ν can be directly calculated from the conformal theory
if that theory is known explicitly, see (1.47), (3.27) and (3.29).

This concludes our general discussion of the basic renormalization-group
strategy.

Remarks.

1) We find it useful to sketch the conjectural features of the renormalization
group applied to three-dimensional, one-component lattice field theories and
spin systems with short-range ferromagnetic interactions (e.g. λϕ4

3, or the three-
dimensional Ising model). A massless Gaussian measure, dµ0, which is specified
by the properties

∫
dµ0(ϕ)ϕx = 0 ,

∫
dµ0(ϕ)ϕ0ϕx ∼

|x|→∞
|x|−1 ,

is a fixed point of Rη, with η = 0.

We study the action of Rη=0 on the space of measures invariant under
ϕx 7→ −ϕx, for all x. Then the unstable manifold near µ0 is two-dimensional, its
tangent space, R, at µ0 (relevant perturbations) is spanned by {∑

x ϕ2
x,

∑
x ϕ4

x}.
There is a marginal direction, i.e. M is one-dimensional, corresponding to the
perturbation

∑
x ϕ6

x. It is expected that M is tangent to Ms(µ0) (triviality of
λϕ6

3-theory; see Chapter 5). One believes that there is a non-Gaussian fixed
point, µ∗, of a renormalization group transformation Rη, with η > 0, which has
a stable manifold, Ms(µ

∗), intersecting Mu(µ0) in a curve connecting µ0 to µ∗.
The fixed point µ∗ is supposed to describe the universality class of critical λϕ4

3

and the three-dimensional Ising model. Its unstable manifold is expected to be
one-dimensional, and there are no non-trivial marginal perturbations of µ∗.

This picture has been verified, to a considerable extent, in the hierarchical
approximation [342, 184]. If correct, this picture shows that µ∗ can be con-
structed from ϕ4 perturbations of µ0.

The picture is believed to be much simpler in d ≥ 4 dimensions: there is a
unique fixed point — the Gaussian fixed point — and the unstable manifold is
one-dimensional, with tangent space spanned by {∑

x ϕ2
x} (massive free fields).

This situation is studied in detail in Chapters 6 and 15, by using completely
different (random-walk) methods.
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In two dimensions (d = 2), the situation is very different. The unstable
manifold of the Gaussian fixed point is known to be infinite-dimensional , see
[260]. Interactions like

∑
x P (ϕx), where P is a polynomial that is bounded from

below, belong to the plane tangent to the unstable manifold at the Gaussian
fixed point, as do interactions like

∑
x eαϕx or

∑
x cos(αϕx + θ) for sufficiently

small α. On the other hand, recent progress in two-dimensional conformal field
theory has established the existence of infinitely many non-Gaussian fixed points
(the A-series of minimal models [58, 104, 103, 105, 526]) describing multi-critical
behavior More precisely, these investigations suggest that a non-Gaussian fixed
point describing the critical behavior of Ising-type models can be constructed
by studying perturbations of the Gaussian fixed point by a degree-4 polynomial
(“ϕ4 theory”), and that non-trivial fixed points describing tri-critical or quadri-
critical behavior can be reached by perturbing the Gaussian fixed point by
polynomial interactions of degree 6 or 8, respectively; etc. Note, however, that
while the existence of these fixed points has been essentially established, the
precise structure of the renormalization flow between those fixed points (see
Figure 4.3) is conjectural.

2) The ideas and concepts discussed here have other interesting applica-
tions to relativistic quantum field theory and statistical mechanics: As we have
argued in Section 4.1, (4.8) through (4.13), one can use renormalization trans-
formations, Rη, and their fixed points in order to construct the scaling limits,
G∗(x1, . . . , xn), of the correlation functions of a spin system which, under gen-
eral and explicit conditions [224, 225], can be shown to be the Euclidean Green’s
functions of a relativistic quantum field theory. So far, constructive quantum
field theory has — in this language — been mostly concerned with the analysis
of Gaussian fixed points of the transformations Rη, with η = 0, and the action of
Rη=0 in a small neighborhood of those fixed points. For a study of non-Gaussian
fixed points,see however [242, 249, 182, 342].

3) Another application of those ideas concerns the phenomenon of asymp-
totic symmetry enhancement. One example of this phenomenon is found in the
fact that in many models the scaling limits, G∗(x1, . . . , xn), of the correlation
functions on some spin system are invariant under all simultaneous Euclidean
motions of their arguments, although the functions Gθ(x1, . . . , xn) are only in-
variant under translations by an arbitrary vector a ∈ ZZ

d
θ−1 . Other examples

concern the generation of internal symmetries in the scaling limit. See e.g.
[224, 225, 226] for such examples. (Symmetry enhancement arises whenever
a fixed point, µ∗, and the marginal and relevant perturbations of µ∗ have a
large, “accidental” symmetry group.)

4) Renormalization group methods can also be applied to dynamics:Let
ϕt denote a smooth flow on a finite dimensional manifold, M . Consider the
following mapping on the space of all such flows on M :

Rθ,Λ : ϕt → (Rθ,Λϕ)t ≡ Λ−1 ◦ ϕθt ◦ Λ , (4.27)

where Λ is a smooth mapping from M into M , (a coordinate transformation).
The mapping Rθ,Λ is the analogue of the transformation Rη defined in (4.9)–
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Fig. 4.3. Conjectured structure of the manifold of Euclidean Field Theories: (a)
d ≥ 4, (b) d = 3, (c) d = 2
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(4.12). When time is discrete, i.e. t = n = 1, 2, 3 . . ., and

ϕt = ϕn , (4.28)

for some mapping ϕ from M into M , one would study, for example,

RΛ : ϕ → RΛϕ = Λ−1 ◦ ϕ ◦ ϕ ◦ Λ . (4.29)

This is the Feigenbaum map. It poses very interesting, mathematical problems
and serves to understand phenomena like the period doubling bifurcations and
the onset of turbulence; see [180, 181, 349, 112]. (This is one among few examples
where non-trivial fixed points have been constructed.)

4.3 A brief sketch of the tree expansion

In this section3 we briefly sketch a version of the renormalization group, orig-
inally proposed by Kogut and Wilson [516, 517, 519, 520], which has been
developed by Gallavotti and Nicolò [235, 236, 232, 182, 183, 186] and others
[188, 189, 191, 192, 187]. It is somewhat different in spirit from that in Sec-
tions 4.1 and 4.2. One defines renormalization-group transformations on some
space of Hamiltonians (or, in the language of Euclidean field theory, effective
actions) rather than on a space of measures. The renormalization-group trans-
formation maps an effective action on a momentum scale |p| ≈ γk to an effective
action on a scale γk−1. This yields an exact recursion relation for the effective
actions on arbitrary momentum scales. This is not a particularly convenient
starting point for a non-perturbative renormalization group analysis of statisti-
cal or field theory models, but it is an extremely convenient starting point for a
perturbative analysis, in the form of expansions in running coupling constants
[188, 189, 191, 192, 187, 242, 249, 244, 245, 243, 246]. It provides a powerful
tool to perform explicit calculations and to explore the vicinity of the Gaussian
fixed point, µ0, and thereby construct (at least perturbatively) various “renor-
malizable” and “non-renormalizable” [32, 33, 182, 186] models of Euclidean field
theory.

We consider a free field, ϕx, x ∈ IRd, with Gaussian distribution dµ0(ϕ)
specified by its mean and covariance,4

∫
dµ0(ϕ)ϕx = 0 ,

∫
dµ0(ϕ)ϕxϕy = C(x − y) ,

(4.30)

where

3Useful references for this section are Gallavotti [232] and Felder [183].
4In this section, we must assume some familiarity with free field theory (e.g. Wick ordering)

and constructive field theory, see [260, 462] for background.
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C(x − y) =
1

(2π)d

∫
p−2eip(x−y)ddp (4.31)

Let

Ĉj(p) ≡ 1

p2
{e−(p2/γ2j) − e−(p2/γ2(j−1))} > 0

Cj(x − y) ≡ 1

(2π)d

∫
Ĉj(p)eip(x−y)ddp ,

(4.32)

where γ > 1 is some fixed scale factor. We can decompose ϕ into fields ϕ(j),
localized in slices of momentum space, as follows.

ϕx =
∞∑

j=−∞

ϕ(j)
x , (4.33)

where ϕ(j) has a Gaussian distribution dµj
0 with mean 0 and covariance Cj. It

is easy to check that

Cj(x − y) = γ(d−2)jC0(γj(x − y)) , (4.34)

so that ϕ(j)
x and γ(d−2)j/2ϕ

(0)
γjx have identical distribution. Let ∂m =

∏
µ(∂/∂xµ)mµ ,

|m| =
∑

mµ. By (4.32) and (4.34)

|∂mCj(x)| ≤ c(m)γ(d−2+|m|)je−Mγj |x| (4.35)

for some constants c(m) < ∞ and M > 0.
We now introduce a model of Euclidean field theory with an ultraviolet

cutoff on scale N < ∞. We set

ϕ≤N =
N∑

j=−∞

ϕ(j) (4.36)

and define a self-interaction, V (N)(ϕ≤N), by

V (N)(ϕ≤N) =
∑

α

γ−∆(α)Nλα(N)Mα(ϕ≤N) , (4.37)

where α ranges over the set {2′, 2, 4, . . . , 2t}, and λ2t(N) > 0, λ2′(N) > −1
2
.

Moreover,

M2′(ϕ) =
∫

: (∇ϕx)
2 : ddx

M2(ϕ) =
∫

: ϕ2
x : ddx

...

M2t(ϕ) =
∫

: ϕ2t
x : d2x ,

(4.38)



4.3 A brief sketch of the tree expansion 71

where : − : indicates the usual Wick order with respect to dµ0; see [260, 462].
Finally, ∆(α) denotes the scaling dimension of Mα(ϕ), i.e.

∆(2′) = 0 , ∆(2) = −2 ∆(4) = d − 4, . . . , ∆(2t) = (d − 2)t − d . (4.39)

If ∆(α) < 0 Mα(ϕ) is a relevant perturbation of dµ0; if ∆(α) = 0 Mα(ϕ) is
marginal, and if ∆(α) > 0 Mα(ϕ) is irrelevant. The factors γ−∆(α)N on the
r.h.s. of (4.37) are chosen so that the coefficients λα(N) are dimensionless.

The goal is to make sense of the measures

dµ(N)(ϕ) =
e−V (N)(ϕ≤N )

Z(N)
dµ0(ϕ) , (4.40)

with Z(N) chosen such that
∫

dµ(N)(ϕ) = 1, as N becomes large. As long as
N < ∞ and λ2t(N) > 0, λ2′(N) > −1

2
, it is easy to see that (4.40) is well

defined; see [260]. In order to study the behavior, as N → ∞, it is convenient
to analyze, following Wilson [239], the effective potentials. They are recursively
defined by

V (k)(ϕ≤k) = − ln Ek+1 exp
[
−V (k+1)(ϕ≤k+1)

]
, (4.41)

with
EkF (ϕ≤k) ≡

∫
dµk

0(ϕ
(k))F (ϕ≤k−1 + ϕ(k)) , (4.42)

and V (N)(ϕ≤N) given by (4.37). The knowledge of the effective potentials
V (k)(ϕ≤k), k = 0, 1, 2 . . . is equivalent to knowing dµ(N)(ϕ). See e.g. [232] for
details.

One may now expand V (k) in powers of ϕ≤k:

V (k)(ϕ≤k) =
∞∑

n=0

∫
V

(k)
2n (x2, . . . , x2n) : ϕ≤k

x1
. . . ϕ≤k

x2n
: (4.43)

The kernels V
(k)
2n are Euclidean-invariant distributions whose behavior for dif-

ferent values of n and k we wish to study. The goal is to choose the coefficients
λα(N) (with λ2t(N) > 0, λ2′(N) > −1

2
) to depend on N in such a way that

the kernels V
(k)
2n remain well defined when the ultraviolet cutoff N → ∞, for all

finite n and k. [We shall not analyze the convergence of the series on the r.h.s.
of (4.43), although that is necessary if one wants to prove a non-perturbative
result.]

A basic idea behind the renormalization group strategy, already sketched in
the last two sections, is that the flow

. . . → V (k+1) → V (k) → . . . (4.44)

can be parametrized by finitely many parameters, corresponding to the relevant
and marginal operators. The operator M2′ is always marginal (∆(2′) = 0), while
M2, . . . ,M2t are perturbatively relevant, i.e. ∆(α) < 0, for d > 2(t + 1)/t. M2t

becomes marginal (∆(2t) = 0), when d reaches 2t/t − 1. [An interpretation
of these facts in terms of intersection properties of simple random walk can be
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found in Chapter 5] We thus want to parametrize the flow (4.44), with V (k) given
in terms of V (k+1) by (4.41), by a finite number of running coupling constants,
λα(k), α = 2′, 2, . . . , 2t, of relevant, marginal and possibly a finite number of
irrelevant operators. They are defined by the equation

∑

α

γ−∆(α)kλα(k)Mα(ϕ≤k) = LkV
(k)(ϕ≤k) , (4.45)

where Lk is a projection onto the linear space spanned by (Mα)α=2′,2,...,2t. More
precisely,

Lk

∫
V (x1, . . . , x2n) :

2n∏

i=1

ϕ≤k
xi

:
2n∏

j=1

ddxj

=
{

0 , for n > t ,
V̂ (0)M2n(ϕ≤k) , for 2 < n ≤ t ;

(4.46)

(V 7→ V̂ denotes Fourier transformation), and

Lk

∫
V (x1, x2) : ϕ≤k

x1
ϕ≤k

x2
: ddx1d

dx2

= Ĉ(0)M2(ϕ
≤k) +

∂

∂p2
V̂ (p2)

∣∣∣∣∣
p=0

M2′(ϕ
≤k) .

(4.47)

It is sometimes necessary to include some running coupling constants of irrel-
evant operators, because these can become relevant at a non-Gaussian fixed
point of (4.41). Therefore we shall not specify the value of t (as a function of
d), yet.

From (4.41) and (4.45)–(4.47) one easily derives a recursion relation for
the running coupling constants, at least in the form of a formal power series
expansion. This is one version of the Gallavotti-Nicolò tree expansion which
shall now be sketched.

Let ET
k be the truncated (connected) expectation corresponding to (4.42),

i.e.
ET

k F ≡ EkF ,ET
k (F,G) ≡ EkF · G − (EkF )(EkG) , (4.48)

etc.; see e.g. [260]. From the recursion relation (4.41) and (4.45) we obtain

V (k) =
∑

α

γ−∆(α)kλα(k)Mα(ϕ≤k) +

+(1 − Lk)
∞∑

s=1

(−1)s

s!
ET

k+1(V
(k+1), . . . , V (k+1)) .

(4.49)

[We have used that

ln Eke
F =

∞∑

s=1

(−1)s

s!
ET

k (F, . . . , F︸ ︷︷ ︸
s times

) .]
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Fig. 4.4. Tree labelling the term (4.50)

In (4.49), the running coupling constants are treated as unknowns. The term ∝
(1−Lk) on the r.h.s. is irrelevant. [It will therefore have good “power-counting”
properties in the ultraviolet.]

We now analyze (4.49) by iterating it. Iteration yields terms like (k < h < j)

γ−2(d−4)jλ2′(j)λ4(j)
2Ek+1Ek+2 . . . Eh−1(1 − Lh−1)

×ET
h

(
Eh+1 . . . Ej−1(1 − Lj−1)E

T
j (M4,M4),M2′

)
,

(4.50)

where we have left out the arguments ϕ≤j in the Mα’s and have used that
EkF = ET

k F , EkLk = Lk−1Ek and L2
k = Lk.

The term (4.50) can be labelled by the tree of Figure 4.4.
In fact, all terms in the iteration of (4.49) can be labelled by trees, whence

the name “tree expansion”: Iteration of (4.49) yields the following tree expan-
sion.

V (k) = LkV
(k) +

∑

θ, h, α

hv0 = k

1

n(θ)
V (θ, h, α)

∏

i endpoint of θ

λαi
(ki) , (4.51)

where θ is a rooted ordered tree, h =
(
hv

)
v∈V(θ)

are integers associated with

the vertices (branching points) of θ, v ∈ V(θ), with hv1 < hv2 if v1 < v2 in the
obvious ordering of V(θ). The endpoints, i, of θ bear labels αi ∈ {2′, 2, 4, . . . , 2t},
and hi = hv(i) is the integer associated with the vertex v(i) to which the endpoint
i is connected. The root, v0, of θ bears the integer k. The sum in (4.51) extends
only over non-trivial, rooted ordered trees, the trivial tree being the one without
branches, assignments of integers h to the vertices of a given, non-trivial tree
and endpoint labels α. The combinatorial factor, n(θ), is given by

n(θ) =
∏

v∈V(θ)

sv! , (4.52)

where sv + 1 is the order of the vertex v.
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The coefficients V (θ, h, d) in the expansion (4.51) can be calculated recur-
sively: For the trivial tree, θ0,

V (θ0, hv0 , α) = γ−∆(α)hv0Mα(ϕ≤hv0 ) . (4.53)

If the first vertex of θ at which θ branches is v1, with subtrees θ1, . . . , θsv1
growing

out of v1 then

V (θ, h, α) = Ehv0
. . . Ehv1−1E

T
hv1

(
V (θ1, h1, α1), . . . , V (θsV1

, hsv1
, αsv1

)
)

, (4.54)

where (hi, αi) is the restriction of (h, α) to θi.
We observe that (4.51) is an expansion of V (k) in powers of running coupling

constants λα(h), h ≥ k. V (k) depends on the ultraviolet cutoff N in the way
that hv ≤ N , for all v ∈ V(θ), and

V (N) = LNV (N) . (4.55)

The fundamental property of (4.51) is that, order by order in the running
coupling constants, λα(h),the sums over momentum scales h on the r.h.s. of
(4.51) are convergent. This is proven inductively, using the recursion formula
(4.54). The key fact to be used in the proof is that the projection (1 − Lhv1−1)
on the r.h.s. of equation (4.54) projects the operator

ET
hv1

(V (θ1, h1, α1), . . . , V (θsv1
, hsv1

, αsv1
))

onto the linear space of irrelevant operators. The image is therefore an operator
with “good ultraviolet power-counting”; (the operators (1−Lhv1−1) play a role
analogous to the Taylor subtraction operations in the BPHZ formalism which
render Feynman amplitudes convergent). In order to make this more precise,
one expands V (θ, h, α) in powers of the field ϕ≤hv0 :

V (θ, h, α) =
∑

n

∫
V (θ, h, α; x1, . . . , x2n) :

2n∏

i=1

ϕ≤hv0
xi

:
2n∏

j=1

ddxj (4.56)

The kernels V (θ, h, α; . . .) can be calculated in terms of sums over Feynman
amplitudes:

V (θ, h, α; x1, . . . , x2n) =
∑

G compatible

with θ, α

VG(θ, h, α; x1, . . . , x2n) , (4.57)

where the sum extends over all Feynman graphs, G, with 2n external lines and
l vertices of type α1, . . . , αl, where l is the number of endpoints of the tree θ,
which are compatible with θ, α. A graph G is compatible with θ, α if and only
if

(i) for i = 1, . . . , l, the ith vertex corresponds to the operator Mα and hence
is of order 2, for αi = 2′, 2, and of order 2r, for αi = 2r, with r ≤ t;

(ii) G has two kinds of internal lines: hard lines (generated when one eval-
uates ET

h -expectations, h ∈ h) and soft lines (generated by Wick reordering).
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Fig. 4.5. A graph compatible with the tree of Figure 4.4. Each internal line is either
hard (h) or soft (s).

Hard lines correspond to propagators Ch, defined in (4.32), which are well local-
ized in momentum space and are estimated as in (4.35). Soft lines correspond
to propagators

∑
j≤k−1 Cj. If one draws a circle around each set of vertices be-

longing to a subtree, θi, of θ then hard lines connect all such circles contained
in an arbitrary larger circle. [This follows inductively from (4.54) by using the
definition of connected expectations, ET

hv1
.]

A graph compatible with the tree of Figure 4.4 is shown in Figure 4.5
The behavior of Feynman amplitudes corresponding to compatible graphs can
be analyzed inductively, using (4.35), and this will prove finiteness of the tree
expansion (4.51). For details see [232, 186, 183].

We now return to our basic formulas (4.41) and (4.51): Applying Lk to both
sides of the equation

V (k)(ϕ≤k) = −
∞∑

s=1

(−1)s

s!
ET

k+1(V
(k+1), . . . , V (k+1)

︸ ︷︷ ︸
s times

) (4.58)

and then insert (4.51) (with k replaced by k + 1) on the r.h.s. of (4.58), we
obtain a recursion relation for the running coupling constants:

λα(k) = γ−∆(α)λα(k + 1) −
∑

θ, h, α

hv0 = k

hv1 = k + 1

1

n(θ)
βα(θ, h, α)

∏

i

λαi
(hi) , (4.59)

where the sum extends over all non-trivial trees, and the coefficients βα(θ, h, α)
are defined by
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∑

α

γ−∆(α)kβα(θ, h, α)Mα(ϕ≤k)

= LkEk+1

(
V (θ1, h1, α1), . . . , V (θsv1

, hsv1
, αsv1

)
)

.

The product,
∏

i λαi
(hi), on the r.h.s. of (4.59) is over all endpoints of θ.

The sum on the r.h.s of (4.59) defines, in perturbation theory in the running
coupling constants, the beta functional. Equation (4.59) reduces the study of
the renormalization group recursion formula to the study of the flow of running
coupling constant determined by (4.59).

The basic estimate on the coefficients βα(θ, h, α) required to show that (4.59)
makes sense as a termwise well-defined formal power series in the running cou-
pling constants is the following:

|β(θ, h, α)| ≤ C l
0n(θ)

∏

v∈V(θ)
v>v1

γ−(hv−h′
v)/2((t − 1)l)! , (4.60)

where l ≥ 2 is the number of endpoints of θ, C0 is some finite constant, v1 is
the earliest branching vertex in θ and, for v ∈ V(θ), v′ denotes the branching
vertex in V(θ) immediately preceding v. Finally, n(θ) is defined in (4.52).

The estimate (4.60) is valid for renormalizable and non-renormalizable the-
ories [d ≥ 2t/(t − 1)], but not for super-renormalizable theories.

Estimate (4.60) permits us to resum (4.59) to obtain the termwise well-
defined formal expansion

λα(k) = γ−∆(α)λα(k + 1) +
∑

n:|n|≥2

βα,n(k)λn , (4.61)

with n = (nα(h)), nα(h) = 0, 1, 2, . . ., for every (α, h), and λn =
∏

α,h λα(h)nα(h).
One has the bound

∣∣∣
∑

|n|=n

βα,n(k)λn
∣∣∣ ≤ Cn‖λ‖n

∞((t − 1)n)! , (4.62)

with ‖λ‖∞ = sup |λα(h)|.
For details we must refer the reader to [232, 235, 183].
Equations (4.51) and (4.61) are a very elegant starting point for study-

ing renormalization theory and the renormalization group perturbatively and
performing explicit calculations. But it yields rigorous, non-perturbative results
only for models for which perturbation theory in the running coupling constants
converges; see [305, 444, 182, 244, 245, 243, 246, 249, 191, 364]. In other cases,
the theory sketched here requires non-trivial modifications: see e.g. the work of
Glimm and Jaffe [254] and Gallavotti and collaborators [230, 231, 59, 60] on
ϕ4

3, and the work of Balaban [34, 36, 37, 39, 40, 42, 43, 44, 45, 38, 46, 47] and
Federbush [171, 51, 178, 172, 175, 176, 173] on Yang-Mills theory.

In the standard examples, like λϕ4
4-theory, the formalism developed above

confirms what earlier approaches predicted. Non-perturbative results for λϕ4
d,

d ≥ 4 are discussed in Chapters 6 and 15.
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In the language of equation (4.61), a fixed point of the renormalization
group transformation (4.41) (or (4.51)) corresponds to a fixed point, λ ≡
(λ∗

2, λ
∗
2, λ

∗
4, . . . , λ

∗
2t) of the flow equation (4.61). The unstable manifold of that

fixed point can be parametrized by solutions,

λα(k) = λ∗
α + δλα(k)

of (4.61), with δλα(k) small. Knowing such a solution, one can use (4.51) to
perturbatively calculate V (k) on all momentum scales k. Critical exponents can
be calculated from the behavior of δλα(k) as a function of k. For example, ν
can be determined from δλ2(k), k = −1,−2,−3, . . . .

Renormalized perturbation theory (e.g. for d = 4, t = 2) is recovered by
solving (4.61) under the condition that λ2(0) = m2, λ4(0) = λren (renormalized
coupling constant). See [235, 188, 189, 191, 192, 187].

4.4 Rigorous uses of block spin transformations

The first mathematically rigorous analysis of a specific example to which the
renormalization group strategy outlined in the previous sections can be applied
is the one by Bleher and Sinai [67, 68], who analyzed Dyson’s hierarchical model.
The Hamilton function of this model is chosen in such a way that the renor-
malization group transformations can be reduced to non-linear transformations
acting on some space of densities, f , of the single-spin distribution,

dλ(ϕ) = f(ϕ)dϕ .

The work of Bleher and Sinai was reconsidered and extended in [111, 230, 239,
240, 342, 184] and the references cited there. The study of the hierarchical model
had a stimulating influence on the development of the probabilistic approach to
the renormalization group, initiated by Jona-Lasinio and his colleagues in Rome
[317, 233, 106] and continued by Sinai and Dobrushin (see [467, 468, 318, 468]
and the references given there). It was Gallavotti and collaborators [59, 60] who
first applied the renormalization group method to (the ultraviolet problem in)
constructive quantum field theory in a systematic and transparent way, although
ideas and techniques related to it — and developed independently — can already
be found in work of Glimm and Jaffe [254, 253]. These applications concern the
construction of the λϕ4 model in the continuum limit in three dimensions. [This
problem is equivalent to the study of a renormalization group transformation
analogous to Rη in the vicinity of a Gaussian fixed point.] The work in [59, 60]
motivated further applications to constructive (gauge) quantum field theory,
notably by Balaban [33, 34, 37, 38, 39, 41, 40, 42, 43, 44, 45] and Battle,
Federbush and collaborators [49, 50, 48, 171, 174, 51, 178, 172, 175, 176, 173],
and to statistical mechanics [239]. These developments have evolved towards a
rigorous mathematical theory of renormalization group transformations in the
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vicinity of Gaussian fixed points.Among systems whose critical behavior is now
understood rigorously are the following ones: Dipole gases in d ≥ 2 dimensions
[241, 382, 95]; weakly coupled λϕ4

d in d ≥ 4 dimensions [247, 190, 244, 192,
290, 298]; hierarchical model approximations to large-N |ϕ|43 [242, 249], to non-
linear σ-models in two dimensions [248, 397], and to the three-dimensional Ising
model [342, 184]. A looser interpretation of the renormalization group strategy
partially motivated the work in [224, 225, 227, 11].

First applications of renormalization group methods to dynamics were made
in [180, 181], although the idea to use them in the study of dynamics is certainly
older; see e.g. [106].

All the work quoted here involves very intricate analytical and combinatorial
methods and can therefore not be sketched here.

In the following chapter we outline another much more special but quite
successful approach to critical phenomena which gives rather good results for
the models discussed in these notes, near Gaussian fixed points, [5, 213]. It was
inspired by a formalism first developed in [494] and made rigorous in [92, 96,
97, 213] relating the theory of classical spin systems to the theory of random
walks. A related, slightly prior approach, due to Aizenman, may be found in [5].

But mathematically rigorous results on critical phenomena in equilibrium
statistical mechanics in dimensions d < 4 still do not nearly measure up to the
practical successes of the renormalization group. This ought to be a challenge!
There has been tremendous progress, though, in understanding critical phe-
nomena in two-dimensional statistical systems thanks to recent developments
in two-dimensional conformal field theory [195, 383, 455, 376, 58, 209, 104, 103,
526, 105, 139, 140, 141].



5. Random walks as Euclidean field theory

(EFT)

5.1 Definition of the model and statement of results

In this chapter we study a classic problem of probability theory — the inter-
section properties of simple random walks — using a rigorous blend of per-
turbation theory and renormalization-group arguments. Aside from its intrinsic
mathematical interest, this problem played a key role in motivating the field-
theoretic developments described in the remainder of this book, culminating in
the triviality theorem for ϕ4 field theory and Ising models in dimension d > 4.
The logic of the field-theoretic arguments (described in more detail in Chapter
6) is roughly the following:

1. An identity is derived which represents a lattice field theory in terms of
interacting (“non-simple”) random walks.

2. Inequalities are derived which bound certain connected correlation func-
tions of the field theory (in particular, the dimensionless renormalized
coupling constant g) in terms of the intersection properties of these “field-
theoretic” random walks.

3. The intersection properties of simple random walks are used as intuition
to motivate conjectures for the intersection properties of “field-theoretic”
random walks. (These conjectures must, however, be proven by different
methods.)

Thus, while the results of this chapter are not logically necessary for field the-
ory, they serve as a valuable “warm-up problem” and as a guide for the more
complicated field-theoretic analysis.

In Chapter 3 we learned that passing to the scaling limit is equivalent to
approaching a critical point of the lattice theory in such a way that the mass,
in physical units (e.g. inverse centimeters), stays fixed. Now the scaling limit of
simple random walks on the lattice, obtained by letting the mass m tend to zero
in lattice units, is Brownian motion [463, Section 17]. The intersection properties
of Brownian paths were determined in the 1940’s and 1950’s by Dvoretsky, Erdös
and Kakutani, using methods of capacity theory. The result is: Two independent
Brownian motions in IRd, with distinct starting points, have zero probability of
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intersection if d ≥ 4 [327, 158] and nonzero probability of intersection if d < 4
[366, 158].1 It is therefore reasonable to conjecture that a similar result holds
for the intersection properties of simple random walks on the lattice, in the
limit m → 0. Unfortunately, we do not know any way of deducing such a lattice
result as a corollary of the continuum result (or vice versa); but in this chapter
we shall give a direct proof of the lattice result.

Let us recall from Section 1.6 that the weight function for simple random
walks is

̺[n](ω1, . . . , ωn) =
n∏

i=1

̺(ωi) , (5.1)

where

̺(ω) = J |ω| , 0 < J <
1

2d
. (5.2)

The two-point function is

K(x, y) =
∑

ω: x→y

̺(ω) . (5.3)

The parameter playing the role of a mass is given by

m2 = J−1 − 2d , (5.4)

while the analogue of the susceptibility is

χ =
∑

y

K(x, y) = (1 − 2dJ)−1 = J−1m−2 . (5.5)

Now let pm(x1, y1) be the probability that two independent walks , ω1 and ω2,
starting at points x1 and y1, intersect somewhere,

pm(x1, y1) = χ−2
∑

x2,y2

∑

ω1: x1 → x2

ω2: y1 → y2

̺(ω1)̺(ω2) I(ω1 ∩ ω2 6= ?) ,

and let pm be the “average intersection probability”

pm ≡ md
∑

y1∈ZZ
d

pm(x1, y1) . (5.6)

Since pm(x1, y1) is a pure number (it is a probability), and m is proportional
to the lattice spacing in physical units, pm is a dimensionless quantity which
corresponds to the physical coupling constant g introduced in (1.45).2

1This result can be predicted heuristically by recalling [496] that Brownian paths have
Hausdorff dimension dH = 2. Now, two objects of dimension dH embedded in R

d should
“generically” have nonempty intersection if 2dH > d, and empty intersection if 2dH < d. The
borderline case 2dH = d is more delicate; for Brownian paths it turns out that the Hausdorff
dimension is really “infinitesimally less than 2” (see [367, 108] for d > 2, and [440, 497] for
d = 2), so that the intersection is also empty. For further discussion of the (self-)intersection
properties of Brownian paths, see [463, pp. 81–87].

2An alternate motivation for the md factor in (5.6) is to note that the “correlation length”
of the simple random walk (5.1)/(5.2) is ≈ m−1: that is, the two-point function K(x, y) decays
exponentially for |x − y| >∼ m−1. Therefore, it is to be expected (and can in fact be proven)

that the intersection probability pm(x1, y1) is negligible for |x1 − y1| >∼ m−1. Therefore, the
“average intersection probability” pm is in essence the average of pm(x1, y1) over the region
|x1 − y1| <∼ m−1.
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The main results on pm are summarized in the following theorem:

Theorem 5.1 As m → 0,

pm ∼





const > 0 d < 4

| log m|−1 d = 4

md−4 d > 4

The lower bounds on pm in Theorem 5.1 were first proven by Erdös and
Taylor [164]; their proof was further simplified by Sokal [476] and Felder and
Fröhlich [185]. The upper bounds on pm for d ≥ 4 were also claimed by Erdös
and Taylor, but their proof for d = 4 was unfortunately incorrect. A correct
proof of the upper bound for d = 4 was first given by Lawler [351]; simpler
proofs were given by Felder and Fröhlich [185], Aizenman [7] and Park [425].

The plan of this chapter is as follows: In Section 5.2 we give a heuristic
renormalization-group argument that explains why Theorem 5.1 is expected to
hold. In Section 5.3 we give two slightly different proofs of the lower bound
on pm: one is a variant of the Erdös-Taylor “dilution trick”, while the other is
based on the Schwarz inequality. In Section 5.4.1 we prove the upper bound for
d > 4 by computing the expected number of intersections; this technique yields
a precursor of the Aizenman-Fröhlich inequality which, as discussed in the next
chapter, is central to the proof of triviality of the ϕ4 field theory. In Sections
5.4.2 and 5.4.3 we give two very different proofs of the (much deeper) upper
bound for d = 4: the first is a renormalization-group argument due to Felder and
Fröhlich [185] and Aizenman [7], while the second is a direct inclusion-exclusion
argument due to Park [425]. The latter is closely related to the “passing-to-the-
left” trick to be discussed in Section 12.3.1. Unfortunately, neither of these two
proofs has yet been generalized to SAWs or “field-theoretic” walks.

5.2 Heuristic renormalization-group argument

We start by giving a heuristic (perturbative) “proof” of Theorem 5.1 and more
general results, using a renormalization-group flow equation. In Section 5.4.2
we will show how to make this renormalization-group argument rigorous.

In order to set up the perturbation theory, we first introduce a model of
simple random walks with weak mutual avoidance, in which intersections be-
tween walks ω1 and ω2 are penalized by (roughly speaking) a factor e−λ. As
λ → +∞, this reduces to a pair of simple random walks with strict mutual
avoidance, and a suitable connected four-point function in this model yields the
intersection probability pm(x1, y1). On the other hand, by expanding in powers
of λ around λ = 0, we can develop a perturbation expansion.

For each path ω, we first introduce a probability measure dν̃ω on [0,∞)ZZ
d

by the formula
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dν̃ω(t) =
∏

z

dν̃nz(ω)(tz) , (5.7)

where nz(ω) is the number of times that ω visits the site z, and

dν̃n(s) =





δ(s) ds if n = 0

sn−1

Γ (n)
e−sχ[0,∞)(s) ds if n ≥ 1 .

(5.8)

The variables t = {tz} can be thought of as “waiting times” (or “local times”)
for a Poisson jump process associated with the walk ω. In particular, tz = 0
with ν̃ω-probability 1 if z 6∈ ω, and tz > 0 with ν̃ω-probability 1 if z ∈ ω. Since
dν̃ω(t) is a probability measure, we obviously have

K(x, y) ≡
∑

ω: x→y

Jω

=
∑

ω: x→y

Jω
∫

dν̃ω(t) .

We next introduce a “connected four-point function”

Kc
λ(x1x2 | y1y2) =

∑

ω1: x1 → x2

ω2: y1 → y2

Jω1Jω2

∫
dν̃ω1(t

1) dν̃ω2(t
2) Iλ(t

1, t2) , (5.9)

where
Iλ(t

1, t2) = exp(−λ
∑

j

t1j t
2
j) − 1 (5.10)

and 0 ≤ λ < ∞. Note that

(a) −1 ≤ Iλ ≤ 0

(b) Iλ is a decreasing function of λ

(c) I0(t
1, t2) = 0

(d) With probability 1 (with respect to dν̃ω1 × dν̃ω2),

Iλ(t
1, t2) = 0 if ω1 ∩ ω2 = ? (5.11)

(e) With probability 1 (with respect to dν̃ω1 × dν̃ω2),

lim
λ→∞

Iλ(t
1, t2) =





−1 if ω1 ∩ ω2 6= ?

0 if ω1 ∩ ω2 = ?



 . (5.12)

(f)

I
(2n+1)
λ (t1, t2) ≤ Iλ(t

1, t2) ≤ I
(2n)
λ (t1, t2) , (5.13)

where I
(k)
λ (t1, t2) arises by replacing the exponential by its Taylor series

expansion up to kth order in λ.
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The function Iλ thus interpolates between zero [at λ = 0] and minus the
indicator function I(ω1∩ω2 6= ?) [at λ = ∞]. In particular, we can define finite-λ
analogues of pm(x1, y1) and pm, namely

pm,λ(x1, y1) = −χ−2
∑

x2,y2

Kc
λ(x1 x2 | y1 y2) . (5.14)

and
pm,λ = md

∑

y1

pm,λ(x1, y1) . (5.15)

As λ → ∞ these approach pm(x1, y1) and pm, respectively.
The first thing to do in perturbation theory is to expand the four-point

function Kc
λ(x1 x2 | y1 y2) in powers of λ, using the following splitting lemma.

Lemma 5.2

∑

ω: x−→y

Jω
∫

dν̃ω(t) tzF (t)

=
∑

ω1: x −→ z

ω2: z −→ y

Jω1+ω2

∫
dν̃ω1(t

1)dν̃ω2(t
2)F (t1 + t2) .

(5.16)

The proof, which is not difficult, can be found in [97]. This lemma can be
used to evaluate Kc

λ(x1x2 | y1y2) by computing the integral with respect to
dν̃ω1(t

1)dν̃ω2(t
2) of

Iλ(t
1, t2) =

∞∑

n=1

(−λ)n

n!

∑

z1,...,zn

t1z1
t2z1

. . . t1zn
t2zn

(5.17)

After resumming each term over all resulting random walks, the final outcome
can conveniently be described in terms of Feynman diagrams. Using the symbols

© ←→ pm,λu ←→ an internal vertex (summed over)

←→ a bare propagator K(x, y).

and adopting the convention that all external vertices but one are to be summed
over all possible positions, the final result can then be depicted in the form:

© = J2md−4

[
−λ ¡

¡
@

@

@
@

¡
¡

u + λ2b2 @
@

¡
¡

¶µ ³́
¡

¡

@
@

u u

−λ3b3 @
@

¡
¡

¶µ ³́¶µ ³́
¡

¡

@
@

u u u − λ3b′3 @
@

¡
¡

¶µ̈§¥¦
¡

@

u uu + O(λ4)

]
.

(5.18)
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This expansion resembles Feynman perturbation theory for g in lattice λϕ4

theory, with the difference that no self-energy diagrams occur. Note that, by
(5.13), this expansion yields an upper bound on pm,λ if broken off after the
(2n + 1)st order, while it yields a lower bound when broken off after the (2n)th

order. A similar result can be proven for ordinary λϕ4 theory using the methods
of Chapter 6; see [97, 74].

It is natural to ask whether the expansion (5.18) comes from some lattice
field theory related to λϕ4. The answer is yes ! Indeed, consider the theory of p
N -component scalar fields ϕ1, . . . ,ϕp with an interaction Hamiltonian

Hint(ϕ) =
λ1

4!

p∑

j=1

|ϕj|4 +
λ2

4!

p∑

i,j=1
i6=j

|ϕi|2|ϕj|2 . (5.19)

Then the intersection properties of simple random walks can be expressed for-
mally in terms of the correlation functions of the field theory (5.19) analytically
continued to N = 0:

K(x, y) = lim
N→0

〈ϕ(1)
1 x ϕ

(1)
1 y 〉λ1=0,λ2=3λ,N (5.20)

Kc
λ(x1x2 | y1y2) = lim

N→0
〈ϕ(1)

1 x1
ϕ

(1)
1 x2

; ϕ
(1)
2 y1

ϕ
(1)
2 y2

〉λ1=0,λ2=3λ,N (5.21)

In fact, the term ∼ λ1|ϕj|4 in (5.19) generates a weak self-avoidance for the jth
walk, while the term ∼ λ2|ϕi|2|ϕj|2 generates a weak mutual avoidance between
the ith and jth walks; so the intersection properties of simple random walks
are obtained by taking λ1 = 0. (More discussion of analytic continuation in N
can be found in Section 9.2.2.) We can therefore apply formally the standard
methods of perturbative renormalization-group theory [77] to deduce the con-
jectured behavior of pm,λ as m → 0. To do this, we define a pair of dimensionless
renormalized coupling constants, g and g̃: here

g ≡ 3pm,λ ≡ −3χ−2md
∑

x2,y1,y2

lim
N→0

〈ϕ(1)
1 x1

; ϕ
(1)
1 x2

; ϕ
(1)
2 y1

; ϕ
(1)
2 y2

〉 , (5.22)

while
g̃ ≡ −χ−2md

∑

x2,x3,x4

lim
N→0

〈ϕ(1)
1 x1

; ϕ
(1)
1 x2

; ϕ
(1)
1 x3

; ϕ
(1)
1 x4

〉 (5.23)

(note the different internal indices 1122 vs. 1111). Define next the Callan-
Symanzik β-functions for the flow of g and g̃ under variations of log m,

W ≡ m
dg

dm

W̃ ≡ m
dg̃

dm

W and W̃ are given initially as functions of λ1, λ2 and m; they can be computed
formally in an (unrenormalized) perturbation expansion in powers of λ1 and λ2.
By expanding λ1 and λ2 in powers series in g and g̃ that expansion can be
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reverted to express W and W̃ as an expansion in powers of g, g̃ and ε = 4− d;
and the coefficients in this expansion are finite as m → 0. This expansion has
been calculated to leading order in g, g̃ and ε by Brézin and Zinn-Justin [83]:

W (g, g̃) = −εg +
N + 2

3
gg̃ +

4 + (p − 2)N

6
g2 + third-order terms

(5.24)

W̃ (g, g̃) = −εg̃ +
(p − 1)N

6
g2 +

N + 8

6
g̃2 + third-order terms.

(5.25)

In particular, when N = 0, the line g̃ = 0 is mapped into itself by the RG
flow. For d < 4, the flow at small g is controlled by a nontrivial fixed point at
g∗ = 3ε/2+O(ε2); for d ≥ 4 it is controlled by the Gaussian fixed point g∗ = 0.
Assuming that these fixed points are the ones that control the critical behavior
also for λ = ∞, we can predict the asymptotic behavior of pm as m → 0:

g ≡ 3pm ∼





3ε/2 + O(ε2) d < 4

| log m|−1 d = 4

md−4 d > 4 ,

. (5.26)

This concludes the non-rigorous argument explaining why Theorem 5.1 is ex-
pected to be true.

5.3 Proof of lower bound

In this section we give two proofs of the lower bound on pm claimed in Theorem
5.1. The first proof uses a variant of the Erdös–Taylor “dilution trick”. The
second proof is based on the Schwarz inequality.

First proof. Recall that

pm,λ(x1, y1) = −χ−2
∑

x2,y2

Kc
λ(x1 x2 | y1 y2)

and
pm,λ = −mdχ−2

∑

x2,y1,y2

Kc
λ(x1 x2 | y1 y2) .

These quantities are monotone increasing in λ, and approach pm(x1, y1) and pm,
respectively, as λ → ∞. By (5.13) we obtain a lower bound on pm,λ(x1, y1) if we
expand Iλ to second order in λ. By (5.9) and the splitting lemma (Lemma 5.2),
we get

−Kc
λ(x1 x2 | y1 y2)

≥ λ
∑

z

K(x1, z)K(x2, z)K(y1, z)K(y2, z)
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− λ2

2

∑

z,w

K(x1, z)K(y1, z)K(z, w)2K(w, x2)K(w, y2)

− λ2

2

∑

z,w

K(x1, z)K(y2, z)K(z, w)2K(w, x2)K(w, y1)

≡ λ ¡
¡

@
@

@
@

¡
¡

u
x1 x2

y1 y2

− λ2

2


 @

@

¡
¡

¶µ ³́
¡

¡

@
@

u
x1

y1

u
x2

y2

+ @
@

¡
¡

¶µ ³́
¡

¡

@
@

u
x1

y2

u
x2

y1


 .

(5.27)

Summing over x2, y1 and y2 we obtain

pm,λ ≥ mdχ2[λ − B(m)λ2]

where
B(m) ≡

∑

z

K(0, z)2 (5.28)

is the “bubble diagram”. Since pm ≥ pm,λ for all λ ≥ 0, we can obtain a lower
bound on pm by choosing any λ we please, in particular the optimal value
λ = [2B(m)]−1. This gives

pm ≥ J−2

4B(m)
md−4 . (5.29)

Recall that χ = J−1m−2. A simple computation yields

B(m) ∼





1
ε
m−ε d = 4 − ε (ε > 0)

| log m| d = 4

const(d) < ∞ d > 4

(5.30)

We have therefore proven the lower bound in Theorem 5.1. (This argument is
an application of the “dilution trick” discussed in full detail in Section 12.3.1.)

Second proof. Let N (ω1, ω2) be the number of pairs of “times” at which ω1 and
ω2 intersect:

N (ω1, ω2) ≡ #{(r, s): ω1(r) = ω2(s)} . (5.31)

Then, for any positive measure E on the space of pairs (ω1, ω2), the Schwarz
inequality implies that
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E(N ) = E(N I(N ≥ 1))

≤ E(N 2)1/2 E(I(N ≥ 1))1/2

and hence

E(I(N ≥ 1)) ≥ E(N )2

E(N 2)
. (5.32)

We shall apply this inequality with

E(F (ω1, ω2)) ≡
∑

x2,y1,y2

∑

ω1: x1 → x2

ω2: y1 → y2

̺(ω1) ̺(ω2) F (ω1, ω2) (5.33)

and x1 fixed. We need only compute E(N ) and E(N 2).
Let us start with E(N ):

E(N ) =
∑

r,s≥0

∑

x2,y1,y2

∑

ω1: x1 → x2

ω2: y1 → y2

̺(ω1) ̺(ω2) I(ω1(r) = ω2(s))

=
∑

z

∑

r,s≥0

∑

x2,y1,y2

∑

ω1: x1 → x2

ω2: y1 → y2

̺(ω1) ̺(ω2) I(ω1(r) = ω2(s) = z) .

(5.34)

For fixed z, r, s, the only terms that contribute are those with ω1(r) = ω2(s) = z.
So we can split ω1 ≡ ω′

1◦ω′′
1 at time r, and split ω2 ≡ ω′

2◦ω′′
2 at time s. Therefore

E(N ) =
∑

z

∑

r,s≥0

∑

x2,y1,y2

∑

ω′
1: x1 → z

ω′′
1 : z → x2

ω′
2: y1 → z

ω′′
2 : z → y2

|ω′
1| = r

|ω′
2| = s

̺(ω′
1 ◦ ω′′

1) ̺(ω′
2 ◦ ω′′

2)

=
∑

z

∑

x2,y1,y2

∑

ω′
1: x1 → z

ω′′
1 : z → x2

ω′
2: y1 → z

ω′′
2 : z → y2

̺(ω′
1 ◦ ω′′

1) ̺(ω′
2 ◦ ω′′

2) (5.35)

=
∑

z,x2,y1,y2

¡
¡

@
@

@
@

¡
¡

u
z

x1 x2

y1 y2

(5.36)

Now we use translation invariance: instead of fixing x1 and summing over z, x2,
y1, y2, we can fix z and sum over x1, x2, y1, y2. The result is
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E(N ) =

(
∑

x1,x2

∑

ω′: x1 → z

ω′′: z → x2

̺(ω′ ◦ ω′′)

)2

. (5.37)

For simple random walks, the weights factorize as

̺(ω′ ◦ ω′′) = ̺(ω′)̺(ω′′) , (5.38)

so we have simply
E(N ) = χ4 . (5.39)

Remark. Everything up to (5.37) applies to arbitrary random-walk models. More-
over, we have quite generally

∑

x1,x2

∑

ω′: x1 → z
ω′′: z → x2

̺(ω′ ◦ ω′′) =
∑

z,x2

∑

ω′: x1 → z
ω′′: z → x2

̺(ω′ ◦ ω′′)

=
∑

x2

∑

ω: x1→x2

̺(ω) (|ω| + 1) , (5.40)

since |ω| + 1 is the number of ways that a walk ω can be split into ω′ ◦ ω′′. The
difficult part is to compute or bound (5.40) — the “mean length” — in terms of more
familiar quantities. For models in which the weight ̺(ω) has a trivial J-dependence
as in (1.99),

̺(ω) = J |ω|exp[−U(ω)] (5.41)

(in Section 9.2.1 we call these “polymer-chain models”), it follows immediately that
(5.40) equals χ + J∂χ/∂J . (For simple random walks, χ + J∂χ/∂J = χ2!) Unfortu-
nately, for “field-theoretic” walks things are more complicated (see Section 11.3.1),
and we do not know how to compute (5.40).

Next we compute E(N 2):

E(N 2) =
∑

r, s ≥ 0

r′, s′ ≥ 0

∑

x2,y1,y2

∑

ω1: x1 → x2

ω2: y1 → y2

̺(ω1) ̺(ω2) I(ω1(r) = ω2(s))

×I(ω1(r
′) = ω2(s

′))

=
∑

z,z′

∑

r, s ≥ 0

r′, s′ ≥ 0

∑

x2,y1,y2

∑

ω1: x1 → x2

ω2: y1 → y2

̺(ω1) ̺(ω2) I(ω1(r) = ω2(s) = z)

×I(ω1(r
′) = ω2(s

′) = z′) .

(5.42)

We note that
∑

r, s ≥ 0

r′, s′ ≥ 0

. . . ≤ 2
∑

r, s, r′, s′ ≥ 0

r ≤ r′

. . .

≤ 2
∑

r, s, r′, s′ ≥ 0

r ≤ r′

s ≤ s′

. . . + 2
∑

r, s, r′, s′ ≥ 0

r ≤ r′

s ≥ s′

. . . .
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We now split ω1 = ω′
1 ◦ω′′

1 ◦ω′′′
1 at times r and r′, and split ω2 = ω′

2 ◦ω′′
2 ◦ω′′′

2 at
times s and s′ (or s′ and s). By the same reasoning as in (5.34)–(5.35), we find

E(N 2) ≤ 2
∑

z,z′,x2,y1,y2


 @

@

¡
¡

¶µ ³́
¡

¡

@
@

u
x1

y1

u
x2

y2

+ @
@

¡
¡

¶µ ³́
¡

¡

@
@

u
x1

y2

u
x2

y1




= 4
∑

z′

(
∑

x1,x2

∑

ω′: x1 → z

ω′′: z → z′

ω′′′: z′ → x2

̺(ω′ ◦ ω′′ ◦ ω′′′)

)2

(5.43)

For simple random walks, the weights again factorize,

̺(ω′ ◦ ω′′ ◦ ω′′′) ≤ ̺(ω′)̺(ω′′) ̺(ω′′′) , (5.44)

so we have
E(N 2) ≤ 4χ4B(m) (5.45)

where B(m) =
∑

z K(0, z)2 is the “bubble diagram” found already in (5.28).

Remark. For self-avoiding walks, we can write

̺(ω′ ◦ ω′′ ◦ ω′′′) ≤ ̺(ω′)̺(ω′′) ̺(ω′′′) , (5.46)

and still deduce (5.45). But this is a bad bound for d < 4 (see Section 12.3.3).

Putting together (5.32), (5.39) and (5.45), we get

E( I(N ≥ 1)) ≥ χ4

4B(m)
(5.47)

and hence

pm ≥ mdχ2

4B(m)
, (5.48)

exactly as in (5.29).
This Schwarz-inequality argument has been used by Aizenman [7] and by

Park [425]. It is an alternative to the “dilution trick”, and will be discussed
further in Section 12.3.1.

5.4 Proof of upper bound

We now turn to the upper bound on pm. In Section 5.4.1 we give a simple proof
of the upper bound on pm for d > 4. In Sections 5.4.2 and 5.4.3 we give two
alternate proofs of the upper bound in the (difficult) borderline case d = 4.
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5.4.1 Expected number of intersections

In dimension d > 4, the upper bound on pm is very easy: the probability that two
walks intersect can be bounded above by the expected number of intersections
Em(#(ω1 ∩ ω2)).

Lemma 5.3
pm ≤ const×md−4 . (5.49)

Proof.

pm = χ−2md
∑

y1,x2,y2

∑

ω1: x1 → x2

ω2: y1 → y2

̺(ω1) ̺(ω2) I(ω1 ∩ ω2 6= ?)

≤ χ−2md
∑

y1,x2,y2

∑

z

∑

ω1: x1 → x2

ω2: y1 → y2

̺(ω1) ̺(ω2) I(ω1 ∩ ω2 ∋ z) (5.50)

Since the weight (5.2) for a simple random walk factorizes under splitting of the
walk, we get

pm ≤ χ−2md
∑

y1,x2,y2,z

∑

ω′
1: x1 → z

ω′′
1 : z → x2

ω′
2: y1 → z

ω′′
2 : z → y2

̺(ω′
1) ̺(ω′′

1)̺(ω′
2) ̺(ω′′

2) (5.51)

= χ−2md × χ4

= J−2md−4 . (5.52)

In the last two equalities we have used (5.5). The lemma follows from the
observation that J → Jc > 0 as m → 0.

The bound provided by this lemma is essentially sharp for dimensions d > 4
but very bad for lower dimensions. To explain this fact, we notice that in ob-
taining the inequality in (5.50) we have bounded the probability of intersection
by the mean number of intersections. This overcounting is severe if walks meet
at many places. By comparing (5.52) with the actual result in Theorem 5.1,
we see that this is precisely what happens for dimension d ≤ 4. Indeed, by
looking at the ratio Em(#(ω1∩ω2))/pm ∼ md−4/pm, we see that once the walks
intercept they do so ∼ | log m| times for d = 4 and ∼ md−4 times for d < 4
— that is, infinitely many times as m → 0. We could in principle eliminate this
overcounting by a more careful bookkeeping of the intersections, for instance
by considering only the first z (in some ordering) at which an intersection takes
place. It is not easy to handle the constraints that arise from such a decompo-
sition, but Park [425] has shown how to do it; we present his proof in Section
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5.4.3. An alternate proof can be obtained from a rigorous renormalization-group
argument to control the flow of pm as m is varied; we present this proof, which
is due to Aizenman [7] and Felder and Fröhlich [185], in Section 5.4.2.

Let us mention that the argument in Lemma 5.3 can be generalized to SAWs
and to “field-theoretic” walks, yielding a “tree bound” analogous to (5.51); this
is the Aizenman-Fröhlich inequality (see Sections 6.2 and 12.2). As in the case
of simple random walks, this bound is essentially sharp for dimensions d > 4,
but is very bad for lower dimensions. Unfortunately, neither of the proofs for
d = 4 have yet been generalized to SAWs or to ϕ4 field theory.

5.4.2 Rigorous renormalization-group argument

Our starting point is the following simple lemma:

Lemma 5.4 In d dimensions,

m
dpm

dm
= (d − 4)pm + 4md

∑

x

Q(0, x) , (5.53)

where

Q(0, x) = m6
∑

ω1: 0 → any

ω2: 0 → any

ω3: x → any

(
3∏

i=1

J |ωi|

)
I(ω1 ∩ ω3 6= ?) I(ω2 ∩ ω3 6= ?) (5.54)

Proof. We start from the definition of pm,

pm = md+4
∑

x∈ZZ
d

∑

ω: 0 → any

ω′: x → any

J |ω|+|ω′| I(ω ∩ ω′ 6= ?) , (5.55)

with J = (2d + m2)−1. Using dJ/dm = −2J2m, we calculate m dpm/dm from
(5.55) and obtain, using the symmetry in ω and ω′,

m
dpm

dm
= (d + 4)pm − 4md+6

∑

x

∑

ω: 0 → any

ω′: x → any

|ω|J |ω|+|ω′|+1 I(ω ∩ ω′ 6= ?) (5.56)

Now, note that |ω| is the number of sites visited by ω (counted with multiplicity).
In each of these points we can split ω into two independent walks, ω1 and ω2.
Setting ω3 ≡ ω′, we have

m
dpm

dm
= (d + 4)pm

−4md+6
∑

x,z

∑

ω1: 0 → any

ω2: z → any

ω3: x → any

(
3∏

i=1

J |ωi|

)
I(ω1 ∩ ω3 6= ? or ω2 ∩ ω3 6= ?) .

(5.57)
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But

I(ω1 ∩ ω3 6= ? or ω2 ∩ ω3 6= ?) = I(ω1 ∩ ω3 6= ?) + I(ω2 ∩ ω3 6= ?)
− I(ω1 ∩ ω3 6= ? and ω2 ∩ ω3 6= ?)

Inserting this identity into (5.57) and translating z to the origin, we obtain

m
dpm

dm
= (d − 4)pm

+4md+6
∑

x

∑

ω1: 0 → any

ω2: 0 → any

ω3: x → any

(
3∏

i=1

J |ωi|

)
I(ω1 ∩ ω2 6= ?) I(ω1 ∩ ω3 6= ?)

(5.58)

This concludes the proof of Lemma 5.4.

Next, we prove a lower bound on Q(0, x) in terms of pm itself:

Lemma 5.5
4md

∑

x

Q(0, x) ≥ Cd p2
m

where Cd is a finite constant independent of m.

Proof. Let xα be the coordinate of x with the largest absolute value, (i.e. |xα| ≥
d−1/2|x|). Let πx be the lattice plane perpendicular to the α-axis, intersecting

the α-axis in the point
[

xα

2

]
eα, where eα is the unit vector in the α direction

and [a] is the largest integer ≤ a. Then by (5.54)

Q(0, x) ≥
m2

∑

ω3: x→any

J |ω3|
[
m2

∑

ω1: 0→any

J |ω1| I(ω1 ∩ ω3 6= ?)
]2

I(ω3 ∩ πx 6= ?) .

(5.59)

By the Schwarz inequality applied on the r.h.s. of (5.59),

4md
∑

x

Q(0, x) ≥
[
md

∑

x

m2
∑

ω3: x→any

J |ω3| I(ω3 ∩ πx 6= ?)
]−1

×





md
∑

x

m4
∑

ω3: x → any

ω1: 0 → any

J |ω1|+|ω3| I(ω1 ∩ ω3 6= ?)

×1
2

[
I(ω1 ∩ πx 6= ?) + I(ω3 ∩ πx 6= ?)

]





2

(5.60)
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by symmetry in ω1 and ω3. Now the denominator on the RHS of (5.60) is easily
shown to be bounded by a finite constant, uniformly in m > 0. Moreover,

I(ω1 ∩ ω3 6= ?)
1

2
[ I(ω1 ∩ πx 6= ?) + I(ω3 ∩ πx 6= ?)] ≥ 1

2
I(ω1 ∩ ω3 6= ?) . (5.61)

This proves the lemma.

We are now ready to complete the proof of Theorem 5.1. Putting together
Lemmas 5.4 and 5.5, we obtain the RG flow inequality

m
dpm

dm
≥ (d − 4)pm + Cdp

2
m . (5.62)

The differential inequality (5.62) can easily be integrated, yielding the desired
upper bound on pm.

Let us recapitulate the logic of this argument: It seems difficult to obtain
directly a sharp upper bound on pm for d = 4. Therefore, we proceed indirectly,
by deriving a bound on m dpm/dm in terms of pm itself. Finally, we integrate
this differential inequality. Let us mention that analogous arguments can be
used to bound m dpm,λ/dm in terms of the unknown pm,λ, with no explicit λ-
dependence; this generalization is the precise analogue of the heuristic RG flow
equation discussed in the preceding section. In essence our arguments prove a
non-perturbative lower bound on the RG β-function,

W (g) ≥ (d − 4)g + Cdg
2 , (5.63)

and this bound is valid for all attainable values of g, even though we do not
know a priori which values of g are attainable!

Some final remarks.

1) Similar methods can be used to estimate the intersection probability for
three simple random walks. Here the critical dimension is d = 3.

2) Our methods have been extended in [76] to estimate the intersection
probability of non-interacting branched polymers. Here the critical dimension
is d = 8, in accordance with the belief that the Hausdorff dimension of non-
interacting branched polymers is 4.

4) Some of the methods explained in this chapter — in particular Lemma
5.2, inequality (5.13) and inequalities analogous to (5.27) — can be extended to
λϕ4 lattice field theories, and have important applications to the construction
of continuum λϕ4

d theories for d = 2, 3, see Section 6.3 and [97, 96, 74].
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5.4.3 Direct inclusion-exclusion argument

In this section we present a beautiful and “elementary” proof of the upper
bound in Theorem 5.1, based on recent work by Park [425]. Many of the ideas
were also implicit in the original work of Lawler [351]. The method is to use
repeatedly the decoupling identity

1 = I(ω ∩ ω′ = ?) + I(ω ∩ ω′ 6= ?) , (5.64)

manipulating the walks so as to extract as a multiplicative factor the bubble
diagram B.

For technical reasons we shall need to consider walks ω: x → y that do not
return to x after the initial time; we call such walks “non-return” (NR) walks,
and write ω: x → y (NR). We define the non-return kernel

KNR(x, y) =
∑

ω: x→y (NR)

̺(ω) (5.65)

and the non-return “susceptibilities” (normalization factor)

χNR =
∑

y

KNR(x, y) . (5.66)

These quantities can be related to the ordinary kernel and susceptibility by a
“renewal” argument familiar from the theory of Markov chains: Consider an
arbitrary walk ω: x → y, and split it at its last return to x into ω = ω′ ◦ ω′′.
Then ω′ is an arbitrary (possibly zero-step) walk from x → x, and ω′′ is a
non-return walk from x → y. Moreover, the correspondence between ω and the
pair (ω′, ω′′) is one-to-one and onto. Now, for simple random walks, the weights
factorize:

̺(ω′ ◦ ω′′) = ̺(ω′) ̺(ω′′) . (5.67)

It follows that
K(x, y) = K(x, x)KNR(x, y) . (5.68)

To emphasize the translation-invariance, we use the notation

L ≡ K(x, x) (5.69)

and call L the loop diagram; an easy computation in Fourier space yields

L ∼





md−2 d < 2
| log m| d = 2
const(d) > 0 d > 2

(5.70)

as m → 0. In summary,

KNR(x, y) = L−1K(x, y)

χNR = L−1χ



5.4 Proof of upper bound 95

An important role in the argument will be played by the probability of non-
intersection (except at the origin) of two or three walks starting at the origin.
For technical reasons we shall take some of these walks to be non-return walks.
(This does not change the behavior as m → 0 in dimension d > 2.) We define
therefore the unnormalized quantities

R2 =
∑

ω1: 0 → any (NR)

ω2: 0 → any (NR)

̺(ω1)̺(ω2) I(ω1 ∩ ω2 = {0})

R3 =
∑

ω1: 0 → any (NR)

ω2: 0 → any

ω3: 0 → any (NR)

̺(ω1)̺(ω2)̺(ω3) I(ω1 ∩ (ω2 ∪ ω3) = {0})

and the corresponding probabilities

P2 = χ−2
NRR2 = P

(
ω1 ∩ ω2 = {0}

∣∣∣∣
ω1: 0 → any (NR)

ω2: 0 → any (NR)

)

P3 = χ−2
NRχ−1R3 = P

(
ω1 ∩ (ω2 ∪ ω3) = {0}

∣∣∣∣∣
ω1: 0 → any (NR)

ω2: 0 → any

ω3: 0 → any (NR)

)

(Note that, in the definition of R3 and P3, only the intersections ω1–ω2 and
ω1–ω3 are forbidden; the intersection ω2–ω3 is permitted.) The main technical
result of this section will be the following bound:

Theorem 5.6

P3(m) <∼





m4−d 2 < d < 4
| log m|−1 d = 4
const(d) d > 4

(5.71)

Assuming temporarily the validity of this bound, let us show how to com-
plete the proof of Theorem 5.1:

Proof of the upper bound in Theorem 5.1, assuming Theorem 5.6. By definition,

pm = mdχ−2
∑

x2,y1,y2

∑

ω1: x1 → x2

ω2: y1 → y2

̺(ω1) ̺(ω2) I(ω1 ∩ ω2 6= ?) . (5.72)

Let us fix ω2, and split ω1 = ω′
1 ◦ω′′

1 at the last time that ω1 intersects the fixed
set ω2; let z be the intersection point. Now split ω2 = ω′

2 ◦ ω′′
2 at the last time

that ω2 visits z. We have

pm = mdχ−2
∑

x2,y1,y2,z

∑

ω′
1: x1 → z

ω′′
1 : z → x2 (NR)

ω′
2: y1 → z

ω′′
2 : z → y2 (NR)

̺(ω′
1◦ω′′

1) ̺(ω′
2◦ω′′

2) I(ω′′
1 ∩(ω′

2∪ω′′
2) = {z}) .

(5.73)
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Next we use translation invariance to fix z and sum over x1, x2, y1, y2; we use
the factorization property ̺(ω′ ◦ ω′′) = ̺(ω′)̺(ω′′); and we use the invariance
of ̺ under reversal of a walk (in this case ω′

2). The unconstrained sum over ω′
1

yields χ; the constrained sum over ω′′
1 , ω′

2, ω′′
2 yields precisely R3. Hence

pm = mdχ−2 × χ × R3 . (5.74)

Since χNR ∼ χ ∼ m−2 (in dimension d > 2), the upper bound in Theorem 5.1
follows immediately from Theorem 5.6.

We now begin the proof of Theorem 5.6. The first step is to obtain an upper
bound on R3 in terms of R2 and an auxiliary quantity that we shall call T . We
start from the definition

R3 =
∑

ω1: 0 → any (NR)

ω2: 0 → any

ω3: 0 → any (NR)

̺(ω1)̺(ω2)̺(ω3) I(ω1 ∩ ω2 = {0}) I(ω1 ∩ ω3 = {0}) ,

and insert the identity

I(ω1 ∩ ω2 = {0}) = 1 − I(ω1 ∩ ω2 6= {0}) , (5.75)

leaving the other indicator function as is. The term obtained by inserting 1
yields exactly χR2. The other term is

∑

ω1: 0 → any (NR)

ω2: 0 → any

ω3: 0 → any (NR)

̺(ω1)̺(ω2)̺(ω3) I(ω1 ∩ ω3 = {0}) I(ω1 ∩ ω2 6= {0}) . (5.76)

If ω1 ∩ω2 6= {0}, then we can fix ω1 and split ω2 = ω′
2 ◦ω′′

2 at the first time that
ω2 intersects ω1 \ {0}; let z be the intersection point. Now split ω1 = ω′

1 ◦ ω′′
1 at

the last time that it visits z. We get

∑

z 6=0

∑

ω′
1: 0 → z (NR)

ω′′
1 : z → any (NR)

ω′
2: 0 → z (NA)

ω′′
2 : z → any

ω3: 0 → any (NR)

̺(ω′
1 ◦ ω′′

1) ̺(ω′
2 ◦ ω′′

2) ̺(ω3) I(ω′′
1 6∋ 0)

× I((ω′
1 ∪ ω′′

1) ∩ ω3) = {0}) I(ω′
2 ∩ (ω′

1 ∪ ω′′
1) ⊂ {0, z})

(5.77)
where NA denotes “non-arrival”, i.e. walks that visit their final point only once
(that is, the reverse walk is NR). Using the factorization property ̺(ω′ ◦ ω′′) =
̺(ω′)̺(ω′′), the sum over ω′′

2 decouples; we get χT , where

T ≡
∑

z

T (z) (5.78)

and
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T (z) ≡ I(z 6= 0)
∑

ω′
1: 0 → z (NR)

ω′′
1 : z → any (NR)

ω′
2: z → 0 (NR)

ω3: 0 → any (NR)

̺(ω′
1) ̺(ω′′

1) ̺(ω′
2) ̺(ω3) I(ω′′

1 6∋ 0)

× I((ω′
1 ∪ ω′′

1) ∩ ω3) = {0})
×I(ω′

2 ∩ (ω′
1 ∪ ω′′

1) ⊂ {0, z}) .

(5.79)

(Here we have used the invariance of ̺ under reversal of a walk.)
Summarizing, we have proven:

Lemma 5.7
R3 ≤ χ(R2 − T ) . (5.80)

The merit of Lemma 5.7 is that it improves the trivial bound R3 ≤ χR2.
But at this stage it is far from clear how useful this will be, given the messy
structure of T (z). The miracle is that by a very different computation we can
obtain the same quantity R2 − T , and thereby deduce a useful upper bound on
R3. The starting point is the trivial identity

χ2 ≡
∑

ω1: 0 → any

ω2: 0 → any

̺(ω1)̺(ω2)

=
∑

ω1: 0 → any

ω2: 0 → any

̺(ω1)̺(ω2) I(ω1 ∩ ω2 = {0})

+
∑

ω1: 0 → any

ω2: 0 → any

̺(ω1)̺(ω2) I(ω1 ∩ ω2 6= {0}) .

We want to obtain a lower bound. The first term can be bounded below by R2

(imposing two non-return constraints). In the second term, we fix ω2 and split
ω1 = ω′

1 ◦ ω′′
1 at the last time that ω1 hits ω2 \ {0}; call that point z. We then

split ω2 = ω′
2 ◦ ω′′

2 at the last time it hits z. This term therefore equals
∑

z 6=0

∑

ω′
1: 0 → z

ω′′
1 : z → any (NR)

ω′
2: 0 → z

ω′′
2 : z → any

̺(ω′
1 ◦ ω′′

1)̺(ω′
2 ◦ ω′′

2) I(ω′′
1 ∩ (ω′

2 ∪ ω′′
2) ⊂ {0, z}) .

(5.81)

We obtain a further lower bound by insisting that ω′′
1 ∩ (ω′

2 ∪ ω′′
2) = {z} and

that ω′
1 and ω′

2 be non-return walks:
∑

z 6=0

∑

ω′
1: 0 → z (NR)

ω′′
1 : z → any (NR)

ω′
2: 0 → z (NR)

ω′′
2 : z → any

̺(ω′
1) ̺(ω′′

1)̺(ω′
2) ̺(ω′′

2) I(ω′′
1 ∩ ω′

2 = {z}) I(ω′′
1 ∩ ω′′

2 = {z})

(5.82)
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Now we insert the identity

I(ω′′
1 ∩ ω′

2 = {z}) = 1 − I(ω′′
1 ∩ ω′

2 6= {z}) , (5.83)

leaving the other indicator function as is. The term obtained by inserting 1
yields 

∑

z 6=0

KNR(0, z)2


 R2 . (5.84)

This combines with the term R2 found earlier to yield

1 +

∑

z 6=0

KNR(0, z)2


 R2 =

(
∑

z

KNR(0, z)2

)
R2

= L−2BR2

since KNR(0, 0) = 1; here L and B are the loop and bubble diagrams defined
earlier. Summarizing, we have shown that

χ2 ≥ L−2BR2 − U (5.85)

where

U =
∑

z 6=0

∑

ω′
1: 0 → z (NR)

ω′′
1 : z → any (NR)

ω′
2: 0 → z (NR)

ω′′
2 : z → any

[t]̺(ω′
1) ̺(ω′′

1)̺(ω′
2) ̺(ω′′

2) I(ω′′
1 ∩ ω′

2 6= {z})
× I(ω′′

1 ∩ ω′′
2 = {z}) (5.86)

Now we work on U . Since ω′′
1∩ω′

2 6= {z}, we can fix ω′′
1 and split ω′′

2 = ω′′′
2 ◦ω′′′′

2

at the last time that ω′
2 hits ω′′

1 \ {z}; call the intersection point z′. Then we
split ω′′

1 = ω′′′
1 ◦ ω′′′′

1 at the last time it hits z′. We obtain

U =
∑

z 6=0

∑

z′ 6=z

∑

ω′
1: 0 → z (NR)

ω′′′
1 : z → z′ (NR)

ω′′′′
1 : z′ → any (NR)

ω′′′
2 : 0 → z′ (NR)

ω′′′′
2 : z′ → z (NR)

ω′′
2 : z → any (NR)

̺(ω′
1) ̺(ω′′′

1 ) ̺(ω′′′′
1 ) ̺(ω′′′

2 ) ̺(ω′′′′
2 ) ̺(ω′′

2)

×I(ω′′′′
1 6∋ z) I(ω′′′′

2 6∋ 0)

×I(ω′′′′
2 ∩ (ω′′′

1 ∪ ω′′′′
1 ) ⊂ {z, z′})

×I((ω′′′
1 ∪ ω′′′′

1 ) ∩ ω′′
2 = {z})

Note that ω′
1 and ω′′′

2 are not subjected to any constraints except NR, so these
sums can be performed immediately, yielding KNR(0, z)KNR(0, z′). We now
throw away the constraint I(ω′′′′

2 6∋ 0); the remaining sum is (miraculously!)
precisely T (z′ − z). Dropping the constraint z 6= 0, we obtain

U ≤ L−2
∑

z,z′
K(0, z) K(0, z′) T (z′ − z)

= L−2
∑

u

(K ∗ K)(u) T (u)

≤ L−2
(
sup

u
(K ∗ K)(u)

)(∑

u

T (u)
)

= L−2BT .
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The last equality follows from the positivity of the Fourier transform of K,
which implies that K ∗ K takes its maximum value at u = 0; this value is
precisely the bubble diagram B.

Summing up, we have shown:

Lemma 5.8
χ2 ≥ L−2B(R2 − T ) . (5.87)

Completion of the proof of Theorem 5.6. Combining Lemmas 5.7 and 5.8, we
conclude that

R3 ≤
L2χ3

B
(5.88)

and hence

P3 ≤
L4

B
. (5.89)

This proves Theorem 5.6.

Remark. In fact, it can be proven that P3(m) has also a lower bound of the
form (5.71). Moreover, with very little extra work, one can prove that





m4−d 2 < d < 4

| log m|−1 d = 4

const(d) d > 4





<∼ P2(m) <∼





m(4−d)/2 2 < d < 4

| log m|−1/2 d = 4

const(d) d > 4





. (5.90)

For details, we refer the reader to Lawler [351] or Park [425]. More precise
estimates on P2(m) for d ≤ 4 have been proven by Lawler and collaborators [351,
353, 352, 101, 99, 100]. Interesting non-rigorous work on P2(m) in dimension d =
2, exploiting two-dimensional conformal invariance, can be found in [150, 368].
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6. EFT as a gas of random walks with

hard-core interactions

We are now ready to set the stage for Parts II and III of this book. The method
exploited in this book consists in representing spin systems in terms of interact-
ing random walks. We can then use geometrical arguments to derive properties
of these random walks, which in turn imply differential inequalities for the cor-
responding spin systems. These derivations are the subject of Part II of the
book. The inequalities have a number of consequences for the critical behavior
of the system and the nature of the continuum limit. These consequences are
detailed in Part III of the book (which can be read independently of Part II).

We review in this chapter a random-walk representation originally proposed
by Symanzik [493, 494] for continuum ϕ4 theory, and later transcribed to the
lattice (with some modifications to be described later) by Brydges, Fröhlich and
Spencer (BFS) [92]. The Symanzik-BFS representation consists in essence of a
cleverly partially resummed high-temperature expansion. It has been used to
derive many results, old and new, on the critical behavior of ϕ4 and Ising models
[213, 28, 228, 92, 90, 97, 96]. Some of these results — notably the triviality of
ϕ4 and Ising models in dimension d > 4 — were first proven by Aizenman [5],
using different though closely related methods.

In this chapter we first present a simple derivation of the representation and
then, to give the reader the flavor of things to come, we discuss in broad terms
some inequalities and the implications for the triviality and the continuum limit.

6.1 The Symanzik-BFS random-walk representation

We consider an N -component classical spin system (= lattice EFT) as defined
in Section 1.4, with Hamiltonian

H(ϕ) = −
∑

〈x,y〉

Jxyϕx · ϕy −
∑

x

hx · ϕx , (6.1)

where for simplicity we absorb β into Jxy. The single-spin distribution is as-
sumed isotropic, and given by

dPx(ϕx) = g(ϕ2
x) dϕx .
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As motivation for the random-walk representation, let us consider first the
special case of the Gaussian model, g(ϕ2) = exp[−B

2
ϕ2], at zero magnetic field

(hz = 0 for all z). Then the two-point function

〈ϕx ϕy〉 = (B − J)−1
xy

(where J = {Jxy} is the interaction matrix) can be expanded in a Neumann
series

〈ϕx ϕy〉 = (B−1 + B−1JB−1 + B−1JB−1JB−1 + . . .)xy

that is convergent whenever B > ||J ||. The terms in this Neumann series can
be interpreted as walks from x to y:

〈ϕx ϕy〉 =
∑

ω:x→y

JωB−|ω|−1 (6.2)

where

Jω =
|ω|−1∏

s=0

Jω(s),ω(s+1)

as defined in Section 1.6. Similarly, the higher-point correlation functions can
be expressed as sums over families of walks, e.g.

〈ϕx1 ϕx2 ϕx3 ϕx4〉 =
∑

ω:x1→x2
ω:x3→x4

Jω1Jω2B−|ω1|−|ω2|−2 + two permutations .

These formulae express the well-known connection between Gaussian field the-
ories and simple random walks. In this section we shall prove an analogous
connection between non-Gaussian field theories and certain interacting random
walks. The derivation of this random walk expansion will be made for general
N -component lattice field-models, but all the remaining applications will for
simplicity deal only with the N = 1 case. (Many of our results can be gener-
alized to N = 2. On the other hand, for N > 2 many correlation inequalities
are lacking, so the generalization of these applications to spins of three or more
components is not trivial, and even questionable.)

The starting point of our random-walk representation is the following se-
quence of integration-by-parts identities:

ϕ

∫
dνn(t) g(ϕ2 + 2t) = − ∂

∂ϕ

∫
dνn+1(t) g(ϕ2 + 2t) (6.3)

(n = 0, 1, 2, 3, . . .), with

dνn(t) =





δ(t) dt if n = 0

tn−1

Γ (n)
χ[0,∞)(t) dt if n ≥ 1

(6.4)

As a shorthand we define
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gn(ϕ2) ≡
∫

dνn(t) g(ϕ2 + 2t) (6.5)

so that (6.3) reads

ϕgn(ϕ2) = − ∂

∂ϕ
gn+1(ϕ

2) . (6.6)

Moreover, for any well-behaved function W (ϕ), a second integration by parts
yields

∫
ϕgn(ϕ2)W (ϕ) dϕ =

∫ [
− ∂

∂ϕ
gn+1(ϕ

2)
]
W (ϕ) dϕ

=
∫

gn+1(ϕ
2)

∂W

∂ϕ
dϕ (6.7)

Now let n = {nx}x∈ZZ
d be a collection of nonnegative integers. We define

the unnormalized expectations in “background” n,

[F (ϕ)]n =
∫

F (ϕ)e−βH(ϕ)
∏

x∈ZZ
d

gnx(ϕ
2
x) dϕx , (6.8)

and in particular the partition function

Z(n) = [1]n . (6.9)

The original model corresponds to n = 0, while the general case will appear
within the random-walk representation.

Let us consider the expectation [ϕxF (ϕ)]n, where F is an arbitrary well-
behaved function of the fields {ϕ}. Applying (6.7) with W = Fe−H to the
integral over ϕx, and then integrating over the remaining variables {ϕz}z 6=x, we
obtain the fundamental integration-by-parts identity

[ϕxF ]n =

[
∂F

∂ϕx

− F
∂H

∂ϕx

]

n+δx

(6.10)

=

[
∂F

∂ϕx

]

n+δx

+ hx[F ]n+δx +
∑

x1

Jxx1 [ϕx1
F ]n+δx , (6.11)

where of course

(δx)z ≡ δxz =





1 if x = z

0 otherwise

Consider first the case F = 1. Then (6.11) reduces to

[ϕx] = hx[1]n+δx +
∑

x1

Jxx1 [ϕx1
]n+δx . (6.12)

Iterating (6.12) until only terms proportional to [1]n+... are left1, we obtain a
sum over walks which start from x and end at a magnetic field hx′ :

1The reader may wonder about the walks that wander forever without ending at a magnetic
field. With some extra work, it can be shown that these contributions vanish.



104 6. EFT as a gas of random walks

[ϕx]n =
∑

x′

hx′

∑

ω: x→x′

Jω [1]n , (6.13)

where n(ω) = {nz(ω)} and nz(ω) is the total number of visits of the walk ω to
the site z.

Next, consider the case F = ϕ(β)
y . Then (6.11) reduces to

[ϕα
xϕβ

y ]n = δxyδ
αβ[1]n+δx + h(α)

x [ϕ(β)
y ]n+δx +

∑

x1

Jx x1 [ϕ
(α)
x1

ϕ(β)
y ]n+δx . (6.14)

Iterating (6.14) and (6.12) until only terms proportional to [1]n+... are left, we
obtain a sum of two classes of terms: the first class consists of walks ω that
start from x and end at y; the second class consists of pairs of walks (ω1, ω2),
one starting from x and ending at a magnetic field hx′ , the other starting from
y and ending at a magnetic field hy′

2:

[ϕ(α)
x ϕ(β)

y ]n = δαβ
∑

ω: x→y

Jω [1]n+n(ω)

+
∑

x′,y′

h
(α)
x′ h

(β)
y′

∑

ω1: x → x′

ω2: y → y′

Jω1Jω2 [1]n+n(ω1)+n(ω2) .
(6.15)

Analogous formulae can be obtained for higher-point correlation functions.
Now let us specialize these formulae to the original model n = 0. We obtain

random-walk representations for the correlation functions,

〈ϕx〉 =
∑

x′

hx′

∑

ω:x→x′

̺(ω) (6.16)

〈ϕ(α)
x ϕ(β)

y 〉 = δαβ
∑

ω:x→y

̺(ω) +
∑

x′,y′

h
(α)
x′ h

(β)
y′

∑

ω1: x → x′

ω2: y → y′

̺(ω1, ω2) (6.17)

and so forth, where we have defined, as in Section 1.6, the weights

̺(ω1, . . . , ωk) = Jω1 . . . Jωk
Z

(∑k
α=1 n(ωα)

)

Z(0)
. (6.18)

This is the random-walk representation promised at the beginning of this
section.3 It generalizes to arbitrary n-point functions in a straightforward man-
ner. When hz = 0 for all z, this generalization is particularly elegant and simple:

2Again, the contribution of walks that wander forever without ending either at a magnetic
field or at the site y can be shown to vanish.

3This derivation [97] of the random-walk representation was inspired by a discussion with
E. H. Lieb which we gratefully acknowledge. An alternate derivation — which is less physically
transparent, but in which the convergence problems are more easily solved — can be found
in Sections 9.2.2 and 10.2.3 and in the original papers [92, 97].
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〈ϕ(α1)
x1

. . . ϕ(αk)
x2k

〉 = (6.19)

∑

pairings p




k∏

j=1

δαp(2j−1)αp(2j)


 ∑

ωj : xp(2j−1) → xp(2j)

j = 1, . . . , k

̺(ω1, . . . , ωk) . (6.20)

It is useful to derive a local-time representation for the weights ̺(ω1, . . . , ωk):
Using the simple identity

νn+m = νm ∗ νn (6.21)

where ∗ denotes convolution, it is straightforward to verify that

̺(ω1, . . . , ωk) = Jω1 . . . Jωk

∫
. . .

∫ k∏

j=1

dνωj
(t(j))Z

( k∑

j=1

t(j)
)

, (6.22)

where
dνω(t) =

∏

z

dνnz(ω)(tz) (6.23)

and

Z(t) = Z−1
∫ (∏

z

g(ϕ2
z + 2tz) dϕz

)
e−H(ϕ) (6.24)

The variables t(j)z have the interpretation of waiting times or local times at the
site z for the walk ωj.

This concludes the general derivation; for the rest of the chapter we shall
consider applications for one-component spins (N = 1). In particular, for the
connected four-point function u4 at zero magnetic field, introduced in (1.43),
we get

u4(x1, x2, x3, x4) =
∑

p

∑

ω1: xp(1) → xp(2)

ω2: xp(3) → xp(4)

[̺(ω1, ω2) − ̺(ω1) ̺(ω2)] . (6.25)

Examples.
1) For g(ϕ2) = exp[−1

2
(2d + m2)ϕ2], hz = 0 for all z, formula (6.14) is the

usual random-walk representation of the Green’s function (−∆ + m2)−1, while
(6.22) is the local-time representation

(−∆ + m2)−1 =

∞∫

0

e−m2te∆t dt . (6.26)

2) For g(ϕ2) = exp
[
−λ

4
ϕ4 − B

2
ϕ2

]
, we have g(ϕ2 + 2t) = exp

[
−λ

4
ϕ4 − (B

2
+

λt)ϕ2−(λt2 +Bt)
]
. Therefore, the principal effect of the “background” t = {tz}

is to generate a space-dependent mass term λtzϕ
2
z. The consequences of this

term will be analyzed in Part II (Chapter 11). Among the results are corre-
lation inequalities which imply the triviality of ϕ4 theory in dimension d > 4.
The random-walk representation has also been used [97, 74] to develop a “skele-
ton expansion” and prove “skeleton bounds” for lattice λϕ4 theory [see (5.13),
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(5.27) for similar inequalities]. These results have enabled Brydges, Fröhlich and
Sokal to give a simple construction of continuum ϕ4

2 and ϕ4
3 theories, exhibit a

mass gap at weak coupling, and establish the asymptotic nature of perturbation
theory [96]; see also [74] for some additional results.

Further remarks.
1) The foregoing random-walk representation, due to Brydges, Fröhlich and

Spencer (BFS) [92], is in essence a partially resummed high-temperature expan-
sion: the weights ̺(ω1, . . . , ωk) are defined in terms of the lattice field theory
itself, cf. (6.18) or (6.22). An alternative approach is to generate a fully ex-
panded high-temperature expansion, which rewrites the partition function of
lattice field theory as a gas of closed random walks interacting via an explicit
soft-core exclusion (contact interaction) [493, 494]. This representation — called
Symanzik’s complete polymer representation — further shows that one may in-
terpret ̺(ω1, . . . , ωn) as a correlation function of n polymer chains ω1, . . . , ωn

in a gas (or “solvent”) of polymer loops. See Section 9.2.2. The advantage of
the complete polymer representation over the BFS representation is that the
weights are given by explicit contact interactions; the disadvantage is that one
has to deal with the gas of loops. The BFS representation is therefore combi-
natorially simpler but physically more complicated. As we shall see in the next
section, the complicated weights of the BFS representation can in some cases
(e.g. ϕ4 theory) be controlled by correlation inequalities; this is the strategy un-
derlying the triviality proofs. To date, few rigorous results have been obtained
using the complete polymer representation — but this may simply be for lack
of trying!

2) In the above, we have considered a quadratic Hamiltonian H(ϕ), and have
placed all higher-order couplings (e.g. ϕ4) into g(ϕ2). An alternate approach is
to set g(ϕ2) = exp[−1

2
(2d + m2)ϕ2] and place everything else in H(ϕ), e.g.

H(ϕ) = −
∑

〈x,y〉

Jxyϕxϕy +
∑

x

(λ

4
ϕ4

x − hϕx

)
. (6.27)

Everything up to (6.10) proceeds as before. Now, however, ∂H/∂ϕx contains
a term ϕ3

x, which generates branching random walks. Regrouping terms in this
sum, we can obtain formally the ordinary Feynman perturbation theory. How-
ever, in this expansion the convergence problems are insurmountable, as Feyn-
man perturbation theory really is divergent!

3) A modified random-walk representation has turned out to be rather useful
to prove Borel summability of the 1/N -expansion for non-critical O(N) non-
linear σ-models on the lattice [348].

6.2 Consequences for triviality

One of the major applications of the random-walk representation is to prove
the triviality of the continuum ϕ4

d theory in d ( )
≥ 4 dimensions. The basic idea
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is that certain connected correlation functions of the lattice field theory can be
bounded in terms of intersection properties of the associated random walks. Di-
rect analysis of the random walks yields bounds on their intersection properties
that are analogous to (but somewhat weaker than) the results of Chapter 5 for
simple random walks. These bounds then have implications for the triviality of
the continuum limit.4 In this section we give an overview of the arguments; the
details can be found in Chapters 11, 12 and 15.

All of the triviality theorems are based on a few simple properties of the
weights (6.22). Let

g(ϕ2) = exp
[
−λ

4
ϕ4 − B

2
ϕ2

]
(6.28)

with λ > 0 and B real. The corresponding lattice field theory satisfies the
Griffiths inequalities [491], in particular

〈ϕx1 . . . ϕxk
exp[−

∑

z

tzϕ
2
z]〉 ≤ 〈ϕx1 . . . ϕxk

〉 〈exp[−
∑

z

tzϕ
2
z]〉 (6.29)

if tz ≥ 0 for all z. These inequalities and the local-time representation of [·]n
have the following two consequences:

(I) For all n, we have

Z(n)−1[ϕx1 . . . ϕxk
]n ≤ 〈ϕx1 . . . ϕxk

〉 , (6.30)

When hz = 0 for all z, we can also formulate this inequality as follows:

∑

p

∑

ωj : xp(2j−1) → xp(2j)

j = 1, . . . , k

̺(ω1, . . . , ωk, ω
′
1 . . . , ω′

l)

≤
(∑

p

∑

ωj : xp(2j−1) → xp(2j)

j = 1, . . . , k

̺(ω1, . . . , ωk)
)
̺(ω′

1, . . . , ω
′
l) . (6.31)

(II) If {ω1 . . . ωk} ∩ {ω′
1 . . . ω′

l} is empty, then

̺(ω1, . . . , ωk, ω
′
1, . . . , ω

′
l) ≥ ̺(ω1, . . . , ωk)̺(ω′

1, . . . , ω
′
l) . (6.32)

We observe that (6.31) and (6.32) are inequalities going in opposite di-
rections. Loosely speaking, (6.31) says that the interaction between the walks
is, on the average, repulsive, while (6.32) implies that the interaction between

4This approach is foreshadowed in the profound original paper of Symanzik [494]. Here
he develops a formal (non-rigorous) Brownian-path representation of continuum ϕ4 field the-
ory, and then argues heuristically that the non-intersection of Brownian paths in dimension
d ≥ 4 should imply the triviality of continuum ϕ4 field theory in these dimensions. The
rigorous triviality proof follows a similar intuition, but works on the lattice rather than in
the continuum, and uses the BFS representation instead of the complete polymer represen-
tation. Unfortunately, the currently available rigorous results for d = 4 fall short of proving
Symanzik’s conjectures.
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nonoverlapping walks is in fact attractive. The existence of these complementary
inequalities, resulting from a subtle balance of effects, is in great part responsi-
ble for the power and yet relative simplicity of the method. The inequalities (I)
and (II) are discussed in more detail in Chapter 11.

A second class of inequalities characterizing the weights ̺ refers to the effect
of splitting a path. For example, if we split each path ω into two consecutive
pieces ω1 and ω2, it is not hard to see (Chapter 11) that

∑

ω: x → y

such that z ∈ ω

̺(ω) =
∑

z′

Jzz′
∑

ω1: x → z

ω2: z′ → y

̺(ω1, ω2) +
∑

ω1: x→y

̺(ω1)δyz . (6.33)

Let us now see how these properties produce important inequalities for the
correlation functions of the underlying spin model. For the time being we set
hz ≡ 0. From (6.25) and (6.31) we obtain the Lebowitz inequality

u4(x1, x2, x3, x4) ≤ 0 . (6.34)

On the other hand, we can classify the terms in (6.25) according to whether
the paths ω1 and ω2 intersect or not. The contribution of the non-intersecting
pairs is positive by (6.32), therefore u4 can be bounded below by the sum over
intersecting walks alone:

u4(x1, x2, x3, x4) ≥
∑

pairings p

∑

ω1: xp(1) → xp(2)

ω2: xp(3) → xp(4)

ω1 ∩ ω2 6= ?

[̺(ω1, ω2) − ̺(ω1)̺(ω2)]

≥ −
∑

pairings p

∑

z

∑

ω1: xp(1) → xp(2)

ω2: xp(3) → xp(4)

ω1 ∩ ω2 ∋ z

̺(ω1)̺(ω2)

(since ̺(ω1, ω2) ≥ 0). If we now split the paths ω1 and ω2, we get from (6.33)

u4(x1, x2, x3, x4) ≥
−

∑

p

∑

z,z′,z′′
Jzz′Jzz′′

∑

ω′
1: xp(1) → z

ω′
1: z′ → xp(2)

∑

ω′
2: xp(3) → z

ω
′′

2 : z
′′
→ xp(4)

̺(ω′
1, ω

′′

2 )̺(ω′
2, ω

′′

2 ) + E

where E is a correction arising from terms with z = xj for some j = 1, 2, 3, 4.
Finally, to make contact with physical observables, we use once more (6.31) and
(6.17) to obtain

u4 ≥ −
∑

p

∑

z,z′,z
′′

Jzz′Jzz′′〈ϕxp(1)
ϕz〉 〈ϕz′ϕxp(2)

〉 〈ϕxp(3)
ϕz〉 〈ϕz′′ϕxp(4)

〉 + E . (6.35)

Diagrammatically,
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0 ≥ u4(x1, x2, x3, x4) ≥ −
∑

p ¡
¡

xp(3)

@
@

xp(1)

u¥¥§§¨¦̈¦©©

HH

u
u

xp(2)

xp(4)

+ E (6.36)

where x y denotes the two-point function (“full propagator”) 〈ϕxϕy〉,
z u£¢¤¡¤¡¤¡£¢£¢£¢uz′ denotes Jzz′ , and internal vertices u are summed over. This is the
Aizenman-Fröhlich inequality [5, 213].

To see the implications of this inequality for the continuum limit, we intro-
duce the rescaled four-point Ursell function (see Chapter 3)

u4,θ(x1, . . . , x4) = α(θ)4 u4(θx1, . . . , θx4) , (6.37)

with parameters λ(θ), B(θ) and J(θ) approaching the critical surface as as
θ → ∞ from within the single-phase regime. We also use the infrared bound

0 ≤ 〈ϕx ϕy〉 ≤ const × J−1|x − y|−(d−2) , (6.38)

which is proven by a clever use of the transfer-matrix formalism [222, 218]
together with correlation inequalities [481]. From (6.37), (6.36) and (6.38) we
obtain

0 ≥ u4,θ(x1, x2, x3, x4) ≥ − const×θ4−d (6.39)

whenever |xi − xj| ≥ δ for i 6= j, for some arbitrarily small but positive δ. (The
contribution of the correction term E is of order θ2−d, hence is negligible for
d > 2.) This proves that, in dimension d > 4,

Scont(x1, . . . , x4) ≡ lim
θ→∞

u4,θ(x1, . . . , x4) = 0! (6.40)

It is not hard to extend this result to show that

lim
θ→∞

un,θ(x1, . . . , xn) = 0 (6.41)

for all n > 2. Therefore, all theories constructed as a scaling limit of ferromag-
netic nearest-neighbor ϕ4 lattice theories are trivial for d > 4.

In four dimensions, there is also compelling evidence for triviality, but the
rigorous proof has not yet been completed except for small λ [290, 298]. If we
assume that, for |x − y| ≥ δ > 0 and uniformly in θ,

α(θ)2〈ϕθxϕθy〉λ(θ),B(θ),J(θ) ≤ k(ε, δ)|x − y|−ε , (6.42)

for some constants ε > 0 and k(ε, δ) < ∞, we obtain the bounds

0 ≥ u4,θ(x1, . . . , x4) ≥ −const. (α(θ)−1θ)p , (6.43)

for some p > 0 depending on ε, provided that |xi − xj| ≥ δ > 0 for i 6= j. From
this inequality we deduce that the continuum limit (θ → ∞) in four dimensions
is trivial, unless
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α(θ) ∼ θ(d−2)/2 = θ (6.44)

i.e. unless the (ultraviolet) dimension of the field ϕren is canonical. On the other
hand, if ϕren has canonical (free-field) dimensions and the continuum Green’s
functions Scont(x1, . . . , x2n) are scale-invariant, then the theory is a free-field
theory by a general theorem due to Pohlmeyer [433]. It follows that there is no
non-trivial scale-invariant continuum theory that can be obtained as a scaling
limit of ferromagnetic ϕ4 lattice theories compatible with (6.42). (Heuristically
this means that the renormalization-group β-function W (g) has no non-trivial
roots!) The detailed proofs and interpretation of these results will be discussed
in Chapter 15.

Aizenman and Graham [15] have improved inequality (6.36) as follows:

0 ≥ ū4 ≥ −const × J2χ2 ∂χ

∂J
− E . (6.45)

When d = 4 this inequality implies that in the continuum limit the theory is
trivial unless mean-field theory gives the exact behavior of χ(β) as β approaches
βc, that is, unless γ = 1 without multiplicative logarithmic corrections. More-
over, it can be shown that the violations of the mean-field scaling laws in four
dimensions are at most logarithmic [15].

In summary, while triviality of ϕ4
4, in full generality, is not (yet) a rigorous

mathematical theorem, there is strong evidence for that contention.
It is instructive to interpret the above results in terms of the random-walk

picture, and in particular to compare them with the results of Chapter 5. The
bound (6.36) implies that

g ≡ −χ−2md
∑

x2,x3,x4

u4(x1, x2, x3, x4)

≤ 3χ−2md
∑

z

∑

ω1∩ω2∋z

̺(ω1) ̺(ω2)

where χ =
∑

y

∑
ω: x→y ̺(ω). That is,

g ≤ 3p

where p is the average intersection probability for two “field-theoretic” walks, ω1

and ω2, with weights ̺(ω1), ̺(ω2). Moreover, by (6.38)

0 ≤ 〈ϕxϕy〉 =
∑

ω: x→y

̺(ω) ≤ const × J−1|x − y|−(d−2) , (6.46)

which says, roughly speaking, that the Hausdorff dimension of a field-theoretic
walk ω is at most 2. Hence one expects, by analogy with the arguments in
Chapter 5 for simple random walks, that p → 0 as the walks become critical
(m → 0, χ → ∞) in dimension d ≥ 4. For d > 4, that is the content of
inequalities (6.36)–(6.39); for d = 4 it is an open question, which depends on
logarithms that have not yet been controlled rigorously.
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All these results on triviality refer to the scaling limit taken through sys-
tems in the symmetric phase (i.e. zero magnetic field above the critical temper-
ature). The approach through the broken-symmetry phase is more complicated.
There are only some partial results based on the random-walk analogue of the
Aizenman-Fröhlich inequality (6.36) for h 6= 0. We sketch here its derivation.
If hz ≡ h ≥ 0 for all z then the random walk representations for the one-point
and two-point functions are (Chapter 10)

〈ϕx〉 = h
∑

y

K(x, y) (6.47)

and
〈ϕxϕy〉 = h2

∑

x′,y′

∑

ω1: x → x′

ω2: y → y′

̺(ω1, ω2) + K(x, y) , (6.48)

where
K(x, y) ≡

∑

ω: x→y

̺(ω) (6.49)

is a rather mysterious kernel that has no obvious physical interpretation.Using
a generalization of (6.31),

h
∑

x′

∑

ω1: x→x′

̺(ω1, ω2) ≤ 〈ϕx〉 ̺(ω2) (6.50)

we obtain, by (6.47) and (6.49),

〈ϕxϕy〉 ≤ 〈ϕx〉 〈ϕy〉 + K(x, y) . (6.51)

This inequality yields an upper bound on χ. Indeed, multiplying by h and
summing over y we get, using (6.47),

hχ ≡ h
∑

y

〈ϕx; ϕy〉 ≤ 〈ϕx〉 . (6.52)

This is the weak Griffiths-Hurst-Sherman (GHS) inequality, which should be
compared with the Lebowitz inequality (6.34). One simple consequence of this
inequality is that, for h > 0, the expectation value 〈 · 〉 clusters integrably fast.

To obtain an inequality going in the opposite direction, we proceed along
the very same steps used to prove the AF inequality (6.36), but using the
generalization of (6.25) and (6.33) to the case of nonzero field. The result is
(Chapter 12)

〈ϕx; ϕy〉 ≥ K(x, y) − |J |2〈ϕ〉2
∑

z

K(x, z)K(y, z) + E ′ . (6.53)

Hence, after multiplying by h and summing over y, we get, using (6.47),

hχ ≥ 〈ϕ〉 − β2

h
〈ϕ〉4 + E ′ . (6.54)
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This and more general inequalities are studied in Chapter 12 and applied in
Chapter 14 to prove many bounds on critical exponents describing the approach
to the critical point as h → 0. Moreover, they are used in Chapter 15 to prove
the nonexistence of a broken-symmetry phase in λϕ4

d (d > 4) with finite renor-
malized one-point and two-point functions, for a large class of approaches to
the critical surface. This result is a precise version of (one form of) the violation
of hyperscaling.

6.3 Consequences for nontriviality

A complementary application of the random-walk representation is to prove
nontriviality of the continuum ϕ4

d theory in dimensions d = 2, 3 for weak (bare)
couplings. Although these results are not part of the main subject of the present
book, we feel it worthwhile to describe them briefly here.

While there is a wealth of methods to study these superrenormalizable
field theories (see the references in [96, p. 145]), the one based on random-
walk representations is by far the simplest. This method does not rely on any
renormalization-group insight (which is what makes it both simpler and less
powerful than the other methods); rather, it is based on correlation inequalities,
the so-called “skeleton inequalities” [97, 74]. These inequalities provide rigor-
ous upper and lower bounds on the correlation functions in the form of partial
power series in the bare couplings with coefficients given by “skeleton” ampli-
tudes. These amplitudes are Feynman diagrams without self-energy insertions
in which all lines stand for full propagators. The skeleton inequalities can be
combined with the Schwinger-Dyson equation to derive an inequality bounding
the two-point function (full propagator) in terms of itself. By a clever continu-
ity argument (the “forbidden region” argument), the two-point function can be
bounded uniformly in the lattice spacing . It then follows from the skeleton in-
equalities that mass-renormalized perturbation theory is asymptotic uniformly
in the lattice spacing; in particular, the theory is non-trivial (non-Gaussian) for
sufficiently weak coupling. By a refinement of the continuity argument, one can
prove the strict positivity of the mass gap. (One can also prove the existence of
the continuum limit for arbitrary couplings — as long as the theory remains in
the single-phase region — but in this case the method says nothing about non-
triviality or the mass gap.) The main tool used in the derivation of the skeleton
inequalities is the random-walk representation — in particular the “splitting
lemma” (Lemma 5.2)— combined with Griffiths inequalities.

The relative simplicity of the method comes at the cost of some obvious
limitations. First, the fact that it requires Griffiths inequalities — which at
present are known to be valid only in one- and two-component theories —
limits its use to such models. (The method also applies to the Edwards model
of self-repelling walks [75], which can be considered a “zero-component” model.)
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Moreover, such inequalities hold only for real, nonnegative values of the coupling
constants. Hence there is no possibility to obtain Borel summability, which is a
consequence of more full-fledged methods [381]. Another aspect that has not yet
been proven using skeleton inequalities is the Euclidean (rotation) invariance of
the continuum theory.

In the following we describe some of the highlights of the argument proving
the nontriviality of the limit. We do not discuss the proof of the actual existence
of the continuum limit, which can also be obtained with this method. We only
point out that it consists in a compactness argument that proves existence of
limits for subsequences. The compactness of the set of Green functions is proven
using Griffiths and Gaussian inequalities.

The proof of the nontriviality of the theory rests on the following two in-
gredients:

1) The first three skeleton inequalities

u4(x1, x2, x3, x4) ≤ 0 (6.55a)

u4(x1, x2, x3, x4) ≥ −6λ ¨¨¨¦¦¦
¥¥¥§§§

x3

x1 ¨¨¨¦¦¦¥¥¥§§§x4

x2

u (6.55b)

u4(x1, x2, x3, x4) ≤ −6λ ¨¨¨¦¦¦
¥¥¥§§§

x3

x1 ¨¨¨¦¦¦¥¥¥§§§x4

x2

u

+18λ2


 ¨¨¨¦¦¦

¥¥¥§§§
x3

x1 ¤£¡£¢£¢£¢¤¡¤¡¤¢¤¡¤¡¤¡£¢£¢£¡¢̈
¨¨¦¦¦¥¥¥§§§x4

x3u u + two permutations




(6.55c)
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where x u£¢¤¡¤¡¤¡£¢£¢£¢uy stands for the full propagator 〈ϕxϕy〉 and integration over
internal vertices is understood. The first inequality is just Lebowitz’ inequality.
The second one is a tree bound that looks very similar to the AF inequality
(6.35) but has a very different significance due to the factor λ. Inequality (6.35)
is a bound independent of λ, and hence is very useful in high dimensions (d > 4)
where it implies triviality, but is bad in low dimensions. In contrast, (6.55b),
while not terribly useful in d > 4, has important consequences for d = 2, 3.

We shall not discuss the proof of (6.55b) and (6.55c) [97], but just point out
that they result from specific properties of the ϕ4 model, rather than from gen-
eral properties of the weights [contrast (6.32) which implies the AF inequality
(6.35)].

2) A uniform bound on the 2-point functions: For a lattice of spacing ε —
denoted ZZ

d
ε — let us introduce the norm

|||f ||| = sup
x∈ZZ

d
ε

|f(x)| + εd
∑

x∈ZZ
d
ε

|f(x)| (6.56)

and the notation
E(ε) = 〈ϕ0ϕx〉(ε) − 〈ϕ0ϕx〉(ε)G (6.57)

where 〈 〉G indicates the expectation in the Gaussian theory (λ = 0): that is,
〈ϕ0ϕx〉G is the free propagator. Then, for m < 1 there is a positive constant λm

independent of the lattice spacing ε, such that for 0 ≤ λ ≤ λm we have

|||E(ε)||| ≤ c(m)λ2 (6.58)

for some constant c(m).
To prove (6.58), the skeleton inequalities are combined with a field equa-

tion (“Schwinger-Dyson equation”) to obtain bounds on the 2-point function in
terms of itself [96]. Estimating full propagators in terms of the ||| · |||-norm one
obtains for d < 10/3 a bound of the form

|||E(ε)||| ≤
3∑

n=1

λnPn(|||E(ε)|||) (6.59)

for polynomials P1, P2 and P3 with positive coefficients and with P1 having zero
constant term. In addition, with the help of Griffiths and Simon-Lieb inequal-
ities, it is proven that |||E(ε)||| is continuous in λ for each fixed ε. The bound
(6.58) is then proven, via the following “forbidden region” argument: Choose
λm so small that

3∑

n=1

(λm)nPn(2) ≤ 1 . (6.60)

Then, for λ ∈ [0, λm], the bound |||E(ε)||| ≤ 2 implies that |||E(ε)||| ≤ 1 by
(6.59). In other words, uniformly in ε, |||E(ε)||| cannot take values between 1
and 2. Since at λ = 0 we have |||E(ε)||| = 0 (Gaussian case), it follows, from
the continuity of |||E(ε)||| in λ that |||E(ε)||| ≤ 1 for 0 ≤ λ ≤ λm uniformly in ε.
Two further iterations of (6.59) yield (6.58).
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From formulas (6.55c) and (6.58), the nontriviality of ϕ4
d follows, for d = 2, 3

and λ > 0 sufficiently small. Indeed, by (6.58) the difference between the full and
Gaussian propagators in the ||| · |||-norm is of order λ2. Therefore, the internal
integrations in (6.55c) are convergent for d < 4 and the term with bracketed
coefficient is of order λ2. Hence, at small λ, this term is dominated by the “tree
term”, so that u4 < 0. Indeed, by (6.55b)–(c) we conclude that u4 takes precisely
the value given by the first-order perturbation expansion — that is, by a tree
graph with free propagators — up to an error of order λ2. Similarly, it can be
proven that, up to an error of order λ2, all the Green functions 〈ϕx1 . . . ϕx2n〉
take the values given by the first-order perturbation expansion [96].

By additional work along these same lines, the skeleton inequalities can be
proven to all orders [74]; and this can be employed to prove the asymptoticity
of perturbation theory, uniformly in the lattice spacing, to all orders [74].
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7. Random-surface models

This chapter has been co-authored with Gerhard Hartsleben.

Random-surface (RS) models are fairly natural generalizations of random-
walk (RW) models. Although the rest of this book is devoted exclusively to RW
models, we present in this chapter a short account of RS models, for the purpose
of comparison with RW models and as an introductory review of a subject which
is finding an increasing number of applications in condensed-matter physics and
quantum field theory.

Examples of problems in condensed-matter physics which involve random
surfaces are:

(1) Growth of crystals; properties of crystalline surfaces.

(2) Interfaces and domain walls separating different phases of a physical
system such as a fluid or magnet.

(3) Wetting.

(4) Domain-wall wandering in uniaxial commensurate-incommensurate tran-
sitions.

(5) Contribution of fluctuations of domain walls bounded by frustration
loops to the entropy and free energy of three-dimensional spin-glass models
with short-range interactions.

(6) Catalysis of chemical reactions on surfaces of “large” Hausdorff dimen-
sion.

(7) Statistical mechanics of branched and membrane-like polymers, of mi-
croemulsions, etc.

Some useful references may be [527, 374, 373, 114, 205, 122, 170, 221, 432].

Applications of random surfaces to quantum field theory are:

(1) Random-surface representation of lattice gauge theories [504, 515, 459,
151, 212, 98].

(2) Surface theories as approximations to gauge theories: e.g. large-N lattice
gauge theory as a surface theory [123, 332, 344, 214]; surface theories arising
as limits of lattice gauge theories, such as self-avoiding surface models and
plaquette percolation [506, 161, 153, 14].

(3) Discrete approximations to string theories: Nambu-Goto model [403,
265]; Polyakov model [437, 156, 18]; lattice approximation to string theory [506,
161, 153, 154, 21, 337, 115, 23, 20, 22].

(4) Two-dimensional quantum gravity [216, 338].
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This chapter is intended mainly as an illustration of the basic concepts in the
theory of random surfaces. We will not attempt an all-encompassing review of
the applications; rather we shall concentrate on a particular, yet representative,
family of models. We have selected models arising from the regularization of
string theory and two-dimensional quantum gravity. These models exhibit many
of the interesting problems involved in the theory of random surfaces, and they
constitute a natural generalization of the random-walk models (such as simple
random walks) which are one of the principal topics of this book.

7.1 Continuum random-surface actions

For the reader’s convenience, we give here a short review of the continuum string
and quantum-gravity actions referred to in the rest of the chapter. The evolution
of strings in d-dimensional space-time is described in terms of world sheets [266,
128], that is, by maps X from a two-dimensional parameter space D2 into the d-
dimensional Minkowski space Md. The evolution of each world sheet is governed
by a suitably chosen action A. Classically, the variation of A with respect to the
world sheets yields the equations of motion; quantum-mechanically one must
instead construct functional integrals in which each world sheet is weighted by
a factor exp(iA/h̄). The action initially considered in the literature was the
Nambu-Goto action [403, 265]

ANG(X) =
1

2πα′

∫

D2

d2ξ
√
| det h| , (7.1)

where α′ is a constant (inverse of the “bare string tension”) and hαβ = ∂X
∂ξα

∂X
∂ξβ

is the metric on D2 induced by the metric on Md through the world sheet X.
In short, ANG is proportional to the area of the world sheet measured with the
metric h. An alternative action was first proposed by Deser and Zumino [127]
and discussed in more detail by Polyakov [437],

AP(X, g) =
1

4πα′

∫

D2

d2ξ
√
| det g|

[
gαβ∂αXµ∂βXµ + λ

]

= A0
P(X, g) + λA(g) , (7.2)

where λ is a constant, and the functions gαβ — components of a Lorentzian
metric on D2 — are extra degrees of freedom. We denote by A(g) the area of the
surface D2 in the metric g. Classically, the action (7.2) is equivalent to (7.1): the
variation of AP with respect to the functions gαβ yields the equation of motion
gαβ = ∂αX∂βX ≡ hαβ and, moreover, consistency conditions force λ = 0. Hence,
the equations of motion for the fields X are identical for the two actions, (7.1)
and (7.2). The extra parameters gαβ can be interpreted as Lagrange multipliers
whose presence simplifies the dependence of the action on the fields X: from a
square-root dependence in ANG to a quadratic dependence in AP. This simpler
dependence is crucial in the quantum-mechanical case, where the two actions
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are no longer equivalent: the quantization of a theory based on (7.2) — that is,
the definition of integrals with a weight exp(iAP/h̄) — seems to be more feasible
than for the Nambu-Goto action (7.1). The quantum-mechanical dynamics does
not force λ to be zero.

Let us discuss briefly the quantization of the Polyakov action. As for the case
of point particles (Section 1.5), it is more convenient to pass to the Euclidean
formulation, in which Md is substituted by the d-dimensional Euclidean space
Ed and X0 is replaced by iX0. Hence, in the Euclidean formulation of the
Polyakov string, one attempts to give a precise mathematical definition of the
functional measure

e−A0
P(X,g)/h̄e−λA(g)/h̄ DXDg , (7.3)

where g ranges over the Riemannian metrics on a two-dimensional surface D2 of
fixed topological type, DX is a formal Lebesgue measure, and Dg is the formal
volume element on the space of Riemannian metrics.

The measure (7.3) has an alternative — and quite striking — interpretation:
it is a theory of a free massless d-component scalar field living on the two-
dimensional surface D2, coupled to two-dimensional quantum gravity. (Note
that, in two dimensions, the Einstein-Hilbert action is trivial, i.e. a topological
invariant.) The constant λ can then be interpreted as a “bare cosmological
constant”. Correspondingly, the action AP is interpreted as having two parts:
the “coupling” A0

P(X, g) between the “matter field” X and the “gravitational
degrees of freedom” gαβ, and the “pure gravity” part A(g). In particular, models
of two-dimensional “pure gravity” are obtained by setting A0

P = 0, that is by
turning off the couplings between the metric g and the “matter fields” X. This
is equivalent to setting d = 0.1

From the quantum-gravity point of view we can envision possible general-
izations of (7.3). For instance, the Polyakov action A0

P could be replaced by
some other action; in particular, the free scalar fields X could be replaced by
interacting scalar fields (e.g. by adding an X4 coupling). Moreover, the target
space of the maps X need not be Euclidean space-time; it could be a non-
Euclidean Riemannian manifold or even a discrete set. In these cases, (7.3)
defines a two-dimensional nonlinear σ-model or discrete-spin model (e.g. Ising
or Potts model) coupled to quantum gravity. While it may not be clear a priori
what discrete-spin models on two-dimensional world sheets mean, several years
of conformal field theory have taught us how to think of such models. Besides, if
the world sheet is discretized they make perfectly good sense. The correspond-
ing lattice models, endowed with an action A0

Ising (or A0
Potts) describing an Ising

1A short remark about the word “dimension”. When interpreting (7.3) as the quantization
of gravity, the reader must be aware that there are two notions of dimension in the theory:
the dimension of the Riemannian manifold — two in this chapter — and the dimension d of
the matter field X. The latter is the only variable dimension in this chapter, and hence will be
the only one referred to in the sequel; “quantum gravity” will always mean “quantum gravity
for Riemannian manifolds of dimension two”. No such confusion arises when interpreting
(7.3) as a string theory, because the word “string” already implies that the parameter space
(Riemannian manifold) is two-dimensional.
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(or Potts) interaction, are known as Ising (or Potts) models “on a random lat-
tice”. They can be considered as toy models for quantum-gravity theories, or as
statistical-mechanical models in their own right. Their study has become very
popular in recent times, and we shall briefly survey them in Section 7.5.3.

For the Polyakov string (7.3), one might attempt to define string Green
functions by considering a parameter space D2 of fixed genus H, with a number
n of boundary components. Such a parameter space is obtained by deleting n
small disks from a compact surface of genus H without boundary. One may then
try to constrain the maps X: D2 → Ed to map the ith boundary component
of D2 to a prescribed loop Li ⊂ Ed, for every i = 1, . . . , n. Heuristically, the
connected Green functions are then defined by

“ GH(L1, . . . ,Ln) =
∫

∂X=L1∪...∪Ln

exp
{
− 1

h̄
[A0

P(X, g)+λA(g)]
}
DXDg ” . (7.4)

The case n = 0, that is, integration over genus-H surfaces without boundary,
corresponds to the (connected) partition function, and will be denoted EH . The
precise meaning of such formulas in the continuum model is unknown to us. We
shall, however, introduce discrete approximations to the Polyakov string model
which permit us to define string Green functions analogous to those in (7.4)
which do have a precise mathematical meaning. Formulas (7.3)–(7.4) just serve
to motivate the quantities we shall consider in the context of discretized models.

Green functions GH(L1, . . . ,Ln), corresponding to a parameter space with
fixed genus H, are then used as building blocks for the Green functions of the
putative complete theory that takes into account all possible genera. This is a
process analogous to passing from a canonical to a grand canonical ensemble.
Formally, to define the full Green function one introduces a “fugacity” N−2

(the notation is for future convenience) and weighs each “canonical” function
GH with the factor N−2H :

G(L1, . . . ,Ln) = C(n,N)
∞∑

H=0

N−2HGH(L1, . . . ,Ln) , (7.5)

The factor N−1 is called the bare string coupling constant, and C(n,N) is some
constant that depends only on n and N . An expansion like (7.5), whose terms are
labelled by the genus, is called a topological expansion. Unfortunately, in bosonic
string theory the series on the r.h.s. of (7.5) diverges , and it is presumably not
even Borel summable [281]. It is an open problem — and in our opinion one of
the most important issues in string theory — to give a rigorous mathematical
meaning to the r.h.s. of (7.5). There has been much progress in this direction
during the past few years, although the fundamental conceptual issues are still
far from resolved; see Section 7.6 below.

In the rest of this chapter we review several attempts to construct regu-
larized versions of the preceding functional integrals, and in particular of the
Green functions (7.4). We start, in the next section, with a simple-minded ap-
proach based on a lattice regularization for the Nambu-Goto action (7.1). Later
(Section 7.4), we discuss regularizations of the Polyakov action in which the
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integration over metrics g is replaced by sums over random triangulations of a
surface. These models can be put in correspondence with matrix field theories
(Section 7.5) that can, in many cases, be integrated, yielding explicit solutions
for the models at fixed genus . In the last section (Section 7.6), we review the
use of these matrix models to give meaning to a theory summed over all genera.

7.2 Random-surface models in ZZ
d

7.2.1 Basic definitions

A random-surface (RS) model in the lattice ZZ
d is defined as follows: First one

chooses a countable family E of connected random surfaces in ZZ
d; this set E

will be the configuration space of the model. A “connected random surface” is,
by definition, a connected two-dimensional cell complex, of which each p-cell
(p = 0, 1, 2) corresponds to a copy of an elementary p-cell in ZZ

d. The 0-cells in
ZZ

d are sites of ZZ
d, the 1-cells are links (i.e. edges joining nearest-neighbor pairs

of sites), and the 2-cells are plaquettes. Two 2-cells can be glued along 1-cells
only if these 1-cells are copies of a single link in ZZ

d. Examples of such ensembles
are:

(i) All RS contributing to the RS representation of a lattice gauge theory
such as the pure ZZ2, U(1) or SU(2) models in the confinement phase; see [151,
212, 123, 332, 344, 214, 98].

(ii) Self-avoiding RS . (Self-avoiding RS appear in pure U(n)×U(m) lattice
gauge theories, for a fixed value of nm, as n → ∞; in the ZZ2 lattice gauge
theory; in crystal surface and interface problems; as domain walls in magnets,
etc. This is an important ensemble [153].)

(iii) Connected, orientable RS of genus 0 (i.e. without handles). We call
these planar RS [153].

(iv) Clusters of “occupied plaquettes” (unit squares) in ZZ
d. They are studied

in connection with Bernoulli plaquette percolation [11] and q-state Potts gauge
theories in the Fortuin-Kasteleyn representation [14].

(v) Graphs of integer-valued functions on ZZ
2 which describe the surfaces of

the solid-on-solid (SOS) model [357, 400, 503, 501].

Next, one assigns to every random surface S ∈ E a statistical weight, ̺(S).
The most conspicuous example of statistical weights, inspired by the Nambu-
Goto action defined in (7.1), is

̺(S) =





e−β|S| S ∈ E
0 S 6∈ E (7.6)

where |S| indicates the number of plaquettes forming the surface S, and E is
some ensemble of surfaces contributing to the model. We adopt here a statistical-
mechanical point of view, hence we use the letter β for the parameter in the
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exponential and think of it as an inverse temperature. From the quantum-
gravity point of view, this parameter is proportional to the bare string tension.

The Green functions of the models are generalizations of the RW Green
functions in which points (boundaries of walks) are replaced by loops (bound-
aries of surfaces). The n-loop Green function (or n-loop correlation) is defined
as

G(L1, . . . ,Ln) =
∑

S∈E
S connected

∂S=L1∪...∪Ln

̺(S) (7.7)

where L1, . . . ,Ln are lattice loops and ∂S denotes the boundary of S. The
expression (7.7) constitutes a regularization of (7.4) or (7.5). All the relevant
properties of the model are expressed in terms of these Green functions. For
example, if L× T is a rectangular loop with sides of length L and T , the string
potential V (L) is defined by

V (L) = lim
T→∞

− 1

T
log G(L × T ) (7.8)

and the string tension α by

α = lim
L→∞

1

L
V (L) . (7.9)

The inverse correlation length (“glueball mass”) is defined by

m = lim
a→∞

−1

a
log G(∂p, ∂pa) (7.10)

where p is a plaquette and ∂pa is a copy of ∂p translated by a lattice units in a
lattice direction. A susceptibility (or better: specific heat) is defined by

χ =
∑

p′
G(∂p, ∂p′) . (7.11)

Other notions are introduced by analogy to the RW models. For instance,
assume that the weights are parametrized by the inverse temperature β in such
a way that there exists a value βc such that the susceptibility diverges for all
β < βc, while it is finite for β > βc.

2 For the ensembles (ii) and (iii) and for
̺(S) = exp(−β|S|), βc exists and, in addition, all Green functions G(L1, . . . ,Ln)

2We emphasize that the Green functions for surface models are expected to be well be-
haved at low temperature and may not exist at high temperature. This is the opposite of what
we expect for RW models (cf. the Gaussian model, which has no low temperature phase, as
explained in Section 2.3). This can be understood if one imagines that random-walk expres-
sions roughly represent sums over paths along which spins correlate, and hence they have
better convergence properties in the disordered phase where correlations die out fast. On the
other hand, random-surface expressions can be associated to sums over Bloch walls, which
are more scarce, and hence the sum is better defined, at low temperature. Of course, this just
depends on our convention about temperature: β versus 1/β.
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are divergent for β < βc (If E is the ensemble of all connected orientable RS
with precisely H handles, then βc is independent of H). In the sequel we shall
assume β > βc and will manipulate the series (7.7) with the tacit understanding
that all the steps can be justified with some more work. We say that βc is a
critical point if

m(β) ց 0 as β ց βc . (7.12)

In this case, we may introduce critical exponents ν, γstr, η, µ, . . . , as follows:

m(β) ∼ (β − βc)
ν (7.13)

χ(β) ∼ (β − βc)
−γstr (7.14)

Gβ(∂p, ∂pa) ∼ a−(d−2+η) , for 1 ≪ a ≪ m(β)−1 (7.15)

∂α

∂β
∼ (β − βc)

µ−1 . (7.16)

Assuming a weak form of scaling we have that

γstr = ν(2 − η) . (7.17)

In addition, for ensembles (ii) and (iii) and for ̺(S) = exp(−β|S|), assuming a
suitable form of scaling, we have:

ν =
1

2
µ . (7.18)

For the planar RS model it is known that if χ(β) ր ∞ as β ց βc, then
m(β) ց 0 as β ց βc; i.e., βc corresponds to a critical point [153].

To rigorously define objects with the properties expected of the formal Green
functions (7.4), one considers the continuum limit of the RS model, defined by
rescaling the Green functions in a way similar to the one considered previously
for spin models (see Chapter 3). Consider n loops L(b1), . . . ,L(bn) formed, re-
spectively, by two copies of the bonds b1, . . . , bn. Let x1, . . . , xn be the midpoints
of b1, . . . , bn and let µ1, . . . , µn be the directions of b1, . . . , bn. With the notation
G(x1, µ1, . . . , xn, µn) ≡ G(L(b1), . . . ,L(bn)), the rescaled Green functions are

Gθ(y1, µ1, . . . , yn, µn) ≡ α(θ)nGβ(θ)(θy1, µ1, . . . , θyn, µn) (7.19)

where xj = θyj is the midpoint of some bond in ZZ
d with direction µj, and

θ → ∞ is a scale parameter. The continuum Green functions are

G(y1, µ1, . . . , yn, µn) = lim
θ→∞

Gθ(y1, µ1, . . . , yn, µn) (7.20)

in the sense of distributions for non-coinciding arguments. Note that it can hap-
pen that the continuum Green functions are independent of the vector indices
(directions) µ1, . . . , µn. This will happen if scalar particles (spin 0) are the only
ones that survive in the spectrum of the continuum theory. It turns out that



124 7. Random-surface models

this is the case for the planar RS model with weight given in (7.6). The physical
mass m∗ is defined to be

m∗ ≡ lim
θ→∞

θm(β(θ)) (7.21)

while the physical string tension is

α∗ ≡ lim
θ→∞

θ2α(β(θ)) . (7.22)

As discussed before, to obtain an interesting continuum limit it is necessary
that β(θ) converge to a critical inverse temperature βc as θ → ∞. The theory is
trivialif α∗ is infinite, for instance if α(β) remains positive at the critical point.
As for the case of random walks, this triviality is associated to some “mean-
field behavior”: the surfaces of the model collapse into tree-like structures with
negligible area but large entropy contribution, and the critical properties are
expected to be equal to the properties of non-interacting branched polymers.
We now turn to a more complete description of such behavior.

7.2.2 A mean-field theory for random-surface models

The basic idea in finding the mean-field theory for random-surface models is that
when the dimension, d, is large most of the entropy resides in surfaces which are
“tree-like”: large collections of filaments of small surface area with a negligible
amount of self-intersections. Therefore, in order to construct a mean-field theory
we consider the ensemble E of surfaces made up by gluing together elementary
“cylindrical elements” consisting of two overlapping plaquettes glued together
along some of the opposite edges (glued along three edges when forming the
end of a “branch”, along two edges when forming an intermediate segment of
a branch, and along one or no edge when forming “T” connections between
branches). We shall use the following properties of such surfaces: as d → ∞
no pieces of surface are ever formed which are wider than the minimal width
required, i.e. no surfaces enclosing large spheres are formed. This happens for
purely combinatorial (entropy) reasons. Moreover, the resulting surfaces are
automatically self-avoiding, so that distant parts of a surface are statistically
independent. All this is easily verified, but see [423, 147, 154] for details.

Let b1, . . . , bn be n bonds in ZZ
d viewed as degenerated loops, i.e. each bi

really consists of two copies of a bond glued together at the endpoints. The bi’s
are called double bonds. The n-loop Green functions are then

G(b1, . . . , bn) =
∑

S∈TE(b1,...,bn)

̺(S) , (7.23)

where TE(b1, . . . , bn) is the class of all surfaces, S, in the above ensemble E for
which ∂S = b1 ∪ . . . ∪ bn. This last condition is equivalent to the requirement
that the bonds b1, . . . , bn belong to S (which is imagined as cut open along such
bonds). See [423, 147, 154].
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As d → ∞, the lack of self-intersections allows us to decompose each surface
unambiguously into maximal pieces joining pairs of bonds (b, b′) where b and b′

belong to a “fork” or to the boundary. The sum over all possible surfaces fac-
torizes, therefore, into terms corresponding to summing over all possible pieces
connecting all pairs (b, b′). Each such term gives precisely a factor G(b, b′) (again,
we are using the self-avoidance, valid only at d → ∞). This resummation is for-
malized as follows: We view double bonds, b, as vertices of a graph, G, and pairs
of double bonds, (b, b′), as lines of G. Let us fix n double bonds b1, . . . , bn, and
view them as endpoints of n external lines. Let T (b1, . . . , bn) denote the family
of all connected tree graphs all of whose internal vertices are of order three and
whose external lines end in b1, . . . , bn. Then

G(b1, . . . , bn) ∼
d large

∑

G∈T (b1,...,bn)

∏

(b,b′)∈L(G)

G(b, b′) , (7.24)

As d → ∞ (self-avoidance!), every surface S ∈ TE(b, b
′) can be described as the

union of a unique walk, ω, made up of the cylindrical elements described above,
starting at b and ending at b′, and of surfaces in T(b̃), “b̃ ∈ ω”, i.e., tree-like
surfaces rooted at bonds, b̃, belonging to ω. These trees have no intersections
with ω, no mutual intersections and no self-intersections. To calculate

G(b, b′) =
∑

S∈TE(b,b′)

̺(S) (7.25)

in the limit d → ∞, we may first sum over all trees rooted on ω and, subse-
quently, sum over all walks ω joining b to b′. Each step of the walk has an area
2 (it involves two joined plaquettes) and there are 4|ω| double bonds b̃ where a
tree can be rooted (that is, two borders per plaquette). The sum over all trees
rooted at b̃ gives a factor 1+G(b̃) (the “1” corresponds to the empty tree), which
is independent of b̃ by translation-invariance. Thus, for ̺(S) = exp[−β|S|], the
sum over all trees rooted on ω yields

̺(ω) = e−2β|ω| [1 + G(b̃)]4|ω|

= e−2β′|ω| , (7.26)

as the weight of the walk, where

β′ = β′(β) = β − 2 log(1 + G(b)) . (7.27)

Thus
G(b, b′) ∼

d large

∑

ω : b→b′

e−2β′|ω| =
[
−∆ + m2(2β′)

]−1

b,b′
, (7.28)

where ∆ is the finite-difference Laplacian, and m2(β) is the solution of the
equation

[2d + m2(β)]−1 = e−β . (7.29)

From (7.28) we conclude that the exponent η of G(b, b′), introduced in (7.15)
has the value
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η = 0 . (7.30)

To compute other exponents, it is useful to notice the following identity for the
case ̺(S) = e−β|S|:

∂

∂β
G(b1, . . . , bn) = −

∑

S∈TE(b1,...,bn)

|S|e−β|S|

≃ −2
∑

b̃

∑

S ∈ TE(b1, . . . , bn)

S ∋ b̃

e−β|S|

= −2
∑

b̃

G(b1, . . . , bn, b̃) . (7.31)

(In the intermediate step, the boundary contributions were ignored.) Applying
this to

χ(β) =
∑

b′
G(b, b′) , (7.32)

we conclude that

∂χ

∂β
∼

d large
−

∑

b′,b′′
G(b, b′, b′′)

∼
d large

−2
∑

b′,b′′

∑

b∗
G(b, b∗)G(b′, b∗)G(b′′, b∗)

= −2 χ3 . (7.33)

We have used the fact that a graph with three external vertices (b, b′, b′′) must
bifurcate at some internal vertex b∗. Integration over β yields

χ(β) ∼ (β − βc)
−1/2 , i.e. γstr =

1

2
. (7.34)

Another consequence of (7.31) is that

− ∂G(b)

∂β
= χ(β) ; (7.35)

hence (7.34) implies

Gβc(b) − Gβ(b) ∼ (β − βc)
1/2 , (7.36)

and this and (7.29) yield

m(β) ∼ (β − βc)
1/4 , i.e. ν =

1

4
, (7.37)

which also follows from (7.34), (7.30) and the relation γstr = ν(2 − η).
Finally, we study the behavior of the string tension, α(β), near βc. To be

specific, we consider the planar RS model with ̺(S) = exp[−β|S|], but our final
result is more generally valid. We recall that
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α = lim
L→∞

− 1

L2
log G(L × L)

= lim
L→∞

− 1

L2
log

( ∑

S∈E
∂S=L×L

e−β|S|
)

. (7.38)

In large dimensions, when self-intersections are negligible, every surface S ∈ E ,
with ∂S = L × L can be uniquely decomposed into a “skeleton surface” and
trees rooted on its (double) bonds. This skeleton surface is what one gets after
“shaving off” all trees; more precisely, we define a skeleton surface R to be any
surface which does not decay into two pieces by cutting along any double bond
(i.e. by cutting open two bonds of S). This decomposition yields a factorization
of the sum inside the log in (7.38). Each skeleton surface R with ∂R = L × L
contains 2|R|+2L double bonds and, for each double bound b̃, the sum over all
possible trees rooted therein produces a factor 1 + G(b̃). We therefore get

α ∼
d large

lim
L→∞

− 1

L2
log

{ ∑

skeletons, R
∂R=L×L

(1 + G(b))2L+2|R|e−β|R|
}

= lim
L→∞

− 1

L2
log

{
(1 + G(b))2L

∑

skeletons, R
∂R=L×L

e−β′|R|
}

, (7.39)

where β′ is given by (7.27). Thus

α(β) ∼
d large

lim
L→∞

− 1

L2
log

{ ∑

skeletons, R
∂R=L×L

e−β′|R|
}

,

= αS(β′) (7.40)

where αS is the string tension of the skeleton theory. For large d, αS(β′) ∼ β′,
and β′ remains positive as β ց βc, by (7.29). Hence

α(β) ց α̃ > 0 , as β ց βc , (7.41)

with α̃ = αS(β′(βc)). However, from (7.27) and (7.35)

∂α

∂β
(β) ∼ ∂αS

∂β′
(β′(β)) · ∂β′

∂β
(β)

∼ ∂αS

∂β′
(β′(β)) χ(β) . (7.42)

Since the skeleton theory is not yet critical at β′ = β′(βc), (∂αS/∂β′)(β′(βc)) is
finite. Hence

∂α

∂β
(β) ∼ (β − βc)

−γstr , (7.43)

i.e.

µ = 1 − γstr =
1

2
= 2ν . (7.44)

For a more detailed account see [154].
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7.2.3 The planar random-surface model

In this section we sketch the analysis of a lattice approximation to the Nambu-
Goto model of quantized, relativistic strings [403, 265] in the Euclidean (imaginary-
time) description. To approximate (7.1), the statistical weights of the surfaces
are chosen equal to exp[−β × area]. This model is a natural random-surface
analogue of Brownian motion. As we shall see, its critical behavior is identical
to the one of non-interacting branched polymers; and hence its continuum limit
is trivial.

As an ensemble of lattice RS we choose the class E = EPRS of all connected
complexes, S, constructed by gluing together pairs of adjacent plaquettes of ZZ

d

along common edges, which are orientable and have the topology of a 2-sphere
with an arbitrary, finite number, n, of small discs removed. The boundaries
of these discs correspond to connected components of the boundary, ∂S, of a
complex S ∈ EPRS. We fix ∂S to consist of a union of loops L1, . . . ,Ln of ZZ

d.
As the statistical weights of a “surface” S we choose

̺(S) = e−β|S| . (7.45)

The main result [154] for this model is

Theorem 7.1 Suppose that χ(β) ր ∞ as β ց βc, and suppose that the PRS
model has a weak self-similarity property defined below; see (7.70), (7.71). Then,
mean-field theory provides an exact description of the approach to the critical
point, β ց βc. In particular, the critical exponents have the values

γstr = µ =
1

2
, ν =

1

4
(7.46)

G(b, b′) ∼ dist(b, b′)−(d−2) (7.47)

if 0 ≪ dist(b, b′) ≪ m(β)−1, i.e. η = 0. Moreover,

α(β) ց α̃ > 0 , as β ց βc . (7.48)

Remarks.
1) The hypotheses of Theorem 7.1 have been tested numerically in 2, 3 and

5 dimensions [331, 61]. They appear to be valid in all dimensions d ≥ 2.
2) The same result can be proven for some randomly triangulated models

and their associated matrix models described in Sections 7.4 and 7.5 [152].
3) Properties (7.46), (7.47) and (7.48) show that the continuum limit of

the two-loop correlation, G(b, b′), of the PRS model (i.e. its scaling limit as
β ց βc), is the Euclidean propagator of a single, free scalar field and that the
string tension is infinite.

Sketch of proof [154]. We define a class, R(2), of skeleton surfaces (of order
2) as consisting of all those surfaces S ∈ EPRS which do not decay into two
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disconnected pieces when cut open along any two bonds in S not belonging to
the boundary ∂S (a doubly occupied bond of ZZ

d counts as two bonds of S).
More generally, we may define a class, R(2j), of skeleton surfaces of order 2j
to consist of all those surfaces S ∈ EPRS with the property that if an arbitrary
number, i, of discs, D1, . . . , Di, with boundaries of length ≥ 2j are removed
from S then all loops on S \ (D1 ∪ . . . ∪ Di) which are non-contractible with
respect to D1, . . . , Di have length ≥ 2j.

Let S(L1, . . . ,Ln) be the class of all surfaces S ∈ EPRS, with ∂S = L1 ∪
. . . ∪ Ln, where each Li is some loop in ZZ

d. We define

G(2j)(L1, . . . ,Ln) =
∑

S ∈R(2j)∩S(L1,...,Ln)

e−β|S| , (7.49)

and m(2j), α(2j), χ(2j) are defined as in (7.9)–(7.11), with G replaced by G(2j).
It is immediate that χ(2j)(β) is convex in β, and m(2j)(β), α(2j)(β) are concave
in β, for all j = 0, 1, 2, . . .. As in [153] (for j = 0), one proves that there exists
a value β2j independent of L1, . . . ,Ln, with β2j ≤ β2j−2 ≤ . . . ≤ β0 ≡ βc, such
that G(2j)(L1, . . . ,Ln) converges, for all β > β2j, and diverges, for all β < β2j.
Moreover,

m(2j) > 0 and α(2j) > 0 for all β > β2j . (7.50)

(The proof is as in [153].) As in the previous section, we define

β′ = β′(β) = β − 2 log(1 + Gβ(b)) . (7.51)

A crucial, but straightforward step in the proof is to prove the equation

Gβ(b, b′) =
∞∑

n=0

∑

b1,...,bn

G
(2)
β′ (b, b1)G

(2)
β′ (b1, b2) . . . G

(2)
β′ (bn, b

′) . (7.52)

This is proven as follows: We first fix n + 1 skeleton surfaces, R1, . . . , Rn+1, of
order 2, with ∂R1 = b∪ b1, ∂R2 = b1 ∪ b2,. . . , ∂Rn+1 = bn ∪ b′. The sum over all
the surfaces S ∈ S(b, b′), whose associated skeleton consists of R1 ∪ . . . ∪ Rn+1,
satisfies the identity

∑

S∈S(b,b′)
skeleton of S = R1∪...∪Rn+1

e−β|S| = const e−β′(|R1|+...+|Rn+1|) (7.53)

(each of the 2(|R1|+ . . .+ |Rn+1|) double bonds contribute with a factor 1+G(b)
as in the previous section). Finally, we sum over all possible R1, . . . , Rn+1, all
possible b1, . . . , bn, and all values of n; see [154] for details. Similarly, we may
prove that

Gβ(L) = G
(2)
β′ (L) = G

(4)
β′′ (L) . . . . (7.54)

If we Fourier-transform (7.52) we obtain

Ĝβ(k) =
Ĝ

(2)
β′ (k)

1 − Ĝ
(2)
β′ (k)

, (7.55)
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where k is a momentum in the first Brillouin zone. Suppose now that

χ(2)(β) = Ĝ
(2)
β (k = 0) diverges as β ց β2 . (7.56)

Then βc is determined by the equation

χ(2)(β′(βc)) = 1 ; (7.57)

see (7.55). Since χ(2)(β) is convex in β, it follows that

β′(βc) > β2 . (7.58)

Since by (7.51) β′(βc) < βc, it follows that

βc > β2 . (7.59)

For β > β2, m(2)(β) is positive, and hence Ĝ
(2)
β (k) is analytic in k2, for |k| ≪

m(2)(β). Therefore

Ĝ
(2)
β (k) = χ(2)(β) − ξ(β)k2 + O(|k|4) , (7.60)

and it follows from the positivity of G(2)(b, b′) that ξ(β) > 0, for all β > β2. In
particular, all this is true for β = β′(βc), by (7.58). From (7.60) and (7.55) we
conclude that

Ĝβ(k) ∼ [1 − χ(2)(β′) + ξ(β′)k2]−1 , (7.61)

and hence that

m(β)2 ∼ 1 − χ(2)(β′) ∼ χ(β)−1 ∼ (β − βc)
γ
str , (7.62)

as β ց βc
3. Thus

ν =
γstr

2
. (7.63)

To determine the exponent γstr, we take the derivative of (7.55):

∂χ

∂β
=

∂Ĝβ(k = 0)

∂β

=


 1

1 − Ĝ
(2)
β′ (0)

+
Ĝ

(2)
β′ (0)

(1 − Ĝ
(2)
β′ (0))2


 ∂Ĝ

(2)
β′ (0)

∂β′

∂β′

∂β
. (7.64)

By (7.59), Ĝ
(2)
β′ and its derivatives are bounded in the vicinity of βc. On the

other hand, by (7.61)–(7.62), 1 − Ĝ
(2)
β′ (0) ∼ χ(β)−1 and, from definition (7.51),

∂β′/∂β ∼ χ(β). Thus, we conclude from (7.64) that

− ∂χ

∂β
∼ χ3 , i.e. γstr =

1

2
. (7.65)

3For related methods see also [94] and references therein.
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It also follows directly from (7.61) and the fact that ξ(β′(βc)) > 0 that η = 0.
Hence

γstr =
1

2
, ν =

1

4
and η = 0 (7.66)

which are the mean-field exponents.
Finally, we note that (7.54) implies that

α(β) = α(2)(β′(β)) . (7.67)

Since β′(βc) > β2, it follows from (7.61) that

α(βc) = α(2)(β′(βc)) > α(2)(β2) ≥ 0 , (7.68)

i.e. α̃ = α(βc) is strictly positive. Finally

∂α

∂β
(β) =

∂α(2)

∂β′
(β′(β)) · ∂β′

∂β
(β)

=
∂α(2)

∂β′
(β′(β)) · χ(β)

∼ (β − βc)
−γstr , i.e. µ = γstr . (7.69)

Note that (∂α(2)/∂β′)(β′(βc)) is finite, by concavity and (7.58).
We expect that the behavior of the functions m(2j)(β), χ(2j)(β) and α(2j)(β)

near β2j is qualitatively the same, for all values of j. For example, we expect
that if

χ(β) ≡ χ(0)(β) ր ∞ , as β ց βc (7.70)

then
χ(2j)(β) ր ∞ , as β ց β2j , for all j > 0 . (7.71)

This is the self-similarity property of the PRS model assumed in the theorem.
The converse is proven easily: Using an Ornstein-Zernike equation of the form
(7.55), for general values of j, one shows that

χ(2j)(β) ր ∞ , as β ց β2j (7.72)

implies that
χ(2j−2)(β) ր ∞ , as β ց β2j−2 , (7.73)

for all j. Thus if (7.72) holds for j = 1 all assumptions needed to prove the
conclusions of the theorem are valid .

There are computer experiments suggesting that (7.70) hold in two and
three dimensions and that (7.72) holds, for j = 1, for some values of d > 2
[331, 61]. Moreover, (7.72) holds for all values of j in mean-field theory.

Remarks.
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1) Techniques related to (7.55)–(7.61) have also been used in [2].
2) The basic technical results, (7.54)–(7.61) and (7.65) extend to some ran-

domly triangulated models and their associated matrix models described in
Sections 7.4 and 7.5, but the basic hypothesis (7.72) (for j = 1) has not yet
been proven.

7.3 Typical phenomena in random-surface theory

We interrupt, for a moment, our parade of models to describe some typical
phenomena encountered in the statistical mechanics of random surfaces, most
of which have no analogue in the theory of interacting random walks.

(1) Surface roughening [357, 400, 503, 501]. Roughening is exhibited by
models of surfaces immersed in an infinite regular lattice, such as ZZ

d, which
have only a discrete translational symmetry . Roughening can be viewed as the
phenomenon of enhancement of the discrete to full continuous translational
symmetry [224, 225].

Let P (h|L × L) be the probability that a lattice random surface S with
∂S = L×L intersects the (d− 2)-dimensional plane perpendicular to the plane
containing L × L and passing through 0, at a distance h from the latter. For
RS models, like the ones defined in (ii)–(v) of Section 7.2.1, one may prove (see
[133], [134] and [432] and references therein) that, for β ≫ βc,

P (h) ≡ lim
L→∞

P (h|L × L) (7.74)

exists and decays exponentially in h, for a choice

̺(S) = e−β|S| , (7.75)

for example. For the solid-on-solid model (v) (Section 7.2.1), one can prove
[224, 225] that there exists some βR > 0 such that, for β < βR, P (h) = 0, for
all h < ∞, and

∞∑

h=0

h2P (h|L × L) ∼ log L . (7.76)

The existence of a roughening transition characterized by (7.74) and (7.76) is
expected for a large class of RS models, including models (i)–(iii) and (v) of
Section 7.2.1, with ̺(S) for example as in (7.75). The roughening transition
is expected to be of infinite order. The capillary surface waves present when
β < βR restore continuous translation invariance broken by the lattice.

Another characterization of the roughening transition is based on the be-
havior of the string potential V (L), introduced in (7.8). One can prove quite
easily that, for large β,

V (L) = α(β)L + γ(β) + δ(β) exp[−L/ξ(β)] , (7.77)

where α, γ, δ and ξ are finite constants. At βR, ξ(β) diverges . (Presumably
ξ(β)−1 has a zero of infinite order at βR.) On the basis of simple models (e.g. the
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Gaussian sheet or reformulations of solid-on-solid models in terms of fermions)
one may argue that, for β < βR (where capillary waves are abundant),

V (L) = α(β)L + γ(β) +
κ(β)

L
, (7.78)

where α, γ and κ are finite constants, and κ ≃ π(d − 2)/24 for small β [377].
The correction term κ/L reflects the one-dimensional Casimir effect. The string
tension, α, is expected to have a singularity at βR but to remain strictly positive
for β ≤ βR.

(2) Entropic repulsion [203, 84]. Consider, for example, a solid-on-solid
model of an interface in the presence of a wall. The interface, S, is described by
assigning a height variable hp ∈ IR (or hp ∈ ZZ) to every plaquette p contained in
a square Λ ⊂ ZZ

2 with sides of length L. More precisely, the interface S = S(h)
is given by the graph of the height function h, its area by

|S(h)| = L2 +
∑

〈pp′〉

|hp − hp′| , (7.79)

where 〈pp′〉 denotes a pair of distinct plaquettes with a common bond, and
hp = 0 for all p 6⊂ Λ. The statistical weight of the interface S is given, for
example, by

exp[−β|S|] . (7.80)

The wall is described by the constraint that

hp ≥ 0 , for all p ⊂ Λ . (7.81)

The point is now that, for entropic reasons, the interface will typically settle
in a mean position that is quite far away from the wall, because this permits
the interface to grow spikes in the direction away from the wall and towards
the wall . Since such spikes have large entropy, a mean position of the interfaces
far away from the wall does not only increase their energy but it also increases
their entropy . For β small enough, entropy typically wins over energy, and we
conclude that

lim
L→∞

〈hp〉Λ = ∞ , (7.82)

for any fixed plaquette p. A quantitative estimate,

1

L2

∑

p⊂Λ

〈hp〉Λ ∼ log L , as L → ∞ , (7.83)

for the weight of an interface S(h) given by (7.80), has been proven in [84].
Similar phenomena are encountered in systems of two or more interacting sur-
faces. Entropic repulsion is the mechanism driving wetting transitions. This
phenomenon of entropic repulsion may also have some bearing on the “breath-
ing transition” described in (4), below.
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(3) Topological complexity [14]. Random “surfaces”, in contrast to random
walks, have an intrinsic topology: They may be non-orientable, may have han-
dles , and may have pockets (e.g. in ZZn and SU(n) lattice gauge theories, n ≥ 3,
pockets arise when n plaquettes are glued together along a common link). When
d ≥ 4, their first (co)homology groups may have a non-trivial torsion subgroup.
But even “true” orientable surfaces (as opposed to general 2-dimensional cell
complexes) have an intrinsic topology, characterized by the number of holes and
handles. “Topological complexity” has some important consequences: it leads
to serious difficulties in the 1/n-expansion and in real or complex interpolations
in the parameter n of the n-state Potts model and possibly the pure SU(n)
lattice gauge theory [14]. Moreover, it may affect the deconfining transition in
RS models (see e.g. Sect. 2 (i) of [11]).

(4) Collapse to a tree-like surface and “breathing” [214, 155, 154, 2]. We
expect that there are RS models for which there exists a deconfining transition
at some value βdc ≥ βc, so that

α(β) > 0 , for all β > βdc ,

α(β) ≤ 0 , for all β < βdc .
(7.84)

This might be the case in some self-avoiding RS models in small dimensions.
One can argue that, in such a model, for β > βdc, typical random surfaces
look like trees (in a planar RS model, trees in the graph-theoretic sense), or
more complicated networks, made out of thin, tubular pieces, with the property
that the probability that a closed random surface enclose a sphere of radius R
tends rapidly to 0 as R ր ∞. In contrast, for β < βdc, surfaces grow fat and
wide (“breathe”), and infinite closed random surfaces enclose arbitrarily large
spheres.

Mean-field theory predicts that, in large dimension, for any reasonable the-
ory of random surfaces,

α(β) ց α̃ > 0 , while m(β) ց 0 , (7.85)

as β ց βc [423, 147, 154]. One might expect that, in models (ii) or (iv) of
Section 7.2.1, for example, there exists a dimension dc < ∞ such that (7.85)
holds for all d > dc, while, for d < dc,

α(β) ց 0 , and m(β) ց 0 , as β ց βc . (7.86)

Thus, when d > dc, typical random surfaces collapse to tree-like structures when
watched from far distances, i.e. in the scaling limit, and the critical properties
of such a model are described by a model of branched polymers .

In plaquette percolation [11], model (iv) of Section 7.2.1, there are several
transition points at which an inverse correlation length, m, vanishes before the
string tension vanishes. It is not known whether the string tension tends to
0 continuously at the transition point. This is also a major unsettled issue in
high-dimensional lattice gauge theories.
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(5) Crumpling [404]. Let us consider a model of random surfaces defined as
maps X from a finite rectangular domain Λ in a regular two-dimensional lat-
tice (e.g. triangular, square or honeycomb) into d-dimensional Euclidean space
Ed/ The statistical weight of surfaces is given, for example, by the probability
measure

Z−1 exp
[
−β

∑

〈i,j〉

|Xi − Xj|2
] ∏

i∈Λ

ddXi ,

where 〈i, j〉 denotes a pair of nearest-neighbor sites in the lattice, and Xj = 0 for
all j 6∈ Λ. Then one observes that typical random surfaces in Ed, as described
by this model, are highly crumpled , in the sense that, for example,

diameter(image of X) ∼ log(diameter of Λ) .

This phenomenon is believed to be of importance in the statistical mechanics of
membranes [404]. The models studied in the next section also have this property.

7.4 Randomly triangulated random-surface models

7.4.1 Definition of the model

In Section 7.2.3 we saw that the lattice regularization of the Nambu-Goto action
leads to mean-field results (trivial continuum limit in the sense that the physical
string tension is infinite). We now turn to another family of models [216, 115,
333, 21], introduced to regularize a theory based on the Polyakov action, that is,
to give meaning to the string Green functions (7.4). These models are based on
summing over triangulations, which roughly represent the “gravitational degrees
of freedom” of the Polyakov model.

We choose a connected orientable surface RH of genus H, and delete from it
n small discs whose boundaries are denoted by γ1, . . . , γn. The resulting surface
is denoted by R

(n)
H . We then consider triangulations of R

(n)
H .4 A triangulation of

R
(n)
H is, by definition, a 2-dimensional simplicial complex — that is, a collection

of 2-cells (triangles), 1-cells (edges) and 0-cells (vertices) with the property that
whenever a cell belongs to the complex, all the cells on its boundary also belong
to the complex — that is homeomorphic to R

(n)
H . In particular, this means that

#(triangles)−#(edges)+#(vertices) = 2−2H−n (Euler formula). In addition,
we require that the triangulations be loop-free, i.e. no edge can have coinciding
endpoints and no two triangles can have more than one common edge. Given a
triangulation T , we denote by F (T ) the set of faces (triangles) of T , by E(T )
the set of edges and by V (T ) the set of vertices of T .

We now consider, for each triangulation T on R
(n)
H , maps X from F (T ) into

euclidean space Ed. Two image points Xi, Xj ∈ Ed are considered to be joined
by an edge iff i and j are two adjacent triangles of T . The points {Xj: j ∈ F (T )}

4A more detailed discussion of the algebraic-topology background can be found in [401].
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are therefore identified with the centers of triangles5 of a triangulated, piecewise-
linear surface S = S(X; T ) immersed in Ed. It is assumed that all triangles j

adjacent to a component γi of the boundary of R
(n)
H are mapped to points

Xj ∈ Ed which belong to some fixed loop Li in Ed, i = 1, . . . , n. This condition
is expressed by the formula

bdT (S(X; T )) ⊂
n⋃

i=1

Li . (7.87)

We want the whole construction to remain reparametrization-invariant.
Hence, two triangulations of R

(n)
H are considered to be equivalent if they de-

termine the same combinatorial structure; metric properties do not play any
role in this notion. In consequence, we consider isomorphism classes of trian-
gulations or, equivalently, we weight each triangulation T with a factor C(T )
where

C(T ) = #{triangulations isomorphic to T } (7.88)

is the order of the group of symmetries of the triangulation T .
Given an action A(S) of a surface S, we define the Green functions

GH(L1, . . . ,Ln) =
∑

T
H(T )=H

W (T )

C(T )

∫

bdT (S)⊂L1∪...∪Ln

e−A(S(X;T ))
∏

j∈F (T )

ddXj ,

(7.89)

where the sum ranges over all triangulations of R
(n)
H . This expression is in-

tended as a regularization of the string Green function (7.4) with the sum over
triangulations corresponding to the integration over metrics. Note that we are
absorbing the factor h̄−1 into the definition of the discrete action A(S). The
expression (7.4) suggests to choose a weight W (T ) of the form

W (T ) ∼ exp(−µ|F (T )|) (7.90)

(µ is then interpreted as proportional to the bare cosmological constant); but
in principle we could study models with more general weights W (T ), as long as
the weights only depend on the isomorphism class of T and decay fast enough
so that the sum in (7.89) has adequate convergence properties. The most inter-
esting choice for the action A(S) is the discretization of Polyakov’s action A0

P

of (7.2), that is,

A0
P(S(X; T )) =

β

2

∑

(i,j)∗∈E(T )

|Xi − Xj|2 , (7.91)

where the sum runs over all pairs (i, j) of adjacent triangles (β is proportional
to the bare string tension). Other models recently studied are the “Potts models

5Here we depart from the more standard convention of defining X as a map from the
vertices of triangles into Ed. Our approach, which is equivalent to the more standard one,
makes more immediate the connection between the present models and the matrix models
introduced in Section 7.5.
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on a random lattice”. In these models the fields Xi are replaced by spins σi =
1, . . . , q, and the action is the usual Potts Hamiltonian:

A0
Potts(S(σ; T )) =

β

2

∑

(i,j)∗∈E(T )

(1 − δσiσj
) + h

∑

i

(1 − δ1,σi
) . (7.92)

Here, as before, the spins live at the centers of the triangles. (By duality [57],
this is equivalent to a Potts model with spins on the vertices of the triangles
but at the dual temperature β = log[1 + q/(eβ − 1)].)

We discuss here the discretization of the Polyakov action; some results for
the Potts action will be reviewed in Section 7.5.3. With the action (7.91), the
integration over X in (7.89) can be carried out explicitly, because it is given by
a Gaussian integral. Indeed, the action (7.91) can be written as

A0
P(S(X; T )) = β

∑

i,j∈F (T )

XiDij(T )Xj (7.93)

with

Dij(T ) =





−1 if (i, j)∗ ∈ E(T )

Ni if i = j

0 otherwise

(7.94)

where Ni is the number of triangles adjacent to the i-th triangle. The action
(7.93) has a “zero mode” due to translation invariance. For the Green functions
this mode is removed by the boundary conditions. For the partition function,
however, this “zero mode” must be eliminated “by hand” to avoid the divergence
of the integral. This is done, for instance, by fixing the position of one of the
triangles, say X0 = 0. The resulting partition function is then:

EH =
∑

T : H(T )=H

W (T )

C(T )

∫
e−A0

P(S(X;T )) δ(X0)
∏

j∈F (T )
j 6=0

ddXj (7.95)

=
∑

T : H(T )=H

W (T )

C(T )

[
π|F (T )|−1

β|F (T )| det D̃(T )

]d/2

(7.96)

where D̃ is the matrix obtained from D by deleting the row and the column
corresponding to i = 0. Analogous expressions hold for the Green functions
[115]. We see that the space dimension d appears here as a parameter, namely
as an exponent in (7.96), and hence it can be continued to non-integer values. It
is in this sense that one speaks of arbitrary real (or even complex) “dimensions”.
The case d = 0 corresponds to pure gravity, that is, to the theory without the
matter fields X. On the other hand, for d → +∞ the dominant triangulations
are those that minimize det D̃, while for d → −∞ only the triangulations which
maximize det D̃ survive.

For the action (7.91) with weights (7.90), it can be shown [21] that there
exists a βc such that G(L1, . . . ,Ln) is finite for β > βc and infinite for β < βc,
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for all n and all loops L1, . . . ,Ln, even when the loops degenerate into single
points [20]. The critical point βc is, moreover, independent of the genus H. One
may therefore attempt to sum over all genera, following the prescription (7.5),
in order to arrive at a non-perturbative version of the theory. However, the sum
over all values of H diverges , and it is not clear a priori how to arrive at a
meaningful definition of that sum. At present we do not know of any direct,
non-perturbative definition of RS models that would automatically include a
summation over all values of H, except for RS models that are derived from
some lattice gauge theory, and the models discussed in Section 7.6.

The physical observables of main interest are the mass gap and the suscep-
tibility. The mass gap is defined through the exponential decay of the two-loop
correlation function, G(L1,L2), in the distance between the loops. It can be
checked that, for the weights (7.90), this decay rate is independent of the shape
of the loops, so the loops L1,L2 can be contracted to single points x1, x2, in
which situation the correlation is denoted by G(x1, x2). Hence the mass is de-
fined as

m = − lim
|x1−x2|→∞

log
G(x1, x2)

|x1 − x2|
. (7.97)

The susceptibility is then χ =
∫

dxG(x0, x) and, with the weights (7.90) it is
not difficult to see that

χ ∼ − 1

EH

dEH

dµ
= 〈|F (T )|〉 . (7.98)

To define the string tension let LL be a rectangular loop with sides of length L
and with 4L vertices evenly distributed along its perimeter6. Then

α = − lim
L→∞

log G(LL)

L2
. (7.99)

For applications in quantum-gravity or string theory, one is interested in a
continuum limit in which finer and finer triangulations converge to the triangu-
lated manifold R

(n)
H . In particular, the number of triangles |F (T )| must tend to

infinity and, moreover, the average 〈|F (T )|〉 must diverge. By the above formula
this implies that in the continuum limit one must reach a critical model, that
is, β → βc; and, moreover, χ must diverge as β → βc, which requires

γstr ≥ 0 . (7.100)

7.4.2 Properties of the model

We now present results obtained for the discretization of the Poylakov action
— that is, weights (7.90) and action (7.91) — in the planar (i.e. H=0) case.
We see from the solution (7.96) that β and µ appear only in the combination
e−µβ−d/2, or equivalently (for d 6= 0)

6See [20] for a discussion of why the number of vertices is chosen proportional to L; the
value of the tension does not depend on the constant of proportionality.
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β̃ = βe2µ/d . (7.101)

This is, therefore, the only independent parameter.
To compute the exponent γstr for the discretized Polyakov model (7.91)–

(7.96), the starting expression is the Kirchhoff formula (see, for instance, [402])

det D̃ = #{trees spanning T ∗} , (7.102)

where T ∗ is the graph whose vertices are the triangles in T and whose lines
are given by pairs of adjacent triangles in T . On the basis of this formula, it is
expected that the triangulations minimizing det D̃ have a “polymer-like” struc-
ture, while those maximizing det D̃ are formed by regular arrays of triangles. If
so, it has been argued [23] that

min
T

det D̃ ∼ |F (T )| aF (|T |) (7.103)

max
T

det D̃ ∼ |F (T )|−1/3 bF (|T |) (7.104)

where a, b are some positive constants. Therefore, by (7.96):

EH ∼
∑

T
H(T )=H

|F (T )|p
C(T )

(
βc

β̃

)|F (T )|

; p =





−d/2 for d → +∞
d/6 for d → −∞ .

(7.105)
In both limiting regimes, the factor |F (T )|p obliterates the (d-independent)
entropy factor due to the number of triangulations with the same number of
triangles. Hence

EH ∼
∑

k

kp

(
βc

β

)k

∼ (β̃ − βc)
−p−1

∼




(β̃ − βc)
(d/2)−1 d → +∞

(β̃ − βc)
−(d/6)−1 d → −∞ .

(7.106)

Therefore [23]

γstr ∼





− d
2

+ O(1) d → +∞
d
6

+ O(1) d → −∞ .
(7.107)

Exact results have also been obtained for d = −2, 0 and 1. For d = −2, the
partition function (7.96) is a linear function of the determinant, that is, of the
number of trees spanned by the dual graph, and we get an expansion in terms
of tree-like polymers. This permits the application of combinatorial arguments
yielding solvable recursion relations [337, 72]. Alternatively, the results for the
d = −2 model can be deduced from the d = 0 model using Parisi-Sourlas
dimensional reduction [116]. When d = 0, the partition function reduces to a
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counting problem, which can be solved [78] using the random-matrix models
discussed in the next section. Finally, the d = 1 model can also be analyzed
using random-matrix models [338]: modulo an approximation justified on the
basis of universality, the integration reduces to the quantum mechanics of an
ideal Fermi gas [78] (see brief review at the end of Section 7.5.4). The results
are:

γstr =





−1 d = −2

−1
2

d = 0

0 d = 1

(7.108)

Results (7.107)/(7.108) suggest that there are two critical dimensions, dc1 = 1
and dc2 < ∞, such that γstr ≥ 0 for dc1 ≤ d ≤ dc2 , and γstr < 0 otherwise. In
this regard, we mention the KPZ prediction [340]

γstr =
d − 1 −

√
(25 − d)(1 − d)

12
, (7.109)

which is believed to be trustworthy for d very small; it agrees with (7.107)/
(7.108) at d = −2, 0, 1 and d → −∞, though not at d → +∞ (where the square
root is ambiguous in any case). Numerical data (reviewed, for example, in [338,
Section 6] and references therein) indicate that γstr is strictly positive for some
values of d > dc1 = 1.

It is proven [20] that for the model (7.90)/(7.91)

α(β̃) ≥ 2β̃ . (7.110)

Since β̃c > 0, it follows that the string tension at the critical point is nonzero,
and hence the physical (continuum-limit) string tension α∗ [defined by (7.22)]
diverges. This means that the continuum limit is trivial in the sense that the
surfaces, in the limit, collapse to very “spiky” objects of negligible area: if
γstr > 0 the system becomes equivalent to a system of branched polymers, and
the critical exponents assume their mean-field values. See [215] for some partial
results.

The collapse of random surfaces to branched polymers in the continuum
limit, for d chosen so that γstr > 0, is believed to be related to the presence
of a tachyon in the particle spectrum of continuum string theories in d > 1
dimensions. This, in turn, may be related to the fact that the KPZ formula
(7.109) for γstr becomes meaningless when d > 1. (See, however [107] for a
recent proposal of how to circumvent the d = 1 barrier, vaguely related to ideas
sketched below.)

In order to obtain a non-trivial continuum limit, the action must be modified
so as to suppress the unwanted spikes. A natural suggestion is to introduce terms
in the action, depending on the intrinsic or extrinsic curvature, which penalize
spike-like objects. The intrinsic-curvature terms [154] may be expected to have
little importance in a theory of two-dimensional random surfaces immersed in
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Fig. 7.1. Phase diagram of the model (7.111)

Ed (d ≥ 4) [22]. Hence only the extrinsic-curvature term is incorporated in the
action of the model. The most general form of the new action is [22]

A(S(X; T )) = β
∑

(i,j)∗∈E(T )

h(|Xi − Xj|) + λ
∑

△,△′

f(θ△,△′) , (7.111)

where β and λ are non-negative coupling constants, h and f are non-negative
continuous functions, and we denote by θ△,△′ ∈ [0, π] the angles between the
embedded triangles △ and △′ in Ed. To assign a nonzero energy to all triangu-
lations with nonzero curvature, the function f defined on [0, π] is assumed to
have a unique minimum at zero, withf(0) = 0 and f(θ) > 0 if θ > 0.

For this class of models, it is proven [22] that there is a convex curve
(β, λc(β)) in the (β, λ)-plane — the “critical line” (Figure 7.1) — that de-
limits a convex region B in whose interior the Green functions are finite. These
functions are infinite outside the closure of B. The curve λc(β) is monotonically
decreasing and

λc(β) → ∞ as β → 0 . (7.112)

In fact, if h(|x|) = x2 and f(θ) = 1 − cos θ (“Gaussian action”), there exist
constants c1, c2 such that [22]

c1β
−d/(d−2) ≤ λc(β) ≤ c2β

−d/(d−2) . (7.113)

Moreover, if h(|x|) = xp, p ≥ 2, m(β, λ) and α(β, λ) are strictly positive in the
interior of B. On the critical curve, α(β, λc(β)) is expected to be positive, but
it vanishes as β → 0, and m(β, λc(β)) = 0 . More precisely, it is proven that
there exist trajectories (β, λ(β)) → (0,∞) as β → 0, such that α(β, λ(β)) → 0
(Figure 7.1). Similar trajectories (β, λ′(β)) are found, where m(β, λ′(β)) → 0
(provided that p < pd, for pd a certain dimension-dependent constant < 2).

These are encouraging results suggesting the possible non-triviality of the
continuum limit. However, the bounds do not yet prove the existence of trajec-
tories (β, λ(β)) such that

α(β, λ(β))

m(β, λ(β))2
→ const , (7.114)
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as required for a continuum theory with finite renormalized string tension and
mass.

There are many other surface theories constructed on the same conceptual
basis. In applications to condensed-matter physics or fluid dynamics, one may
wish to introduce a self-avoidance constraint and/or to restrict the isomorphism
classes admitted on the RHS of (7.89) to some small family. This is because a

class T of triangulations of R
(n)
H really determines what in condensed-matter

physics would be called a distribution of disclinations present on the surface
S(X; T ). Since disclinations may have considerable stress energy, different iso-
morphism classes may have different a priori probabilities.

Let us finally sketch some partial results for higher genera. Exact solutions
[347] show that, as a function of the genus H,

γstr =





(5H − 1)/2 for d = 0

2 + 3(H − 1) for d = −2
(7.115)

which generalizes (7.108). [The first line was obtained only for H = 0, 1, 2, but it
is believed to be valid for all genera; the second line was obtained for all genera.]
Moreover, Distler and Kawai [131] have argued, on the basis of the consistency
of the quantization of the Liouville action, that

γstr = 2 + (H − 1)
(25 − d) +

√
(25 − d)(1 − d)

12
, (7.116)

an expression that generalizes (7.109). An important aspect of formulas (7.115)
and the proposed generalization (7.116) is the linear dependence on the genus H.
This linear dependence will be seen in Section 7.6.1 to imply that the topological
sum — i.e. the sum over H — of (for instance) the free energy is consistent
with a scaling relationship. Such a relationship is the basis for nonperturbative
theories constructed via the so-called double scaling limit, which is the subject
of Section 7.6.

7.5 Random-matrix models

7.5.1 Matrix field theories

The discretized Polyakov model defined by (7.90)–(7.91) can be put in cor-
respondence with an appropriate matrix field theory [216, 115]. This corre-
spondence is somewhat analogous to the correspondence between random-walk
models and vector field theories (Chapter 6), but with the following crucial dif-
ference: the random-walk models arise essentially from the high-temperature
expansion of the vector field theory, which is a convergent expansion (on
the lattice); while the random-surface models arise from the coupling-constant
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(perturbation-) expansion of the matrix field theory, which is divergent . More-
over, for most of the models studied here, the matrix integral is itself divergent,
and the coupling-constant expansion is not even Borel summable.

Let us briefly review the main features of a matrix field theory. We consider
a field of matrices {ϕ(x)} where x ranges over some d-dimensional manifold M ,
and each ϕ(x) is a N ×N Hermitian matrix. A (Euclidean) matrix field theory
is defined by assigning to the space of field configurations {ϕ(x)} a (formal)
measure of the form

e−
1
h̄
Tr U({ϕ(x)})

∏

x

dϕ(x) , (7.117)

where U is a functional of {ϕ(x)} [usually a local functional involving only ϕ
and its first two derivatives], and the measure on the space of N ×N Hermitian
matrices is

dϕ(x) =
∏

1≤i≤n

dϕii(x)
∏

1≤i<j≤n

dRe ϕij(x)
∏

1≤i<j≤n

dIm ϕij(x) . (7.118)

In this section we shall not set h̄ to one, but rather we will consider it a freely
adjustable parameter. (We could have denoted the parameter 1/h̄ by β, but this
would conflict with the notation for the inverse temperature of the statistical-
mechanical Potts models of Section 7.5.3.) Below, we shall take the limit h̄ → 0;
the theory so obtained is, therefore, often referred to as “semiclassical” (or “low
temperature”).

As in the standard (vector) λϕ4 theory, the measure (7.117) is ill-defined due
to ultraviolet divergences; one must therefore resort to some limiting procedure
to obtain meaningful expressions. One process of regularization consists (as in
Section 1.5) in considering lattice approximations and a discretized version of
U . On a finite lattice of q sites, the discretized U typically takes the form

U(ϕ(1), . . . , ϕ(q)) =
q∑

r,s=1

Arsϕ(r)ϕ(s) +
q∑

r=1

Vr(ϕ(r)) , (7.119)

where {Ars} is positive-definite, and V is a polynomial potential:

Vr(ϕ) =
pmax∑

p=3

up(r)ϕ
p . (7.120)

One then wishes to compute integrals with respect to the measure

e−
1
h̄
Tr U(ϕ(1),...,ϕ(q))

q∏

i=1

dϕ(i) . (7.121)

Such a theory is called a q-matrix field theory. To obtain a Euclidean field
theory, one must first compute the observables at finite q and then let q → ∞,
adjusting at the same time {Ars} and {up} as a function of q (infinite-volume
and continuum limits for the matrix field theory).

But even for finite values of q the matrix theory poses non-trivial problems:
To begin with, it is well known that the perturbation expansion in powers of
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the coefficients up (p ≥ 3) is divergent. This fact alone is perhaps not so serious;
it would simply force us, as in ordinary field theory, to take a nonperturbative
point of view. The real trouble is that in virtually all situations of interest in
random-surface theory, the integral (7.121) is itself divergent , because the po-
tential V is unbounded below: either pmax is odd, or else pmax is even but upmax(r)
is negative. Moreover, the perturbation expansion is not Borel summable. (It is
not hard to show that, in certain sectors of the complex coupling-constant space,
the matrix integral is well-defined and the perturbation series is asymptotic or
even Borel summable to it. Unfortunately, as we shall see, these sectors are usu-
ally not the ones where we must know the value of the matrix integral in order
to retrieve “physical” information about random surfaces.) At the moment, we
regard formal matrix integrals as a convenient book-keeping device to handle
the formal perturbation series, all of whose terms in an arbitrary order of up

(p ≥ 3) are well-defined .
The correspondence between random-matrix models and models of two-

dimensional quantum gravity is made at the level of formal power series: The
double expansion of a matrix model in powers of 1/N (where N is the size of the
matrix ϕ) and up (p ≥ 3), as first studied by ’t Hooft [304, 305], is compared to a
formal series whose terms are indexed by “polygonizations” of two-dimensional
compact orientable surfaces of arbitrary genus. It is found that if the power
of 1/N is equated to the genus of the surface (up to some constant), then the
two formal series coincide term-by-term. The point of this observation is that
the matrix-model formulation of that series suggests ways of how to “sum it”
to a well-defined function. For example, the series expressing the contribution
corresponding to a fixed power of 1/N , i.e. to a fixed genus, are geometrically
convergent and can be summed using the method of orthogonal polynomials
well known in the theory of matrix integrals [63]. The series expressing the
contributions of arbitrary powers of 1/N , i.e. summing over all genera, can be
related, in a certain limit (the so-called double scaling limit discussed in Section
7.6.4), to solutions of certain differential equations (related to KdV flows). These
equations can, again, be derived from the method of orthogonal polynomials in
the context of matrix integrals. So, the matrix models suggest non-perturbative
solutions to two-dimensional quantum-gravity models.

For simplicity, let us first consider some 1-matrix models. The computation
of the coefficients of the perturbation expansion around the Gaussian model fol-
lows the usual Feynman diagrammar based on Wick’s formula. The propagator
is

〈ϕijϕlk〉0 = h̄ δikδjl , (7.122)

where 〈 · 〉0 is the Gaussian measure

〈f(ϕ)〉0 =

∫
f(ϕ) e−

1
h̄
Tr 1

2
ϕ2

dϕ
∫

e−
1
h̄
Tr 1

2
ϕ2

dϕ
. (7.123)

The double subscripts of ϕ are taken care of by using double-line propagators in
the Feynman diagrams. We see from (7.122) that the contractions are between
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the first index of one factor and the second index of the other factor. If the
position of the index is represented by an arrow (say, outgoing for the second
index and ingoing for the first one), this constraint is automatically taken into
account by endowing each line with an orientation

〈ϕijϕkl〉0 = j l
¾

i k- ≡ h̄ δikδjl , (7.124)

and requiring that, in the graphs, the couplings between lines respect the ori-
entations. Except for this additional convention, the Feynman graphs for a
matrix-field theory are constructed in the same way as those for a scalar or vec-
tor theory. Many of the graphs so obtained are non-planar: that is, when drawn
in a plane, some graphs require propagators to cross at points where there is
no vertex. Thus, graphs can be classified according to the minimum genus of a
surface on which they can be drawn without self-intersections. This introduces
(a little) topology into the game, because the perturbation expansion can be
written as a double series in the number of vertices and the genus of the graph.
However, the only topological notion needed here is Euler’s formula: if we iden-
tify the graph with a polyhedron (thinking of propagators as fat edges), so that
the loops of the graph corresponds to faces of the polyhedron, we have that

#(vertices) − #(edge) + #(loops) ≡ Euler number = 2 − 2H . (7.125)

Let us discuss, for concreteness, the perturbation expansion of a 1-matrix
ϕ3 field theory [q = 1, pmax = 3 in (7.119)]. We consider the expansion in powers
of u3 and N of the formal integral

Z̃(h̄, u3, N) =
∫

exp− 1
h̄
Tr

[
1

2
ϕ2 + u3ϕ

3
]
dϕ , (7.126)

where ϕ ranges over all N ×N Hermitian matrices, and dϕ is given by (7.118).
Of course, the integral Z̃ is defined, naively, only for pure imaginary u3 (the per-
turbation series in u3 being asymptotic to Z̃(h̄, u3, N), for u3/h̄ on the imaginary
axis, with h̄ and N fixed).

We have deliberately considered a redundant number of variables in (7.126):
we can set either h̄ or u3 (but not both) to 1 by a simple rescaling of the
matrix fields, at the cost of an unimportant factor in the definition of Z̃. This
redundancy has a pedagogical purpose; it will allow us later to discuss in detail
the different parametrizations chosen in the literature.

As a first step, we perform the formal power series expansion of (7.126) in
powers of u3/h̄:

Z̃(h̄, u3, N)

Z̃(h̄, 0, N)
=
f

∞∑

k=0

(−u3)
k

h̄k

1

k!

〈[
Tr ϕ3

]k
〉

0
, (7.127)

where 〈 · 〉0 is the Gaussian measure (7.123). The symbol “=
f
” indicates “equal-

ity in the sense of formal power series”. The coefficients of this series can be
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expressed as a collection of Feynman graphs with double-line propagators de-
fined by (7.122) and where each factor Trϕ3 in (7.127) corresponds to a vertex
with three pairs of lines:

ϕijϕjkϕki =

i k
6?

i

j

@
@I

@@@@R
@@

j

k
¡
¡µ

¡¡¡
¡ª

¡¡ . (7.128)

With this convention, each term of order k in (7.127) corresponds to the sum of
all Feynman diagrams with k vertices of the form (7.128) where the couplings
between pairs of lines respect the orientations of the lines.

To find the contribution of each Feynman diagram, we notice that, by the
above formulas, each vertex has a weight u3/h̄, and each double-line propagator
represents a factor of h̄. Moreover, every loop in the space of indices — that is,
after contraction of indices, every factor δii — yields, upon summation, a factor
of N . Thus, each diagram T ∗ with k vertices and l propagators contributes a
term

1

C(T ∗)

(−u3)
k

h̄k h̄lNL (7.129)

to the expansion (7.127). Here L is the number of loops (in the space of indices)
and C(T ∗) is a combinatorial factor equal to the order of the symmetry group
of the diagram T ∗.

Up to this point, however, we are obtaining all diagrams T ∗, connected or
not; but, at least for comparison with topological expansions in two-dimensional
quantum gravity, we are only interested in connected triangulations T . As is well
known to the practitioners of Feynman diagrammar, passing to the logarithm
of an expansion (in the sense of formal power series) does the trick of retaining
only connected diagrams. We therefore define

Ẽ(h̄, u3, N) = log
Z̃(h̄, u3, N)

Z̃(h̄, 0, N)
, (7.130)

and we we obtain from (7.129)

Ẽ(h̄, u3, N) =
f

∞∑

k=0

∑

T ∗ connected

with k vertices

1

C(T ∗)
(−u3)

kh̄l−kNL . (7.131)

We now apply Euler’s formula (7.125):

k − l + L = 2 − 2H , (7.132)

with
2l = 3k (7.133)
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(each propagator connects 2 double entries and each vertex has 3 double entries).
As a result, (7.131) can be written as

Ẽ(h̄, u3, N) =
f

∞∑

k=0

∑

T ∗ connected

with k vertices

1

C(T ∗)
(−u3)

k(Nh̄)k/2N2−2H . (7.134)

If we set
X ≡ Nh̄ , (7.135)

we see that (7.134) is a double series in u3

√
X and 1/N . We reorder it to obtain

Ẽ(u3

√
X,N) =

f

∞∑

H=0

1

N2H
N2ẼH(u3

√
X) , (7.136)

with

ẼH(u3

√
X) =

∑

T ∗ connected

H(T ∗) = H

1

C(T ∗)
(−u3

√
X)|V (T ∗)| , (7.137)

where V (T ∗) denotes the sets of vertices of T ∗. (Note that only even powers
of |V (T ∗)| show up, because Wick’s theorem forces all graphs without external
legs to have an even number of vertices, for a ϕ3 theory.)

We see that this perturbation expansion has precisely the form of the topo-
logical expansion postulated for quantum-gravity models.

The expansion for a general potential V =
∑pmax

r=3 upϕ
p is a straightforward

generalization of the above one. We now have vertices with 3, 4, . . . , pmax pairs
of lines; and each vertex with p pairs of lines contributes a factor (−up/h̄). The
relationship between the number of edges and number of vertices of the graph
is, for the general case,

2l = 3|V3| + 4|V4| + . . . + pmax|Vpmax | (7.138)

where Vp represents the set of vertices with p pairs of lines. Therefore, (7.136)–
(7.137) generalize to

Ẽ(u3

√
X, u4X, . . . , upmaxX

(pmax/2)−1, N) =
f

∞∑

H=0

1

N2H
N2ẼH(u3

√
X, u4X, . . . , upmaxX

(pmax/2)−1) (7.139)

with

ẼH

(
{upX

(p/2)−1}
)

=
∑

P∗ connected

H(P∗) = H

1

C(P∗)

pmax∏

p=3

(
−upX

(p/2)−1
)|Vp(P∗)|

, (7.140)

where P∗ (the dual of a “polygonization”) ranges over Feynman diagrams with
internal vertices of 3, 4, . . . , pmax pairs of lines (and no external vertices).



148 7. Random-surface models

We notice that in these expressions the parameters up and h̄ appear only
in the combinations upX

(p/2)−1, where X = Nh̄. This is an explicit manifesta-
tion of the redundancy of parameters pointed out above. The non-redundant
parametrizations used in the literature can be divided into two major groups:

i) Each up is chosen to depend on X so that

upX
(p/2)−1 = vp (7.141)

where vp is a constant independent of X. In this case, the change ϕ → ϕ/
√

h̄
leads to the form

Z̃(v3, . . . , vpmax , N) =
∫

exp



−Tr


ϕ

2
+

pmax∑

p=3

vp

N (p/2)−1
ϕp






 dϕ (7.142)

for the partition function.
ii) All parameters up are considered to be independent of X. This is the

choice we shall adopt in the sequel: It amounts to consider Z̃ and Ẽ as functions
of h̄ and N only, while ẼH depends on both only through the combination
X = Nh̄. For this choice, the partition function can be written in the form

Z̃(h̄, N) =
∫

exp



−N

X
Tr


ϕ

2
+

pmax∑

p=3

upϕ
p





 dϕ (7.143)

which suggests the use of steepest-descent techniques for large values of N .

For general q-matrix models with actions (7.119), the Feynman diagrams
are the same as for the 1-matrix case, but each vertex is endowed with a label
r. A vertex labelled r with p double lines contributes a factor (−up(r)/h̄). The
formula for the propagator is now:

〈ϕij(r)ϕlk(s)〉0 = (A−1)rs h̄ δikδjl (7.144)

where 〈 · 〉0 is the Gaussian measure with density exp
[
− 1

h̄
Tr

∑
r,s Arsϕ(r)ϕ(s)

]
.

Therefore, the same topological expansion (7.139) is obtained, but depending on
the combinations up(r)X

(p/2)−1 (3 ≤ p ≤ pmax, 1 ≤ r ≤ q) and with the fixed-
genus sums (7.140) including a factor (A−1)rs for each (double-line) propagator
connecting a vertex labelled r with one labelled s.

Formally, the same expansion remains valid for continuum models, with the
discrete label r changed into the variable x.

7.5.2 Random-matrix models and random triangulations: Pure grav-
ity

The relation between random triangulations and matrix models arises from the
observation that, for a triangulation T , each vertex of the dual graph T ∗ — i.e.
the graph whose vertices are the centers i of the triangles and whose edges are
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Fig. 7.2. (a) A triangulation; (b) the corresponding dual graph

the pairs (i, j) where i and j are adjacent triangles — is of order three. That is,
every Feynman diagram in the (formal) expansion of a ϕ3 field theory can be
labelled by the dual, T ∗, of a triangulation T . An example of this association
is presented in Figure 7.2. Moreover, from (7.96) and (7.90) we have that the
topological expansion for the log of the partition function of a zero-dimensional
(pure gravity) theory is

E(µ,N) =
f

∞∑

H=0

1

N2H
C(n,N)EH(µ) , (7.145)

with

EH(µ) =
∑

T : H(T )=H

e−µ|F (T )|

C(T )
, (7.146)

where T ranges over the triangulations of a connected surface of genus H. As the
symmetry group of a graph and that of its dual triangulation are isomorphic:

C(T ∗) = C(T ) , (7.147)

expansion (7.145)–(7.146) is identical to expansion (7.136)–(7.137) if we take
−u3

√
X = e−µ. Therefore, random-triangulation pure-gravity models are in

formal correspondence with one-matrix ϕ3 field theories. That is why double-line
propagators are used in Figure 7.2. The precise statement of this correspondence
is the identity

Ẽ(u3

√
X = −e−µ, N) =

f
E(µ,N) . (7.148)

For pure imaginary u3, the integral (7.126) is well-defined, and the limit

ẼH=0(u3

√
X) = lim

N → ∞

h̄ → 0

Nh̄ = X

1

N2
Ẽ(u3

√
X) (7.149)

exists. It is therefore appropriate to call the limit N → ∞, h̄ → 0, Nh̄ = X,
the planar limit of a matrix theory; it can be thought of as a semiclassical
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limit. The relation (7.149) is often interpreted by saying that, for large N , the
perturbation expansion of an N ×N matrix field theory becomes dominated by
planar diagrams. The sum of these diagrams corresponds to planar pure gravity.
An exact computation of the r.h.s. of (7.149) was presented in [78] using a
steepest-descent argument. The resulting expression is in fact analytic in u3

√
X

in a disc around the origin, and hence it can be analytically continued to real
u3

√
X = −e−µ. By (7.148) and (7.145), this yields the convergent expansion

EH=0(µ) = −1

2

∞∑

k=1

[72e−2µ]k

(k + 2)!

Γ (3k/2)

Γ (1 + k/2)
. (7.150)

(As mentioned above, the dependence on (e−µ)2 = (u3

√
X)2 is a consequence

of Wick’s theorem.) This series converges for e−2µ ≤ e−2µc = 1/108
√

3, and, for
large k, the terms behave as

∼ e−2(µ−µc)kk−7/2 . (7.151)

Hence,

EH=0(µ) ∼ (µ − µc)
5/2 . (7.152)

In particular,

χ =
∂2E

∂µ2
∼ (µ − µc)

1/2 , i.e., γstr = −1

2
. (7.153)

These results represent a solution of a discretized version of Polyakov’s string
in zero dimension, for genus zero. For the motivating physical application — the
regularization of (7.4) — we are interested in the behavior in a continuum limit.
As discussed above, a continuum limit is reached when the model approaches a
critical point. Therefore, we must study the regime µ → µc or, in matrix-model
language, X → Xc. We postpone the discussion of this limit to Section 7.6.
We only mention here that, in discussing such limits, it is customary to choose
u3 = e−µc , so Xc = 1.

More generally, we can consider quantum-gravity models based on “poly-
gonizations” P , that is, on the use of random p-gons with p = 3, 4, . . . , pmax.
Equations (7.139)–(7.140) then show that such models are in correspondence
with 1-matrix theories with a polynomial potential of degree pmax and where the
vertex weights are −u3

√
X,−u4X, . . . ,−upmaxX

(pmax/2)−1. If all these weights
are chosen to be equal to e−µ, we obtain a regularized model with the same
critical exponents as the model based on triangulations (i.e., we remain in the
same universality class). For instance, the model with V (ϕ) = u4ϕ

4 (random
quadrangulations), was first analyzed in [78], where the planar limit was com-
puted. With the identification u4X = −e−µ, it yields

EH=0(µ) = −
∞∑

k=1

(12e−µ)k (2k − 1)!

k!(k + 2)!
. (7.154)
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This series has the same behavior (7.152) — and hence leads to the same ex-
ponent γstr = −1/2 — except that the radius of convergence is e−µc = 1/48.
Expressions for higher genus have also been computed [63]; in particular,

EH=1(µ) = − 1

24

∞∑

k=1

(12e−µ)k

k

[
4k − (2k)!

(k!)2

]
(7.155)

and

EH=2(µ) =
1

5 · 33 · 25

∞∑

k=3

(12e−µ)k(k − 1)
[
195 · 4k

8
− (28k + 9)

(2k)!

(k!)2

]
. (7.156)

The radius of convergence is independent of the genus, e−µc = 1/48, but the
critical exponents are not. From the last two series one obtains γstr = 2, for
H = 1; and γstr = 9/2, for H = 2. The above values of γstr constitute, precisely,
the first line of (7.115).

A more interesting possibility is to assign different weights to different types
of vertices (or, equivalently, to different polygons) and then to “fine-tune” these
weights so as to obtain models with different critical behavior. This was ex-
plored by Kazakov [336], who found an infinite sequence of multicritical points
characterized by exponents γstr = −1/k, k = 2, 3, . . . .However, these models
require some of the coefficients upX

(p/2)−1 to be positive. Such models do not
give rise to a probability theory of random surfaces, since some surfaces have
negative weights . See Section 7.6.3.

7.5.3 Random-matrix models for gravity coupled to matter fields:
Potts spins

Models of gravity coupled to matter fields can be related to random-matrix
models with internal degrees of freedom. An interesting case is obtained for
theories of q N ×N matrices with actions of the form (7.119) for the particular
choice Ars = −δrs + c(1 − δrs); that is, for actions

U(ϕ(1), . . . , ϕ(q)) = −
q∑

r=1

ϕ2(r) + c
q∑

r, s = 1

r 6= s

ϕ(r)ϕ(s) +
q∑

r=1

pmax∑

p=3

up(r)ϕ
p(r) .

(7.157)
For this action, (7.144) yields the propagators [335]

〈ϕij(r)ϕlk(s)〉0 = δikδjl h̄A
[
δrs +

B

A
(1 − δrs)

]
(7.158)

with

A =
[1 − c(q − 2)]

(1 + c)[1 − c(q − 1)]
(7.159)

B =
c

(1 + c)[1 − c(q − 1)]
(7.160)
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Therefore, as discussed in Section 7.5.1, we have the asymptotic expansion

Ẽ
(
{up(r)X

(p/2)−1}, c, N
)

=
f

∞∑

H=0

1

N2H
N2Ẽ

(
{up(r)X

(p/2)−1}, c
)

, (7.161)

where ẼH is the sum over all Feynman graphs with vertices labelled by an index
r = 1, 2, . . . , q and having p double lines. A p-vertex labelled r has a weight

−up(r)(XA)(p/2)−1 , (7.162)

and each propagator connecting vertices labelled r and s contributes with a
factor

δrs +
B

A
(1 − δrs) . (7.163)

It is not hard to see that this asymptotic series can be identified with the
topological expansion for the Potts model on random polygonizations. Indeed,
the action (7.92) for the Potts model yields the topological expansion

E(β, h) =
f

∞∑

H=0

1

N2
C(n,N)EH(β, h) , (7.164)

where, by (7.89) (with n = 0) and (7.90), EH corresponds to the sum over all
possible polygonizations with 3-gons, 4-gons, . . ., pmax-gons, and where each
(center of) polygon is labelled by a variable σ = 1, 2, . . . , q. A polygon labelled
σ has a weight

e−µeh(δσ,1−1) =





e−(µ+h) σ 6= 1

e−µ σ = 1 ;
(7.165)

and for each pair of adjacent polygons with centers labelled σ, σ′ there is a factor

eβ(δσσ′−1) = δσσ′ + e−β(1 + δσσ′) . (7.166)

Comparing (7.161)–(7.163) with (7.164)–(7.166) we see that, due to the du-
ality between p-graphs and polygonizations, the topological expansion for the
random Potts model at inverse temperature β, magnetic field h and “polygon-
fugacity” e−µ, is identical to the perturbation expansion of the q-matrix model
with actions (7.157), provided parameters are related by

e−β =
B

A
=

c

1 − c(q − 2)
(7.167)

and

−up(r)(XA)(p/2)−1 =





e−(µ+h) r 6= 1

e−µ r = 1 .
(7.168)

These results pertain to the Potts models with spins placed at the center of
each polygon. By the high-temperature–low-temperature duality [57], they also
correspond to a model with spins at the vertices of the polygons but at the dual
temperature β = log[1 + q/(eβ − 1)].



7.5 Random-matrix models 153

In the planar limit, the 2-matrix model with action (7.157) — which corre-
sponds to the Ising model on a planar random lattice — has been solved for a
ϕ4 [334, 71] or ϕ3 potential [71, 335]. In the former case, the solution is a conse-
quence of the two-matrix integral obtained by Mehta [390]. The model exhibits
a first-order phase transition characterized by the critical exponents [71]

α = −1, β =
1

2
, γ = 2, δ = 5 (7.169)

and

γstr =





−1/2 for noncritical temperatures

−1/3 for the critical temperature .
(7.170)

We recall that γ characterizes the critical behavior of ∂2 log EH=0/∂h2, while γstr

(associated to the entropy of random surfaces, see (7.180) below, or to the “en-
tropy of lattices” [71]) corresponds to ∂2 log EH=0/∂µ2. The critical exponents
are different from those of a standard Ising model on a (fixed) two-dimensional
lattice. The fluctuations of the lattice alter the critical behavior.

For q > 2, the matrix integration reduces, for large N , to a system of in-
tegral equations which are amenable to numerical computations but somewhat
complicated for analytical treatment [335]. On the other hand, analytic contin-
uation in q yields exact solutions for two interesting limiting cases [335]: q → 1
(random percolation) and q → 0 (random tree percolation; it coincides with the
discretized Polyakov string with d = −2). For details on such limits, see [335].

7.5.4 Random-matrix models for gravity coupled to matter fields:
Polyakov string

The discretized Polyakov model (7.90)–(7.91) in dimensions d > 0 can be related
to a matrix field theory in d dimensions with propagator e∆, where ∆ is the
discrete Laplacian. Indeed, we can write (7.94) purely in terms of the dual
graphs T ∗:

EH =
∑

T ∗

H(T ∗)=H

∫
exp



−µ|V (T ∗)| − β

2

∑

(i∗,j∗)∈E(T ∗)

[Xi∗ − Xj∗ ]
2





∏

i6=0

ddXi∗ .

(7.171)
Here (i∗, j∗) denotes the edge dual to the pair of adjacent triangles (i, j) and
Xi∗ is defined, using any well-defined pattern of choices, from the identification
Xi∗ −Xj∗ ≡ Xi−Xj. Changing variables to Yj =

√
βXj, the expression reduces

to a model with β′ = 1 and µ′ = µ + (d/2) log β. The resulting integral can be
interpreted as a sum over all ϕ3 Feynman diagrams, T ∗, in which each vertex
has a weight e−µ′

and where the propagator between two points Yi and Yj is
Gaussian: exp[−1

2
(Yi −Yj)

2]. A simple computation in Fourier space shows that

the exponential is the propagator of a Gaussian theory in IRd with covariance
matrix (e∆)(x, y). Therefore, following the arguments of the previous section,
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one concludes that the topological expansion E(µ, β,N) is in correspondence
with the (connected) partition function for a d-dimensional N ×N -matrix field
theory with action given by the trace of

U({ϕ(x)}) =
∫

dxd
{

1
2
ϕ(x)(e−∆ϕ)(x) + u3ϕ(x)3

}
(7.172)

with −u3

√
X = e−µ′

. More generally, we can replace the ϕ3 interaction by a gen-
eral potential V (ϕ(x)) =

∑pmax
p=3 upϕ

p(x), and obtain a matrix model whose per-
turbation expansion coincides with the topological expansion of a d-dimensional
Polyakov string regularized via random polygons of 3, 4, . . . , pmax sides.

Universality arguments suggest that the inverse propagator e−∆ in (7.172)
can be replaced by −∆ + const without changing the long-distance properties
of the theory. Formally , the resulting theory is then a unitary field theory. In
the planar limit , the theory given by (7.172) is well defined for d ≤ 6 and is ,
in fact, unitary . (It is conceivable that it can be defined for larger values of d,
and that it remains unitary.) The unitarity of the planar theory permits one to
define a unitary free-string propagator.

For d = 1 the resulting matrix model was solved in [78]. In this case, x can
be interpreted as a (Euclidean) time t, and the functions ϕ(t) as trajectories in
an N × N -dimensional space. If we accept the approximation

e−∆ = e−d2/dt2 ≈ 1 − d2

dt2
, (7.173)

then (7.172) corresponds to the action obtained for the quantum mechanics of
N2 coupled (anharmonic) oscillators, with Hamiltonian

−1

2

∑

i,j

∂2

∂ϕ2
ij

+
1

2

∑

i,j

ϕijϕji + V ({ϕij})

= N
[
−1

2

∑

i,j

∂2

∂ψ2
ij

+
1

2

∑

i,j

ψijψji + V
(
{ψij/

√
N}

)]
(7.174)

where the second line is obtained through the change of variables ψij = N1/2ϕij.
The factor N in the last expression implies that for large N the logarithm of
the partition function tends to the ground state energy of the Hamiltonian. Re-
sorting to the variational principle, an integration over angular variables makes
the problem equivalent to the determination of the ground-state energy of an
ideal Fermi gas for N particles (corresponding to the eigenvalues of ϕ) with
single-particle Hamiltonian

H(λ) = −1

2

∂2

∂λ2
+ V (λ/

√
N) . (7.175)

For large N , the WKB approximation becomes valid and, in the planar limit
[78, 338, 345], yields the expression
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EH=0(µ
′) = ε − 1

3π

∫

2ε−λ2−2V (λ)≥0
P 3(λ) dλ , (7.176)

where
P (λ) =

√
2ε − λ2 − 2V (λ) (7.177)

can be thought of as the momentum of a classical particle of energy ε moving
in the potential λ2/2 + V (λ) [345]. The value ε is determined by the condition

∫

2ε−λ2−2V (λ)≥0
P (λ) dλ = π . (7.178)

For the action (7.172), the study of the singularity of EH=0 yields an exponent
[338]

γstr = 0 . (7.179)

7.6 The topological expansion: Non-perturbative results
for the pure gravity case

7.6.1 Simple vs. double scaling limit

The approach to random-surface models reviewed in the previous section is,
from the point of view of string theory, intrinsically perturbative. The results
apply only to models of surfaces of fixed genus ; they are obtained by letting the
bare string coupling constant 1/N go to zero, and so correspond to a (naive)
weak-coupling limit of the string theory. It has long been known, however,
that perturbative string theory has many unphysical features (highly degen-
erate vacuum state, unbroken supersymmetry, etc.). It is expected that a non-
perturbative theory will have radically different properties, and it might not
exhibit these unwanted features. From this point of view, the divergence and
non-Borel summability of the topological expansion can even be taken as en-
couraging signs.

Of course, the main question is how to construct such a non-perturbative
theory — that is, how to obtain a mathematically meaningful expression col-
lecting information from infinitely many genera. Moreover, the theory should
be a generalization of the perturbative theory: starting from it, one should be
able to reconstruct the topological expansion and the fixed-genus results. One
must keep in mind that the goal is to obtain a theory in the continuum limit ,
and hence we have the freedom of choosing the particular way in which this
continuum limit is achieved. For instance, in the previous section the contin-
uum was approached in a two-step process: we first computed the planar limit,
(N, h̄) → (∞, 0) with Nh̄ = X fixed, and then we studied the regime X → Xc

to extract the physically interesting information, for example the exponent γstr.
We shall call this process the simple scaling limit. The problem with this ap-
proach is that it erases all the information stored in higher genera; only surfaces
with the topology of the sphere contribute in the end. (By taking derivatives
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with respect to 1/N prior to letting N → ∞, one can extract also information
for fixed but finite genus H. But this is still essentially perturbative.)

An alternative way to take the continuum limit, with all genera contributing,
is based on the discovery [144, 79, 282] of a scaling relationship between the
bare string-coupling and cosmological constants. This relationship is based on
two facts:

First fact : The exponent γstr is related to the entropy of random surfaces
[525, 155, 346]. Indeed, the partition function for triangulations T , or more
generally polygonizations P , with fixed area A and genus H is expected to
behave as follows [525, 346]:

∑

P : Area of P = A

H(P) = H

W (P)

C(P)

∫
e−A(S(X;T ))

∏

j∈F (T )

ddXj

∼ C(H)e−(µ−µc)AAγstr(H)−3 (7.180)

with µc independent of H. [The area of a polygonization P is computed by
assigning, for example, unit area to each triangle and area p− 2 (= # triangles
forming the polygon) to each p-gon.] Therefore,

E(µ,N) ∼
∞∑

H=0

N−2HC(H)
∫

dA e−(µ−µc)AAγstr(H)−3

∼
∞∑

H=0

C(H)

N2H(µ − µc)γstr−2
. (7.181)

Second fact : The exponent γstr depends linearly on the genus H. It is ex-
pected that, at least for dimensions d ≤ 1, there is a relationship of the form
[cf. (7.116)]

γstr − 2 = (1 − H)(γ0 − 2) , (7.182)

where the critical index γ0, the string anomalous dimension, is expected to be
universal. On the basis of the planar (H = 0) results, we expect γ0 ≤ 2.

Combining (7.181) with (7.182) we obtain

E(µ,N) ∼ (µ − µc)
2−γ0

∞∑

H=0

C(H)
[

1

N2(µ − µc)2−γ0

]H

. (7.183)

This shows that the genus-dependent part of the partition function is in fact a
power series in the scaling variable

1

N2(µ − µc)2−γ0
∼ 1

N2

[
log(Xc/X)

]2−γ0
. (7.184)

On the right side of this expression we have made the transition to matrix-model
notation, with X = Nh̄ and identifying upX

(p/2)−1 = −e−µ. The contribution
from higher genera is therefore preserved if the N → ∞ limit is performed
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keeping the scaling variable (7.184) fixed. In particular, under the assumption
γ0 ≤ 2 it follows that we must let X → Xc as N → ∞, and in this limiting
regime we can expand the log in (7.184) to obtain the condition that

h̄2

(Xc − X)2−γ0
(7.185)

must be kept (asymptotically) fixed. This variable is referred to as the true (or
renormalized) string coupling constant. Equivalently, we must fix

T = h̄−2/(2−γ0)(Xc − X) . (7.186)

The limit (N, h̄) → (∞, 0), X → Xc, with T fixed, is called the double
scaling limit . We see that it corresponds to approaching the continuum limit
simultaneously for all genera, as opposed to the simple scaling limit in which
only the planar contribution survives the continuum limit.

This double scaling limit, suitably performed, has yielded non-perturbative
theories of two-dimensional quantum gravity [144, 79, 282], which we shall
briefly discuss in the rest of this chapter. For simplicity, we consider only the
pure gravity case (1-matrix models). The proper definition of such limits is
based on matrix integration techniques that we proceed to review in the next
subsection.

7.6.2 The mathematical toolbox

We consider a 1-matrix model of pure two-dimensional gravity whose partition
function is given by

Z =
∫

dϕ exp
[
−1

h̄
Tr U(ϕ)

]
, (7.187)

with

U(ϕ) = 1
2
ϕ2 +

pmax∑

p=3

upϕ
p . (7.188)

We temporarily assume here that pmax is even and upmax > 0. The method to
compute the matrix integral defining Z is based on the fact that the measure and
the integrand are invariant under unitary transformations ϕ → ϕU ≡ UϕU−1.
This allows us to reduce the N2-dimensional integral to an N -dimensional in-
tegral over diagonal matrices.

Lemma 7.2 Let f(ϕ) be a real-valued function invariant under unitary trans-
formations ϕ → ϕU . Then

∫
dϕ f(ϕ) = ΩN

∫ N∏

k=1

dλk f(Λ)
(
det ‖λj−1

i ‖N
i,j=1

)2
, (7.189)
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where Λ = diag(λ1, . . . , λN), ‖λj−1
i ‖N

i,j=1 denotes the N×N matrix whose (i, j)th

element is λj−1
i , and

ΩN =
πN(N−1)/2

N∏
k=1

k!
. (7.190)

Proof. The crucial trick is to multiply and divide the integral by 1/∆(ϕ) ≡∫
dU ∏

1≤i<j≤N δ(ϕU
ij), where dU is the Haar measure of the unitary group. It

is clear that ∆(ϕ) is invariant under unitary transformations. Thus
∫

dϕ f(ϕ) =
∫

dU
∫

dϕ f(ϕ) ∆(ϕ)
∏

i<j

δ(ϕU
ij)

= ΩN

∫
dϕ f(ϕ) ∆(ϕ)

∏

i<j

δ(ϕij)

= ΩN

∫
dΛ f(Λ) ∆(Λ) , (7.191)

where ΩN =
∫

dU is the volume of the unitary group, and in the second equality
we have used the invariance of f(ϕ), dϕ and ∆(ϕ) under the transformation
ϕ → ϕU . To compute ∆(Λ) we use the parametrization U = eA where A is
an anti-Hermitian matrix. Since Λ is diagonal, the δ function is satisfied at
U = I (and only there), and the value of ∆(ϕ) is determined by the behavior
in an infinitesimal neighborhood of U = I. Now, asymptotically for U → I,
dU is given by dU =

∏
i dUii

∏
i<j d(ReAij)d(ImAij) where dUii is normalized

Haar measure on the circle group U(1). Hence, using the fact that (UΛU−1)ij =
λiδij + Aij(λj − λi) + O(A2), we obtain

∆(Λ)−1

=
∫ ∏

i<j

d(ReAij) d(ImAij) δ
(
ReAij(λj − λi) + . . .

)
δ
(
ImAij(λj − λi) + . . .

)

=
∏

i<j

(
1

λj − λi

)2

=
(
det ‖λj−1

i ‖N
i,j=1

)2

, (7.192)

where the last equality is the well-known Vandermonde determinant. This con-
cludes the proof of the lemma, except for the constant ΩN , which can be ob-
tained by explicit calculation of the Gaussian matrix integral, i.e. by choosing
f(ϕ) = exp(−1

2
Tr ϕ2).

The basic tool in the analysis of matrix integration is the use of orthogonal
polynomials with respect to the measure

dµ(λ) = exp
[
− 1

h̄
U(λ)

]
dλ . (7.193)

We shall denote these polynomials by Pn; they are traditionally chosen with the
normalization
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Pn(λ) = λn + terms of lower order in λ , (7.194)

which implies

λn = Pn(λ) + terms linear in Pi with i < n . (7.195)

If U is even, the polynomials Pn have a well-defined parity equal to (−1)n. Let
hn be the square µ-norm of Pn. Then

∫
Pn(λ)Pm(λ) dµ(λ) = δnmhn. (7.196)

We emphasize that hn depends on U and h̄, but this dependence will often be
suppressed in order to lighten the notation.

We shall denote

〈Pi|f |Pj〉 ≡
∫

dµ(λ) Pi(λ)Pj(λ)f(λ) (7.197)

〈Pi|Pj〉 ≡ 〈Pi|1|Pj〉 (7.198)

This notation is in fact more than a mere convenience: it embodies a straight-
forward Hilbert-space interpretation. In such a formalism, (7.197) is the bra-ket
notation for the scalar product (Pi, f [λ̂]Pj), where λ̂ is the (Hermitian) oper-
ator of “multiplication by λ”. In this section, however, we shall take a rather
pedestrian approach without making use of the full power of this formalism
[282].

In the next lemma we summarize some basic properties of the orthogonal
polynomials {Pn}.

Lemma 7.3
λPn(λ) = Pn+1(λ) + SnPn(λ) + RnPn−1(λ) , (7.199)

where

Rn =
hn

hn−1

, (7.200)

and, for U even,
Sn = 0 . (7.201)

Proof. Clearly λPn(λ) is a polynomial of degree n + 1 with leading term λn+1.
Now, by (7.195) and (7.196), we have

∫
dµ(λ) λiPn(λ) = 0 for all i < n , (7.202)

which implies that
∫

dµ(λ) [λPn(λ)] Pi(λ) = 0 for all i < n − 1 . (7.203)

This proves the recursion relation (7.199). The constant Rn is determined by
the following calculation:
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hn = 〈Pn|Pn〉 = 〈Pn|λPn−1〉 = 〈λPn|Pn−1〉 (7.204)

= 〈Pn+1 + SnPn + RnPn−1|Pn−1〉 = Rn〈Pn−1|Pn−1〉 = Rnhn−1 .

(7.205)

Finally, for even U the polynomials have a well-defined parity equal to (−1)n,
so Sn = h−1

n 〈λPn|Pn〉 must vanish.

Lemma 7.4 For arbitrary λ1, . . . , λN , we have

det ‖λj−1
i ‖N

i,j=1 = det ‖Pj−1(λi)‖N
i,j=1 . (7.206)

Proof. This follows from (7.195) plus well-known properties of the determinant.

It is a remarkable fact that the partition function Z can be expressed com-
pletely in terms of the recursion parameters Rn and the normalization h0 of the
measure dµ.

Lemma 7.5

Z(U, h̄) = ΩNN ! hN
0

N−1∏

i=1

RN−i
i , (7.207)

where ΩN is defined in (7.190).

Proof. From (7.189) and (7.206) we have that

Z(U, h̄) = ΩN

∫ N∏

k=1

dλk [det(Pj−1(λi))]
2 exp

[
−1

h̄

N∑

k=1

U(λk)

]

= ΩN

∫ N∏

k=1

dµ(λk) [det(Pj−1(λi))]
2

= ΩN

∑

σ1,σ2∈Π(N)

sgn(σ1)sgn(σ2)
N∏

k=1

∫
dµ(λk) Pσ1(k)−1(λk) Pσ2(k)−1(λk)

= ΩN

∑

σ1,σ2∈Π(N)

sgn(σ1)sgn(σ2)
N∏

k=1

hσ1(k)−1δσ1(k),σ2(k)

= ΩNN !
N−1∏

k=0

hk . (7.208)

Finally, resorting to (7.200) we obtain

Z(U, h̄) = ΩNN !
N−1∏

k=0

( k∏

i=1

Ri

)
h0

= ΩNN ! hN
0

N−1∏

i=1

RN−i
i .
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Using this lemma, the free energy Ẽ = − log Z(U, h̄,N) is seen to be given
by

Ẽ = − log (ΩNN !) − N log h0−N
N−1∑

i=1

(
1 − i

N

)
log Ri . (7.209)

The first two summands on the r.h.s. constitute an uninteresting normalization;
the singular behavior is contained in the term

Ẽsing ≡ − 1

N

N−1∑

i=1

(
1 − i

N

)
log Ri. (7.210)

The factor N−2 in the definition of Ẽsing is introduced due to the quadratic
divergence of Ẽ as N → ∞.

Our main goal is to compute this object Ẽsing which, as we see, is deter-
mined by the coefficients R1, . . . , RN−1. These coefficients are computed using
the following fundamental equations.

Lemma 7.6 (pre-string equations)

〈Pn|U ′|Pn〉 = 0 (7.211)

〈Pn|U ′|Pn−1〉 = nh̄ hn−1 (7.212)

Proof. The proof follows from (7.194) and (7.196) by applying integration by
parts. As an example we prove (7.212):

〈Pn|U ′|Pn−1〉 =
∫

dλ exp
[
−1

h̄
U(λ)

]
U ′(λ)Pn(λ)Pn−1(λ)

= h̄
∫

dλ exp
[
−1

h̄
U(λ)

]
[Pn(λ)P ′

n−1(λ) + P ′
n(λ)Pn−1(λ)]

= h̄
∫

dµ(λ) [nλn−1 + . . .]Pn−1(λ)

= nh̄hn−1 (7.213)

A similar argument shows that 〈Pn|U ′|Pm〉 = 0 unless m = n ± 1.

Let us see now how these pre-string equations can be used to generate
equations for the coefficients R1, . . . , RN−1. The “matrix elements” 〈Pn|U ′|Pn−1〉
appearing in (7.211)–(7.212) are linear combinations of elements of the form
〈Pn|λl|Pn−1〉 = 〈λlPn|Pn−1〉 which can be calculated using (7.199). This equation
shows that, for instance, λlPn(λ) has three contributions of the form λl−1Pj,
corresponding to j = n + 1 (weight = 1), j = n (weight = Sn) and j = n − 1
(weight = Rn). The corresponding book-keeping can be done beautifully in
a graphical way [63]: we draw a horizontal l-axis (“time”, decreasing as one
proceeds towards the right) and a vertical n-axis, so λlPn corresponds to the
point [l, n], and the three preceding contributions correspond respectively to
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Fig. 7.3. (a) Graphical summary of the recursive relation (7.199). (b) Example of a
graph contributing to 〈Pn|λ5|Pn−1〉 having a weight of Sn+1Rn+1SnRn

upwards, horizontal and downwards [Figure 7.3(a)]. Repeating this argument
starting from the each of the points [l − 1, j] (j = n, n ± 1) and proceeding all
the way down to l = 0, one obtains “paths” or “staircases” formed by sequences
of these three types of steps. Each path starts at [l, n], ends at some [0, j] with
n − l ≤ j ≤ n + l, and it has associated a weight equal to the product of the
weights of each elementary step [see example in Figure 7.3(b)]. In detail,

λlPn(λ) =
n+l∑

j=n−l

[ ∑

path p

p(0) = n

p(l) = j

W [p]
]
Pj(λ) , (7.214)

where a path is a function p: {0, 1, . . . , l} → IN with |p(j + 1) − p(j)| ≤ 1,
the weight W [p] is defined by W [p] =

∏l−1
j=0 w[p(j), p(j + 1) − p(j)] with the

“one-step-weight”

w[p(j), k] =





1 for k = 1
Sp(j) for k = 0
Rp(j) for k = −1

(7.215)

By orthogonality of the polynomials Pn, only some of the terms in (7.214)
contribute to the pre-string equations. For instance, the only paths that con-
tribute to (7.212) are staircases starting at [l, n] and ending at [0, n − 1] (as in
the example of Figure 7.3). As an illustration, let us consider the case of an
even potential U . Then Sn = 0, so the staircases do not have horizontal steps.
Therefore, the equation 〈Pn|U ′|Pn〉 = 0 is identically satisfied (parity!), and the
elements 〈Pn|λ2l−1|Pn−1〉 of the pre-string equation (7.212) require staircases
with l − 1 steps up and l steps down. Therefore, for
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U(λ) =
(deg U)/2∑

l=0

u2lλ
2l , (7.216)

the pre-string equations (7.211)–(7.212) reduce to

(deg U)/2∑

l=0

2l u2l

n+l−1∑

j=n−l−1

∑

path p

p(0) = n

p(2l − 1) = n − 1

l − 1 steps up

l steps down

W [p] = n h̄ (7.217)

(the factor hn−1 cancels out since 〈Pn−1|Pn−1〉 = hn−1). This is a system of al-
gebraic equations for the coefficients {Rn}, which is complicated to solve. For-
tunately, we are only interested in scaling limits which, in particular, require
N → ∞. For these limits, the discrete index l can be replaced, at least formally,
by a continuous variable, so that equation (7.217) becomes either a simpler al-
gebraic equation (simple scaling limit) or a differential equation (double scaling
limit).

Note also that equations (7.217) for the coefficients Rn remain well-defined
even if U is not a stable potential, e.g. for U(ϕ) = u2ϕ

4 with u2 negative.

For such models we may therefore define the partition function Z as e−Ẽsing ,
with Ẽsing given by (7.210). However, the meaning of the equations (7.217) in
this case is far from clear, since the connection with orthogonal polynomials is
lost [every non-identically-zero polynomial has infinite norm with respect to the
measure (7.193).

7.6.3 The simple scaling limit

In the simple scaling limit we let (N, h̄) → (∞, 0) holding the product X = Nh̄
fixed. Accordingly, we must also take in the above equations the limit n → ∞
keeping x ≡ nh̄ fixed. Proceeding formally, we assume the existence of functions

S(x) = lim
n → ∞

h̄ → 0

nh̄ = x

Sn ; R(x) = lim
n → ∞

h̄ → 0

nh̄ = x

Rn , (7.218)

where Sn and Rn are defined by (7.199). In addition, we assume that the func-
tions S(x), R(x) are smooth on the interval of interest, 0 ≤ x ≤ X, and that
they satisfy the (formal) limit of the pre-string equations. To obtain these limit
equations we formally expand

Rn+j ∼ R(x + jh̄)

∼ R(x) + jh̄R′(x) +
j2h̄2

2
R′′(x) + . . . (7.219)

→ R(x) (7.220)
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and similarly for S. Therefore, in the simple scaling limit, we drop all derivative
terms and the staircases acquire the weights

[R(x)]# downwards steps [S(x)]# horizontal steps . (7.221)

For example, for U even, each path with l − 1 steps up and l steps down has a
weight [R(x)]l, and there are

(
2l − 1

l

)
=

1

2lB(l, l + 1)
(7.222)

such paths (B is the beta function). Therefore, for even (polynomial) potentials
the pre-string equation formally becomes

x =
(deg U)/2∑

l=0

u2l
[R(x)]l

B(l, l + 1)
≡ W (R(x)) . (7.223)

More generally, for the weights (7.221), the paths contributing to 〈Pn|λl|Pj〉
have a weight given by the coefficient of the zj−n term in a Laurent expansion
of (R

z
+ S + z)l. Therefore, for each finite l we have

lim
n → ∞

h̄ → 0

nh̄ = x

1

hn

〈Pn|λl|Pj〉 =
∮ dz

2πi

1

zj−n+1

(
z + S(x) +

R(x)

z

)l

. (7.224)

As a consequence, the pre-string equations (7.211)–(7.212) take the form

∮ dz

2πi

1

z
U ′(z + S +

R

z

)
= 0 (7.225)

∮ dz

2πi
U ′

(
z + S +

R

z

)
= x . (7.226)

This form has the additional advantage that it is meaningful for general analytic
potentials U .

Next, we consider the limit

lim
N → ∞

h̄ → 0

Nh̄ = X

ẼN,sing ≡ Ẽ0,sing(X) , (7.227)

which, by (7.210), is also expressed as

Ẽ0,sing(X) = − 1

X2

∫ X

0
dx (X − x) log R(x) , (7.228)

Equations (7.225)–(7.226) and (7.228) could be taken as the starting definition
of the theory. We remark that (7.228) really is the sum of the planar series,
even for models in which U is not stable; see [78].
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For the theory to be physically interesting, the function Ẽ0,sing must have
a singularity at some real Xc. The vicinity of this singularity constitutes the
simple scaling limit. For simplicity, let us concentrate on even potentials, for
which (7.225) is automatically satisfied. We need to solve (7.226) for R(x), plug
this solution into (7.228), and then study the resulting expression in the limit
X → Xc. We shall henceforth take Xc = 1, which can always be achieved by
rescaling the potential. Let us consider the form (7.223). Our goal is to find
various potentials giving rise to different singular behavior. In this regard we
notice that the nature of the singularity is more directly determined by the
choice of the function W (R), regardless of the potential U that produces it.
Following Kazakov [336], we select a family of functions Wk(R), k ∈ IN, for
which (7.223) is solved easily, and each of which yields a different “k-critical
behavior”:

Wk(R) ≡ 1 − (1 − R)k . (7.229)

From (7.223) we see that this ansatz yields solutions R(x) with branch-point
singularities at x = 1:

R(x) = 1 − (1 − x)
1
k . (7.230)

In particular, as x → 1, we have R → Rc = 1. Integrating (7.228), we obtain
for X → 1 (= Xc)

Ẽ0,sing(X) =
∫ 1

X
dx (1 − x) log[1 − (1 − x)

1
k ] + . . .

= − 1

(2 + 1
k
)
(1 − X)2+ 1

k + O((1 − X)2+ 2
k ) + . . . ,

(7.231)

where the dots stand for terms that are analytic in X. Therefore, the k-critical
behavior corresponds to

γstr = −1

k
. (7.232)

As these models correspond to the planar (H = 0) limit, we also have that
γ0 = −1/k [see (7.182)].

These are precisely the models mentioned at the end of Section 7.5.2. From
(7.223) we see that the functions Wk correspond to potentials

Uk(λ) =
k∑

l=1

(−1)l+1

(
k

l

)
B(l, l + 1)λ2l . (7.233)

We observe that the vertex weights upX
(p/2)−1 have alternating sign. This has

two important consequences: On the one hand, it implies that the matrix inte-
gral diverges if k is even (although the perturbation expansion in fixed genus,
e.g. H = 0, converges to a well-defined function for |X| < Xc). Therefore, all the
above procedure becomes groundless — the polynomials Pn are not properly de-
fined. The equations (7.225), (7.226) and (7.228) remain well-defined, but their
ultimate meaning is problematic. On the other hand, the matrix integrals for k
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odd are absolutely convergent, but they are in correspondence with sums over
random surfaces that inevitably contain contributions with negative weights .

We emphasize that adding potentials of higher criticality classes to a k-
critical potential does not affect the behavior of Ẽ0,sing. This means that the
potentials U can be subdivided into universality classes where Uk, defined by
(7.233), is a representative of the kth universality class. Therefore, the potentials
Uk constitute an exhaustive list of representatives of all the universality classes
for the planar pure-gravity theory. The potentials Uk, however, do not seem to
exhaust the possible universality classes for the nonperturbative theory, that is,
in the double scaling limit.

7.6.4 The double scaling limit

As discussed in Section 7.6.1, the double scaling limit is constructed by letting
(N, h̄) → (∞, 0) and, at the same time, X → 1(= Xc), keeping a certain
combination

T = h̄−i(1 − X) (7.234)

fixed. The precise value of the exponent i should follow from the theory, and it
determines the string anomalous dimension γ0 = 2(i− 1)/i [cf. (7.186)]. This T
will be the upper limit for a scaling variable

t = h̄−i(1 − x) . (7.235)

Notice that for fixed h̄ [corresponding to some fixed measure µh̄ in (7.193) and
(7.197)], t takes values on a lattice of spacing h̄1−i, extending from −∞ to h̄−i.
In the limit h̄ → 0, the t-lattice approaches the real axis, and sums become
integrals according to the prescription

h̄1−i
N∑

n=0

−→ −
h̄−i≈+∞∫

T

dt (7.236)

Now, for the planar (= simple scaling limit) case discussed above, we found the
relation

x = 1 − (1 − R)k . (7.237)

This suggests the existence of a second scaling variable

f h̄(t) = h̄−j(1 − Rn(t)) , (7.238)

where n(t) = h̄−1(1 − h̄
2k

2k+1 t) and j is a yet-to-be-determined exponent.
[(7.235)/(7.237) suggest that j = i/k, and we shall confirm this shortly.] It
is assumed that f h̄(t) is a good scaling variable, in the sense that there exists a
(smooth) function f with

lim
h̄→0

f h̄(t) = f(t) . (7.239)

To construct a meaningful limit, i and j must be chosen so as to satisfy three
important constraints:
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Constraint 1 : The new scaling variables must have a meaningful interpre-
tation. From the discussion of Section 7.6.1 we already know that large values
of t correspond to a small renormalized string coupling constant; in particular,
the limit T → ∞ corresponds to a weak renormalized-coupling limit. Moreover,
f is related to R(x), the key function in the computation of the free energy: by
taking the double scaling limit in (7.209), we obtain, using (7.236) and (7.238),

Ẽ ≃ −h̄−2+2i
∫ h̄−i

T
dt (T − t) log(1 − h̄jf) (7.240)

≃ c1(h̄) + c2(h̄)T + h̄2i+j−2
∫ T

0
dt (T − t)f(t) , (7.241)

where we have expanded the logarithm using the fact that j > 0. [Note that
we do not divide by N2 as in passing to (7.210).] This formula shows that, in
order for f to be a sensible object, i and j must satisfy the condition

2i + j = 2 . (7.242)

Then, equation (7.241) shows that, in the limit h̄ → 0, the scaling function f
plays the physical role of the specific heat,

f(T ) =
d2

dT 2
Ẽ(T ) . (7.243)

Constraint 2 : The theory should contain the planar series as a limiting case.
For the planar series, (7.237) implies that

h̄it = (h̄jf)k, (7.244)

for the k-critical model. In order to obtain a non-trivial equation between the
new scaling variables, valid in particular in the planar limit, we must require
that

i = kj . (7.245)

We observe that these two constraints determine the exponents i and j.
From (7.242) and (7.245) we obtain:

i =
2k

2k + 1
, j =

2

2k + 1
(7.246)

for the k-critical model. We emphasize that this yields exactly the same scaling
variables which we deduced earlier from purely physical considerations (7.186).
Furthermore, we see that there is yet a further key constraint satisfied by i, j
as given by (7.246):

Constraint 3 : In the double scaling limit, surfaces of higher genus should
make a non-trivial contribution to Ẽsing (i.e., in the double scaling limit, Ẽsing

should be different from the planar series). The fact that this constraint is
automatically satisfied for the above values of i and j shows that the scaling
variables t and f are indeed chosen adequately, and it shows that the basic
scaling relationship discussed in Section 7.6.1 is indeed correct.
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Four different approaches have been used to determine f in such a way
that it retains information from higher genera: Douglas and Shenker [144] pro-
ceed in a direct way, starting from the pre-string equations (7.211) and (7.212);
Gross and Migdal [282] resort to the theory of resolvents of Schrödinger opera-
tors; Alvarez and Windey [19] transform the problem into a diffusion problem;
and Douglas [142] uses a Heisenberg algebra, represented on the Hilbert space
spanned by the polynomials {Pn}.

We review first the method of Douglas and Shenker [144], following the
presentation in [300, 64]. For concreteness, let us consider the 2-critical potential
U2(λ) = λ2 − 1

12
λ4 [cf. (7.233)]. We get from (7.217)

nh̄ = Rn

[
2 − 1

3
(Rn+1 + Rn + Rn−1)

]
. (7.247)

We Taylor expand, as in (7.219), Rn±1 ≈ R(x±h̄) = R(x)±h̄R′(x)+h̄2R′′(x)/2+
. . . with x = nh̄, but we do not throw away the derivative terms. From (7.235)
it follows that (d/dx) = −h̄−i(d/dt), and hence we obtain

h̄it = h̄2jf 2 − 1
3
h̄2−2i+jf ′′ + O(h̄j−4i+4f ′′′′) + . . . (7.248)

where ′ denotes d/dt. We have used the fact that we are working in the regime
x → 1, and hence R(x) → Rcrit = 1.

By comparing the exponents of h̄ in the different terms of (7.248), we see
that with the constraint i = 2j discussed above, we re-obtain the equation t = f 2

when dropping all the derivatives (planar limit). Furthermore, constraint 3 is
satisfied if at least the lowest-order term involving derivatives survives the limit
h̄ → 0; i.e. if i = 2j = 2 − 2i + j. This implies i = 4/5 and j = 2/5, which are
exactly the values given in (7.246). All terms involving higher-order derivatives
contain a higher power of h̄, and thus disappear as h̄ → 0. In this way one gets
the 2-critical non-planar string equation

t = f 2 − 1
3
f ′′ . (7.249)

This differential equation was studied a century ago by Painlevé, and is known
as the Painlevé I-equation.

In general, an analogous argument shows that, for a k-critical potential
Uk, only derivatives up to order 2k − 2 contribute to the limit. In fact, by
using a Hamiltonian approach and analytic continuation, Gross and Migdal
[282] showed that, for the k-critical model (7.233), the double scaling limit
yields the equation

t = ckRk[f ], (7.250)

where Rk[f ] is the kth Korteweg-deVries (KdV) operator.7 Rk[f ] contains
derivatives up to order 2k − 2, and since ck = (−1)kk!2k+1/(2k − 1)!!, (7.250)
reads

7The (k − 1)st KdV flow is given by

∂

∂τ
f(t, τ) =

∂

∂t
Rk[f ],

where τ and t are interpreted as time and space variables, respectively.
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t = fk + derivative terms, (7.251)

as expected. Since the planar limit dominates for t → ∞, the solution of (7.250)
should behave like f ∼ t1/k(1 + o(1)), as t → ∞, in order for the topological
expansion to be asymptotic to the nonperturbative solution.

Let us now try to reconstruct the genus expansion starting from f . Formulas
(7.183)–(7.186) and (7.243) suggest the ansatz

f = t−γ0

∞∑

H=0

αHt−(2−γ0)H (7.252)

= t
1
k

∞∑

H=0

αHt−(2+ 1
k
)H (7.253)

We notice that as t ∼ h̄−i = h̄− 2k
2k+1 , we have that the expansion (7.253) is in

powers of h̄2H ∼ N−2H , as expected. Substituting ansatz (7.253) into (7.250),
we obtain recursion relations for the coefficients αH . For instance, for the k = 2
case, (7.249) yields:

αH+1 =
25H2 − 1

24
αH − 1

2

H∑

j=1

αjαH+1−j , (7.254)

from which it follows that αH > 0 for all H, and αH ∼ (2H)! as H → ∞. This
demonstrates the divergence of the topological expansion and the difficulties in
applying standard summation methods.

Several delicate points must be emphasized. First of all, we observe that,
even when detailed expressions have been obtained for the k = 2 case, the
underlying 2-critical theory is not well-defined, since the matrix integral di-
verges: U is unbounded from below. In our approach this divergent part has
been subtracted away, since we only look at the singular part of (7.209), while
the divergence of the matrix integral is hidden in the normalization constant
h0. This problem of normalizing the matrix integral occurs in all the even-k
theories, whereas the odd-k theories are well-defined.

Second, to select the physically acceptable solution, equation (7.250) must
be supplemented with appropriate boundary and regularity conditions. In this
regard, the interpretation of f as “specific heat” is crucial. For the case k = 2,
it can be proven [73] that the only singularities of f in C are double poles with
principal part f(t) = 2(t − to)

−2, besides a branch point singularity at ∞. The
principal part shows that a pole of f corresponds to a (double) zero of the
partition function. So we impose the condition that the physical solution have
no poles on IR+ (we have defined our approach such that t > 0). Since f ′′ is
positive on IR−, one sees from the differential equation (7.249) that an infinite
number of poles exist on the negative real axis; one can even prove that, as
t → −∞, the distance between two poles goes to zero like c|t|−1/4.

Moreover, if one linearizes (7.249) around the asymptotic solution (7.253)

by writing f = t
1
2

∑∞
H=0 αHt−(2+ 1

2
)H + δf , one obtains the linear equation
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(
d2

dt2
− 6t1/2

)
δf(t) = 0 , (7.255)

which yields, to first order, the solutions δf = exp(±4
5

√
6t5/4). Clearly, the coef-

ficient of exp(+4
5

√
6t5/4) has to be zero, while the coefficient of exp(−4

5

√
6t5/4)

cannot be obtained by comparison with the topological expansion. Thus, the
solution f of (7.249) depends on a nonperturbative parameter.

A different approach can be taken to choose “physical” boundary conditions
for k odd. In these cases, the integral defining the partition function is well-
defined — albeit some polygonizations have negative statistical weight [282] —
and we can approach the singular point Xcrit = 1 also from X > 1. This
means that also negative values of t are meaningful, which suggests that the
solution should be pole-free for all real t. Moreover, one can impose the behavior
as t → −∞ as a further boundary condition: for k odd, Brézin, Marinari and
Parisi [81] propose to choose boundary conditions f ∼ ±|t|1/k as t → ±∞. They
argue that, by linearizing around the asymptotic solution, they can fix k − 1
parameters for each limit t → ±∞, so that they can find “natural” boundary
conditions for the differential equation (7.250) which is of order 2k−2. Imposing
these conditions, they are able to calculate numerically a pole-free solution for
the 3-critical case. Moore [399] proved that such a solution exists for all odd
values of k.

7.6.5 Other approaches to the double scaling limit

In this section, we sketch some of the main ideas underlying the other ap-
proaches, mentioned above, to the double scaling limit. Alvarez and Windey
[19] take as their starting point a particular linear combination of the two pre-
string equations (7.211) and (7.212), namely

1

2hn

〈Pn|λU ′|Pn〉 = (n + 1
2
)h̄ . (7.256)

Using scaling variables (7.235), the right-hand side of (7.256) can be written as

1− th̄
2k

2k+1 + 1
2
h̄. In order to calculate the left-hand side, they consider a limit of

the matrix elements Mnm(i) ≡ (hnhm)−1/2〈Pn|λi|Pm〉 where n,m and i → ∞.
Using (7.199) and (7.200) one gets a recurrence relation for the matrix elements,

Mnm(i + 1) =
√

Rm+1Mn,m+1(i) + SmMn,m(i) +
√

RmMn,m−1(i). (7.257)

This equation is a discretized diffusion equation which can be analyzed with
the help of random walk methods. The main idea is that, for a large number
of “steps” i, a typical walk from n to m looks like the trajectory of a particle
following one-dimensional Brownian motian, so on physical grounds one expects
to get some diffusion problem by letting i → ∞. There are some subtleties in
taking this limit which we have not succeeded in clarifying completely; but see
[19].
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Finally we want to sketch the approach proposed by Douglas [142] which
has the great advantage that it can easily be generalized to describe p-matrix
models. We consider the Hilbert space l2(ZZ+) and the orthonormal basis [cf.
(7.197) ff.]

|n〉 ≡ 1√
hn

|P h̄
n 〉 , n = 0, 1, 2, . . . . (7.258)

(We recall that, as functions of λ, the polynomials Pn ≡ P h̄
n and their nor-

malization constants hn ≡ hn(h̄) depend on h̄, since the integration measure
dµ(λ) = exp[− 1

h̄
U(λ)] dλ is h̄-dependent.) The objects of interest are sequences

of vectors |ψh̄〉 with the following scaling behavior:

|ψh̄〉 =
∑

n

h̄
1

4k+2 ψh̄
n |n〉, (7.259)

where ψh̄
n is given by

ψh̄
n ≡ ψ(t(n)), (7.260)

with
t = t(n) ≡ h̄− 2k

2k+1 (1 − nh̄), (7.261)

and where ψ(t) is a smooth function of rapid decay on the real line. The h̄-factor
in (7.259) is chosen such that for sequences of the form (7.259)–(7.260)

lim
h̄→0

〈ψh̄
1 |ψh̄

2 〉 =
∫

dt ψ1(t)ψ2(t) . (7.262)

It then follows that, for suitably chosen families of operators, T̂ h̄, on l2(ZZ+) and
families of vectors |ψh̄〉, with ψh̄

n as in (7.260),

lim
h̄→0

T̂ h̄|ψh̄〉 = T̂ψ(t) , (7.263)

where T̂ is an operator on L2(IR). (We permit ourselves to be a little vague
here, since precise analytical details will not be supplied in the following.)

In particular, let λ̂ be the operator of multiplication by λ. (We recall that
the pre-string equations (7.211) and (7.212) involve matrix elements of powers
of λ̂; so this is an important operator.) A central element in the approaches
[282] and [142] is the fact that, in the double scaling limit, the action of λ̂ on
sequences of vectors of the form (7.259)-(7.260) can be approximated by

(λ̂ψh̄)n = [2 − h̄
2

2k+1 Ĥ + O(h̄
3

2k+1 )] ψ(t) , (7.264)

if t is given by (7.261) and where

Ĥ ≡ d2

dt2
− f , (7.265)

where f is defined in (7.239). This is seen by considering the recursion relation
(7.199),

λ̂|n〉 =
√

Rn+1|n + 1〉 +
√

Rn|n − 1〉. (7.266)
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Then

λ̂|ψh̄〉 =
∑

n

h̄
1

4k+2 (
√

Rn+1|n + 1〉 +
√

Rn|n − 1〉)ψh̄
n

=
∑

n

h̄
1

4k+2 (
√

Rnψ
h̄
n−1 +

√
Rn+1ψ

h̄
n+1)|n〉.

Therefore, for n = h̄−1(1 − h̄
2k

2k+1 t), see (7.261), it follows from (7.260) and
(7.266) that

(λ̂ψh̄)n ≃
√

Rnψ(t + h̄
1

2k+1 ) +
√

Rn+1ψ(t − h̄
1

2k+1 ) (7.267)

= [1 − 1

2
h̄

2
2k+1 f(t)][2ψ(t) + ψ′′(t)h̄

2
2k+1 ] + O(h̄

3
2k+1 )

= [2 − h̄
2

2k+1 Ĥ + O(h̄
3

2k+1 )]ψ(t) . (7.268)

This completes the proof of (7.264).
An analogous process can be applied to the operator the operator

̂̃
P = − 1

2h̄
U ′(λ̂) + d/dλ (7.269)

which, in the double scaling limit, becomes a differential operator with respect
to t. Notice that

[
̂̃
P , λ̂] = 1 . (7.270)

To simplify our notation, let us write

D̂ = d/dt. (7.271)

From the definition of t we see that, as in the Douglas-Shenker approach, deriva-

tives with respect to t are suppressed by a factor h̄
1

2k+1 . One defines a k-critical

potential, U = Uk, by the requirement that, after approximating the operator
̂̃
P

by a differential operator in the variable t, via steps similar to (7.267)-(7.268),
all terms of order h̄−i with i > 2

2k+1
must cancel. This condition implies equa-

tion (7.233) for Uk, as shown in [82]. So the dominant term in
̂̃
P is of order

h̄− 2
2k+1 and is a differential operator in the variable t of order 2k − 1, i.e.

̂̃
P = ckh̄

− 2
2k+1 P̂ + O(h̄− 1

2k+1 ) , (7.272)

where the constant ck is given by ck = (−1)k+12k−1k!/(2k−1)!! and is chosen so
as to obtain P̂ = D̂2k−1 + . . . , as discussed in [82]. From (7.270) and eq. (7.264)
we see that

[Ĥ, P̂ ] =
1

ck

, (7.273)

with ck as defined above. The trick is now to observe that there exists a unique
anti-selfadjoint differential operator of order 2k − 1, P̂ = D̂2k−1 + . . ., whose
commutator with Ĥ is a function (not a differential operator). Then (7.273)
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determines the string equation, as will be shown explicitly for the 2-critical
model. Starting with the ansatz

P̂ = D̂3 + g(t)D̂2 + h(t)D̂ + k(t) , (7.274)

we obtain the equations

k(t) =
1

2
h(t)′ (7.275)

and
g(t) = 0 (7.276)

from the anti-selfadjointness condition. Imposing the condition that the com-
mutator [Ĥ, P̂ ] has to be a function, one derives that

h′ = −3

2
f ′, (7.277)

which implies that h = −3
2
f , (up to an integration constant which can be set

to 0). After multiplying (7.273) with c2 = 4
3
, we then get

2f f ′ − 1

3
f ′′′ = 1 , (7.278)

which is just the derivative of the Painlevé I-equation (7.249). The nice feature
of this approach is that by introducing a formal operator D̂−1 such that

D̂−1D̂ = D̂D̂−1 = I, (7.279)

P̂ can be obtained explicitly:
We use the fact that

D̂−1g =
∞∑

j=0

(−1)jg(j)D̂−1−j, (7.280)

which follows from (7.279), to obtain an expression for Ĥ
1
2 (chosen to be formally

anti-selfadjoint),

Ĥ
1
2 = D̂ +

∞∑

j=1

hj(t)D̂
−j, (7.281)

where the functions hj(t) can be obtained recursively from the relation (Ĥ
1
2 )2 =

Ĥ. One gets

h1 = −1

2
f, h2 =

1

4
f ′, h3 = −1

8
(f 2 − f ′′), . . . . (7.282)

Now we split (Ĥ
1
2 )2k−1 ≡ Ĥ

2k−1
2 into two parts, Ĥ

2k−1
2 = Ĥ

2k−1
2

+ + Ĥ
2k−1

2
− , where

Ĥ
2k−1

2
+ =

2k−1∑

j=0

hj,k(t)D̂
j (7.283)

and
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Ĥ
2k−1

2
− =

∞∑

j=1

h−j,k(t)D̂
−j. (7.284)

Since the left hand side of

[Ĥ
2k−1

2
+ , Ĥ] = −[Ĥ

2k−1
2

− , Ĥ] (7.285)

only contains positive powers of D̂, whereas the right hand side of (7.285) only

displays negative powers of D̂, the commutator [Ĥ, Ĥ
2k−1

2
+ ] has to be a function

of t. As shown in [142], Ĥ
2k−1

2
+ is anti-selfadjoint, which implies that P̂ = Ĥ

2k−1
2

+ .
Using the Gel’fand-Dikii result [251]

[Ĥ, Ĥ
2k−1

2
+ ] =

1

ck

D̂R̃k[f ], (7.286)

where the constant ck is the same as in (7.273) and R̃k[f ] = fk + . . . is propor-

tional to the kth KdV polynomial, one obtains

1 = R̃′
k[f ]. (7.287)

Equation (7.287) is equivalent to (7.250) since the integration constant can be
fixed to zero by comparison with the planar limit t = fk.

The advantage of this method lies in the fact that it can be generalized
to p-matrix models. There Ĥ is a differential operator of order p + 1 and one

considers P̂ = Ĥ
l

p+1

+ , where l ∈ IN. As shown in [142], these models correspond
to (l, p+1) minimal conformal models coupled to two-dimensional gravity. This
method can in principle be used to calculate some aspects of 1-dimensional
matrix models, since they can be obtained (formally) by considering p-matrix
models with appropriate couplings (i.e., a linear chain) and letting p (the number
of matrices) tend to infinity. (For N < ∞, the limit p → ∞ is well known to
exist and to reproduce the one-dimensional theory).

7.6.6 Perturbation of the string equation and KdV flow

In this section, we consider perturbations of the string equations (7.223) and
(7.250). As can be seen in (7.223), it is useful to consider operators that have
a well-defined scaling behavior. This means that we should consider operators
which correspond to a change

δW (R) = h̄
2(k−l)
2k+1 (1 − R)l (7.288)

in the function W (R) which determines the simple scaling limit [cf. (7.223)]. The
operator corresponding to (7.288) will be denoted by Ωl. As shown in Gross and
Migdal [282], these operators are given by

Ωl = 2h̄−1h̄
2(k−l)
2k+1 B(

1

2
,−1

2
− l)Ĥ l+ 1

2 . (7.289)
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The factors h̄
2(k−l)
2k+1 are introduced to obtain the same scaling for all contributions

µlΩl. This scaling behavior is seen in a very transparent way by studying the
string equation corresponding to

U = Uk +
∞∑

l=0

µlΩl, (7.290)

which is given by

t = R̃k[f ] −
∞∑

l=0

µlR̃l[f ], (7.291)

with R̃l[f ] as introduced in (7.286). To simplify the notation, we write µ for
(µ0, µ1, . . .). We emphasize the fact that Ul is just a superposition of Ω0 and Ωl.
Using the Hamiltonian approach (7.289), Gross and Migdal [282] first calculate
the expectations

〈Ωl〉 =
∂

∂µl

Ẽsing|µ=0 (7.292)

first for negative l, and then analytically continue the result to positive integer
values of l. In this way, they show that in the double scaling limit

〈Ωl〉 =
1

l + 1

∫ T

dt R̃l+1[f(t)], (7.293)

where f solves the string equation (7.250). Due to (7.250) and the recurrence
relations for the R̃l[f ], the action of Ω0 and Ωk can be obtained as follows: On
the one hand, using (7.243) and R̃1[f ] = f , one sees that 〈Ω0〉 = d

dT
Ẽ, showing

that Ω0 plays the role of a puncture operator. On the other hand, using (7.243)
and the recurrence relation [251]

k + 1

2k + 1
(−1

2
D̂2 + f + D̂−1fD̂) R̃l[f ]) = R̃l+1[f ], (7.294)

one obtains that 〈Ωk〉 = 1
2l+1

T d
dT

Ẽ, which shows that the action of Ωk is to
rescale T , as can also be seen directly from (7.291).

The quantities computed up to now are just first order perturbations in µl at
µ = 0. But eq. (7.291) suggests a natural generalization of the string equation,
namely

t =
∞∑

l=0

(l +
1

2
)TlRl[f ], (7.295)

which allows us to consider “flows in theory space”. The quantities Tl introduced
above are proportional to µl, Tl = (−1)l 2l+2l!

(2l+1)!!
µl. Expectation values 〈Ωl〉T are

obtained in the same way as above, namely

〈Ωl〉T =
(−1)l+12l+2l!

(2l + 1)!!

∫ T

dt Rl+1[f(t)], (7.296)

where f is a solution of equation (7.295). Every such solution satisfies the partial
differential equation
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∂

∂Tl

f =
∂

∂t
Rl+1[f ], (7.297)

which is just the lth KdV-equation. Equation (7.297) follows from (7.296) by
differentiating (7.296) twice with respect to T and setting T ≡ t. So we see that
the flow of f under a perturbation corresponding to the operator Ωl is given by

the lth KdV flow.
This should not mislead us to think that it is possible to start from an

odd-critical theory and flow to an even-critical theory, because the boundary
conditions at infinity chosen for an odd-critical theory are incompatible with
those chosen for an even-critical theory; see [399, 143, 81] for details.

Finally we wish to remark that the calculus of τ -functions can be used
to construct solutions to the string equation (7.295): The connection between
τ -functions and such solutions is given by

τ 2 = e−Ẽ, (7.298)

see [458, 129, 399] for detailed explanations. It is worthwhile to note that the
τ -functions obey the equations Ln τ = 0, for n ≥ −1, where the operators Ln

are generators of a Virasoro algebra as shown in [129].

7.6.7 Epilogue

Let us conclude with some general comments on open problems and perspectives
concerning the theories outlined in this chapter.

(1) As the reader has no doubt realized, we have largely limited our attention
to discussing the case of pure gravity; we have made no attempt at a compre-
hensive review of matrix models of two-dimensional gravity coupled to matter.
In order to describe models involving matter, we would have to consider models
of more than one random matrix. For example, the q-state Potts model coupled
to two-dimensional quantum gravity corresponds to a q-matrix model. A string
propagating in a one-dimensional space-time corresponds to a one-dimensional
matrix field theory. Such multi-matrix models and one-dimensional field theo-
ries have been studied in the literature [142, 80], and the formalism of Douglas
outlined at the end of Section 7.6.4 is particularly suitable for this purpose
[142, 64]. Unfortunately, it turns out that it is virtually impossible to solve
models of matrix field theories in more than one dimension. This is presumably
related to the appearance of tachyons in theories of bosonic strings propagat-
ing in space-times of dimension larger than one. This barrier at d = 1 is also
manifest in the KPZ formula quoted in (7.109). Recently, however, a model of
two-dimensional quantum gravity in the continuum limit has been proposed,
which has features suggesting that it avoids the d = 1 barrier [107]. But the
tachyon appears to remain among the excitations of that model in more than
one dimension. We feel that it is difficult to find a matrix-model formulation of
bosonic string theory in dimension d > 1.
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(2) As we have repeatedly pointed out, there is a basic difference between the
k-critical models with k even and those with k odd. While the matrix integrals
defining the odd-k models at finite values of N are absolutely convergent, the
matrix integrals formally corresponding to the even-k models are divergent,
because the potentials U of such models are unstable (the coefficient of the
term of highest degree, Tr (φ2k), is negative). In the simple scaling limit, the
instability of the even-k models is not felt, since only planar diagrams contribute
to this limit. If the coefficients Rn are defined as solutions of the algebraic
equations (7.217), they provide the correct solution of the k-critical models in
the simple scaling limit, irrespective of whether k is odd or even. The situation
is more problematic in the double scaling limit, to which surfaces of arbitrary
genus contribute. There appear to exist several inequivalent definitions of k-
critical models in the double scaling limit when k is even:

(a) The first possibility is to regularize a k-critical model with k even by
adding a term u2k+2φ

2k+2 to the potential of the k-critical model, where u2k+2 >
0. One might then attempt to define the k-critical model by taking the limit
u2k+2 ↓ 0. This procedure leads to difficulties in imposing the desired boundary
conditions at infinity on the solutions of the string equation [399].

(b) A more pragmatic point of view, adopted by most workers in the field,
is to define the k-critical theory as a solution of the string equation (7.250)
with appropriate boundary and regularity conditions, chosen so as to obtain
“consistency” between this string-equation formulation and the random-matrix
approach. As for regularity, the solution f(t) is required not to exhibit poles on
the real axis; such poles would correspond to (unphysical) zeroes of the partition
function of the random-matrix model. The boundary conditions are imposed at
infinity. At the very least, f(t) must reproduce the planar theory when t tends
to infinity. However, these requirements do not yet completely determine the
solution. For instance, for the 2-critical model — equation (7.249) — one still
has infinitely many solutions differing by exponentially small terms [see the
discussion after formula (7.255)]. Different strategies have been proposed to
single out a unique “consistent” or “physical” solution: For k odd, a numerical
approach has been formulated [81] that seems to produce at most a discrete
number of pole-free solutions. It is based on the integration of (7.250) on a
finite region |t| < L, subject to the boundary condition f(t) = t1/k for |t| > L,
and letting L → ∞. Alternatively, a solution can be found by minimizing the
functional

∫
(t − ckRk[f ])2dt.

For the more complicated k-even models, an appealing proposal [117] is to
select the solutions f(t) satisfying Schwinger-Dyson (SD) equations derived for
the (loop) correlations of the matrix models. However, it is proven in [117] that,
at least for the k = 2 model, no real solution of the string equation satisfies
the SD equations of the matrix model . This feature appears to be a purely non-
perturbative phenomenon, since the SD equations appear to be satisfied to all
orders in the perturbation expansion. Moreover, by going to complex potentials
(complex coefficients up), a complex solution to the string equation can be
uniquely determined [118] by requiring that the region (in the complex t plane)
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where f(t) has well-defined large-t asymptotic behavior — that is, at most
finitely many poles — coincide with the region (in the complex upmax plane)
where the planar limit of the random-matrix model exists. Such solutions f(t)
have always a nonvanishing, but exponentially small, (physically undesirable)
imaginary part. A natural question is whether both criteria — SD equations
and simultaneous existence of asymptotic behavior — lead to the same solution.
See also [399] for a possibly related formulation.

(c) A third strategy towards defining the k-critical models for k even is
to use stochastic quantization to regularize the divergent matrix integrals [267].
Stochastic quantization of a one-matrix model leads to a one-dimensional, stable
supersymmetric matrix field theory which can be “solved” with the help of WKB
methods [78, 385, 384, 328].

There are strong indications that strategies (a), (b) and (c) lead to in-
equivalent definitions of the k-critical models with k even. Moreover, it is far
from clear that any of these three strategies leads to a theory with reasonable
physical properties. (Part of the problem is that we do not know what are the
relevant physical properties.) Finally, on a purely technical level, if one insists
that a reasonable definition should have the property that the planar limit is
recovered in the limit where t tends to infinity, one meets the problem that
these models cannot be reached from the stable k-critical models (i.e. those
with k odd) along some renormalization-group trajectory. Thus, in a sense the
“universe” of k-critical models with k even is inaccessible from the “universe”
of k-critical models with k odd [322, 118, 399].

(3) From a mathematical point of view, one would attempt to define matrix
models in such a way that they provide solutions to interesting mathematical
problems, in particular to those concerning moduli spaces. It is likely that a
definition of the 2-critical model of two-dimensional quantum gravity based on
strategy (b) in remark (2) above would allow the computation of quantities
related to topological invariants of the moduli spaces of Riemann surfaces; see
[130, 521, 429, 430, 311]. So perhaps mathematical principles permit one to
select the most natural definitions of matrix models when they are not given by
absolutely convergent matrix integrals.

(4) We regard the difficulties in finding an unambiguous definition of a
model of two-dimensional pure quantum gravity (or, more generally, of k-critical
matrix models with k even) in the double scaling limit, and of crossing the
d = 1 barrier in the construction of matrix field theories of non-critical strings,
as two further manifestations of the intrinsic diseases plaguing bosonic string
theory. In our opinion it will be fruitful to study the matrix models and matrix
field theories corresponding to supersymmetric string theories and to theories
of strings propagating in complex manifolds. Hopefully, the situation in such
theories will look more promising.

(5) On a more fundamental level, we feel that the technical difficulties en-
countered in string theory and two-dimensional quantum gravity may be an
indication that we have not yet found the right general conceptual framework
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for expressing a “theory of random surfaces”. In such a situation, it is quite
reasonable to study simplified toy models of random surfaces, in order to gain
some experience and test new ideas. The matrix models of Sections 7.5 and 7.6
are such toy models. Unfortunately, in this process of simplification and ide-
alization, the physics often gets lost; and technical successes can easily blind
us to fundamental unresolved conceptual issues. In particular, since the matrix
models do not describe (as far as we know) any system actually occurring in
nature, the physical principles that would tell us which solution (if any) is the
most natural one are not available.

(6) In spite of the somewhat pessimistic remarks made above, the reader
should realize that there are many problems in statistical physics which are
naturally formulated in terms of random surfaces and which can be studied with
the help of the techniques reviewed in Sections 7.2 to 7.5 (see also the references
quoted in Section 7.3). Indeed, it is our experience that random-surface theory
has been most successful where it has been applied to a well-posed, concrete
physical problem, such as the roughening and wetting transitions, the critical
properties of membranes, etc. In areas that are physically more speculative as
well as mathematically more sophisticated — such as string theory and two-
dimensional quantum gravity — we suspect that the theory has not yet found
its final formulation.
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8. Introduction

Random-walk expansions have played a key role in recent advances in our un-
derstanding of critical phenomena in statistical mechanics and of the continuum
limit in quantum field theory. These advances include the proof of triviality of
the continuum limit and mean-field critical behavior for ϕ4 and Ising models in
dimensions d > 4 [5, 15, 8, 12, 213, 90, 28, 292, 223], and an extremely sim-
ple construction of continuum ϕ4 quantum field theories in dimensions d < 4
[97, 96, 74, 75, 292]. Our goal in Parts II and III is to present several random-
walk expansions from a unified point of view, and to explain the physical results
which can (and cannot) be derived from them.

Three random-walk expansions are of particular interest:

• The Brydges-Fröhlich-Spencer (BFS) representation for classical lattice
spin systems [92, 213, 90, 28, 292, 97, 74, 292, 223] (which is a variant on
Symanzik’s [493, 494] representation of continuum field theory);

• The Aizenman random-walk (ARW) representation for Ising spin systems
[5, 15, 8, 12]; and

• The random-walk models employed in polymer physics, such as the self-
avoiding walk (SAW) and its generalizations.

While the resemblance between these expansions has often been noted, the
exact relationship between them has remained unclear. In this monograph we
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propose a unified framework within which to study these (and other) random-
walk expansions. We show that the usefulness of all these expansions derives
from a few important properties which we systematize here. To facilitate the
comparison among the different expansions, we adopt a unifying notation which
may in some cases disagree with (and be more cumbersome than) the notations
in use in the respective literatures; we trust that this will not cause undue
confusion.

All random-walk models have essentially the same combinatoric structure.
This structure, which is familiar to anyone who has ever computed the correla-
tion functions of the Gaussian model (free field), is the subject of Chapters 9 and
10. What distinguishes one random-walk model from another are the weights
attached to particular families of walks. For general random-walk models little
of interest can be said (except at “high temperature”), but if the weights satisfy
suitable inequalities then many powerful results can be derived. In Chapter 11
we isolate these inequalities, which express two key physical properties:

• repulsiveness (or repulsiveness “on the average”) between walks; and

• attractiveness (or non-interaction) between non-overlapping (or “compat-
ible”) walks.

These two properties give rise to inequalities going in opposite directions, and
it is their combination that is responsible for the powerful results of Aizenman
[5, 15, 8, 12], Fröhlich [213, 28] and others.

Not everything can be done with random walks — some of the profound
results of Aizenman and collaborators [5, 15, 9, 6, 12, 10, 13, 194] make essen-
tial use of the random-current representation for the Ising model, and appar-
ently cannot be derived by the simpler random-walk methods. The random-walk
methods appear to have two main limitations:

• The random-walk formalism seems to work best for models that are in
some sense “not too far from Gaussian”. For example, random-walk meth-
ods can be used to construct weakly-coupled superrenormalizable ϕ4 quan-
tum field theories [97, 96, 74] and Edwards models [75] in dimensions
d < 4, and to prove triviality (Gaussianness) of the continuum limit in
dimension d > 4 [5, 15, 8, 213, 90, 28, 292, 223]. On the other hand, accu-
rate bounds for strongly non-Gaussian models, such as the Ising model in
dimension d < 4, seem to be obtainable only through the random-current
formalism.

• All of the results derivable by random-walk methods seem to involve trun-
cated weights of order at most 2; spin-model results involving truncated
weights of order ≥ 3 [12, 460] seem to require random currents. (However,
some of the results derived for Ising models using the random-current for-
malism can also be derived for self-avoiding walks by direct combinatorial
arguments — see Sections 12.2.4, 12.6 and 12.7.)
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Our goal in this work is thus not only to explain in detail the results which
can be obtained by random-walk methods, but also to give a brief explanation
of those results which cannot be obtained by random-walk methods and to
indicate briefly why.

The basic idea underlying many of the inequalities in this work (notably
the Aizenman-Fröhlich inequalities) is the inclusion-exclusion principle: roughly
speaking, it bounds the probability that two random walks intersect by the mean
number of times that they intersect. In Sections 12.2 and 12.3 we show how this
principle is used, and try to make clear what its limitations are, i.e. in what situ-
ations it overcounts. We believe that significant improvements on the Aizenman-
Fröhlich inequalities — sufficient, for example, to prove the triviality of ϕ4

4 —
will have to take account of what the inclusion-exclusion principle throws away.
We discuss here two tricks for going beyond naive inclusion-exclusion:

• the “passing to the left” trick (Sections 12.2.3 and 12.3.1), and

• the “dilution” trick (Sections 12.3.1–12.3.4).

These tricks yield inequalities which sum “infinitely many orders” in the ex-
pansion parameter; they improve the first-order and second-order inclusion-
exclusion inequalities, respectively. Unfortunately, these two tricks are not uni-
versally applicable. But we think they will have applications in the future, and
are thus worth emphasizing.

In all of the work we discuss, the application of the random-walk (or random-
current) formalism is a two-stage process:

1. The random-walk or random-current formalism is employed (usually on a
finite-volume system) to derive one or more correlation inequalities. These
inequalities ordinarily carry over immediately to the infinite-volume limit.

2. The correlation inequalities are analyzed and their physical consequences
extracted.

These stages of the analysis are described in Chapters 12 and 14–15, respectively.
(We remark that more direct applications of the random-walk formalism may
well be possible, and would surely be of interest; unfortunately we are unable
to make any suggestions about how this might be done. Readers interested in
this approach might find inspiration in the profound original paper of Symanzik
[494].)

The physical consequences of the correlation inequalities fall into two main
categories:

• Inequalities for critical exponents. Sometimes a correlation inequality leads
directly, upon translation from correlation functions into thermodynamic
functions, to a bound of immediate physical interest. More often, how-
ever, the correlation inequality leads to a differential inequality for the
thermodynamic functions, which can then be integrated to yield a result
of physical interest. We illustrate this in Chapter 14.
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• Bounds on the continuum limit. In some cases a complementary pair of
correlation inequalities for the lattice spin system leads directly, upon
passage to the continuum limit, to the triviality (Gaussianness) of the
continuum-limit theory. This is the principal topic of Chapter 15. (In
other cases a complementary pair of correlation inequalities can be used
to prove nontriviality , as was sketched in Section 6.3.)

In deriving these physical consequences, we take care to distinguish between
universal and non-universal bounds, as explained at the beginning of Chapter
14.

One of the main results of the random-walk formalism is a detailed picture
of the behavior of spin systems and random-walk models above their upper
critical dimension dc (for short-range interactions dc equals 4): this behavior
includes mean-field critical exponents, the failure of hyperscaling (in various
forms), and the triviality of continuum limits. All these results are rigorous
versions of the idea that two random walks in dimension d > 4 never intersect.
For example, by rather straightforward random-walk arguments one can prove
the Aizenman-Fröhlich inequality [5, 8, 213, 90, 292]

0 ≥ u4(x1, x2, x3, x4) >∼ −
∑

z

S(x1, z)S(x2, z)S(x3, z)S(x4, z) (8.1)

and its corollary for thermodynamic (zero-momentum) quantities

0 ≥ u4 ≡
∂2χ

∂h2
>∼ − χ4 . (8.2)

(For a precise statement and discussion, see Section 12.2.) Among the conse-
quences of this inequality are the triviality of the continuum limit, and the
failure of the hyperscaling relation dν − 2∆4 + γ = 0, for ϕ4 and Ising models
in the single-phase (symmetric) regime in dimension d > 4 [5, 8, 213, 90, 292],
and a partial result for d = 4 [213]; see Sections 14.1 and 15.2. By an almost
identical random-walk argument in nonzero magnetic field one can prove the
Fröhlich-Sokal inequality [223]

0 ≤ K(x1, x2) <∼ ST
2 (x1, x2) +

∑

z

K(x1, z)K(x2, z)S1(z)2 (8.3)

and its corollary for thermodynamic quantities

0 ≤ M

h
<∼ χ +

M4

h2
, (8.4)

where K is a rather mysterious kernel which satisfies

∑

y

K(x, y)hy ≈ S1(x) . (8.5)

These results are discussed in detail in Section 12.4. Unfortunately, (8.3) does
not shed light on the presumed triviality of the continuum limit for ϕ4 and
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Ising models in the two-phase (non-symmetric) regime in dimension d > 4.
But it does imply the failure of the hyperscaling relation dν ′ = γ′ + 2β for
these models (see Section 14.3), a result with profound physical consequences
[509, 323, 198, 201, 510, 200, 288]. Refinements of (8.1) and (8.3) have been
proven, using the random-current formalism, by Aizenman and Graham [15,
194] and by Aizenman, Barsky and Fernández [10], respectively. From these
refined inequalities one can deduce the mean-field critical behavior γ = 1 [5, 15]
for Ising and ϕ4 models in dimension d > 4, β = 1/2 [12, 10] for Ising models
in d > 4, and some further partial results on triviality for Ising and ϕ4 models
in d = 4 [15]. We discuss these refinements in Sections 12.2.3 and 12.4.6, and
their applications in Chapters 14 and 15.

For strongly-coupled systems in dimension d < dc our picture is much less
complete, but some results can be obtained using the random-current formalism.
For example, the Aizenman-Graham inequality implies ([484], [12, Appendix
A]) the “spherical-model upper bound” γ ≤ 2/(d − 2) for Ising and ϕ4 models
in dimension 2 < d < 4, which is complementary to the “mean-field lower
bound” γ ≥ 1 due to Glimm and Jaffe [256, 30, 257]. Similarly, the Aizenman-
Barsky-Fernández inequality implies [10] the “mean-field upper bound” β ≤
1/2, as well as the absence of an intermediate phase with zero magnetization
and infinite susceptibility, for Ising and ϕ4 models in any dimension. (These
latter results had been proven earlier by Aizenman [7, 9] under a more restrictive
hypothesis.) The main open question for Ising models in dimension d < 4 is the
nontriviality of the continuum limit, which is equivalent to the hyperscaling
relation dν − 2∆4 + γ = 0. We can offer only very limited progress in this
direction: a proof of hyperscaling for the intersection properties of ordinary
random walks (IPORW) model in d < 4 (Section 12.3.2); and some very weak
lower bounds on the renormalized coupling constant g ≡ −u4/χ

2ξd for the
self-avoiding walk (Section 12.3.3) and the Ising model (Section 12.3.4).

In all this analysis, a central role is played by the “bubble diagram”, which
is finite at the critical point in d > dc and presumably infinite at the critical
point in d ≤ dc. Indeed, the bubble diagram is so important to our analysis that
we introduce new critical exponents b, b′, bc to describe its critical behavior. We
remark that in percolation models an analogous role is played by the “triangle
diagram” [16, 416, 295, 291], and in branched-polymer (lattice-animal) models
by the “square diagram” [76, 299, 296].

Finally, we would like to comment on the relevance of our results for poly-
mer physics.As first noted by deGennes, there is an isomorphism between self-
avoiding walks and the N → 0 limit of N -component spin models (see [121, 507]
and references therein). This isomorphism has a nice explanation from the point
of view of the Symanzik-BFS polymer representation [28, 75], as we discuss in
Sections 9.2.2 and 10.2.3. Unfortunately, this isomorphism seems to be useless
for the purposes of rigorous analysis, since it is based on an analytic continua-
tion in N (which destroys inequalities). However, it is a very valuable heuristic
tool, since it suggests how results (and sometimes proofs) for the Ising model
may be adapted to the SAW or vice versa. There is, however, a clash of termi-
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Spin models (or field theory) Polymer models

canonical ensemble (h = 0) ⇐⇒ canonical ensemble1

canonical ensemble (h 6= 0) ⇐⇒ grand canonical ensemble1

inverse temperature
(or ferromagnetic pair interaction)

⇐⇒ monomer activity

magnetic field ⇐⇒ chain end activity

2n-point correlation function
(at zero magnetic field)

⇐⇒ correlation function
of n polymer chains

Table 8.1. Correspondence between the terminology used for spin and polymer mod-
els

1There is some lack of standardization in the terminology for polymer-model ensembles.
Here microcanonical ≡ a fixed number (usually one) of polymer chains of fixed length; canon-
ical ≡ a fixed number (usually one) of polymer chains of variable length; grand canonical ≡
a variable number of polymer chains of variable length.

nology between the two fields of physics which must be borne in mind. In Table
8.1 we present a brief “dictionary”.

Unfortunately, our results in this work for polymer models concern almost
entirely the case of zero “magnetic field” (Section 9.2.1), or what is essentially
equivalent, the “baby” contact-interacting-walk (CIW) model in nonzero field
(Section 10.2.2). From the point of view of polymer physics this means that we
treat only systems with a fixed finite number of polymers. A polymer system
at nonzero density would correspond to our “mature” contact-interacting-walk
model (Section 10.2.1), for which we have no significant results.

In summary, this monograph is part original, part review — many of the
results discussed here are contained in work already published [5, 15, 8, 9, 7,
10, 12, 28, 75, 92, 90, 97, 96, 185, 213, 478, 481] by the authors and their
collaborators. But even when we review “well-known” material, we hope to
provide new ways of looking at some key ideas. At the very least, the process
of writing this monograph has proven beneficial for the authors; we hope that
the result will prove beneficial for some readers as well.

For the “experts”, we mention some of the new results contained in this
work:

• A “twice-improved Aizenman-Fröhlich inequality” for the SAW, and more
generally for “repulsive simple CIW models” (Section 12.2.2).

• The inequality (−1)nu2n ≤ 0 for the SAW (Sections 12.6 and 12.7).
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• An extrapolation principle derived from the ABF inequality (Section
14.2.3).

• Mean-field upper and lower bounds for the magnetization, and partial
results for the susceptibility, for Ising and ϕ4 models in dimension d > 4,
in a full neighborhood of the critical point in the (β, h)-plane (Section
14.4).

• The critical-exponent inequality δ ≥ 2γ + 1 (Section 14.4.1).

The first of these results has a very nice physical interpretation, which makes rig-
orous one half of an appealing intuitive argument due originally to des Cloizeaux
[125]. The second of these results is an analogue for the SAW of a recent result
of Shlosman [460] for the Ising model. The other results follow from our focus
on studying a full neighborhood of the critical point in the (β, h)-plane, going
beyond the three “traditional” paths of approach to the critical point.

This monograph can be read on two levels. Readers interested primarily in
the physical consequences can jump directly to Part III; we have tried hard
to keep this part self-contained, and only occasional references to Chapter 9
(to check notation) should be necessary. Readers interested in the random-walk
formalism can read Chapters 9–12. Readers who are not yet familiar with the
random-walk methods might find it advisable, on a first reading, to consider
only the case of zero magnetic field: they should read Chapter 9 and Sections
11.1–11.2, 11.3.1, 12.1–12.3 and 12.6, ignoring all references to the subscripts j
on the weights ̺j(ω).
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9. Random-walk models in the absence of

magnetic field

9.1 General definitions

Spin systems (such as the Ising model) and polymer models (such as the self-
avoiding walk) have long played an important role in the theory of critical
phenomena. The analogy between spin systems and random-walk models has
intrigued physicists since the 1950’s [498, 208, 206, 197, 135], but the pre-
cise relations between these two types of models have emerged only gradually
[493, 494, 120, 126, 92, 28]. In recent years, several “artificial” random-walk
representations have been introduced as tools with which to study spin systems
[92, 5, 8]. The purpose of this chapter (and the next one) is to exhibit an un-
derlying mathematical structure which is common to all random-walk models.

We consider a fixed finite set L called the lattice, whose elements are called
sites1. A bond is an unoriented pair {x, y} of sites x, y ∈ L, x 6= y. An oriented
pair (x, y) is called a step with initial site x and final site y. A walk (or path) ω in
the lattice is a sequence of sites ω(0), ω(1), . . . , ω(N) (N ≥ 0); we call |ω| ≡ N
the length of the walk, b(ω) ≡ ω(0) its initial point, and e(ω) ≡ ω(N) its final
point. If ω(0) = x and ω(N) = y, we will write ω: x → y. We emphasize that a
walk is, for us, an oriented object. The set of walks on L will be denoted Ω.

To each walk ω there is associated a sequence (perhaps empty) of steps

ω = (ω(0), ω(1)), (ω(1), ω(2)), . . . , (ω(N − 1), ω(N)) ; (9.1)

this correspondence is one-to-one except that the empty sequence of steps is
associated to every zero-length walk irrespective of its initial point.

The support of a walk ω is the set of sites visited by the walk:

supp(ω) = {x ∈ L: ω(i) = x for some i} . (9.2)

The support of a family of walks is the union of the supports of the individual
walks. Two families of walks are said to be nonoverlapping if their supports are
disjoint.

1Of course, the most interesting physics is for infinite-volume systems. But in the present
work the random-walk expansions are primarily tools for deriving correlation inequalities,
which then carry over immediately to the infinite-volume limit. From this point of view the
limitation to finite lattices is natural. Some of our random-walk models can be formulated
directly on infinite lattices, with a little extra work.
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If ω1, ω2 are two walks with e(ω1) = b(ω2) we denote by ω1 ◦ω2 the concate-
nation of ω1 and ω2, i.e. the walk of length |ω1|+|ω2| obtained by traversing first
the steps of ω1 and then those of ω2. Likewise we may define the concatenation
ω1 ◦ω2 of any two sequences of steps ω1 and ω2, irrespective of their initial and
final points; of course, the sequence of steps ω1 ◦ ω2 will be associated with a
walk only if ω1 and ω2 themselves are associated with walks and e(ω1) = b(ω2)
[or either ω1 or ω2 is empty].

A random-walk model is defined by a system of weights (̺[n])n≥0, where
each ̺[n] is a function ̺[n]: Ωn → IR, and ̺[0] ≡ 1. The weights are used to
construct the fundamental objects of the models, which we will call “kernels”.
For x1, . . . , x2n ∈ L,

K(x1x2| . . . |x2n−1x2n) ≡
∑

ω1: x1 → x2

...
ωn: x2n−1 → x2n

̺[n](ω1, . . . , ωn) . (9.3)

In principle, any system of weights defines a random-walk model, but for
the models of physical interest the weights are found to have certain important
additional properties which can be grouped into three main categories:

1. Positivity. In this work we consider only models with ̺[n] ≥ 0.

2. Factorization properties of the walks. These are inequalities relating a
given weight with products of weights of smaller or equal order. Two
kinds of inequalities are of interest:

a) Inequalities involving the partition of an (ordered) family of walks
into (ordered) subfamilies.

b) Inequalities involving the splitting of a path.

These properties will be discussed in Chapter 11.

3. Symmetries of the weights. For weights describing a system of indistin-
guishable unoriented polymers, it is natural to assume that ̺[n] is sym-
metric under permutation of walks and under inversion of a walk. Here
we do not assume such symmetries. This generality is forced by the exis-
tence of an important random-walk model which lacks such symmetries:
the ARW representation for the Ising model. As a consequence, we do not
assume that the kernel (9.3) is symmetric under reordering of the pairs or
under reordering within one pair.

In the sequel we will omit the superscript [n] for the weights, as the number
of arguments will make this clear.

Next we define the 2n-point Green functions , which are the quantities of
direct physical relevance for spin systems. For generality, we allow for the pres-
ence of internal indices αi, which may be arbitrary positive integers. We thus
define Green functions S

(α1...α2n)
2n (x1, . . . , x2n) by summing the kernels (9.3) over
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all pairings between the sites x1, . . . , x2n which are compatible with the speci-
fied internal indices α1, . . . , α2n: only sites having the same value of the internal
index may be paired. Each such pairing is in correspondence with a partition
of the set {1, . . . , 2n} into sets of two elements, i.e. with a set

{
{π(1), π(2)}, . . . , {π(2n − 1), π(2n)}

}
(9.4)

where π is some permutation of the set {1, . . . , 2n}. As we are not assuming
any kind of symmetry for the weights, we must specify an order for the pairs in
(9.4) and for the elements inside each pair. So we must determine which special
family of permutations we consider in (9.4).

If P2n is the group of permutations of {1, . . . , 2n}, then the set of pairings
of {1, . . . , 2n} is in one-to-one correspondence with P2n/C2n, where C2n is the
subgroup of P2n generated by the following operations:

i) the identity,

ii) the n permutations which interchange the elements within one pair, and

iii) the n(n − 1)/2 permutations which interchange one pair with another.

Each equivalence class of P2n/C2n is formed by 2nn! permutations, each defining
the same pairing. To define the Green function S2n we must choose a particular
representative of each class. We choose the one which produces the elements
within each pair in (9.4) to be ordered in the natural order, and the pairs
themselves to be ordered according to their first elements. That is, we define
Q2n as the set of permutations π ∈ P2n such that

π(2k − 1) < π(2k) k = 1, . . . , n

π(2k − 1) < π(2k + 1) k = 1, . . . , n − 1
(9.5)

(The permutations in Q2n can be thought of as constructed in the following
way: first pair the integer 1 with one of the remaining 2n−1 integers, then pick
the smallest of the integers not yet paired and pair it with another integer, etc.)

Now we can define the Green functions for the model:

S
(α1...α2n)
2n (x1, . . . , x2n) =

∑

π∈Q2n

δαπ(1)απ(2)
. . . δαπ(2n−1)απ(2n)

× K(xπ(1)xπ(2)| . . . |xπ(2n−1)xπ(2n))

(9.6a)

S
(α1...α2n+1)
2n+1 (x1, . . . , x2n+1) = 0 . (9.6b)

In particular, if the internal indices α1 . . . α2n are all equal,

S2n(x1, . . . , x2n) ≡ S
(α...α)
2n (x1, . . . , x2n)

=
∑

π∈Q2n

K(xπ(1)xπ(2)| . . . |xπ(2n−1)xπ(2n)) . (9.7)



194 9. Models without magnetic field

We observe that in the generality with which we are stating our definitions,
the Green functions S2n may depend on the choice of the set of representatives
Q2n, and may turn out not to be symmetric under permutation of sites. It is
a nontrivial fact that our major example with non-symmetric weights — the
ARW model discussed below — does not exhibit this last pathology. For models
with symmetric weights any choice of representatives is equivalent, and in fact
we could replace the sum over Q2n by the sum over the whole P2n divided by
2nn!.

9.2 Examples

For the following models we consider a symmetric matrix J = (Jxy)x,y∈L with
nonnegative elements. For a family of bonds A = {{xi, yi}i} and a function
f : IR → IR we will denote

[f(J)]A ≡
∏

i

f(Jxiyi
) (9.8)

with the convention [f(J)]? = 1. Analogously, if ω is a walk, we write

[f(J)]ω ≡
∏

i

f(Jω(i)ω(i+1)) (9.9)

with the convention that if |ω| = 0, then [f(J)]ω ≡ 1. If more than one walk is
involved we will abbreviate

[f(J)]ω1+...+ωn ≡
∏

k

[f(J)]ωk (9.10)

9.2.1 Polymer-chain models

These will be our simplest family of models. They are defined by weights of the
form

̺(ω1, . . . , ωk) = Jω1+...+ωk exp[−Uk(ω1, . . . , ωk)] (9.11)

and are intended to model a polydisperse ensemble of interacting polymer chains
ω1, . . . , ωk. Thus, J is to be interpreted as a monomer activity (or fugacity), and
U is to be interpreted as the interaction energy of the walks (which may be +∞
for certain configurations); U is assumed to be a symmetric function of its
arguments. Note that U has the important feature that it is independent of J .
Therefore, these models have a trivial J-dependence. By definition U0 = 0 so
that ̺[0] ≡ 1.

These models are the natural discretization of the models of continuum
polymer chains introduced by Edwards [160], de Gennes [120] and des Cloizeaux
[126], among others. We warn the reader, however, that other models introduced
in the polymer-physics literature may employ conventions that disagree with
ours. For example, our walks are oriented objects, but polymer molecules are
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usually considered to be unoriented; and we allow zero-length walks (i.e. walks
occupying a single lattice site), while some authors (e.g. [284]) explicitly forbid
them.

We call a polymer-chain model repulsive if

Uj+k(ω1, . . . , ωj+k) ≥ Uj(ω1, . . . , ωj) + Uk(ωj+1, . . . , ωj+k) (9.12)

for all j, k and all ω1, . . . , ωj+k. This will be the key condition needed for proving
“Gaussian upper bound” correlation inequalities (see Theorems 11.1 and 12.1).

We now define two major classes of polymer-chain models, which we call
pair-interacting walks (PIW) and contact-interacting walks (CIW), respectively.

Pair-interacting walks (PIW). In these models the interaction energy Uk(ω1, . . . , ωk)
takes the form

Uk(ω1, . . . , ωk) =
k∑

i,j=1

|ωi|∑

r=0

|ωj |∑

s=0

V (ωi(r), ωj(s)) [1 − δi,jδr,s]. (9.13)

Clearly this represents a pair interaction V between the “atoms” of the walks
ω1, . . . , ωk; the square bracket indicates the absence of self-interactions of a
single “atom”. If V ≥ 0, the model is repulsive in the sense defined above.

Contact-interacting walks (CIW). These are models in which walks interact
only when they touch; that is, the interaction energy between nonoverlapping
families of walks is zero. More precisely, a (generalized) CIW model is one in
which

Uj+k(ω1, . . . , ωj+k) = Uj(ω1, . . . , ωj) + Uk(ωj+1, . . . , ωj+k) (9.14)

whenever the families {ω1, . . . , ωj} and {ωj+1, . . . , ωj+k} are nonoverlapping.
However, we are mainly interested CIW models that arise in the following way:
Given a walk ω, define its “visitation” function nx(ω) as the number of times ω
“hits” (or “visits”) the site x, i.e.

nx(ω) = #{i: ω(i) = x}. (9.15)

For a family ω1, . . . , ωk of walks, we define the total visitation function

nx(ω1, . . . , ωk) =
k∑

j=1

nx(ωj). (9.16)

We shall define simple CIW models as those in which the interaction energy
takes the form

exp[−Uk(ω1, . . . , ωk)] =
∏

x∈L

cx(nx(ω1, . . . , ωk)) (9.17)
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for suitable “weights” cx(n), where cx(0) ≡ 1 and cx(1), cx(2), . . . ≥ 0. We note
that a simple CIW model is repulsive if it satisfies the condition

cx(n + m) ≤ cx(n)cx(m) . (9.18)

The triviality of the J-dependence together with the properties of the visitation
function (see (11.34) and (11.36) below) imply straightforward formulas for the
derivatives with respect to J of the weights and Green functions of simple CIW
models (see Sections 11.3 and 12.2.4).

Some examples of simple CIW models are:

a) Ordinary random walks.
cx(n) = τ−n . (9.19)

(The usual normalization is τ = 1, but for reasons to be seen in the next
section we wish to allow arbitrary τ > 0.)

b) Self-avoiding walk (SAW).

cx(n) =





1 if n = 0, 1

0 if n ≥ 2
(9.20)

c) The Domb-Joyce model [138, 93].

cx(n) = e−vn(n−1)/2 (v ≥ 0) . (9.21)

This is equivalent to a PIW model with V (x, y) = vδx,y: each self-
intersection costs an energy v. If v = 0 this is the ordinary random walk
(with τ = 1); as v → +∞ it tends to the SAW.

d) The Edwards model [160, 28, 97, 75].

cx(n) =
∫

dνn(t) Z(t) (9.22)

where

dνn(t) =





δ(t) dt if n = 0

tn−1

Γ (n)
χ[0,∞)(t) dt if n ≥ 1

(9.23)

and
Z(t) = exp[−λt2 − τt] (λ ≥ 0) . (9.24)

If λ = 0, the Edwards model reduces to the ordinary random walk. If
λ → +∞ while τ = −(2λ log(λ/π))1/2 one obtains the SAW [75, Ap-
pendix]. (The weights (9.22)–(9.24) may appear strange, but they arise
naturally from the continuous-“time” Edwards model [160] by passing to
the imbedded discrete-“time” walk. The variable t has the interpretation
of a waiting time (or local time) in the continuous-time Edwards model.)
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Numerous other special cases of the CIW have been introduced in the recent
literature; see [157] and references cited therein.

We note that all four of these examples satisfy the condition (9.18), hence
are repulsive. This is immediate for the first three examples; for the Edwards
model it is a consequence of the fact that [28]

dνn ∗ dνm = dνn+m (9.25)

where * indicates convolution, together with the inequality

Z(t + s) ≤ Z(t)Z(s) (9.26)

which follows from (9.24).
We remark that both the PIW and the CIW models can be generalized by

allowing the walks ωi to carry internal indices αi (expressing the “color”, chemi-
cal composition, etc. of the walk) and allowing the interaction energy to depend
on these internal indices. In the simple CIW models this is most easily expressed
by making the visitation numbers vector-valued, i.e. nx(ω1, . . . , ωk) is a vector
specifying the number of times that the site x has been visited by walks of each
color. One interesting case is the “intersection properties of ordinary random
walks” (IPORW) model, in which intersections between walks of different colors
are forbidden (or are penalized with an Edwards-like weight), but intersections
between walks of the same color (in particular, self-intersections) are allowed.
(This model has been studied by Felder and Fröhlich [185]; similar results were
obtained by Aizenman [7] in a slightly different formalism.) Many of the corre-
lation inequalities for repulsive CIW models carry over to this “multi-colored”
case, but we shall leave this extension to the reader.

9.2.2 BFS representation for continuous spin systems

Consider an N -component isotropic spin system defined by a Hamiltonian

H =
1

2

∑

x,y

Jxy ϕxϕy (9.27)

and single-spin measures on IRN

dPx(ϕx) = gx(ϕ
2
x) dϕx , (9.28)

where dϕx is the Lebesgue measure on IRN , and the functions gx are assumed
to be smooth, strictly positive and decaying faster than exponentially at in-
finity. (These conditions on gx are much stronger than necessary, and are im-
posed solely to avoid uninteresting technical problems. More general models
(e.g. Ising) can be handled by taking limits in the final formulae.) The states of
such systems are completely described by the correlation functions

〈ϕ(α1)
x1

. . . ϕ(αm)
xm

〉 =
1

Z

∫
ϕ(α1)

x1
. . . ϕ(αm)

xm
e

1
2

∑
x,y

Jxyϕx·ϕy
∏

x∈L

gx(ϕ
2
x) dϕx (9.29)
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for x1, . . . , xm ∈ L and α1, . . . , αm ∈ {1, . . . , N}. Here Z is the partition function

Z =
∫

e
1
2

∑
x,y

Jxyϕx·ϕy
∏

x∈L

gx(ϕ
2
x)dϕx . (9.30)

On the other hand, the BFS random-walk model for the interaction J and
measures dPx is defined by the weights

̺(ω1, . . . , ωk) = Jω1+...+ωk

∫
Z(t1 + . . . + tk)

k∏

i=1

dνωi
(ti) (9.31)

with t = (tx)x∈L,

Z(t) ≡ 1

Z

∫
e

1
2

∑
x,y

Jxyϕx·ϕy
∏

x∈L

gx(ϕ
2
x + 2tx) dϕx (9.32)

=

〈
∏

x∈L

gx(ϕ
2
x + 2tx)

gx(ϕ2
x)

〉
(9.33)

and the measure dνω(t) on IRL is defined by

dνω(t) =
∏

x

dνnx(ω)(tx) (9.34)

where nx(ω) is the visitation function (9.15) and dνn is given by (9.23).
The weights (9.31) of the BFS model can in principle be written in the form

(9.11) of the weights of polymer-chain models. However, the corresponding in-
teraction U — given implicitly in terms of the correlations (9.33), or explicitly
by equations (9.37)–(9.39) below — would depend on J . That is, the weights
(9.31) have, besides the trivial J-dependence analogous to that of the polymer-
chain models, another “deep” J-dependence in Z(t). This deep dependence is
made explicit in the “loop” expansion (9.37)–(9.39) below. Both types of J-
dependence play in a sense a different role in the properties of the systems.
The trivial dependence is related with combinatorial aspects that remain ba-
sically the same for all choices of N and of the single-spin measure dPx. On
the other hand, the deep dependence is responsible for more subtle and specific
properties of each model (choice of N and dPx), such as the existence (or not)
of correlation inequalities. In this regard the polymer-chain models are useful
for understanding the basic combinatorial properties of random-walk models,
without the burden of the deep J-dependence.

Another important difference between BFS and polymer-chain models is
that the former do not satisfy a repulsiveness condition of the sort of (9.12).
In fact, for some families of walks inequalities resembling (9.12) are satisfied
(Theorem 11.2 below), but for others the inequality is reversed (Theorem 11.7).

The fundamental identity relating an N -component spin system to the cor-
responding BFS model is [92, 97]:

〈ϕ(α1)
x1

. . . ϕ(α2m)
x2m

〉 = S
(α1...α2m)
2m (x1, . . . , x2m) (9.35)
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and in particular if the internal indices α1, . . . , αn are all equal,

〈ϕ(α)
x1

. . . ϕ(α)
x2m

〉 = S2m(x1, . . . , x2m) (9.36)

for any α = 1, . . . , N . It is this identity which allows us to use spin-system results
(like the Griffiths inequalities) in studying the BFS model, and conversely, to
transfer results proved for the BFS model back to the spin system. For the
convenience of the reader, we give a proof of (9.35) at the end of this section.

For some purposes, it is more suggestive to write the weights as a “loop”
expansion (“Symanzik’s complete polymer representation”). Indeed, the parti-
tion function (9.30) can be written as (see [92] with the correction stated in the
last paragraph of [97])

Z =
∞∑

n=0

1

n!

(
N

2

)n

×
∑

v1,...,vn∈L

∑

ω
∼1

: v1 → v1

...
ω
∼n

: vn → vn

J ω∼1+...+ω∼n

|ω∼1| . . . |ω∼n|
e−UN

k (ω∼1,...,ω∼n) (9.37)

where the interaction UN
k is a simple contact interaction independent of J ,

defined by (9.17) with

cx(n) =

∫
dνn+N/2(t) gx(2t)∫
dνN/2(t) gx(2t)

. (9.38)

Correspondingly, the weights take the form

̺(ω1, . . . , ωk) = Jω1+...+ωk
1

Z

∞∑

n=0

1

n!

(
N

2

)n

×
∑

v1,...,vn∈L

∑

ω
∼1

: v1 → v1

...
ω
∼n

: vn → vn

Jω∼1+...+ω∼n

|ω∼1| . . . |ω∼n|
e−UN

n+k(ω1,...,ωk,ω∼1,...,ω∼n) (9.39)

On the one hand, these expressions show that in the BFS models the walks
not only exhibit contact interactions among themselves, but they interact also
with a “solvent” of closed walks. This interaction with the solvent can be in-
terpreted as the cause for the fact that for nonoverlapping walks the inequality
(9.12) is reversed (Theorem 11.7): the mediation of the “loops” produces a net
attraction between nonoverlapping walks.

On the other hand, (9.37)-(9.39) make sense for N not necessarily integer,
and define an analytic continuation in N of the BFS model (and thus, in view
of the fundamental identity (9.35)/(9.36), of the N -component isotropic spin
model); in particular, the partition and correlation functions are analytic in a
neighborhood of N = 0. When the limit N → 0 is performed in (9.37) and
(9.39), only the summands with n = 0 survive, and we obtain
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lim
N→0

Z = 1 (9.40)

lim
N→0

̺(ω1, . . . , ωk) = Jω1+...+ωk exp[−Uk(ω1, . . . , ωk)] . (9.41)

The interaction Uk = limN→0 UN
k is a simple contact interaction with [28]

cx(n) =

∫
dνn(t) gx(2t)∫
dνn(t) gx(0)

. (9.42)

This is the general version of deGennes’ [120] relation between spin models and
polymer-chain (simple CIW) models.

We now present some important examples of BFS random-walk models:

a) Gaussian model.

gx(ϕ
2
x) = exp

[
−τ

2
ϕ2

x

]
(9.43)

where τ > 0. The weights (9.31) coincide with (9.19); the Gaussian model
thus corresponds to the ordinary random walk.

b) |ϕ|4 model.

gx(ϕ
2
x) = exp

[
−λ

4
ϕ4

x −
τ

2
ϕ2

x

]
(9.44)

with λ ≥ 0. The case λ = 0 is the Gaussian model; in the opposite limit
λ → +∞ with τ = −λN , it yields the N -vector model (non-linear σ-
model) with single-spin measure

dPx(ϕx) = const × δ(ϕ2
x − N) dϕx . (9.45)

From (9.42)/(9.44) and (9.22)/(9.24), we see that the N → 0 limit of the
|ϕ|4 model is the Edwards model. It can be shown [28, Appendix A] that
the N → 0 limit of the N -vector model is the SAW model.

c) Single-spin measures of the BFS class, namely [97, Sections 5 and 6] N=1
or 2 and

gx(ϕ
2
x) = e−fx(ϕ2

x) (9.46)

with s 7→ fx(s) convex and growing at least linearly for s large; and limits
of such measures. For N = 1, 2 this class includes the previous examples
and (for N = 1) is more general than the Ellis-Monroe-Newman [162,
163] class. We shall see in Chapters 11 and 12 that the BFS class is the
natural class of single-spin measures for deriving correlation inequalities
in the BFS random-walk model. Thus, while the definition (9.31)–(9.34)
and the fundamental identity (9.35) hold for any N and any single-spin
measure of the form (9.28), we are able to prove correlation inequalities
only when the single-spin measure is of BFS class. Rather than adopt a
cumbersome nomenclature to denote this special case, we adopt henceforth
the convention that “BFS random-walk model” means “BFS random-walk
model with 1 or 2 components and single-spin measure of BFS class”.
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Proof of the fundamental identity (9.35). We first derive an integration-by-
parts formula for Gaussian integrals:

Lemma 9.1 For any matrix M with positive-definite real part and any well-behaved
function F ,

∫
ϕxF (ϕ) e−

1
2
(ϕ,Mϕ) dϕ =

∑

y

(M−1)xy

∫
∂F

∂ϕy
e−

1
2
(ϕ,Mϕ) dϕ . (9.47)

Proof. By the fundamental theorem of calculus,

∫
∂

∂ϕy

[
F (ϕ) e−

1
2
(ϕ,Mϕ)

]
dϕ = 0 (9.48)

(provided that F and its first derivative have sub-Gaussian growth at infinity). Writ-
ing this out, we get

∫ [
∂F

∂ϕy
−

∑

z

MyzϕzF (ϕ)

]
e−

1
2
(ϕ,Mϕ) dϕ = 0 . (9.49)

Now multiply both sides by (M−1)xy and sum over y.

Note that by substituting successively F (ϕ) = ϕx2 , F (ϕ) = ϕx2ϕx3ϕx4 , etc. we
can derive the usual formulae for the moments of a Gaussian measure.

We now wish to derive an analogous integration-by-parts formula for the non-
Gaussian measure (9.29). Consider the quantity

〈ϕ(α)
x F (ϕ)〉 = Z−1

∫
ϕ(α)

x F (ϕ) e
1
2
(ϕ,Jϕ)

∏

z

gz(ϕ
2
z) dϕz . (9.50)

We use the Fourier representation

gz(ϕ
2
z) =

∞∫

−∞

e−iazϕ
2
z ĝz(az) daz . (9.51)

Note that the assumptions on gz imply that ĝz is an entire analytic function which
decays faster than any inverse power as |Re az| → ∞. Therefore, we can move the
path of integration from the real axis to the line Im az = −C < 0. Having done so,
we insert (9.51) into (9.50). Since, for C sufficiently large, the multiple integration is
absolutely convergent, we can interchange the order of integration and apply (for each
fixed a = {az}) the Gaussian integration-by-parts formula of the previous Lemma,

with M
(αβ)
uv = (2iauδuv − Juv)δ

αβ . We obtain

〈ϕ(α)
x F (ϕ)〉 = Z−1

∑

y

∫
(2ia − J)−1

xy

∂F

∂ϕ
(α)
y

e
1
2
(ϕ,(J−2ia)ϕ)

∏

z

dϕz

∏

z

ĝz(az) daz .

(9.52)
Next we expand (2ia − J)−1 in a Neumann series
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(2ia−J)−1 = (2ia)−1 + (2ia)−1J(2ia)−1 + (2ia)−1J(2ia)−1J(2ia)−1 + . . . (9.53)

(which converges for C = −Im az sufficiently large). The sums over matrix indices
implicit in (9.53) can be combined into one sum over a random walk; doing this and
inserting into (9.52), we get

〈ϕ(α)
x F (ϕ)〉 =

Z−1
∑

y

∑

ω: x→y

Jω
∫ (

∏

z

(2iaz)
−nz(ω)

)
∂F

∂ϕ
(α)
y

e
1
2
(ϕ,(J−2ia)ϕ)

∏

z

dϕz

∏

z

ĝz(az) daz .

(9.54)

where nz(ω) is the visitation function (9.15). Now use, for each site z, the identity

b−n =





∞∫
0

e−bttn−1

(n−1)! dt for n ≥ 1

∞∫
0

e−bt δ(t) dt for n = 0

≡
∫

e−bt dνn(t) (9.55)

valid for Re b > 0. Inserting this into (9.54) [with b = 2iaz] we get

〈ϕ(α)
x F (ϕ)〉 = Z−1

∑

y

∑

ω: x→y

Jω
∫

dνω(t)
∂F

∂ϕ
(α)
y

e
1
2
(ϕ,Jϕ)

∏

z

e−iaz(ϕ2
z+2tz) ĝz(az) daz dϕz

= Z−1
∑

y

∑

ω: x→y

Jω
∫

dνω(t)
∂F

∂ϕ
(α)
y

e
1
2
(ϕ,Jϕ)

∏

z

gz(ϕ
2
z + 2tz) dϕz (9.56)

where dνω(t) is defined in (9.34). Summarizing, we have proven the following non-
Gaussian analogue of Lemma 9.1:

Proposition 9.2
∫

ϕ(α)
x F (ϕ) e

1
2
(ϕ,Jϕ)

∏

z

gz(ϕ
2
z) dϕz =

∑

y

∑

ω: x→y

Jω
∫

dνω(t)
∂F

∂ϕ
(α)
y

e
1
2
(ϕ,Jϕ)

∏

z

gz(ϕ
2
z + 2tz) dϕz . (9.57)

Taking F (ϕ) = ϕ
(α2)
x2 in Proposition 9.2, we obtain the fundamental identity for

the 2-point function

〈ϕ(α1)
x1

ϕ(α2)
x2

〉 = δα1α2
∑

ω: x1→x2

Jω
∫

dνω(t)Z(t)

= δα1α2
∑

ω: x1→x2

̺(ω) , (9.58)

where Z and ̺ are defined as in (9.31)–(9.33). Similarly, taking F (ϕ) = ϕ
(α2)
x2 ϕ

(α3)
x3 ϕ

(α4)
x4

and using Proposition 9.2 twice, we get
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〈ϕ(α1)
x1

ϕ(α2)
x2

ϕ(α3)
x3

ϕ(α4)
x4

〉 = δα1α2δα3α4
∑

ω1: x1 → x2

ω2: x3 → x4

̺(ω1, ω2)

+ two permutations . (9.59)

The details, and the generalization to an arbitrary 2n-point function, are left to the
reader.

9.2.3 The ARW representation for the Ising model

The correlation functions of the Ising model are

〈σx1 . . . σxm〉 =
1

Z
trace

[
σx1 . . . σxm e

1
2

∑
x,y

Jxyσxσy

]
(9.60)

where trace =
∏

x∈Λ[1
2

∑
σx=±1] and

Z = trace
[

e
1
2

∑
x,y

Jxyσxσy

]
. (9.61)

The ARW representation of the Ising model [5, 8] is obtained as a resum-
mation of a random-current expansion. The existence of this underlying current
representation is responsible for additional flexibility and certain supporting re-
sults not shared by the BFS representation, but also for the lack of symmetry
of the weights and some degree of nonuniqueness in the definition of the model.
Indeed, the random-walk representation is obtained by specifying a precise rule
to associate to each random current configuration a unique family of walks. This
can be done in many ways, each one defining a different representation. The one
that seems geometrically most convenient is the one adopted in [8], which re-
stricts the allowed walks to those satisfying certain consistency conditions that
we proceed to discuss.

For each x ∈ L we fix an order for the set of steps having x as initial site.
Each step (x, y) has associated a set of cancelled bonds formed by {x, y} itself
and all the bonds {x, z} such that (x, z) < (x, y) in the above order. A sequence
of steps is said to be consistent if no step of the sequence uses a bond cancelled
by a previous step. A walk is said to be consistent if the associated sequence
of steps is consistent. Two consistent walks ω1, ω2 are compatible (in the given
order) if ω1 ◦ ω2 is consistent. Walks may be compatible in one order but not
in another. Note, however, that if they are nonoverlapping they are compatible
in any order. Two additional pieces of notation are needed: for a sequence of
steps ω, we will denote ω̃ the set of bonds cancelled by ω; and if A is a set of
bonds, ZA will denote the partition function for the less ferromagnetic system
obtained by setting to zero all the coupling constants for bonds not in A .

The weights for the ARW model are:

̺(ω1, . . . , ωk) = ˜̺(ω1 ◦ . . . ◦ ωk)
k∏

i=1

I[ωi visits only once its final site] , (9.62)
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where for a sequence of steps ω

˜̺(ω) = (tanhJ)ω I[ω is consistent] (coshJ)ω̃
Zω∼

Z
. (9.63)

Here I[Q] is the indicator function that takes the value 1 if the condition Q is
satisfied and 0 otherwise. We see that the factor involving tanhJ in (9.63) is
analogous to the “trivial” J-dependence of the previous random-walk models,
but the rest of the weight is more complicated. In particular the requirement
of consistency makes the weight not symmetric with respect to permutations
of walks or reversals of a walk. We see from (9.62) that zero-step walks are
irrelevant for the model. Indeed, if |ωi| = 0, then

̺(ω1, . . . , ωi−1, ωi, ωi+1, . . . , ωk) = ̺(ω1, . . . , ωi−1, ωi+1, . . . , ωk). (9.64)

In this regard, sequences of steps rather than walks are the fundamental objects
of the ARW expansion for the zero-field case.

It may also be instructive to remark that in terms of random currents,
the factor (coshJ)ω̃Zω∼

/Z in (9.63) becomes the probability of having current
configurations with even flux numbers on ω̃ [8, 12], and hence it is smaller than
one. Therefore, we have the simple upper bound:

˜̺(ω) ≤ (tanhJ)ω I[ω is consistent] . (9.65)

The fundamental identity relating an Ising modelto the corresponding ARW
model is [5, 8]:

〈σx1 . . . σx2m〉 = S2m(x1, . . . , x2m) (9.66)

provided that the sites x1, . . . , x2m are all distinct. When some sites coincide the
Green functions S2m are definitely larger than the Ising correlations — except
for the 2-point Green function (in zero magnetic field), which is equal to the
Ising 2-point correlation even for coincident sites, i.e. S2(x, x) = 〈σxσx〉 = 1.

It is certainly possible to modify the weights so that the fundamental iden-
tity (9.66) holds even if some sites are the same. This can be done for instance,
by adding some extra restrictions in the weights that prohibit pairs of walks
of non-zero length with some repeated endpoint. However, this would notori-
ously complicate the expression for the weights and destroy the simplicity of
the path-splitting inequalities for the ARW model (Section 11.2 below). The
most important side effect of having the fundamental identity only for different
sites appears when studying the truncated correlations (Chapter 12 below). The
expressions obtained for the truncated Green functions ST

2n translate into state-
ments for the truncated Ising correlations only if the sites are noncoincident.
To obtain general expressions for the Ising correlations one must in addition
analyze on a case-by-case basis the situations in which several spin sites are the
same. As all the results reviewed in this work involve only the truncated correla-
tions of low order, this situation is not much of a burden. On the other hand, the
random-walk formalism is not an appropriate tool to study the truncated cor-
relations of higher order; one must resort to the more detailed random-current
expansion (see Sections 12.5 and 12.6, and [460]).
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Let us finally remark that the identity (9.66) proves that the Green func-
tions for the ARW model with noncoincident arguments are symmetric under
permutation of arguments — a fact far from obvious given the lack of symmetry
of the weights.
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10. Random-walk models in the presence of a

magnetic field

We now consider a possibly site-dependent “magnetic field”, i.e. a vector
h = (hx)x∈L. In the presence of a magnetic field the random-walk expansion
of Sn(x1, . . . , xn) undergoes a double alteration. On the one hand we must
also include paths connecting one xi with an “external magnetic field”. This
means that the walks may end up not only at the points x1, . . . , xn (“lattice
sources”), but also at any other point in the lattice, where they may be thought
to reach an “h-source”. This is nothing more than the familiar combinatorics
of the Gaussian model (free field) in nonzero magnetic field. On the other hand
the expression for the weight depends on the kind of source each path has as
endpoint, and it may happen that the same walk must be counted twice with
different weights. We are forced to complicate the notation to distinguish the
two cases.

For simplicity we write the formulae for the one-component case; the gen-
eralization to the N -component case is a simple matter of inserting internal
indices and their corresponding Kronecker deltas. In order that the weights
̺[n] be nonnegative, we assume henceforth that the magnetic fields hx are all
nonnegative.

10.1 General definitions

We will associate to each path ωi a subscript ji which takes the value 1 if
the path ends up at an h-source and 0 otherwise. Hence now the weights are
functions: ̺[k]: [Ω × {0, 1}]k → IR, with ̺[0] ≡ 1. We shall denote

̺j1...jk
(ω1, . . . , ωk) ≡ ̺[k][(ω1, j1), . . . , (ωk, jk)] (10.1)

The weights are understood to depend on h in such a way that

̺j1...jk
(ω1, . . . , ωk) = 0 whenever jm = 1 and he(wm) = 0

for one or more m (1 ≤ m ≤ k).

There are now many more kernels than in the zero-field case. For instance,
for two sites x1, x2 ∈ L we have the kernel
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K(x1, x2) =
∑

ω:x1→x2

̺0(ω) (10.2)

analogous to (9.3); but also we will consider

∑

z1,z2∈L

∑

ω1: x1 → z1

ω2: x2 → z2

̺11(ω1, ω2) , (10.3)

which can be interpreted as the kernel obtained by pairing each of the sites
x1, x2 with all possible h-sources. For the sake of compactness we shall adopt a
somewhat symbolic notation, denoting with a “•” a dummy site that must be
summed over the whole lattice. For example

∑

x→•

≡
∑

z∈L

∑

ω:x→z

(10.4)

Correspondingly, we shall denote the kernel (10.3) as K(x1 • |x2•); so (10.3)
takes the form

K(x1 • |x2•) =
∑

ω: x1 → •

ω: x2 → •

̺11(ω1, ω2) . (10.5)

In general, given sites x1, . . . , xn one must consider all kernels obtained by
pairing these sites and a number 2k − n of “•”; with 0 ≤ 2k − n ≤ n. To write
the expression of such objects consider the set N∗

n = {1, . . . , n}∪{∞}, with the
total order defined by the standard order of natural numbers plus the relation
∞ > i ∀i ∈ N . For each 2k ≥ n let P2k,n be the set of “arrangements of a
set with n distinguishable and 2k − n indistinguishable elements”, i.e. the set
of surjective maps π: {1, . . . , 2k} → N∗

n such that #[π−1(∞)] = 2k − n. If we
adopt the convention

x∞ ≡ • (10.6)

each π ∈ P2k,n defines a pairing analogous to (9.4) of the set formed by the
sites x1, . . . , xn and 2k−n bullets. Not all these pairings go as arguments of the
kernels K, because we are not interested in h-source–h-source pairing. To define
the Green functions, we must again decide which representative of each class of
maps π we choose. We do a choice analogous to the one for h = 0. Denote Q2k,n

the set of π ∈ P2k,n satisfying:

π(2k − 1) < π(2k) k = 1, . . . , n

π(2k − 1) < π(2k + 1) k = 1, . . . , n − 1
(10.7)

Then, for each π ∈ Q2k,n (2k ≤ n):

K(xπ(1)xπ(2)| . . . |xπ(2k−1)xπ(2k)) =
∑

ω1: xπ(1) → xπ(2)

...
ωk: xπ(2k−1) → xπ(2k)

̺j1...jk
(ω1, . . . , ωk) (10.8)
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where

ji =





1 if π(2i) = ∞
0 otherwise

(10.9)

The Green functions are:

Sn(x1, . . . , xn) =
n∑

k=[(n+1)/2]

∑

π∈Q2k,n

K(xπ(1)xπ(2)| . . . |xπ(2k−1)xπ(2k)) (10.10)

where [m] is the integer part of m. In the absence of a magnetic field we see from
the comment following (10.1) that (10.10) reduces to (9.7) with ̺(ω1, . . . , ωn) =
̺0...0(ω1, . . . , ωn).

10.2 Examples

We remind the reader that b(ω) and e(ω) denote, respectively, the initial and
final points of the walk ω.

10.2.1 Polymer-chain models

We define the weights for the polymer-chain models with a magnetic field so
as to preserve the useful identity between simple CIW models and the N → 0
limit of n-component spin models. The weights are:

̺j1...jk
(ω1, . . . , ωk) =

(
k∏

i=1

hji

e(ωi)

)
̺(h)(ω1, . . . , ωk) (10.11)

with

̺(h)(ω1, . . . , ωk) =
1

Z
Jω1+...+ωk

∞∑

m=0

1

m!

(
1

2

)m ∑

ω′
1,...,ω′

m∈Ω

Jω′
1+...+ω′

m

× e−Um+k(ω′
1,...,ω′

m,ω1,...,ωk)
m∏

i=1

hb(ω′
i)
he(ω′

i)
(10.12)

Here U is the same interaction energy as for the corresponding zero-field
model (e.g. (9.17) for simple CIW models) and Z is the normalization factor:

Z =
∞∑

m=0

1

m!

(
1

2

)m ∑

ω′
1,...,ω′

m∈Ω

Jω′
1+...+ω′

me−Um(ω′
1,...,ω′

m)
m∏

i=1

hb(ω′
i)
he(ω′

i)
. (10.13)

We notice that now the models have acquired a “deep” J-dependence.
The partition function (10.13) can be interpreted as the grand partition

function for a gas of open walks with interaction energy U , bond activity Jxy

and chain end activity 2−1/2hx.
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10.2.2 Baby polymer-chain models

We have written (10.11) in a way that stresses the existence of two different
kinds of h-dependence. The first factor is the trivial h-dependence while the
second factor includes a “deep” h-dependence. Again, each dependence is related
to different features: the deep dependence is specific to each model (choice of
U), while the trivial one embodies the new combinatorial aspects, common to
all models, brought about by the existence of a magnetic field.

To study the latter type of properties, we have found it convenient to define
some (unphysical) models with only the trivial h-dependence. We call such
models “baby” models. In particular we shall consider the baby polymer-chain
models which are defined by the weights

̺j1...jk
(ω1, . . . , ωk) =

[
k∏

i=1

hji

e(ωi)

]
̺(ω1, . . . , ωk) (10.14)

where ̺(ω1, . . . , ωk) are the zero-field weights (9.11). We shall use the terminol-
ogy inherited from the zero-field models. Hence, baby (generalized) CIW models
are those whose interaction energy satisfies (9.14), and baby simple CIW models
those satisfying (9.17). A baby model is repulsive if (9.12) holds.

The most important simplifying property of these baby polymer-chain mod-
els is that their weights conserve the factorization properties of the weights of
the corresponding zero-magnetic-field models (Chapter 11).

10.2.3 BFS random-walk models

Recall that for simplicity we are considering one-component models (the gener-
alization to N -component models is easy). The Hamiltonian of the spin system
is therefore

H = −1

2

∑

x,y

Jxyϕxϕy −
∑

x

hxϕx . (10.15)

The corresponding BFS random-walk model [223] has weights of the form
(10.11) where ̺(h) is given by the analogue of (9.31)–(9.33) but with the new
Hamiltonian (10.15). That is,

̺(h)(ω1, . . . , ωk) = Jω1+...+ωk

∫
Z(t1 + . . . + tk)

k∏

i=1

dνωi
(ti) (10.16)

with t = (tx)x∈L,

Z(t) ≡ 1

Z

∫
exp

[
1

2

∑

x,y

Jxyϕxϕy +
∑

x

hxϕx

]
∏

x∈L

gx(ϕ
2
x + 2tx) dϕx

(10.17)

=

〈
∏

x∈L

gx(ϕ
2
x + 2tx)

gx(ϕ2
x)

〉
(10.18)
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and dνω(t) is as before. The fundamental identity relating the spin system to
the corresponding BFS random-walk model, now valid for both even and odd
n, is

〈ϕx1 . . . ϕxn〉 = Sn(x1, . . . , xn) . (10.19)

For the convenience of the reader, we sketch the proof of (10.19) at the end of
this section.

There is also a “loop” expansion analogous to (9.39): for an N -component
model, it reads

̺(h)(ω1, . . . , ωk) =

Jω1+...+ωk

{
1

Z

∞∑

n,m=0

1

n!

1

m!

(
N

2

)n (
1

2

)m

∑

v1, . . . , vn ∈ L

x1, y1 ∈ L

...
xm, ym ∈ L

∑

ω
∼1

: v1 → v1

...
ω
∼n

: vn → vn

ω′
1: x1 → y1

...
ω′

m: xm → ym

Jω′
1+...+ω′

m+ω∼1+...+ω∼n

|ω∼1| . . . |ω∼n|

×
m∏

i=1

[hb(ω′
i)
he(ω′

i)
] e−UN

m+n+k(ω1,...,ωk,ω′
1+...+ω′

m,ω∼1,...,ω∼n)
}

(10.20)

with
Z = ̺(?) , (10.21)

while the interaction U is the same as in the zero-field case (9.39).As we in-
tended, the “mature” CIW models (10.11) are recovered in the N → 0 limit.

For the same reason as in the zero-field case, we adopt henceforth the con-
vention that “BFS random-walk model” means “BFS random-walk model with
single-spin measure of BFS class”.

Proof of the fundamental identity (10.19). It is instructive to consider first
the Gaussian case. Setting F (ϕ) = G(ϕ)e(h,ϕ) in Lemma 9.1, we obtain

∫
ϕxG(ϕ) e−

1
2
(ϕ,Mϕ)+(h,ϕ) dϕ =

∑

y

(M−1)xy

∫ [
∂G

∂ϕy
+ hyG(ϕ)

]
e−

1
2
(ϕ,Mϕ)+(h,ϕ) dϕ .

(10.22)
Setting successively G(ϕ) = 1, G(ϕ) = ϕx2 , G(ϕ) = ϕx2ϕx3 , . . . we obtain the usual
formulae for the moments of a (normalized) Gaussian measure with nonzero magnetic
field:

〈ϕx〉 = (M−1h)x (10.23a)

〈ϕx1ϕx2〉 = (M−1)x1x2 + (M−1h)x1〈ϕx2〉
= (M−1)x1x2 + (M−1h)x1(M

−1h)x2 (10.23b)
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〈ϕx1ϕx2ϕx3〉 = (M−1)x1x2〈ϕx3〉 + (M−1)x1x3〈ϕx2〉 + (M−1h)x1〈ϕx2ϕx3〉
= (M−1)x1x2(M

−1h)x3 + (M−1)x1x3(M
−1h)x2 + (M−1)x2x3(M

−1h)x1

+ (M−1h)x1(M
−1h)x2(M

−1h)x3 (10.23c)

Clearly the combinatorics is exactly what was described in Section 10.1: each site xi

is connected by a “propagator” M−1 either to another site xj or else to a magnetic
field.

Exactly the same combinatorics is obtained when we substitute F (ϕ) = G(ϕ)e(h,ϕ)

into the non-Gaussian integration-by-parts formula, Proposition 9.2. Instead of “prop-
agators” M−1 we obtain sums over walks ωi with weights ̺(h)(ω1, . . . , ωk).

10.2.4 ARW model

In the setting of the random-current expansion used to define the ARW model,
the magnetic field can be incorporated by introducing a layer of “ghost” spins
[12]. Then, the random-walk expansion is obtained by a resummation of the
currents on this enhanced lattice. However, in order to facilitate the comparison
with the previous random-walk models, we will not introduce here the enhanced
lattice. Instead, in the expression for the weights we will have to include an
extra factor [Tj1...jk

in (10.27) below] that somewhat obscures the similarities
with the h=0 case. In addition to this factor, the main difference from the
zero-field case is that walks ω ending in an h-source (i.e. with j = 1) are not
subjected to any constraint regarding the number of visits to the final site. (In
the enhanced-lattice picture, the walk ω is completed by a single step from e(ω)
to the corresponding ghost spin.) To write the expression of the weights we need
some extra notation. For ω ∈ Ω , j ∈ {0, 1}, let π(ω, j) denote the set

π(ω, j) =





supp(ω) if j = 1

supp(ω \ {e(ω)}) if j = 0
(10.24)

If A is a set of bonds and Λ a set of sites, a subscript A,Λ will indicate that
the coupling constants of bonds not in A and the magnetic field for sites not in
Λ are set equal to zero.

For an Ising model with Hamiltonian

H = −
∑

x,y

Jxyσxσy −
∑

x

hxσx , (10.25)

the fundamental identity

〈σx1 . . . σxn〉 = Sn(x1, . . . , xn) (10.26)

holds with [12]

̺j1...jk
(ω1, . . . , ωk) =

k∏

i=1

(I[ωi visits only site])1−ji

× T
(h)
j1...jk

(ω1, . . . , ωk) ˜̺(h)(ω1 ◦ . . . ◦ ωk) (10.27)
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with

T
(h)
j1...jk

(ω1, . . . , ωk) =
k∏

i=1

{
[tanh he(ωi)]

ji
∏

x∈π(ωi,ji)

cosh hx

}

×
Z

(h)
[(ω1◦...◦ωk)∼]c,[π(ω1,j1)∪...∪π(ωk,jk)]c

Z
(h)
[(ω1◦...◦ωk)∼]c

(10.28)

and ˜̺(h) given by (9.63) but including the magnetic field in the partition func-
tions. An important difference with previous models is the very complicated
dependence of the weights on the values of ji. We also note that the analog of
property (9.64) is valid only if the zero-step walk ωi has an associated ji = 0.
(Again, this distinction is overcome in the enhanced-lattice picture in which the
ARW expansion takes the form of an expansion in sequences of steps as for the
zero-field case.)

In the random-current formalism the RHS of (10.28) is equal to the product∏k
i=1[tanh he(ωi)]

ji times the probability that the flux numbers of the currents
for the h-bonds “on top” of (π(ωi, ji))1≤i≤k be even, for a system deprived of
the bonds in ω1 ◦ . . .◦ωk . Bounding this probability by one we have (c.f. (9.65))

T
(h)
j1...jk

(ω1, . . . , ωk) ≤
k∏

i=1

[
tanh he(ωi)

]ji

(10.29)
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11. Factorization and differentiation properties

of the weights

We now discuss the behavior of the weights of the previous models with regard
to the partition of a family of walks into subfamilies and to the splitting of
a walk. We also discuss some identities and inequalities on the derivatives of
the weights with respect to J or h. Most of the results of this chapter hold for
arbitrary h ≥ 0 (but the only polymer-chain models we consider are the baby
ones). Many proofs are not given here, but can be found in the cited references.

11.1 Inequalities involving the partition of a family of
walks

There are two types of inequalities of interest here: those expressing the repul-
siveness (or repulsiveness “on the average”) of the interaction between walks,
and those expressing the attractiveness (or vanishing) of the interaction between
nonoverlapping (or compatible) walks.

We remind the reader that for the BFS model, the spins are assumed to
have 1 or 2 components and to have single-spin measures in the BFS class [cf.
(9.46)].

Let us shorten our notation for sequences. If I = (i1, . . . , ik) is an ordered
k-tuple of indices (from some arbitrary index set), then ωI ≡ (ωi1 , . . . , ωik),
jI ≡ (ji1 , . . . , jik) and so forth. Moreover, if I = (i1, . . . , ik) and I ′ = (i′1, . . . , i

′
k),

then (ωI , ωI′) ≡ (ωi1 , . . . , ωik , ωi′1
, . . . , ωi′

k
), and so forth. If I = (i1, . . . , ik), we

define supp(ωI) =
⋃k

i=1 supp(ωik). We always allow our sequences to be empty
(k = 0).

11.1.1 Repulsiveness (or repulsiveness “on the average”)

For any repulsive polymer-chain model in zero magnetic field, it follows imme-
diately from (9.11) and (9.12) that

̺(ω1, . . . , ωk+l) ≤ ̺(ω1, . . . , ωk) ̺(ωk+1, . . . , ωk+l) . (11.1)

The same (with arbitrary subscripts j1, . . . , jk+l) holds in nonzero magnetic field
for any repulsive baby polymer-chain model.
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We have therefore proven:

Theorem 11.1 For repulsive baby polymer-chain models:

̺jI1
jI2

(ωI1 , ωI2) ≤ ̺jI1
(ωI1)̺jI2

(ωI2) . (11.2)

Remark. Although on the left-hand sides of (11.1)–(11.2) the walks are specified in
a particular order — these of I1 followed by those of I2 — this order is obviously
irrelevant, since the weights ̺ for a polymer-chain model are symmetric.

For the BFS and ARW models the situation is more complicated. A gen-
eral repulsiveness inequality of the form (11.1) is quite simply false: for certain
families of walks the inequality goes in the other direction (Theorem 11.7 and
Corollary 11.9), and examples can easily be constructed in which the reverse
inequality is strict. However, it does turn out [92, 213, 28, 223, 5, 12] that under
suitable conditions the walks are repulsive “on the average”. More precisely, an
inequality resembling (11.1) can be obtained when one sums over combinations
of weights that add up to a Green function Sn, since in this case the second Grif-
fiths inequality (N = 1) [491, 252, 407, 462] or the Ginibre inequality (N = 2)
[252, 148] can be applied to the corresponding spin-model correlation function
via the fundamental identity (9.36), (9.66), (10.19) or (10.26).

To see what is going on, let us consider the weight ̺(ω1, ω2) in the one-
component BFS models at zero magnetic field:

̺(ω1, ω2) = Jω1+ω2

∫
Z(t1 + t2) dνω1(t1) dνω2(t2) (11.3)

where

Z(t) =
1

Z

∫
e

1
2
(ϕ,Jϕ)

∏

x

gx(ϕ
2
x + 2tx) dϕx . (11.4)

We now rewrite the integrand in (11.3) as

̺(ω1, ω2) = Jω1

∫
dνω1(t1)Z(t1)

[
Jω2

∫
dνω2(t2)

Z(t1 + t2)

Z(t1)

]

= Jω1

∫
dνω1(t1)Z(t1) ̺(ω2)t1

, (11.5)

where ̺t is defined in the same way as ̺ but with each gx(ϕ
2
x) replaced by

gx(ϕ
2
x + 2tx). Unfortunately, we know very little about the monotonicity of

̺(ω2)t1
for fixed ω2 as a function of t1. However, if we sum over ω2: x → y, we

can use the fundamental identity (9.35), which holds also in a “background t
field”: ∑

ω2:x→y

̺(ω1, ω2) = Jω1

∫
dνω1(t1)Z(t1) 〈ϕxϕy〉t1 , (11.6)

where 〈 · 〉t denotes normalized expectation in a model whose single-spin mea-
sures are gx(ϕ

2
x +2tx) dϕx. As we shall prove shortly (Lemma 11.3), the correla-

tion functions 〈ϕ . . . ϕ〉t are monotone decreasing in t, for single-spin measures
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of BFS class; in particular, they can be bounded above by the corresponding
correlations without a background t field. Therefore, we can write

∑

ω2:x→y

̺(ω1, ω2) ≤ Jω1

∫
dνω1(t1)Z(t1) 〈ϕxϕy〉

= ̺(ω1)
∑

ω2:x→y

̺(ω2) . (11.7)

This inequality expresses the repulsiveness “on the average” between a pair
of BFS walks; the point is that ω2 must be summed over a class of walks
that produces a correlation function via the fundamental identity (in this case
ω2: x → y).

For a BFS model in nonzero magnetic field, the situation is slightly more
complicated. The inequality (11.7) is no longer provable by the above argument,
and may not even be true! This is because the sum over walks ω2: x → y does not
reconstruct a spin-model correlation function 〈ϕxϕy〉; the relevant fundamental
identities (10.19) are more complicated:

〈ϕx〉 =
∑

ω:x→•

̺1(ω) (11.8)

〈ϕxϕy〉 =
∑

ω:x→y

̺0(ω) +
∑

ω: x → •

ω′: y → •

̺11(ω, ω′) (11.9)

and so forth. These identities determine the classes of walks that must be
summed in order to obtain “repulsiveness on the average”. For example, one
has ∑

ω2:x→•

̺j1(ω1, ω2) ≤ ̺j(ω1)
∑

ω2:x→•

̺1(ω2) , (11.10)

and

∑

ω2:x→y

̺j0(ω1, ω2) +
∑

ω2: x → •

ω3: y → •

̺j11(ω1, ω2, ω3)

≤ ̺j(ω1)
[ ∑

ω2:x→y

̺0(ω2) +
∑

ω2: x → •

ω3: y → •

̺11(ω2, ω3)
]

. (11.11)

The general result is the following [92, 213, 28, 223]:

Theorem 11.2 In the BFS model, let Γ be a family of pairs (ωI , jI) such that
the fundamental identity (9.36)/(10.19) asserts that

∑

(ωI ,jI)∈Γ

̺jI
(ωI) = 〈ϕ(1)

x1
. . . ϕ(1)

xn
〉 (11.12)

for some sites x1, . . . , xn. Then, for any pair (ωI′ , jI′) we have
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∑

(ωI ,jI)∈Γ

̺jI′jI
(ωI′ , ωI) ≤ ̺jI′

(ωI′)
∑

(ωI ,jI)∈Γ

̺jI
(ωI) . (11.13)

Proof. The combinatorial structure of the proof is an obvious generalization of the
steps from (11.3) to (11.7). It remains only to prove the claimed monotonicity of
〈ϕ . . . ϕ〉t in t. We consider first the one-component case:

Lemma 11.3 [92] Consider a one-component ferromagnetic spin system (Jxy ≥ 0,
hx ≥ 0) with single-spin measure of BFS class. For each site x, let Fx: IR → IR be
a function that is either even or odd, and is nonnegative and increasing on [0,∞).
Then, the expectation 〈∏x Fx(ϕx)〉t is nonnegative and is a decreasing function of
each ty. In particular,

0 ≤
〈

∏

x

Fx(ϕx)

〉

t

≤
〈

∏

x

Fx(ϕx)

〉
. (11.14)

Proof. The nonnegativity of 〈∏ Fx〉t is just Nelson’s generalized form of Griffiths’
first inequality [252, 407]. To prove the monotonicity, we assume that the single-spin
distribution is of the form

gx(ϕ2
x) = e−fx(ϕ2

x) (11.15)

with s 7→ fx(s) convex and growing at least linearly for s large. (Limits of such
measures can be handled taking limits in the final formulae.) Then an easy calculation
using the definition of 〈 · 〉t yields

∂

∂ty

〈
∏

x

Fx(ϕx)

〉

t

= −2

〈
∏

x

Fx(ϕx) ; f ′
y(ϕ

2
y + 2ty)

〉

t

. (11.16)

Now, the quantity f ′
y(ϕ

2
y + 2ty) is an even function of ϕy, increasing for ϕy ≥ 0.

Therefore, Nelson’s generalized form of the second Griffiths inequality ([252, 407] and
[462, Theorem VIII.14A]) applies and shows that

〈
∏

x

Fx(ϕx) ; f ′
y(ϕ

2
y + 2ty)

〉

t

≥ 0 . (11.17)

For the 2-component case, we use the notation ϕx = (|ϕx| cos θx, |ϕx| sin θx). The
result analogous to Lemma 11.3 is the following:

Lemma 11.4 Consider a two-component ferromagnetic spin system (Jxy ≥ 0,

h
(1)
x ≥ 0, h

(2)
x = 0) with single-spin measure of BFS class. For each site x, let

Fx: [0,∞) → [0,∞) be an increasing function, and let mx be an integer. Then, the
expectation 〈∏x Fx(|ϕ|) cos mxθx〉t is nonnegative and is a decreasing function of each
ty. In particular,
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0 ≤
〈

∏

x

Fx(|ϕ|) cos mxθx

〉

t

≤
〈

∏

x

Fx(|ϕ|) cos mxθx

〉
. (11.18)

Proof. The proof is identical to that of Lemma 11.3, using Dunlop-Newman’s form
of the Ginibre inequality [148, Theorem 12] in place of Nelson’s form of the Griffiths
inequality.

Remark. These proofs show clearly why the BFS class is the “natural” class of
single-spin measures for proving correlation inequalities in the BFS random-walk
model. Unfortunately, we are unable at present to extend these arguments to spin
systems of more than two components, since the appropriate Griffiths inequality has
not yet been proven [492].

For ARW models the situation is very similar, but there are two complicat-
ing issues: the non-symmetry of the weights ̺ and the need for non-coinciding
arguments in the fundamental identity. Because of the non-symmetry of the
weights, we must require that the walks to be summed over form a contiguous
block within the list of arguments of ̺. The restriction to non-coinciding argu-
ments in the fundamental identity imposes a like restriction on the family Γ .
The result is the following:

Theorem 11.5 In the ARW model, let Γ be a family of pairs (ωI , jI) such that
the fundamental identity (9.66)/(10.26) asserts that

∑

(ωI ,jI)∈Γ

̺jI
(ωI) = 〈σx1 . . . σxn〉 (11.19)

for some sites x1, . . . , xn. (Recall that, in particular, the sites x1, . . . , xn must
be all different, except for the case n = 2 in zero magnetic field.) Then, for any
pairs (ωI1 , jI1) and (ωI2 , jI2), we have

∑

(ωI ,jI)∈Γ

̺jI1
jIjI2

(ωI1 , ωI , ωI2) ≤ ̺jI1
jI2

(ωI1 , ωI2)
∑

(ωI ,jI)∈Γ

̺jI
(ωI) . (11.20)

The proof of a special case of Theorem 11.5 can be found in [12]; the general
case is a straightforward extension.

No result analogous to Theorems 11.1, 11.2 and 11.5 exists so far for the
“mature” CIW in the presence of magnetic field. One may expect that at least
those simple CIW models that are the N → 0 limit of BFS models may inherit
an inequality like (11.13). However, there is at present no proof that the Griffiths
inequalities are preserved in the N = 0 limit, and there are even suspicions that
it may not be so [278].

The repulsiveness property stated in Theorems 11.1, 11.2 and 11.5 will lead
to “Gaussian upper bound” correlation inequalities (Theorem 12.1).
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11.1.2 Attractiveness (or noninteraction) between nonoverlapping
(or compatible) walks

By definition of contact interaction, the interaction between nonoverlapping
families of walks vanishes, so the weights factorize:

Theorem 11.6 For baby (generalized) CIW models

supp(ωI1)∩ supp(ωI2) = ? =⇒ ̺jI1
jI2

(ωI1 , ωI2) = ̺jI1
(ωI1)̺jI2

(ωI2) . (11.21)

For the BFS and ARW models, the interaction between nonoverlapping
families of walks is attractive:

Theorem 11.7
a) For BFS models

supp(ωI1) ∩ supp(ωI2) = ? =⇒ ̺jI1
jI2

(ωI1 , ωI2) ≥ ̺jI1
(ωI1)̺jI2

(ωI2) . (11.22)

b) For ARW models

ω1 ◦ . . . ◦ ωk+l consistent =⇒ ̺j1...jk+l
(ω1, . . . , ωk+l) ≥

̺j1...jk
(ω1, . . . , ωk) ̺jk+1...jk+l

(ωk+1, . . . , ωk+l) (11.23)

Theorem 11.7(a) was proven in [213, 28, 223] for zero magnetic field, and in
[223] for nonzero magnetic field. Theorem 11.7(b) was proven in [8] for zero field,
and in [12] for nonzero field. Since [223] is (and forever will remain) unpublished,
we give here the proof of Theorem 11.7(a):

Proof of Theorem 11.7(a). Note first that if x is a site not visited by ω,
then the measure dνω(t) forces tx to be 0. Theorem 11.7(a) is then an immediate
consequence of the following lemma:

Lemma 11.8 In a BFS model with 1 or 2 components and single-spin measure on
BFS class,

Z(t + t′) ≥ Z(t)Z(t′) (11.24)

where t = {tx} and t′ = {t′x} are nonnegative numbers satisfying txt′x = 0 for all
x ∈ L.

Proof. Assume that the single-spin distribution is of the form

gx(ϕ2
x) = e−fx(ϕ2

x) (11.25)

with s 7→ fx(s) convex and growing at least linearly for s large. (Limits of such
measures can be handled taking limits in the final formulae.) By the fundamental
theorem of calculus,
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logZ(t + t′) = logZ(t) +

1∫

0

dα
d

dα
logZ(t + αt′) . (11.26)

We then have

d

dα
logZ(t + αt′) = −2

∑

x

t′x

〈
f ′

x(ϕ2
x + 2tx + 2αt′x)

〉

t+αt′

= −2
∑

x

t′x

〈
f ′

x(ϕ2
x + 2αt′x)

〉

t+αt′

≥ −2
∑

x

t′x

〈
f ′

x(ϕ2
x + 2αt′x)

〉

αt′

=
d

dα
logZ(αt′) . (11.27)

Here the first equality is an easy calculation using the definition of Z(t); the second
inequality holds because by hypothesis tx = 0 whenever t′x 6= 0; the inequality is a
consequence of Lemmas 11.3 and 11.4, since f ′

x(ϕ2
x + 2αt′x) is an increasing function

of ϕ2
x; and the final equality is just the first equality run backwards. Inserting (11.27)

into (11.26) and integrating, we get

logZ(t + t′) ≥ logZ(t) + logZ(t′) (11.28)

Remark. In the ϕ4 case

gx(ϕ2
x) = exp

[
− λ

4
ϕ4

x − τ

2
ϕ2

x

]
, (11.29)

the inequality (11.24) can be made more precise:

Z(t + t′) ≥ Z(t)Z(t′) exp

[
−2λ

∑

x

txt′x

]
(11.30)

for any choice of nonnegative numbers {tx}, {t′x}. See [213, 28, 97] for a proof.

We remark that (11.22) is satisfied also by the ARW models because
nonoverlapping families are compatible. Hence, we can more simply state:

Corollary 11.9 For the baby (generalized) CIW, BFS and ARW models:

supp(ωI1) ∩ supp(ωI2) = ? =⇒ ̺jI1
jI2

(ωI1 , ωI2) ≥ ̺jI1
(ωI1)̺jI2

(ωI2) . (11.31)

with equality for the baby (generalized) CIW models.

Theorem 11.7 thus gives a bound for the BFS and ARW models which
is opposite to that of Theorems 11.1, 11.2 and 11.5. These two results, taken
together, are somewhat surprising: for example, (11.13) and (11.20) state that
the interaction between two families of walks (summing over both overlapping
and nonoverlapping cases) is “on the average” repulsive, while (11.31) states
that in the nonoverlapping case the interaction is attractive. It is the interplay
between these two bounds which leads to the profound results of [5, 213, 223, 12];
see Theorems 12.4 and 12.11 below.
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11.2 Inequalities involving the splitting of a walk

The deepest applications of the random-walk formalism involve splitting a walk
into two pieces (often at the point of intersection with a second walk). In this
section we study the identities and inequalities for the weights ̺ which result
from such a splitting.

We consider two ways in which a walk ω may be split in two pieces ω1 and
ω2, according to whether an “intermediate site” or “intermediate step” is used.

1) Intermediate site. Let ω1 and ω2 be walks with e(ω1) = b(ω2); then for
the ARW model it follows immediately from the definitions (9.62) or (10.27)
that

I[ω1 visits e(ω1) only once] ̺j(ω1 ◦ ω2) = ̺0j(ω1, ω2) . (11.32)

In particular, if we are given the walk ω1 and wish to sum over all walks ω2

which run from e(ω1) to a certain site y, we obtain

I[ne(ω1)(ω1) = 1]
∑

ω2:e(ω1)→y

̺j(ω1 ◦ ω2) =
∑

ω2:e(ω1)→y

̺0j(ω1, ω2) . (11.33)

The identities (11.32) and (11.33) indicate that intermediate-site splitting is
very natural for the ARW model. But it is less natural for the simple CIW and
BFS models: Notice first that

nx(ω1 ◦ ω2) =





nx(ω1) + nx(ω2) if x 6= e(ω1)

nx(ω1) + nx(ω2) − 1 if x = e(ω1)
(11.34)

The last line is due to the fact that when ω1 and ω2 are considered separately,
the site e(ω1) is visited one extra time as the initial point of ω2. This discrep-
ancy between nx(ω1 ◦ ω2) and nx(ω1) + nx(ω2) makes intermediate-site split-
ting inconvenient for the CIW and BFS models (except for the purpose of
deriving λ-dependent “skeleton inequalities”, where it is exactly what is needed
[97, 75, 74, 292]). However, for the baby SAW a direct argument yields

̺j(ω1 ◦ ω2) = ̺0(ω1)̺j(ω2) I[ω1 ∩ ω2 = {e(ω1)}] ≤ ̺0(ω1)̺j(ω2) , (11.35)

and so intermediate-site splitting can be employed in this case.

2) Intermediate step. Let ω1 and ω2 be walks; we consider concatenating ω1

and ω2 with a single step (e(ω1), b(ω2)) in-between. We get

nx(ω1 ◦ (e(ω1), b(ω2)) ◦ ω2) = nx(ω1) + nx(ω2) (11.36)

for all x [in contrast to (11.34)], and thus for the simple baby CIW and BFS
models we find

̺j(ω1 ◦ (e(ω1), b(ω2)) ◦ ω2) = Je(ω1),b(ω2) ̺0j(ω1, ω2) (11.37)
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In particular, if we are given a walk ω1 and wish to sum over all possible
ways of completing ω1 beyond its endpoint, we find

∑

ω′:e(ω1)→y

̺j(ω1 ◦ ω′) = ̺j(ω1)δe(ω1),y +
∑

z

∑

ω2:z→y

Je(ω1),z ̺0j(ω1, ω2) . (11.38)

The first term on the right hand side comes from a zero-length walk ω′; the
second term comes from all other walks ω′ ≡ (e(ω1), z) ◦ ω2.

It should be noted that an intermediate-step splitting expression analogous
to (11.37) holds also for the ARW model, except that it is an inequality rather
than an identity. Indeed, using the probabilistic interpretation of some of the
factors of the weights (10.27)/(9.63) [see remark preceding (9.65)], it is not hard
to see that

I[ne(ω1)(ω1) = 1] ̺j(ω1 ◦ (e(ω1), b(ω2)) ◦ ω2) ≤ tanh(Je(ω1),b(ω2)) ̺0j(ω1, ω2)
(11.39)

and hence an expression analogous to (11.38) holds for the ARW model but
replacing “=” by “≤” and Je(ω1),z by tanh(Je(ω1),z) .

The general form of the path-splitting results is:

Proposition 11.10 a) For the simple baby CIW and BFS random-walk models

∑

ω′: e(ω)→y

̺jjI
(ω ◦ ω′, ωI) = ̺jjI

(ω, ωI)δe(ω),y +
∑

z

∑

ω′:z→y

Je(ω),z ̺0jjI
(ω, ω′, ωI)

(11.40)
[intermediate-step splitting].

b) For the ARW model

I[ne(ω)(ω) = 1]
∑

ω′:e(ω)→y

̺jI1
jjI2

(ωI1 , ω ◦ ω′, ωI2) =
∑

ω′:e(ω)→y

̺jI1
0jjI2

(ωI1 , ω, ω′, ωI2)

(11.41)
[intermediate-site splitting]. Moreover, we also have the following intermediate-
step splitting inequality

I[ne(ω)(ω) = 1]
∑

ω′:e(ω)→y

̺jI1
jjI2

(ωI1 , ω ◦ ω′, ωI2) ≤ ̺jI1
jjI2

(ωI1 , ω, ωI2)δe(ω),y

+
∑

z

∑

ω′:z→y

tanh(Je(ω),z) ̺jI1
0jjI2

(ωI1 , ω, ω′, ωI2) (11.42)

c) For the baby SAW model, if e(ω1) = b(ω2) then

̺jjI
(ω1 ◦ ω2, ωI) = ̺0(ω1) ̺jjI

(ω2, ωI) I[ω1 ∩ ω2 = {e(ω1)}] . (11.43)

[intermediate-site splitting].

These expressions imply several path-splitting inequalities. We shall con-
centrate in a very useful particular case which involves sums of the form
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∑

ω: x → y

supp(ω) ∋ z

̺j(ω) (11.44)

for some fixed site z. In such situation we can split the walk ω at z. In order
to have a well-defined splitting, we have to specify at which visit to z (in case
there is more than one) the walk is to be split. For example, we could split ω
at its first visit to z, or at its last visit to z, etc. In order to avoid problems
with the ARW model, we choose to split the path the first time it hits z (so
the indicator function in the LHS of (11.32)/(11.41) becomes unity). In such
a fashion we obtain from the previous proposition that for the baby CIW and
BFS models (h = 0):

∑

ω: x → y

supp(ω) ∋ z

̺j(ω) =
∑

ω′:x→z

I[nz(ω
′) = 1]

{
̺j(ω

′)δz,y +
∑

z′
Jzz′

∑

ω′′:z′→y

̺0j(ω
′, ω′′)

}
.

(11.45)
For the ARW model intermediate-step splitting (11.42) yields an analogous in-
equality. But better, we also have an identity through intermediate-site splitting
(11.41):

∑

ω: x → y

supp(ω) ∋ z

̺j(ω) =
∑

ω′: x → z

ω′′: z → y

I[nz(ω
′) = 1] ̺0j(ω

′, ω′′)

=
∑

ω′: x → z

ω′′: z → y

̺0j(ω
′, ω′′) , (11.46)

since the indicator function is built into the weight ̺ (cf. (9.62)).
We can summarize these formulae in terms of kernels. In (11.45) we bound

the indicator function by unity, thereby obtaining an inequality (which is an
equality for the SAW, because the indicator function equals unity by definition
of such walks). In (11.46) we can obtain directly an identity in terms of kernels.
The results are:

Proposition 11.11 a) For the baby simple CIW, BFS and ARW models:

∑

ω: x → y

supp(ω) ∋ z

̺0(ω) ≤ K(xz)δzy +
∑

z′

Jzz′K(xz|z′y) (11.47)

and ∑

ω: x → •

supp(ω) ∋ z

̺1(ω) ≤ K(xz)hz +
∑

z′
Jzz′K(xz|z′•) (11.48)

with equality in both cases for the baby SAW. For the ARW model Jzz′ and hz

can be replaced by tanh(Jzz′) and tanh(hz), respectively.
b) For the ARW model:
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∑

ω: x → y

supp(ω) ∋ z

̺0(ω) = K(xz|zy) (11.49)

and ∑

ω: x → y

supp(ω) ∋ z

̺1(ω) = K(xz|z•) (11.50)

11.3 Differentiation of the weights with respect to J or h

11.3.1 Differentiation with respect to J

As discussed above, we can distinguish between two types of J-dependence of
the weights: the “trivial” and the “deep” dependence. It turns out that these
dependences have opposite monotonicity properties: the trivial J-dependence
is an increasing function of each Jyz, while the deep dependence is — for the
models analyzed here — decreasing in the couplings. Therefore the derivative
of the weights with respect to the coupling constants will have two contributions
— T1 and T2 below — of opposite sign.

We shall discuss in some detail the simplest differentiation formula – namely
that for ∂̺j(ω)

∂Jyz
– which already exhibits all the relevant features. The general

results stated in Theorem 11.12 below are just straightforward generalizations.
The warm-up case is that of polymer-chain models in zero magnetic field,

which only exhibit the trivial J-dependence. In particular, for simple CIW mod-
els the properties (11.34) and (11.36) of the visitation function imply simple for-
mulas for the derivatives of the weights with respect to the coupling constants.
For instance:

∂̺(ω)

∂Jyz

=
∑

ω′,ω′′

̺(ω′, ω′′) I[ω = ω′ ◦ (y, z) ◦ ω′′] + [y ⇐⇒ z] ≡ T1 (11.51)

This identity will play an important role in Section 12.2.4. Analogously, for the
baby simple CIW model in a nonzero magnetic field

∂̺j(ω)

∂Jyz

=
∑

ω′,ω′′

̺0j(ω
′, ω′′) I[ω = ω′ ◦ (y, z) ◦ ω′′] + [y ⇐⇒ z] ≡ T ′

1 (11.52)

For BFS models we have in addition the deep J-dependence. Instead of
(11.51), we have now for the zero-magnetic-field case:

∂̺(ω)

∂Jyz

= T1 + T2 (11.53)

where

T1 =
∑

ω′,ω′′

̺(ω′, ω′′) I[ω = ω′ ◦ (y, z) ◦ ω′′] + +[y ⇐⇒ z] (11.54)
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[as in the simple CIW models], and the deep J-dependence yields the additional
term

T2 = Jω
∫

dνω(t)
∂Z(t)

∂Jyz

=
∑

ω′:y→z

[̺(ω, ω′) − ̺(ω)̺(ω′)] (11.55)

(see [97, 223] for details), which is nonpositive by Theorem 11.2. In nonzero
magnetic field:

∂̺j(ω)

∂Jyz

= T ′
1 + T ′

2 (11.56)

with the same T ′
1 as the baby simple CIW models:

T ′
1 =

∑

ω′,ω′′

̺0j(ω
′, ω′′) , I[ω = ω′ ◦ (y, z) ◦ ω′′] + [y ⇐⇒ z] (11.57)

and

T ′
2 =

∑

ω′:y→z

[̺j0(ω, ω′) − ̺j(ω)̺0(ω
′)]

+
∑

ω′: y → •

ω′′: z → •

[̺j11(ω, ω′, ω′′) − ̺j(ω)̺11(ω
′, ω′′)] , (11.58)

which is nonpositive by Theorem 11.2.
For the ARW model in zero magnetic field we have, from (9.63),

̺(ω) = (tanhJ)ω I[ne(ω)(ω) = 1]
(coshJ)ω̃

〈exp(
∑

{x,y}∈ω̃ Jxyσxσy)〉ω∼
. (11.59)

Hence,
∂̺(ω)

∂Jyz

= T1 + T2 (11.60)

with

T1 =

[
∂

∂Jyz

(tanh J)ω

]
I[ne(ω)(ω) = 1]

(cosh J)ω̃

〈exp(
∑

{x,y}∈ω̃ Jxyσxσy)〉ω∼
≤ cosech2(Jyz)

∑

ω′,ω′′

̺(ω′, ω′′) I[ω = ω′ ◦ (y, z) ◦ ω′′] I[ne(ω′)(ω
′) = 1]

(11.61)

and

T2 = (tanhJ)ω I[ne(ω)(ω) = 1]
∂

∂Jyz


 (coshJ)ω̃

〈exp(
∑

{x,y}∈ω̃ Jxyσxσy)〉ω∼




= ̺(ω)
[
tanh(Jyz) I[{y, z} ∈ ω̃

]
− 〈σyσz〉] . (11.62)
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By the second Griffiths inequality, T2 ≤ 0.
The results for nonzero field are similarly obtained by differentiating:

̺j(ω) = (tanh J)ω [tanh he(ω)]
j I[ne(ω)(ω) = 1]1−j

× (cosh J)ω̃ ∏
x∈π(ω,j) cosh hx

〈exp(
∑

{x,y}∈ω̃ Jxyσxσy +
∑

x∈π(ω,j) hxσx)〉(h)

ω
∼

,π(ω,j)c

(11.63)

The reader may now convince himself/herself that all these results generalize
to weights of higher order in a straightforward manner. The bottom line is the
following:

Theorem 11.12 For baby polymer-chain, BFS and ARW models:

∂̺j1...jk
(ω1, . . . , ωk)

∂Jyz

= T1 + T2 (11.64)

with T1 ≥ 0 and T2 ≤ 0. Moreover, T1 = 0 if and only if the bond {y, z} is not
used by any of the walks ω1, . . . , ωk. Explicitly:

a) For baby simple CIW and BFS models

T1 =
k∑

i=1

∑

ω′
i,ω

′′
i

̺j1...ji−10jiji+1...jk
(ω1, . . . , ωi−1, ω

′
i, ω

′′
i , ωi+1, . . . , ωk)

×I[ωi = ω′
i ◦ (y, z) ◦ ω′′

i ]

(11.65)

while for ARW models

T1 ≤

cosech(Jyz)
k∑

i=1

∑

ω′
i,ω

′′
i

̺j1...ji−10jiji+1...jk
(ω1, . . . , ωi−1, ω

′
i, ω

′′
i , ωi+1, . . . , ωk)

× I[ωi = ω′
i ◦ (y, z) ◦ ω′′

i ] I[ne(ω′
i)
(ω′

i) = 1] . (11.66)

b) For baby polymer-chain models

T2 = 0 , (11.67)

for BFS models

T2 =
∑

ω′:y→z

[
̺j1...jk0(ω1, . . . , ωk, ω

′) − ̺j1...jk
(ω1, . . . , ωk)̺0(ω

′)
]

+
∑

ω′: y → •

ω′′: z → •

[
̺j1...jk11(ω1, . . . , ωk, ω

′, ω′′)

− ̺j1...jk
(ω1, . . . , ωk)̺11(ω

′, ω′′)
] (11.68)

and for ARW models
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T2 = ̺j1...jk
(ω1, . . . , ωk)

{
tanh(Jyz)I[{y, z} ∈ (ω1◦. . .◦ωk) ]− 〈σyσz〉

}
. (11.69)

As a consequence:

Corollary 11.13 For baby polymer-chain, BFS and ARW models

∂̺j1...jk
(ω1, . . . , ωk)

∂Jyz

≤ 0 (11.70)

whenever
{y, z} /∈ ω1 ∪ . . . ∪ ωk . (11.71)

11.3.2 Differentiation with respect to h

In a similar fashion, the derivatives of the weights with respect to a magnetic
field are seen to be — for the baby polymer-chain, BFS and ARW models —
the sum of two terms of different sign: a nonnegative contribution due to the
“trivial” h-dependence and a nonpositive contribution caused by the “deep”
h-dependence.

Theorem 11.14 For baby polymer-chain, BFS and ARW models

∂̺j1...jk
(ω1, . . . , ωk)

∂hz

= T ′
1 + T ′

2 (11.72)

with T ′
1 ≥ 0 and T ′

2 ≤ 0. Moreover, T ′
1 = 0 if and only if the site z is not the

endpoint of any walk ωi with ji = 1. Explicitly:
a) For baby polymer-chain and BFS models

T ′
1 =

k∑

i=1

δz e(ωi) ji ̺j1...ji−10ji+1...jk
(ω1, . . . , ωk) , (11.73)

while for ARW models

T ′
1 ≤ cosech(hz)

k∑

i=1

δz e(ωi) ji ̺j1...ji−10ji+1...jk
(ω1, . . . , ωk) , (11.74)

b) For baby polymer-chain models

T ′
2 = 0 , (11.75)

for BFS models

T ′
2 =

∑

ω′:z→•

[
̺j1...jk1(ω1, . . . , ωk, ω

′) − ̺j1...jk
(ω1, . . . , ωk)̺1(ω

′)
]

(11.76)

and for ARW models
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T ′
2 = ̺j1...jk

(ω1, . . . , ωk)
{
tanh(hz) I[z ∈ π(ω1, j1) ∪ . . . ∪ π(ωk, jk)] − 〈σz〉

}
.

(11.77)

Corollary 11.15 For baby polymer-chain, BFS and ARW models

∂̺j1...jk
(ω1, . . . , ωk)

∂hz

≤ 0 (11.78)

whenever
z /∈ {e(ωi): ji = 1; i = 1, . . . , k} . (11.79)

In particular,
∂̺0...0(ω1, . . . , ωk)

∂hz

≤ 0 . (11.80)



230 11. Properties of the weights



12. Correlation inequalities: A survey of results

In this chapter we give a survey of the correlation inequalities which can be
obtained using the random-walk formalism. We also discuss some profound in-
equalities which cannot be obtained within the random-walk formalism, but
which need instead the full power of the random-current formalism. Some of
the results in this chapter are given without proof; full details can be found in
the cited references, especially [223] and [12].

We remind the reader that BFS models are assumed to have 1 or 2 compo-
nents and to have single-spin measures of BFS class .

We distinguish two general types of correlation inequalities, which we call
“pointwise” and “summed”. The “pointwise” inequalities [e.g. (12.23)] are
bounds on the correlation functions evaluated at individual lattice sites; they
make no reference to any geometric structure of the lattice. The “summed”
[e.g. (12.31)] inequalities are bounds on sums of correlation functions over the
lattice, and assume that the model is translation-invariant. [If the lattice has a
group structure (e.g. ZZ

d or a torus in ZZ
d), we call a model translation-invariant

if Jx+a,y+a = Jx,y and hx = h ∀x, y, a. For such models we denote |J | =
∑

y Jxy.]

As mentioned previously, all correlation inequalities are derived initially
for a “finite-volume” system. In most cases we prove first a “pointwise” in-
equality. Such an inequality carries over immediately to the infinite-volume
limit1 provided that the boundary conditions employed in taking this limit re-
spect the hypotheses of the inequality (e.g. zero or periodic boundary conditions
for zero-magnetic-field inequalities; zero, periodic or plus boundary conditions
for nonzero-magnetic-field inequalities). For a translation-invariant model, the
corresponding “summed” inequality can then be derived either in finite vol-
ume (with periodic boundary conditions) or in infinite volume (for a suitable
translation-invariant Gibbs state) by taking the “pointwise” inequality and sum-
ming it. However, in a few cases [e.g. (12.166)] no suitable “pointwise” inequality
is known, and the “summed” inequality must be proven directly on a finite-
volume system with periodic boundary conditions. Such an inequality can be
carried over to the infinite-volume limit modulo technical problems of inter-
changing limit and summation.

1Pointwise inequalities involving a sum over sites z [e.g. the Aizenman-Fröhlich inequal-
ity (12.23)] require a slight additional argument, e.g. invoking the dominated convergence
theorem or the monotone convergence theorem.
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12.1 Gaussian upper bounds

These are inequalities bounding 2n-point Green functions by sums of products
of Green functions of lower order, which become equalities for the Gaussian
model (9.43)/(9.19). They are an almost immediate consequence of Theorems
11.1, 11.2 11.5. For simplicity, we consider only the zero-field case.

The simplest case is that of repulsive polymer chains, for which (11.2) im-
plies (h = 0)

K(x1x2| . . . |x2(j+k)−1x2(j+k)) ≤
K(x1x2| . . . |x2j−1x2j) K(x2j+1x2j+2| . . . |x2(j+k)−1x2(j+k))

(12.1)

for any 1 ≤ j ≤ k. Similar inequalities hold in nonzero magnetic field for
repulsive baby polymer-chain models.

For the BFS and ARW models, however, the general repulsiveness inequality
(11.2) does not hold; we have only the special cases (11.13) and (11.20) in which
one factor in the partition is summed over a class of walks leading to some Green
function Sn (cf. the hypotheses (11.12) and (11.19)). Let us analyze the simplest
case, in which this factor consists of a single walk ω . The conditions (11.12)
and (11.19) then read

∑

ω:x1→x2

̺(ω) = S2(x1, x2) , (12.2)

and (11.13) and (11.20) immediately imply that

K(x1x2| . . . |x2k−1x2k) ≤ S2(x1, x2)K(x3x4| . . . |x2k−1x2k) . (12.3)

Analogous (but notationally more involved) expressions hold when other than
the first pair of sites is singled out. In particular, if (12.3) is summed over all
π ∈ Q2k, we obtain:

Theorem 12.1
For repulsive polymer-chain, BFS and ARW models with no magnetic field,

the strong Gaussian inequality [97, Section 4 and references therein] holds:

S2k(x1, . . . , x2k) ≤
∑

π∈Q2k

S2(xπ(1), xπ(2))S2(k−1)(xπ(3), . . . , xπ(2k)) . (12.4)

By iteration of (12.4) one obtains the ordinary Gaussian inequality:

S2k(x1, . . . , x2k) ≤
∑

π∈Q2k

k∏

i=1

S2(xπ(2i−1), xπ(2i)) (12.5)

If we apply 11.13 for families ωI of more than one walk, we obtain, for the
case h=0, expressions analogous to (12.3) but in which more than one pair of
sites is factorized. In this fashion one obtains generalizations of (12.4) to other
partitions of the sequence 1, . . . , 2k (Theorem 5.2 in [97]).
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12.2 Truncated four-point function in zero magnetic field:
Lebowitz and Aizenman-Fröhlich inequalities

The truncated four-point function in zero magnetic field is defined as

ST
4 (x1, x2, x3, x4) ≡ S4(x1, x2, x3, x4) − S2(x1, x2)S2(x3, x4)

−S2(x1, x3)S2(x2, x4) − S2(x1, x4)S2(x2, x3) .

(12.6)

In terms of kernels,

ST
4 (x1, x2, x3, x4) =

∑

π∈Q4

KT (xπ(1)xπ(2)|xπ(3)xπ(4))

= KT (x1x2|x3x4) + KT (x1x3|x2x4) + KT (x1x4|x2x3) ,

(12.7)

where the truncated kernels are defined as

KT (x1x2|x3x4) ≡ K(x1x2|x3x4) − K(x1x2)K(x3x4) . (12.8)

In terms of weights,

KT (x1x2|x3x4) =
∑

ω1: x1 → x2

ω2: x3 → x4

̺T (ω1, ω2) , (12.9)

where the truncated weights are

̺T (ω1, ω2) ≡ ̺(ω1, ω2) − ̺(ω1)̺(ω2) . (12.10)

Considerable effort has been devoted to obtaining bounds on the truncated
four-point functions. In this chapter we review such bounds using the unifying
framework of the random-walk formalism.

12.2.1 Upper bound (Lebowitz inequality)

Theorems 11.1, 11.2 and 11.5 immediately imply upper bounds for the above-
defined objects. Indeed, from (11.2) we have that for repulsive polymer-chain
models:

̺T (ω1, ω2) ≤ 0 , (12.11)

while from (11.13) and (11.20) we have that for the BFS and ARW models

∑

ω2:x→y

̺T (ω1, ω2) ≤ 0 . (12.12)

As an immediate consequence of (12.11) and (12.12) we have:
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Theorem 12.2
For the repulsive polymer-chain, BFS and ARW models (h=0),

KT (x1x2|x3x4) ≤ 0 (12.13)

and hence
ST

4 (x1, x2, x3, x4) ≤ 0 . (12.14)

(12.14) is the Lebowitz inequality [279, 362, 491, 162, 92, 97, 5], which has
had numerous applications in quantum field theory and statistical mechanics.
It is, of course, just the Gaussian inequality (12.3)–(12.5) specialized to k = 2
.

12.2.2 Nontrivial lower bounds (Aizenman-Fröhlich inequalities)

Obviously, we can obtain a trivial lower bound on the truncated four-point
function by neglecting the nonnegative term S4(x1, x2, x3, x4) in the RHS of
(12.6). However, the random-walk formalism allows us to account for some of
the cancellations among the terms on the RHS of (12.6), and so to obtain sharper
lower bounds. The key step is to use Theorem 11.7 together with path-splitting
inequalities to obtain lower bounds on the truncated weights.

The procedure is as follows. From Corollary 11.9 we have that for the (gen-
eralized) CIW, BFS and ARW models,

̺T (ω1, ω2) ≥




0 if supp(ω1)∩supp(ω2) = ?

−̺(ω1)̺(ω2) otherwise
(12.15)

with equality for the SAW. Therefore,

KT (x1x2|x3x4) ≥ −
∑

ω1: x1 → x2

ω2: x3 → x4

̺(ω1)̺(ω2) I[supp(ω1)∩supp(ω2) 6= ?] (12.16)

with equality for the SAW. Using the trivial inequality2

I[supp(ω1) ∩ supp(ω2) 6= ?] ≤
∑

z

I[supp(ω1) ∩ supp(ω2) ∋ z]

=
∑

z

I[supp(ω1) ∋ z]I[supp(ω2) ∋ z]

(12.17)

and then using Proposition 11.11 to split both ω1 and ω2 through z, we obtain:

Proposition 12.3
a) For the simple CIW, BFS and ARW models

2This is the first-order inclusion-exclusion inequality; see Section 12.3 for a fuller discussion.
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KT (x1x2|x3x4) ≥ −
∑

z

[
K(x1z)δz,x2 +

∑

z1

Jzz1K(x1z|z1x2)
]

×
[
K(x3z)δz,x4 +

∑

z2

Jzz2K(x3z|z2x4)
]

(12.18)

For the ARW model Jzzi
can be replaced by tanh(Jzzi

).
b) For the ARW model

KT (x1x2|x3x4) ≥ −
∑

z

K(x1z|zx2)K(x3z|zx4) (12.19)

Let us emphasize what was thrown away in the passage from (12.16) to
(12.18)/(12.19). There is a large overcounting in (12.17): loosely speaking, the
probability of intersection has been replaced by the mean number of sites at
which the intersection takes place. This is a very bad bound in the critical region
for dimension d ≤ 4: precisely because ω1 and ω2 are very likely to meet, they
are also likely to meet at very many places. This is the major overcounting (and
it is in fact the only one for the ARW model with intermediate-site splitting).

An additional error arises in the case of intermediate-step splitting, from the
use of Proposition 11.11. For the CIW and BFS models, we used the inequal-
ity (11.47) instead of the identity (11.45), thereby throwing away the indicator
functions I[nz(ω

′
1) = 1] and I[nz(ω

′
2) = 1] . Loosely speaking, the mean number

of sites at which intersection takes place has been replaced by the mean num-
ber of times at which intersections take place. We expect that this causes an
overcounting by a factor of order 〈ϕ2

z〉/〈ϕ2
z〉0 , where 〈 · 〉0 denotes expectation

in the single-spin distribution (9.28). Such an overcounting is serious only for
near-Gaussian models in dimension d ≤ 2. An analogous error arises for the
ARW model if intermediate-step splitting is used [i.e. (12.18)], in this case not
from neglect of the indicator functions (they are superfluous) but rather because
(11.42) and hence (11.47) are only inequalities.

The foregoing “errors” can in principle be remedied by specifying a rule for
defining uniquely a “privileged” intersection point z(ω1, ω2), thereby eliminating
the overcounting. For instance, we can order the sites visited by ω1 with the
natural order induced by the direction of travel of ω1, and define z(ω1, ω2) as
the last site of ω1 where an intersection with ω2 takes place. For the benefit of
the ARW case we split the walks the first time they hit z(ω1, ω2). With this
definition we have an identity for the right-hand side of (12.16): for example,
for the ARW model with intermediate-site splitting, we obtain

−
∑

ω1: x1 → x2

ω2: x3 → x4

̺(ω1)̺(ω2) I[supp(ω1) ∩ supp(ω2) 6= ?] =

−
∑

z

∑

ω′
1: x1 → z

ω′′
1 : z → x2

ω′
2: x3 → z

ω′′
2 : z → x4

̺(ω′
1, ω

′′
1)̺(ω′

2, ω
′′
2)

I
[
supp(ω′′

1) ∩ (supp(ω′
2) ∪ supp(ω′′

2)) = {z}
]

.

(12.20)
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For the BFS model, we have an analogous identity using intermediate-step split-
ting and the indicator functions

I
[
supp(ω′′

1) ∩ (supp(ω′
2) ∪ supp(ω′′

2)) = ? or {z}
]

I[nz(ω
′
1) = 1] I[nz(ω

′
2) = 1] .

(12.21)
However, we have no idea what to do with these indicator functions, other than
to throw them away! A more careful treatment of these constraints could well
lead to important new results, including the triviality of the ϕ4

4 quantum field
theory.

The Aizenman-Fröhlich inequalities are obtained by making a further “er-
ror” in Proposition 12.3: by the Gaussian bound (12.3), we can replace the
factors K( · | · ) by S2S2. [In Sections 12.2.3 and 12.2.4 we analyze this “error”
in more detail and present some improved inequalities.] We thus have:

Theorem 12.4
In the absence of magnetic field:

KT (x1x2|x3, x4) ≥ −V (x1x2|x3x4) (12.22)

and

ST
4 (x1, x2, x3, x4) ≥ −[V (x1x2|x3x4) + 2 permutations] (12.23)

with
a) For repulsive simple CIW, BFS and ARW models

V (x1x2|x3x4) =
∑

z

S2(x1, z)S2(x3, z)
[
δz,x2 +

∑

z1

Jzz1S2(z1, x2)
]

[
δz,x4 +

∑

z2

Jzz2S2(z2, x4)
]

. (12.24)

For the ARW model Jzzi
can be replaced by tanh(Jzzi

).
b) For ARW models

V (x1x2|x3x4) =
∑

z

S2(x1, z)S2(x3, z)S2(z, x2)S2(z, x4) . (12.25)

(12.24)/(12.25) is the Aizenman-Fröhlich inequality [5, 213, 301] in inter-
mediate-step and intermediate-site forms, respectively.

Let us remark that (12.23)/(12.25) implies the analogous expression for the
Ising-model correlations,

〈σx1 ; σx2 ; σx3 ; σx4〉 ≥ −3
∑

z

〈σx1σz〉〈σx3σz〉〈σzσx2〉〈σzσx4〉 , (12.26)

in principle only if the sites x1, . . . , x4 are all different. However, a simple check
of the cases with 2, 3 or 4 coincident sites shows that (12.26) is valid for all
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x1, . . . , x4. (In fact, the factor 3 in (12.26) is not optimal, and with the aid of
the random-current formalism it can be reduced to 2; see Ref. [5].) In what
follows we shall use the notation u4(x1, x2, x3, x4) ≡ 〈ϕx1 ; ϕx2 ; ϕx3 ; ϕx4〉 for spin
models (including Ising), in order to distinguish (where necessary) from ST

4 . We
have u4(x1, x2, x3, x4) = ST

4 (x1, x2, x3, x4) in all cases except for the ARW model
when some of the sites coincide. On the other hand S2(x1, x2) = 〈ϕx1ϕx2〉 in all
cases (provided h = 0).

Let us also note that for the Ising model the inequality with intermediate-
site splitting [(12.23)/(12.25)] is sharper than the one with intermediate-step
splitting [(12.23)/(12.24)] even if in the latter Jzzi

is replaced by tanh(Jzzi
).

Indeed, by Griffiths’ third inequality [271] (which is a special case of the Simon-
Lieb inequality [464, 372]) we have

〈σzσx〉 ≤
∑

z′
(tanhJzz′)〈σz′σx〉 (12.27)

— valid only if x 6= z — which implies that (12.24) is an upper bound for
(12.25).

The Lebowitz and Aizenman-Fröhlich inequalities were used in [5, 213] to
prove the triviality of the continuum limit for ϕ4

d field theories in dimension
d > 4. These inequalities are usually represented pictorially as follows: For the
Ising model
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,

and for the repulsive simple CIW, BFS and ARW models
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4
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≥ −
¡

¡
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@
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u
u

x2
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+ permutations

where x z denotes the two-point function S2(x, z), z u£¢¤¡¤¡¤¡£¢£¢£¢uz1 denotes
Jzz1 , and a sum over internal vertices u is understood. For the intermediate-
step cases, the pictorial representation (12.28) ignores the terms involving δz,x2

and/or δz,x4 , but those terms are indeed insignificant in the critical regime.
For translation-invariant models, we have the following summed versions of

(12.23)/(12.25). If we adopt the standard magnetic notation

χ =
∑

x

S2(0, x) (12.28)

u4 =
∑

x2,x3,x4

u4(x1, x2, x3, x4) (12.29)
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then, summing (12.23)/(12.25) over x2, x3 and x4 we obtain

u4 ≥ −3|J |2χ4(1 +
1

|J |χ)2 (12.30)

for repulsive simple CIW, BFS and ARW models, and

u4 ≥ −3χ4 (12.31)

for ARW models.

12.2.3 Once-improved Aizenman-Fröhlich inequality (Aizenman-Graham
inequality)

The above inequalities are probably the best that can be obtained for spin
models using only the random-walk expansion. However, by resorting to the
more powerful random-current representation, Aizenman and Graham [15] were
able to improve the lower bounds (12.25) and (for some one-component spin
models) (12.24). Their result is the following:

Theorem 12.5 Aizenman and Graham [15]
a) For ARW models:

u4(x1, x2, x3, x4) ≥ −
∑

z,z1

S2(x1, z)S2(x2, z)tanh(Jzz1)
∂

∂Jzz1

S2(x3, x4)

− ε(x1, x2, x3, x4) . (12.32)

b) For ferromagnetic 1-component spin models with single-spin measures in
the Griffiths-Simon class [466] (in short “models in the GS class”; this class of
models includes the Ising and 1-component ϕ4 models, among others):

u4(x1, x2, x3, x4) ≥ −
∑

z,z1,z2

S2(x1, z)Jzz1S2(z1, x2)Jz1z2

∂

∂Jz1z2

S2(x3, x4)

− ε(x1, x2, x3, x4) . (12.33)

The “error term” ε(x1, x2, x3, x4) is a term that becomes negligible in the
critical region. For (12.32) the error term is

ε(x1, x2, x3, x4) = S2(x1, x4)S2(x2, x4)S2(x3, x4) + [x3 ⇐⇒ x4] . (12.34)

For (12.33) it is3

3This “error term” is a corrected version of the slightly mistaken [17] “error term” of
equation 4.1 of reference [15]. The mistake in the latter is due to the fact that the restriction
“z 6= x” in Proposition 7.1 of [15] was not properly taken into account during the proof of
Proposition 4.1 of [15]. In particular, the bound (7.13) of [15] is valid only if v 6= x3; hence
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ε(x1, x2, x3, x4) =
[∑

z

S2(x1, z)Jzx4S2(x4, x3)S2(x4, x2)

+ [x1 ⇐⇒ x3] + S2(x4, x2)S2(x1, x4)δx3,x4

]

+
[
x4 ⇐⇒ x3

]
. (12.37)

Diagrammatically, (12.33) can be represented in the form

&%
'$

³³³

PPP

PPP

³³³

u4

x2

x1

x4

x3

≥ − &%
'$¾¥¥§§ PPP

³³³u u
PPP ¥¥§§©©©©©

ux1

x2 x4

x3

(12.38)

where

&%
'$

³³³

PPP

PPP

³³³

z2

z1

x4

x3

≡ ∂

∂Jz1z2

S2(x3, x4) , (12.39)

and the “error term” is omitted.
These are “once-improved” versions of the Aizenman-Fröhlich inequality

(12.24): one of the products S2S2 has been replaced by ∂S2/∂J , which by
Lebowitz inequality (12.14) is an improvement:

∂

∂Jz1z2

S2(x3, x4) = 〈ϕz1ϕz2ϕx3ϕx4〉 − S2(z1, z2)S2(x3, x4)

= S2(z1, x3)S2(z2, x4) + [z1 ⇐⇒ z2] + u4(z1, z2, x3, x4)

≤ S2(z1, x3)S2(z2, x4) + [z1 ⇐⇒ z2] (12.40)

Diagrammatically, the identity (12.40) is

one must add a contribution due to spins at sites v with v = x3 — we are using the notation
of [15] — which produces an extra error term in equation (4.1) of [15] of the form

∑

w

S2(x1, w)Jwx3
S2(x3, x4)S2(x2, x3) + [x1 ⇐⇒ x3] (12.35)

(the permutation is brought about by the (x1, x3) symmetrization of the term). Analogously,
in the last term of the upper bound in (7.11) of [15] one must consider separately the case
x1 = x3 which yields an extra contribution

S2(x1, x2)S2(x1, x4)δx1,x3
+ [x1 ⇐⇒ x3] . (12.36)

In addition, the formulas (12.32)-(12.37) differ from those of Proposition 4.1 of [15] by a (1
⇐⇒ 4) permutation of the subscripts.
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The inequalities (12.32) and (12.33) are rather deep results. Their proofs
require a detailed account of the delicate correlations involved in the truncated
functions. This level of detail can be achieved via the extremely flexible random-
current representation of the Ising model but seems to be beyond the reach of
the simpler but less informative random-walk representations — except in the
case of simple CIW models (see below). Consequently, such results have not been
proven for general BFS models, but only for models that can be approximated
by sequences of Ising models (GS class of models [466]).

For translation-invariant models we can obtain “summed” versions of (12.32)
and (12.33). For instance, summing (12.33) over x2, x3 and x4 we obtain for
models in the GS class:

u4 ≥ −2β|J |χ2∂χ

∂β
− 2|J |χ3 − 2χ2

≡ −2β|J |χ2∂χ

∂β
− ε , (12.42)

where we have denoted

β
∂χ

∂β
=

1

2

∑

x2,x3,x4

Jx3x4

∂

∂Jx3x4

S2(x1, x2) . (12.43)

The important inequality (12.42) implies that if in d = 4 there is a logarith-
mic correction to the mean-field behavior of χ — the belief in the existence of
such correction is widespread but a rigorous proof is lacking — then a massive
ϕ4 continuum field theory in d = 4 is necessarily trivial [15].

Moreover, if the Aizenman-Graham inequality (12.33) is combined with the
identity (12.40), we obtain

Jx1x2

∂

∂Jx1x2

S2(x3, x4) ≥

Jx1x2

[
S2(x1, x3)S2(x2, x4) + S2(x1, x4)S2(x2, x3)

]

− Jx1x2

[ ∑

z,z1,z2

S2(x1, z)Jzz1S2(z1, x2)Jz1z2

∂

∂Jz1z2

S2(x3, x4)

− ε(x1, x2, x3, x4)
]

(12.44)
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or, diagrammatically,
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We now sum over x2, x3, x4 and use translation invariance; we obtain

β
∂χ

∂β
≥ |J |χ2 − B′

Jβ
∂χ

∂β
− ε (12.46)

where B′
J is the modified “bubble” diagram

B′
J =

∑

z,z1,x2

S2(x1, z)Jx1x2Jzz1S2(z1, x2)

=

² ¯
± °¤¡¢¡¢¡¢¤£¤££ ¡¤£¤£¤£¡¢¡¢¢u

u
u

x1

(12.47)

and ε =
∑

x2,x3,x4
Jx1x2ε(x1, x2, x3, x4). The key fact is that the third term in the

right side contains as a factor β∂χ/∂β which appears on the left side; so we can
bring it to the left side and solve for β∂χ/∂β :

β
∂χ

∂β
≥ |J |χ2 − ε

1 + B′
J

. (12.48)

Finally, the modified bubble diagram B′
J can be bounded by the Schwarz in-

equality in terms of the usual bubble diagram

B0 =
∑

x

[S2(0, x)]2 , (12.49)

to obtain

β
∂χ

∂β
≥ |J |χ2

1 + |J |2B0

[1 − 2|J |B0

χ
− B0

χ2
] (12.50)

This trick of finding an inequality for a quantity in terms of itself, and then
“passing it to the left”, has the net result of yielding rigorous inequalities which
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sum infinitely many orders in the “expansion parameter” B0. We shall discuss
another technique of this type in Section 12.3.

The bound (12.50), together with the bounds on B0 obtained from reflection
positivity, implies that the critical exponent γ for nearest-neighbor ferromagnetic
models of the GS class obeys [15]:

a) for d > 4 a mean-field upper bound γ ≤ 1,

b) for d = 4 a mean-field upper bound with a correction of at most a loga-
rithm to the first power,

c) for 2 < d < 4 a “spherical-model upper bound” γ ≤ 2/(d − 2) .

These results will be more fully discussed in Section 14.1.
We remark that an analogue of the Aizenman-Graham inequality was proven

for the SAW@ in [28]; however, the same method in fact yields a stronger
inequality — see the next section.

12.2.4 Twice-improved Aizenman-Fröhlich inequality

We note that the Aizenman-Graham factor ∂
∂Jzz1

S2(x1, x3) is not only smaller

than the factor S2(x1, z)S2(x3, z) appearing in (12.24), but is also smaller than
the factor K(x1z|z1x3) + (x1 ⇐⇒ x3) appearing in the bound for ST

4 ob-
tained from (12.18). Indeed, for BFS and ARW models (when x1, x3, z, z1 are
all different sites):

∂

∂Jzz1

S2(x1, x3) = S4(x1, x3, z, z1) − S2(x1, x3)S2(z, z1)

= K(x1z|z1x3) + K(x1z1|zx3) + KT (x1x3|zz1)

(12.51)

So the Aizenman-Graham inequality can definitely not be derived from Propo-
sition 12.3. On the other hand, for simple CIW models the formula for ∂S2/∂J
is

∂

∂Jyz

S2(x1, x2) = K(x1y|zx2) + K(x1z|yx2) ; (12.52)

this is an immediate consequence of (11.51). Note that there is no term KT !
For these models, therefore, one can prove not only an “Aizenman-Graham”
inequality (“once-improved Aizenman-Fröhlich inequality”) but in fact a “twice-
improved Aizenman-Fröhlich inequality” [483]. Indeed, from (12.18) and (12.52),

KT (x1x2|x3x4) ≥ −
∑

z

[
S2(x1, z)δz,x2 + (1/2)

∑

z1

Jzz1

∂

∂Jzz1

S2(x1, x2)
]

×
[
S2(x3, z)δz,x4 + (1/2)

∑

z2

Jzz2

∂

∂Jzz2

S2(x3, x4)
]

.

(12.53)
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Diagrammatically,

&%
'$

³³³

PPP

PPP

³³³

KT

x2

x1

x4

x3

≥ &%
'$¾¥¥§§ PPP

³³³u u
x4

x3

&%
'$»

¨¦̈¦PPP

³³³

uu
x2

x1

(12.54)

For the special case of the SAW model, it is natural to write this as
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where the dashed lines indicate nonintersection between the pair of walks which
they separate.

Hence, for translation-invariant simple CIW models, we have instead of
(12.42) the bound4

u4 ≥ −3(β
∂χ

∂β
+ χ)2 , (12.56)

which implies the triviality of the (massive) continuum limit whenever dν > 2
(here ν is the critical exponent for the correlation length). See Section 15.2 for
details.

Similarly, we could hope to combine (12.53) with

β
∂χ

∂β
=

∑

x2,x3,x4

Jx3x4 [S2(x1, x3)S2(x2, x4) + KT (x1x3|x2x4)] (12.57)

in order to obtain a lower bound on β∂χ/∂β which refines (12.50). However,
we are unable to deal with the resulting sums (the “channels” get mixed up).
In any case, (12.53) implies for the simple CIW models a weaker bound similar
to (12.33), from which one can derive a bound on β∂χ/∂β similar to (12.50).

12.3 Inequalities involving infinitely many orders in the
expansion parameter (non-Gaussian upper bounds)

We shall discuss in this section the kind of situations one has to deal with when
attempting to use the random-walk formalism to prove non-Gaussian upper
bounds, i.e., upper bounds that are not saturated for the Gaussian model. Such
bounds are of relevance, for instance, in proving non-mean-field behavior at
the critical point or the nontriviality of continuum limits. The methods used to

4This bound is implicit in the inequality cN1,N2
≤ (N1 + 1)(N2 + 1)cN1

cN2
of Domb and

McKenzie [389]. See Section 13.2 for definitions.
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obtain such bounds fall into two distinct categories. For the near-Gaussian cases
(e.g. λϕ4 BFS model or Edwards model for λ small) the required upper bounds
are obtained as a polynomial in the bare coupling constant λ , in the form of an
“skeleton” inequality [97, 74, 292, 75]. The resulting bounds are powerful enough
to control the continuum limit for weakly-coupled superrenormalizable ϕ4 or
Edwards models (i.e. d < 4) [96, 74, 75], but are useless in the renormalizable
and nonrenormalizable cases. On the other hand, for the strongly-coupled cases
(e.g. ARW and SAW models) the expansion parameter is instead the “bubble”
diagram B0, which can be extremely large in the critical regime (below or at the
upper critical dimension). Therefore, techniques different from the one used for
weakly-coupled models are needed — ones which “sum infinitely many orders
in B0”. We have already seen one example of such a technique in the preceding
section, namely the trick of “passing to the left” used in obtaining the non-
Gaussian bound (12.48). This example shows the typical features expected in
such a technique: it allowed us to pass from a factor 1 − B′

J roughly present in
(12.46) to the factor (1 +B′

J)−1 obtained in (12.48). This transformed a useless
inequality of first order in B′

J into a useful one involving all orders in B′
J . In

this section we introduce another example of such a technique which we call the
“dilution trick”. This technique was originally introduced by Erdös and Taylor
[164, Theorem 7]; the simplified form we present here is due to Sokal, Felder
and Fröhlich [476], and was used within the random-current formalism for Ising
models by Aizenman and Fernández [12].

12.3.1 General setup for the dilution trick

The basic problem we are confronted with is to obtain bounds for an indicator
function

I[A1 ∪ . . . ∪ An] (12.58)

where A1, . . . , An is a very large family of measurable sets (events). An expres-
sion specifically designed for our purposes is the inclusion-exclusion principle

I[A1 ∪ . . . ∪ An] =
n∑

i=1

(−1)i−1Ii (12.59)

with
Ii =

∑

1≤j1<...<ji≤n

I[Aj1 ∩ . . . ∩ Aji
] . (12.60)

Moreover, the truncations of the RHS of (12.59) constitute a sequence of upper
and lower bounds:

I[A1 ∪ . . . ∪ An] ≤
k∑

i=1

(−1)i−1Ii , k odd (12.61)

and

I[A1 ∪ . . . ∪ An] ≥
k∑

i=1

(−1)i−1Ii , k even (12.62)
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Broadly speaking, the “passing to the left trick” is a trick used to obtain a
meaningful result out of the simplest of the upper bounds (12.61), namely the
one with k = 1

I[A1 ∪ . . . ∪ An] ≤
n∑

i=1

I[Ai] ; (12.63)

while the “dilution trick” was developed to obtain results out of the simplest
(k = 2) of the lower bounds (12.62):

I[A1 ∪ . . . ∪ An] ≥
n∑

i=1

I[Ai] −
∑

1≤j1<j2≤n

I[Aj1 ∩ Aj2 ]

=
n∑

i=1

I[Ai] − (1/2)
n∑

j1, j2 = 1

j1 6= j2

I[Aj1 ∩ Aj2 ] . (12.64)

For the applications of this work, we shall integrate these inequalities with
respect to some finite measure E:

E(A1 ∪ . . . ∪ An) ≤
n∑

i=1

E(Ai) (12.65)

E(A1 ∪ . . . ∪ An) ≥
n∑

i=1

E(Ai) − (1/2)
n∑

i, j = 1

i 6= j

E(Aj1 ∩ Aj2) . (12.66)

We notice that for n large both (12.65) and (12.66) are very bad bounds unless
the occurrence of several events at the same time is very rare. In fact, when∑

j E(Ai ∩ Aj) >∼ E(Ai) the bound (12.66) is worse than the trivial bound
E(A1 ∪ . . . ∪ An) ≥ 0. This kind of pathology occurs in the study of truncated
Green functions when the model is strongly coupled.

The events of interest in this work are of the form

Az = {supp(ω1) ∩ supp(ω2) ∋ z} (12.67)

or, especially for the ARW model,

A(x,y) = {C ∩ ω ∋ (x, y)} (12.68)

where C is a random set of steps (associated to a random set of bonds). In
the critical regime, walks are very likely to meet — except for the weakly-
coupled systems — and the probability of multiple intersection is comparable
with that of a single intersection. Therefore the bounds (12.65) and (12.66) are
too generous to be useful.

Let us see how the dilution trick can improve the lower bound (12.66). First,
let us introduce an “expansion parameter” that determines the regime in which
(12.66) needs to be improved. To do this, it is convenient to write

E(Ai ∩ Aj) = E(Aj|Ai) E(Ai) , (12.69)
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hence, in (12.66)

E(A1 ∪ . . . ∪ An) ≥
∑

i

[
1 − (1/2)

∑

j:j 6=i

E(Aj|Ai)
]
E(Ai) . (12.70)

If B is a quantity such that

(1/2)
∑

j: j 6=i

E(Aj|Ai) ≤ B (12.71)

then

E(A1 ∪ . . . ∪ An) ≥ (1 − B)
n∑

i=1

E(Ai) . (12.72)

We see that this bound is useless whenever B ≥ 1. In particular this occurs
in the critical region for strongly-coupled systems, for which B is typically huge.
One possible way to obtain a better bound would be to resort to higher-order
inequalities of the family (12.62). However, for i << n each term I (i) has
approximately i! summands, so the series may involve a delicate balance among
large terms of alternating sign, which could be very difficult to control. In the
limit n → ∞ the series is quite possibly divergent. On the other hand, one might
suspect that the true behavior in (12.72) is not (1 − B) but rather 1/(1 + B),
similarly to what was found in (12.48). The “dilution trick” provides a rigorous
way to obtain a bound of this sort without having to deal explicitly with all
the subsequent terms in (12.59). The method is based on the following trivial
observation: if S is any subset of the “lattice” {1, . . . , n}, then

I[A1 ∪ . . . ∪ An] ≥ I[∪
i∈S

Ai] (12.73)

and hence

I[A1 ∪ . . . ∪ An] ≥
∑

i∈S

I[Ai] − (1/2)
∑

i, j ∈ S

i 6= j

I[Ai ∩ Aj] . (12.74)

The idea is to take S to be a “diluted” or “thin” (but not too thin) subset, so
that

∑
j E(Ai ∩ Aj) is sufficiently smaller than E(Ai), but

∑
i E(Ai) is not too

small. The “thinness” of S must be adjusted a posteriori in an optimal way,
which of course depends on the measure E. In the original version of Erdös
and Taylor [164] the events were of the form (12.67) and S was taken to be a
periodic sublattice of the lattice ZZ

d, with spacing optimized as a function of
J (distance to criticality). Sokal [476] observed that the computations can be
simplified slightly if S is taken to be a random subset of the lattice, in which
each point y belongs to S with probability py ∈ [0, 1], independently for each y.
Averaging over the randomness, (12.74) becomes

I[A1 ∪ . . . ∪ An] ≥
n∑

i=1

piI[Ai] − (1/2)
n∑

i, j = 1

i 6= j

pipjI[Ai ∩ Aj] . (12.75)
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In fact, the same procedure can be applied to any of the bounds (12.62). In
this fashion we obtain the following generalization of (12.62), which could be of
independent interest.

Proposition 12.6 (Diluted inclusion-exclusion) For any family of numbers
p1, . . . , pn ∈ [0, 1], and for any even number k,

I[A1∪. . .∪An] ≥
k∑

i=1

(−1)i−1
∑

1≤j1<...<ji≤n

pj1 . . . pji
I[Aj1∩. . .∩Aji

] . (12.76)

It would be interesting to find a purely combinatorial/analytic proof of these
inequalities.

Let us see how (12.75) can be used to improve (12.72). We take pi = p for
all i and assume (12.71). Repeating the steps leading to (12.72) we obtain

E(A1 ∪ . . . ∪ An) ≥ [p − p2B]
∑

i

E(Ai) . (12.77)

We can now optimize the choice of p. In general, for any a, b ≥ 0, we have

max
0≤p≤1

[ap − bp2] =





a2/(4b) if 0 ≤ a < 2b

a − b if a ≥ 2b



 ≥ a2

2a + 4b
, (12.78)

and hence,

E(A1 ∪ . . . ∪ An) ≥ 1

2 + 4B

∑

i

E(Ai) . (12.79)

This is exactly the bound we expected. Note the importance of the constraint
i 6= j in the last term of (12.75): any term i = j would pick up only a factor
p, not p2, and hence compete with the first term of (12.75). Note also that the
optimal value of p is

p = min[1, 1/2B] (12.80)

which decreases with B, hence amounting to an effective “dilution” in those
cases in which the starting bound (12.64) does not work.

Michael Aizenman (private communication) has pointed out to us the following
simple proof of a slightly strengthened version of (12.79). Note first that if N is any
nonnegative integer-valued random variable and E is any positive measure, we have,
by the Schwarz inequality,

E(N) = E(N · I[N ≥ 1])

≤ E(I[N ≥ 1])1/2 E(N2)1/2

and hence

E(I(N ≥ 1)) ≥ E(N)2

E(N2)
(12.81)

provided that E(N2) < ∞. So take N =
∑n

i=1 I(Ai); then
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E(A1 ∪ . . . ∪ An) = E(I[N ≥ 1])

≥ (
∑n

i=1 E(Ai))
2

∑n
i,j=1 E(Ai ∩ Aj)

≥
∑n

i=1 E(Ai)

1 + 2B
.

The “passing to the left trick” does not admit a general probabilistic for-
mulation, but it relies on some particular properties of the model, chiefly the
path-splitting inequalities. With them one can prove in some cases that for
events of the form (12.67)-(12.68)

∑

i

E(Ai) ≤ BE(Ac
1 ∩ . . . ∩ Ac

n) . (12.82)

Such bound is useful to obtain a lower bound for the complement of the event
A1 ∪ . . . ∪ An:

E(Ac
1 ∩ . . . ∩ Ac

n) = E(U) − E(A1 ∪ . . . ∪ An) (12.83)

where U is the universe. Using the first order inclusion-exclusion inequality
(12.65) together with (12.82) and passing to the left one gets:

E(Ac
1 ∩ . . . ∩ Ac

n) ≥ E(U)

1 + B
. (12.84)

An example of such a bound is (12.50). Indeed, using the random-current for-
malism ∂χ/∂β can be written as a sum over pairs of currents subject to the
constraint that two of the sources are not connected by the total current. There-
fore, a lower bound on β∂χ/∂β corresponds to a lower bound of an expression
of the form E(

⋂
(x,y)

Ac
(x,y)) for events of the type (12.68). One can obtain (12.50)

directly by using the inclusion-exclusion bound (12.63) and the steps (12.82)-
(12.84) without resorting explicitly to the Aizenman-Graham bound on u4 [194]
(see also Theorem 5.6 of [12]).

12.3.2 Upper bound on the truncated four-point function for the in-
tersection properties of ordinary random walks (IPORW model)

The analysis of the truncated four-point function in zero magnetic field of the
“intersection properties of ordinary random walks” (IPORW) model [185] pro-
vides a simple example for the application of the “dilution trick”. (This is in fact,
the original application of Erdös and Taylor [164].) The truncated four-point
kernel for this model is, by definition,

KT (x1x2|x3x4) = −
∑

ω1: x1 → x2

ω2: x3 → x4

Jω1+ω2 I[supp(ω1) ∩ supp(ω2) 6= ?] . (12.85)
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We are interested in

K
T ≡

∑

x2,x3,x4

KT (x1x2|x3x4) . (12.86)

The indicator function in (12.85) has the form (12.58) for events (12.67). The
starting point is the use of the lower bound (12.74)

I[supp(ω1) ∩ supp(ω2) 6= ?]

≥ I[supp(ω1) ∩ supp(ω2) ∩ S 6= ?]

≥
∑

z∈S

I[supp(ω1) ∩ supp(ω2) ∋ z]

− (1/2)
∑

z1, z2 ∈ S

z1 6= z2

I[supp(ω1) ∩ supp(ω2) ∋ z1, z2] . (12.87)

where S is an arbitrary (“diluting”) subset of the lattice L. Taking S to be
a random subset of L such that each site y belongs to S with independent
probability p and averaging over the randomness we obtain a particular case of
(12.75):

I[supp(ω1) ∩ supp(ω2) 6= ?]

≥ p
∑

z

I[supp(ω1) ∩ supp(ω2) ∋ z]

− (p2/2)
∑

z1, z2

z1 6= z2

I[supp(ω1) ∩ supp(ω2) ∋ z1, z2] . (12.88)

Inserting this into (12.85) we obtain

−K
T ≥ p

∑

z

E(Az) − (p2/2)
∑

z1, z2

z1 6= z2

E(Az1 ∩ Az2) (12.89)

with:

E(Az) =
∑

x2,x3,x4

∑

ω1: x1 → x2

ω2: x3 → x4

Jω1+ω2 I[supp(ω1) ∩ supp(ω2) ∋ z] (12.90)

and

E(Az1∩Az2) =
∑

x2,x3,x4

∑

ω1: x1 → x2

ω2: x3 → x4

Jω1+ω2 I[supp(ω1)∩supp(ω2) ∋ z1, z2] (12.91)

If we use the identities5

5These are trivial special cases of the “splitting lemma” of [97].
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∑

ω:x→y

Jω I[supp(ω) ∋ z] =
∑

ω′: x → z

ω′′: z → y

Jω′+ω′′

I[nz(ω
′) = 1] (12.92)

and (for z1 6= z2)
∑

ω:x→y

Jω I[supp(ω) ∋ z1, z2]

=
∑

ω′: x → z1

ω′′: z1 → z2

ω′′′: z2 → y

Jω′+ω′′+ω′′′

I[nz1(ω
′) = 1]

× I[nz2(ω
′) = 0] I[nz2(ω

′′) = 1]

+
[
z1 ⇐⇒ z2

]
,

(12.93)

which are obtained by splitting the path ω the first time it hits z (resp. hits z1

and z2); we obtain

E(Az) =
∑

x2,x3,x4

F (x1, z)F (x3, z)S2(z, x2)S2(z, x4) (12.94)

and

E(Az1 ∩ Az2) ≤
∑

x2,x3,x4

{[
F (x1, z1)F (x3, z1)F (z1, z2)

2S2(z2, x2)S2(z2, x4)
]

+
[
x3 ⇐⇒ x4

]}
+

{
x1 ⇐⇒ x2

}
(12.95)

where we have written

F (x, y) =
∑

ω:x→y

Jω I[ny(ω) = 1] . (12.96)

We see that for a translation-invariant model:

(1/2)
∑

z2

E(Az1 ∩ Az2) ≤ B E(Az1) (12.97)

where
B ≡ 2

∑

x 6=0

[F (x, 0)]2 . (12.98)

Therefore, (12.89) yields the following particular case of (12.77):

−uT ≥ (p − p2B)
∑

z

E(Az)

≥ 1

2 + 4B

∑

z,x2,x3,x4

F (x1, z)F (x3, z)S2(z, x2)S2(z, x4) , (12.99)

where the last inequality was obtained by choosing the optimal value of p ac-
cording to (12.78).
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Finally, we remark that, because of the Markovian nature of the ordinary
random walk, we have

F (x, y) =
∑

ω:x→y

Jω {1 − I[ny(ω) ≥ 2]}

= S2(x, y) −
∑

ω:x→y

Jω I[ny(ω) ≥ 2]

= S2(x, y) −
∑

ω′: x → y

ω′′: y → y

Jω′+ω′′

I[ny(ω
′) = 1] I[ny(ω

′′) ≥ 2]

= S2(x, y) − F (x, y)[S2(y, y) − 1]

and hence
F (x, y) = S2(x, y)/S2(y, y) . (12.100)

Therefore, (12.99) can be written more compactly as

K
T ≥ − χ4

2[S2(0, 0)]2 + 8B′
0

, (12.101)

where B′
0 denotes the restricted bubble diagram

B′
0 =

∑

x 6=0

[S2(0, x)]2 . (12.102)

We notice that for the IPORW model

β
∂χ

∂β
= |J |χ2 . (12.103)

hence, from (12.57) Therefore, (12.101) can also be written

K
T ≥ − |J |

2[S2(0, 0)]2 + 8B′
0

(β
∂χ

∂β
)2 . (12.104)

For SAW and Ising models, by contrast, (12.103) is replaced by an inequality,
and (12.104) would be strictly weaker than (12.101). We emphasize that this
subsection is just a rephrasing of the proof of Erdös and Taylor [164, Theorem
7] (see also [476]).

We remark that a result like (12.101) can alternatively be proven [185] by
using an “skeleton inequality” in the Edwards-like generalization of the IPORW
model together with the monotonicity of KT in λ.

12.3.3 Upper bound on the truncated four-point function for the
SAW

The study of the SAW would be the natural next step after the IPORW model.
However, in this case we are not able to complete the analysis successfully and
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obtain a bound analogous to (12.101) or even to (12.104). The analysis of ST
4

for the SAW proceeds along the same lines as for the IPORW. The truncated
four-point kernel for the SAW is, by definition,

KT (x1x2|x3x4) = −
∑

ω1: x1 → x2

ω2: x3 → x4

̺(ω1)̺(ω2) I[supp(ω1) ∩ supp(ω2) 6= ?] .

(12.105)
where ̺(ω) = 1 if ω is self-avoiding and 0 otherwise. Now we use the “diluted”
inclusion-exclusion inequality (12.88) to obtain

−KT (x1x2|x3x4) ≥ p
∑

z

F (x1, z, x2)F (x3, z, x4)

−p2
∑

z1, z2

z1 6= z2

{
F (x1, z1, z2, x2)F (x3, z1, z2, x4) + [x3 ⇐⇒ x4]

}

(12.106)

where

F (x, y, z) ≡
∑

ω:x→y

̺(ω) I[suppω ∋ z]

= K(x, z)δz,y +
∑

z′
Jzz′K(xz|z′y) (12.107)

and

F (x, z1, z2, y) ≡
∑

ω:x→y

̺(ω) I[ω visits z1 and subsequently visits z2]

=
∑

z′1

Jz1z′1
K(xz1|z′1z2)δz2,y +

∑

z′1,z′2

Jz1z′1
Jz2z′2

K(xz1|z′1z2|z′2y)

(12.108)

where the equality in (12.107) is the path-splitting identity (11.47) for the SAW,
and the equality in (12.108) is proved similarly. Pictorially:

−KT (x1x2|x3x4) ≥ p

»
¼
¾
½u

x1

x3

x2

x4

® ©

 ª

−p2




»
¼
¾
½

»
¼
¾
½u ux1

x3

x2

x4

® ©

 ª

® ©

 ª

¾ »

½ ¼
+ (x3 ⇐⇒ x4)




(12.109)
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where each symbol
® ©

stands for the requirement that the walks connected

by the symbol do not intersect. If we sum over x2, x3, x4 we obtain

−KT ≥ p(
∂χ

∂β
+ χ)2 − 2p2T (12.110)

where

T =
∑

x2,x3,x4

∑

z1, z2

z1 6= z2

F (x1, z1, z2, x2)F (x3, z1, z2, x4) . (12.111)

At this point we find ourselves unable to bound T in an optimal way. The
problem can be understood from the diagrammatic formulation (12.109) where
T corresponds to the last diagram. In order to apply the optimization procedure
(12.78), we would like to show that the last diagram in (12.109) can be bounded
by a “bubble diagram” times the first diagram, i.e.,

T ≤ const × B(β
∂χ

∂β
+ χ)2 (?). (12.112)

Looking at the diagram for T we see that if we neglect the four “little” con-
straints

® ©
we may be able to pull a bubble factor from the part §̈ ¥¦r rof the

diagram. Unfortunately, what is left is not quite the same as the first diagram
because in the diagram for T , z1 and z2 are not necessarily “neighbors”6. It is,
of course, possible to make an even cruder estimate on T by neglecting all the
constraints

® ©; we then get

T ≤ const × Bχ4 (12.113)

and hence, by (12.78),

−KT ≥ const ×
(β ∂χ

∂β
+ χ)4

Bχ4
. (12.114)

This is a terrible bound in dimension d < 4, but it is not so bad in dimension
d ≥ 4 (see Section 14.1).

Even though the standard dilution trick seems to fail for the SAW, we do
believe that some bound similar to (12.104) may be true. We are encouraged by
the fact that the other example of a strongly-coupled model — the Ising model
— does exhibit such a bound, whose proof, however, requires more than the
random-walk representation (see next).

6Indeed, a heuristic scaling computation shows that if d < 4 (more precisely, if dν < 3γ−1),
then the dominant contribution to the sum comes from z1 − z2 of order ξ — not of order 1 —
and one recovers the crude bound (12.113). Thus, it appears that in order to do better than
(12.113) it is essential to keep the four “little” constraints.
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12.3.4 Upper bound on the truncated four-point function for the
ARW (Ising) model

The “dilution trick” — involving events of the form (12.68) — can be success-
fully applied to the ARW (Ising) model, but working on inequalities derived
from the more detailed random-current formalism. Indeed, by mimicking the
proof of Theorem 5.7 of reference [12] one can prove [194]

〈σ0; σx; σy; σz〉 ≤

−(1/2)
∑

u,v

p{u,v}Ju,v〈σuσx〉〈σuσ0〉〈σyσz; σuσv〉

+ (1/4)
∑

u,v,s,t

p{u,v}p{s,t}Ju,vJs,t[(〈σxσs〉〈σuσs〉〈σuσ0〉) + (s ⇐⇒ t)]

×
[{

[(2〈σzσu〉〈σvσs〉〈σyσt〉) + (s ⇐⇒ t)] + [(u, v) ⇐⇒ (s, t)]
}

+(1/2)
{
u ⇐⇒ v

}]
(12.115)

(each permutation refers to the preceding factor with the same delimiter), for
any family {p{x,y}} of the numbers interval [0, 1]. With the choice p{x,y} = p for
all bonds, (12.115) yields the summed version

u4 ≤ −pχ2(β
∂χ

∂β
) + 12p2|J |2χ4B0 , (12.116)

for any p ∈ [0, 1]. Choosing p as in (12.78), namely

p = min

(
1,

∂χ/∂β

24|J |2χ2B0

)
(12.117)

we therefore obtain

u4 ≤ −
(
β ∂χ

∂β

)2

48|J |2B0 + 2χ−2
(
β ∂χ

∂β

) (12.118)

(the second term in the denominator is insignificantly small in the vicinity of the
critical point). This result is analogous to (12.104). However, we cannot obtain
a result analogous to (12.101) because for the Ising model χ2 and β∂χ/∂β are
not proportional as they are for the IPORW model. Instead of (12.103) we
now have (12.50) (whose proof involves the “passing to the left trick”), which
incorporates an extra factor B−2

0 . Inserting (12.50) in (12.118) we obtain:

u4 ≤ − χ4

48B0(1 + 2|J |B0)2
+ ε (12.119)

where ε becomes negligible in the critical region. The two extra powers of the
bubble brought by (12.50) can be associated, loosely speaking, with the strong
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coupling present in the self-interaction of each of the two walks of the expression
for ∂χ/∂β . In the IPORW model these self-interactions vanish — only the
interaction between walks is strongly coupled — hence the two extra factors
B−1

0 are missing.

12.4 The kernel K(x,y) and the truncated two-point func-
tion in nonzero magnetic field

12.4.1 The kernel K(x,y) and the magnetization

For the nonzero-field case, the simplest kernels (10.8) are S1(x) = K(x•) and

K(x, y) =
∑

ω:x→y

̺0(ω) . (12.120)

In the zero-magnetic-field situation we have K(x, y) = S2(x, y), which is mono-
tonic in the coupling constants J (by the second Griffiths inequality). However,
in the presence of magnetic field, K(x, y) becomes a rather mysterious object
with no immediate physical meaning, no known monotonicity in J (except for
the baby CIW models), and whose definition in the ARW models depends on
the arbitrary choices associated with the notion of consistency. Nevertheless,
K(x, y) appears quite naturally when handling the random-walk expansions for
the Green functions of low order. For instance, from (10.10) and (10.11) we have
for the CIW and BFS models:

S1(x) =
∑

y∈L

K(x, y)hy . (12.121)

The analogous relation for the ARW models is more involved. In fact, we do
not have an equality but rather inequalities:

∑

y∈L

K(x, y)
tanh(hy)

1 + S1(y)tanh(hy)
≤ S1(x) ≤

∑

y∈L

K(x, y)tanh(hy)

(12.122)
The proof of (12.122), which uses random currents, can be found in [12].

The two previous expressions look more suggestive for translation invariant
models. For such models let us adopt the standard magnetic notation:

M ≡ S1(x) (12.123)

and

|J | =
∑

y

Jxy (12.124)

Proposition 12.7 Let us assume the systems to be translation-invariant, then:
a) For CIW and BFS models
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∑

y∈L

K(x, y) =
M

h
. (12.125)

b) For the ARW models

M

tanh(h)
≤

∑

y

K(x, y) ≤ M

tanh(h)
[1 + Mtanh(h)] . (12.126)

For h small (12.126) is just as good as (12.125).

12.4.2 The kernel K(x,y) and the two-point function

The kernel K(x,y) is also related to the two-point function S2:

S2(x, y) = K(x, y) +
∑

ω1: x → •

ω2: y → •

̺11(ω1, ω2) (12.127)

As the last term in the RHS is positive, we have that for baby polymer-chain,
BFS and ARW models:

K(x, y) ≤ S2(x, y) . (12.128)

12.4.3 Monotonicity of K(x,y) in h, and another upper bound on K

A bound sharper than (12.128) can be obtained from the properties discussed
in Section 11.3. Indeed, it follows from (11.80) that ∂K(x, y)/∂hz ≤ 0. On the
other hand, [K(x, y)]h=0 = [S2(x, y)]h=0. Hence

K(x, y) ≤ [K(x, y)]h=0 = [S2(x, y)]h=0 . (12.129)

for all nonnegative h.

12.4.4 The kernel K(x,y) and the truncated two-point function [lower
bound on K(x,y)]

The truncated two-point function is defined as

ST
2 (x1, x2) = S2(x1, x2) − S1(x1)S1(x2) . (12.130)

Introducing truncated kernels analogous to (12.8) — but in which some of the
arguments can be dots “•” — we have:

ST
2 (x1, x2) = K(x1x2) + KT (x1 • |x2•) (12.131)

with
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KT (x1 • |x2•) =
∑

ω1: x1 → •

ω2: x2 → •

̺T
11(ω1, ω2) , (12.132)

where we denote, for j1, j2 = 0, 1:

̺T
j1j2

(ω1, ω2) = ̺j1j2(ω1, ω2) − ̺j1(ω1)̺j2(ω2) . (12.133)

Proceeding in the same way as for the truncated weights ̺T
00 analyzed in Section

12.2, one obtains from Theorem 11.1 that for repulsive polymer chains

̺T
j1j2

(ω1, ω2) ≤ 0 , (12.134)

while for the BFS and ARW models (Theorems 11.2 and 11.5)

∑

ω2:x→•

̺T
j11(ω1, ω2) ≤ 0 . (12.135)

As a consequence we have the following analogue of Theorem 12.2.

Theorem 12.8
Repulsive polymer-chain, BFS and ARW models satisfy

KT (x1y|x2•) ≤ 0 , (12.136)

KT (x1 • |x2•) ≤ 0 , (12.137)

and hence, from (12.131)

ST
2 (x1, x2) ≤ K(x1x2) . (12.138)

The “summed” version of (12.138) combined with (12.121) yields the so-
called weak GHS inequality [223]:

Corollary 12.9 (weak GHS inequality) For repulsive polymer-chain models,
BFS and ARW models

S1(x) ≥
∑

y

ST
2 (x, y)hy . (12.139)

The relation between (12.139) and the GHS inequality is provided by the
formula7

∂

∂hz

[
〈ϕx〉 −

∑

y

〈ϕx; ϕy〉hy

]
= −

∑

y

〈ϕx; ϕy; ϕz〉hy . (12.140)

7We use the notation 〈A;B〉 ≡ 〈AB〉 − 〈A〉〈B〉 and 〈A;B;C〉 ≡ 〈ABC〉 − 〈A〉〈BC〉 −
〈B〉〈AC〉 − 〈C〉〈AB〉 + 2〈A〉〈B〉〈C〉.
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This shows that (12.139) can be interpreted as an integrated version of the
GHS inequality. Moreover, (12.139) implies that M(h)/h is decreasing in h, i.e.,
that the magnetization curve lies above those of its secant lines which start
at the origin. [By contrast, GHS implies that M(h) is concave, i.e., that the
magnetization curve lies above all of its secant lines]. This fact is sufficient to
prove the continuity (in fact, local Lipschitz continuity) of M(h) at h 6= 0, and
hence the absence of phase transitions at h 6= 0 (see [223] for details).

For translation-invariant models (12.139) can be written in a more familiar
form. Indeed, for all such models we extend (12.28) to the nonzero-field case by
defining

χ =
∑

y

u2(0, y) (12.141)

where

u2(x1, x2) =





ST
2 (x1, x2) for RW models

〈ϕx1 ; ϕx2〉 for spin models
. (12.142)

We remind the reader that for BFS models ST
2 (x, y) = 〈ϕx; ϕy〉, and hence

χBFS−RW ≡
∑

y

ST
2 (x, y) = χspin−model ≡

∑

y

〈ϕx; ϕy〉 . (12.143)

The distinction between ST
2 (x, y) and 〈ϕx; ϕy〉 is needed only for the ARW/Ising

models (with x = y) because in this case

ST
2 (x, x) >

6=
〈σx; σx〉 = 1 − M2 . (12.144)

Hence,
χARW ≡

∑

y

ST
2 (x, y) >

6=
χIsing ≡

∑

y

〈σx; σx〉 . (12.145)

We notice that from (12.131) and (12.137), plus the fact that K(x, x) = 1, we
have for the ARW model

ST
2 (x, x) ≤ 1 , (12.146)

and hence for the ARW model

χIsing <
6=

χARW ≤ χIsing + M2 . (12.147)

With definition (12.141), (12.139) becomes, for translation-invariant models:

χBFS/ARW ≤ M

h
, (12.148)

which implies, from the leftmost inequality in (12.147)

χIsing ≤ M

h
. (12.149)

Henceforth we shall make no reference to χARW; we therefore sometimes will
denote χIsing simply by χ .
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12.4.5 Non-trivial upper bound on K(x,y)

By combining (12.129) and (12.138) we see that the behavior of the kernel
K(x, y) as a function of |x − y| is intermediate to that of the truncated two-
point function and that of the untruncated two-point function at zero magnetic
field. However, there is still a big gap between these bounds for temperatures
below criticality, because in this range ST

2 (x, y) vanishes when |x − y| → ∞
while S2(x, y) does not. In this section we discuss inequalities complementary
to that of Theorem 12.8 which give more information about the actual behavior
of K.

Corollary 11.9 implies the following generalization of (12.15)

̺T
j1j2

(ω1, ω2) ≥




0 if supp(ω1)∩ supp(ω2) = ?

−̺j1(ω1)̺j2(ω2) otherwise
(12.150)

valid for the baby CIW, BFS and ARW models. This bound complements
(12.134)–(12.135). From this and Proposition 11.11 one obtains, repeating the
steps leading to Proposition 12.3:

Proposition 12.10
a) For the baby (generalized) CIW, BFS and ARW models

KT (x1 • |x2•) ≥ −
∑

z

[
K(x1z)hz +

∑

z1

Jzz1K(x1z|z1•)
]

×
[
K(x2z)hz +

∑

z2

Jzz2K(x2z|z2•)
]

(12.151)

For the ARW model Jzzi
and hz can be replaced by tanh(Jzzi

) and tanh(hz)
respectively.

b) For the ARW model

KT (x1 • |x2•) ≥ −
∑

z

K(x1z|z•)K(x2z|z•) (12.152)

Combining these expressions with (12.131) and (12.136) we arrive at the
following analogue of Theorem 12.4:

Theorem 12.11

K(x1, x2) ≤ ST
2 (x1, x2) + V (x1 • |x2•) (12.153)

with
a) For repulsive simple baby CIW, BFS and ARW models

V (x1 • |x2•) =
∑

z

K(x1, z)K(x2, z)[hz +
∑

z1

Jzz1S1(z1)]
2 . (12.154)
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b) For ARW models

V (x1 • |x2•) =
∑

z

K(x1, z)K(x2, z)[S1(z)]2 . (12.155)

We remark that for ARW/Ising models (12.155) is a slightly better bound
than (12.154), since

S1(z) ≡ 〈σz〉 ≤ tanhhz +
∑

z1 6=z

(tanhJzz1)〈σz1〉

≤ hz +
∑

z1

Jzz1S1(z1)

by Griffiths’ third inequality [271] and the ghost-spin trick [270].
Results of this type were first proven in [223], and further discussion may

be found there. We emphasize that the proof is virtually identical to that of the
Aizenman-Fröhlich inequalities (12.18)-(12.25).

The following corollary is a consequence of the “summed” version of Theo-
rem 12.11. Indeed, by summing (12.153) over x2 and using (12.125) or (12.126)
in the result (and (12.147) for ARW models), we obtain:

Corollary 12.12
a) For translation-invariant baby repulsive simple CIW and BFS models:

M

h
≤ χ +

(
M

h

)2

[h + |J |M ]2 . (12.156)

b) For the translation-invariant Ising model

M

tanhh
≤ χIsing +

(
M

tanhh

)
2[M2tanhh + M ]2 + M2 . (12.157)

Remark. Using the random-current representation, one can prove (12.157)
without the additive term M2.

Corollary 12.12 will lead to the critical-exponent inequalities δ ≥ 3 and
γ ≥ 2β, which are “mean-field bounds”; see Section 14.3 for details.

12.4.6 Once-improved upper bound on K(x,y)

The above inequalities are probably the best that can be obtained using only the
random-walk expansion. However, by resorting to the more powerful random-
current representation, Aizenman, Barsky and Fernández [10] were able to im-
prove the upper bounds (12.157) and (for some one-component spin models)
(12.156). Their result is the following:
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Theorem 12.13 Aizenman, Barsky and Fernández [10]
a) For ARW models:

K(x, y) ≤ 〈σx; σy〉+
∑

k,l

K(x, k)tanh(Jkl)
[
(〈σk〉2 + 〈σl〉2)δl,y + 〈σk〉〈σy; σkσl〉

]
.

(12.158)
and

〈σx〉 ≤
∑

z

(tanhhz)〈σx; σz〉 + 〈σx〉3 +
∑

z,z′
(tanhJzz′)〈σx; σzσz′〉〈σz〉2 . (12.159)

b) For ferromagnetic 1-component spin models with single-spin measures in
the Griffiths-Simon class [466] (in short “models in the GS class”; this class of
models includes the Ising and 1-component ϕ4 models, among others):

〈ϕx〉 ≤
∑

v

hv〈ϕx; ϕv〉 + hx〈ϕx〉2 +
∑

y

Jxy〈ϕx〉2〈ϕy〉

+
∑

u,v

[
hv〈ϕv〉 +

∑

y

Jvy〈ϕv〉〈ϕy〉
]
Juv〈ϕx; ϕuϕv〉 . (12.160)

Theorem 12.13 can be interpreted as a “once-improved” version of Theorem
12.11 in the same sense as the Aizenman-Graham inequality (12.153) is a “once-
improvement” of the Aizenman-Fröhlich inequality (12.24). In fact inequality
(12.160) is “almost” the Aizenman-Graham inequality with some sites identified
with the site of a “ghost” spin. The only difference is that terms that were
completely negligible in the situation of interest in [15] — and therefore were
ignored in (12.32)–(12.33) — become now the dominant terms [10]. The fact
that (12.158) is an improvement over (12.153)-(12.155) can be explicitly shown
via the inequality

〈ϕx; ϕkϕl〉 ≤ 〈ϕk〉〈ϕx; ϕl〉 + (k ⇐⇒ l)

≤ 〈ϕk〉K(x, l) + (k ⇐⇒ l) .

which follows from the GHS inequality and (12.138).
The “summed” versions of (12.158)-(12.160) are

Corollary 12.14 [10]:
a) For ARW models:

M

h
≤ χ +

(
M

h

)2
[
hM + hβ

∂M

∂β

]
. (12.161)

b) For ferromagnetic models in the GS class:

M

h
≤ χ +

[
|J |

(
M

h

)2

+
M

h

][
hM + hβ

∂M

∂β

]
. (12.162)
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These formulas are manifestly an improvement of Corollary 12.12, since

β
∂M

∂β
≤ |J |Mχ ≤ |J |M

2

h
(12.163)

by the GHS inequality and the weak GHS inequality, respectively. This improve-
ment is especially significant for temperatures below the critical temperature
and for h ≃ 0, since β∂M/∂β is finite as h ↓ 0 while M2/h diverges. Corollary
12.14 can thus be used directly on the coexistence curve (T < Tc, h = 0+),
while Corollary 12.12 must be used away from the coexistence curve and then
combined with an “extrapolation principle” (see Section 14.3).

12.5 Truncated three-point function

The only general result available for the truncated three-point function is the
GHS inequality [279, 491, 162]

〈ϕx; ϕy; ϕz〉 ≤ 0 , (12.164)

valid for the 1-component spin models of the Ellis-Monroe-Newman class
(which includes the Ising model as a limiting case). We note that the GHS
inequality (12.164) is not true for general BFS models with single-spin measures
of BFS class; this follows from a necessary and sufficient condition for the GHS
inequality due to Ellis and Newman [163].

However, as for the case of S4 for h=0, sharper (non-Gaussian) upper bounds
are of interest. For the ARW models such improvement is possible because of
the existence of the random-current representation. Resorting to the full power
of such formalism, an improved bound was obtained in [12] through a procedure
that included an application of the “dilution trick”. A simplified version of this
procedure yielded later the upper bound (12.115) on 〈σ0; σx; σy; σz〉. One of the
complications of the proof of the non-Gaussian upper bound on 〈σ0; σx; σy〉 —
as compared to that for the upper bound of 〈σ0; σx; σy; σz〉 — is that it involves
the kernel K whose dependence on the coupling constants is not known to be
monotonic. A monotonic dependence on the couplings — which is crucial for
the success of the proof — can only be restored upon summation via the upper
bound on (12.126). For this reason, the upper bound on 〈σ0; σx; σy〉 does not
admit a “pointwise version” comparable to (12.115); there is only a “summed
version” analogous to (12.118).

Let us denote
∂χ

∂h
=

∑

x,y

〈σ0; σx; σy〉 . (12.165)

We then have [12]:
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Theorem 12.15 For translation-invariant Ising models

∂χ

∂h
≤ − [1 − O(B0h/M)]+

48B0(1 + 2|J |B0)2
(tanhh)χ4 (12.166)

where B0 denotes the “bubble diagram” (12.49) evaluated at h = 0 and [x]+ =
max(x, 0).

On the other hand, it is even simpler to prove a lower bound on 〈σ0; σx; σy〉
analogous to the “tree inequality” (12.26):

Theorem 12.16 [12]
For Ising models

〈σ0; σx; σy〉 ≥ −2
{∑

u

K(y, u)(tanhhu)K(x, u)K(0, u)

+
∑

u,v

JuvK(y, u)〈σv〉
[
K(x, u)K(0, u) + K(x, v)K(0, v)

]}
.

(12.167)

The RHS of (12.167) can be associated to to a tree diagram as in the RHS
of (12.28), but with 0 u ≡ K(0, u) [use (12.126)]. Summing over x and y
and applying the leftmost inequality of (12.126) we obtain:

Corollary 12.17 For translation-invariant Ising models

−4|J | [1 + O(h/M)] [1 + M tanh h]3
M4

(tanh h)3
≤ ∂χ

∂h
. (12.168)

We note remarkable similarities between (12.166)/(12.168) and the bounds

−3χ4 ≤ u4 ≤ − χ4

48B0(1 + 2|J |B0)2
+ ε (12.169)

obtained respectively by summing (12.26) over three of the sites, and from
(12.119). Both ∂χ/∂h and u4 have “tree” lower bounds, and the respective
upper bounds have basically the same form as the lower bound except for a
factor B−3

0 . These similarities can be interpreted as follows, the random-walk
expansion of ST

3 involves two terms: one with two walks and another with three
walks (k = 1 and 2 respectively in (12.175) below). The former has a trivial
h-dependence proportional to the first power of h while the trivial dependence
of the latter is of order h2. At small h it is not farfetched to expect that the
term with two walks dominate, and hence the expansion for ST

3 becomes almost
identical to that of ST

4 (with one lattice site transformed into a “ghost” spin).
Theorem 12.16 and Corollary 12.17 can be generalized to spins of the GS

class [194]. To write these generalizations we need to introduce the kernel



264 12. Correlation inequalities

KGS(x, y) for spin models in the GS class. This kernel is defined as for the
Ising model, but using the representation of GS models as blocks of ferromag-
netically coupled Ising spins [466, 5]. The resulting expression is not physically
interesting because it includes references to the auxiliary Ising spins forming the
blocks. Rather than entering into such details, we shall provide here only the
most relevant (for our purposes) formula involving this kernel KGS [cf. (12.122)]:

∑

y∈L

KGS(x, y)hy
ay

1 + S1(y)hyay

≤ S1(x) ≤
∑

y∈L

KGS(x, y)hyay . (12.170)

Here the numbers ay ∈ (0, 1] depend only on hy and the single-spin measure;
ay → 1 as hy → 0; and ay ≡ 1 for ϕ4 spins. As a result, we have in the
translation-invariant case

M

h(1 − ε(h))
≤

∑

y

KGS(x, y) ≤ M

h(1 − ε(h))

[
1 + (1 + ε(h))Mh

]
, (12.171)

where ε(h) → 0 as h → 0 in general, and ε(h) ≡ 0 for ϕ4 spins (and of course
for Ising spins).

The generalization of Theorem 12.16 takes the form:

Theorem 12.18 [194]
For spin models in the GS class:

〈ϕ0; ϕx; ϕy〉 ≥ −2
{∑

u,v

KGS(y, u)huK
GS(x, u)JuvK

GS(0, v)

+
∑

u,v,p

JuvK
GS(y, u)〈ϕv〉[KGS(x, u)JupK

GS(0, p)

+KGS(x, v)JvpK
GS(0, p)]

}
. (12.172)

Using (12.171) one gets:

Corollary 12.19 [194] For translation-invariant models in the GS class:

−4 |J |2 [1 + O(h/M)]
[
1 + hM [1 + ε(h)]

1 − ε(h)

]3 M4

h3
≤ ∂χ

∂h
(12.173)

where ε(h) → 0 as h → 0. Here ε(h) depends on the single-spin measure; it is
identically zero for ϕ4 and Ising spins.

Unfortunately, we do not have at present any analogous generalization of
Theorem 12.15 for GS spins.

Inequality (12.166), combined with extrapolation principles derived from
the GHS inequality [12], implies (together with the results of Sections 12.4.5
and 12.4.6) the following bounds on the critical exponents δ and β̂ of the Ising
model [12]:



12.6 Truncated Green functions of higher order 265

a) for d > 4, δ and β̂ take the mean-field values δ = 3, β̂ = 1/2;

b) for d = 4, δ and β̂ take the mean-field values with possible logarithmic
corrections involving at most a logarithm to the first power for β̂ and to
the 3/2 power for δ.

See Section 14.3 for more details.
The lower bound in (12.166) has also some mild consequences on the triv-

iality of the continuum limit taken through paths in the nonsymmetric region
of the (β, h)-plane.

12.6 Truncated Green functions of higher order

The general expression for the truncated Green functions is

ST
n (x1, . . . , xn) =

n∑

i=1

(−1)i−1(i − 1)!
∑

{I1, . . . , Ii}

n.e.s.s. partition

of (i, . . . , n)

i∏

j=1

S|Ij |(xIj
) . (12.174)

Here “n.e.s.s. partition” means “partition by nonempty subsequences”. It can
be proven (see Section 12.7) that the “operation” of truncation “commutes”
with the relation (10.10) in the sense that

ST
n (x1, . . . , xn) =

n∑

k=[(n+1)/2]

∑

π∈Q2k,n

KT (xπ(1)xπ(2)| . . . |xπ(2k−1)xπ(2k)) (12.175)

where KT corresponds to the truncation of the kernel K considered as a function
over the sets of pairs:

KT (x1y1| . . . |xkyk) =
k∑

i=1

(−1)i−1(i − 1)!
∑

{I1, . . . , Ii}

n.e.s.s. partition

of (i, . . . , k)

i∏

j=1

K((xy)Ij
) (12.176)

(some of the “y” may be “•”). Moreover, “truncation” also “commutes” with
the relation (10.8)

KT (x1y1| . . . |xkyk) =
∑

ω1: x1 → y1

...
ωk: xk → yk

̺T
j1...jk

(ω1, . . . , ωk) (12.177)

with ji = ji(yi) equal to 1 if yi is a dot and 0 otherwise. Here

̺T
j1...jk

(ω1, . . . , ωk) =
k∑

i=1

(−1)i−1(i − 1)!
∑

{I1, . . . , Ii}

n.e.s.s. partition

of (i, . . . , k)

i∏

t=1

̺jIt
(xIt) . (12.178)
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The lowest-order nontrivial versions of (12.175)–(12.178) are contained in the
formulas (12.6)–(12.10) for the zero-field case and (12.130)–(12.133) for nonzero
field.

The above relations imply that the fundamental objects for the study of the
truncated Green functions are the truncated weights (12.178). Unfortunately,
very little is known for the functions involving truncated weights of order larger
than two. The only results in this regard are those discussed in the previous
section for the three-point truncated function, and the result of Shlosman [460]
about the alternance of the signs of the truncated 2n-point of the Ising model,
which was derived via the random-current representation. Remarkably, an anal-
ogous result can be proven for the SAW model using the random-walk repre-
sentation. Let us discuss this proof, which is based on well known results for
truncated functions in the general sense discussed in Section 12.7.

It is not hard to prove, e.g. from (12.199), that if the walks “cluster” into
two families of walks ωI1 , ωI2 such that

̺jI1
jI2

(ωI1 , ωI2) = ̺jI1
(ωI1)̺jI2

(ωI2) (12.179)

then
̺T

jI1
jI2

(ωI1 , ωI2) = 0 . (12.180)

In particular, this implies the following property for the weights of the baby
CIW model.Let us define for any collection of walks ω1, . . . , ωn the graph
G = G(ω1, . . . , ωn) with vertices V (G) = {1, . . . , n} and edges E(g) =
{{i, j}| supp(ωi) ∩ supp(ωj) 6= ?}. We have:

Proposition 12.20 For baby CIW models

̺T
j1...jn

(ω1, . . . , ωn) = 0 (12.181)

whenever G(ω1, . . . , ωn) has two disconnected parts.

For the baby SAW we can in fact give an exact expression for the truncated
weights. Indeed, for this model

̺j1...jk
(ω1, . . . , ωk) =

[ k∏

i=1

̺ji
(ωi)

][ ∏

1≤i<j≤k

f(ωi, ωj)
]

(12.182)

with

f(ωi, ωj) =





1 if supp(ωi) ∩ supp(ωj) 6= ?

0 otherwise
(12.183)

(12.182) has precisely the form of the Boltzmann factor of a gas of walks with
fugacities ̺ji

(ωi) and pair interactions exp[−βϕ(ωi, ωj)] = f(ωi, ωj). Hence the
truncated weights are the Ursell functions of the corresponding Mayer expansion
[447]. Furthermore, (12.183) tells us that this is a gas of walks with exclusion,
and the Ursell functions for such system have been explicitly calculated by
Gallavotti et al [234]. The result is:
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Proposition 12.21 For the baby SAW

̺T
j1...jk

(ω1, . . . , ωk) =
[ k∏

i=1

̺ji
(ωi)

]
ak(ω1, . . . , ωk) (12.184)

with

ak(ω1, . . . , ωk) =
∑

C subgraph of G(ω1, . . . , ωk)

C visiting all {1, . . . , k}

C connected

(−1)# of edges of C . (12.185)

Moreover, it can be proven — directly from (12.185) or by even simpler
arguments [447, page 94] — that

(−1)k−1ak ≥ 0 . (12.186)

(12.175), (12.177) and (12.184) imply the following result:

Theorem 12.22 In the zero-field case the truncated Green functions of the
SAW model alternate in sign:

(−1)nST
2n ≥ 0 . (12.187)

The analogous result for the Ising model and models in the GS class has been
recently proven by Shlosman [460], using the random-current representation and
more sophisticated combinatorics.

Another consequence of (12.186) is that it implies that the truncated Green
functions for the baby SAW are polynomials in h with coefficients alternating
in sign.

12.7 Relationship between the truncated Green functions,
the truncated kernels and the truncated weights

This section is somewhat technical, and can be skipped without loss of conti-
nuity. It is strongly motivated by a set of lectures delivered by J. Slawny at
Virginia Polytechnic Institute (1980-81).

12.7.1 Algebraic definition of truncation

The abstract setting to define the notion of truncation is the following [447,
Chapter 4]. Let X be a set; consider

A(X) = {F = (Fn)n≥0 | Fn: Xn → C , F0 ∈ C} . (12.188)
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(Here C can be replaced by any field.) A(X) is a vector space with the natural
operations and an algebra with the convolution

(F ∗ G)n(x1, . . . , xn) =
∑

(I1, I2) s.s. part.

of (1, . . . , n)

F|I1|(xI1)G|I2|(xI2) (12.189)

where “s.s. part.” stands for “partition by subsequences”. The unit element of
this convolution is the family of functions 1 = (δn)n≥0. We will also use power
notation: F ∗n = F ∗ . . . ∗ F (n times); with the convention F ∗0 ≡ 1.

A collection F (1), F (2), . . . of elements of A(X) is said summable if for each
n the set of i’s for which F (i)

n is not the zero function is finite. In such case it
makes sense to define

∑
i≥1 F (i) ∈ A(X) in the natural way:

[∑

i≥1

F (i)
]

n
(x1, . . . , xn) =

∑

i≥1

F (i)
n (x1, . . . , xn) . (12.190)

In particular, it is of interest to define power series in the sense (12.190). In this
regard it is important to notice that

(F ∗n)n≥0 is summable ⇐⇒ F0 = 0 (12.191)

Therefore, for each element of

A0(X) = {F ∈ A(X): F0 = 0} (12.192)

we can define a power series (formal power series in the algebra A(X)). The two
examples that concern us here are:

exp F ≡
∑

k≥0

F ∗k

k!
(12.193)

and

log(1 + F ) ≡
∑

k≥0

(−1)k−1

k − 1
F ∗k . (12.194)

If F0 = 1, then log F ≡ log[1 + (F − 1)] makes sense and we denote

F T = log F (12.195)

or equivalently
F = exp F T (12.196)

We say that F T is the truncation of F , or that the functions F T
n are the trun-

cated functions corresponding to Fn. (12.194) and (12.195) yield the following
explicit relation

F T
n (x1, . . . , xn) =

n∑

i=1

(−1)i−1(i − 1)!
∑

{I1, . . . , Ii}

n.e.s.s. part.

of (i, . . . , n)

i∏

j=1

F|Ij |(xIj
) (12.197)
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where “n.e.” means that the subsequences Ij must be nonempty. On the other
hand, from (12.193) and (12.196) we obtain a complementary expression:

Fn(x1, . . . , xn) =
n∑

i=1

∑

{I1, . . . , Ii}

n.e.s.s. part.

of (i, . . . , n)

i∏

j=1

F T
|Ij |

(xIj
) . (12.198)

It is useful to keep in mind that as (12.197) and (12.198) are recursive
relations in n, either of them determine the truncated functions uniquely. For
instance, (12.198) can be explicitly written as the following recursive definition
for F T :

F T
n (x1, . . . , xn) = F (x1, . . . , xn) −

n∑

i=2

∑

{I1, . . . , Ii}

n.e.s.s. part.

of (i, . . . , n)

i∏

j=1

F T
|Ij |

(xIj
) . (12.199)

12.7.2 Relation between truncation in different algebras

The definitions of truncated Green functions, kernels and weights given in Chap-
ter 12 [formulas (12.174)–(12.176) and (12.178)] correspond to truncations in
algebras A(X) for different sets X. The following lemma formalizes the concept
of a relation “commuting with the operation of truncation” invoked in that
chapter.

Lemma 12.23 Let Γ : A(X1) → A(X2) be a map such that

L1) Γ is linear,

L2) Γ (F ∗ G) = Γ (F ) ∗ Γ2(G)

L3) F0 = 0 =⇒ (ΓF )0 = 0

L4) (ΓG)n involves only a finite set of Fi, i.e. for each n there exists i0 such
that

Fi = 0 for i ≤ i0 =⇒ (ΓF )n = 0 (12.200)

Then, for any power series on A(X), and any F ∈ A0(X):

Γ
(∑

k≥0

akF
∗k

)
=

∑

k≥0

ak(ΓF )∗k . (12.201)

Proof. The hypotheses make the proof trivial because they guarantee the legit-
imacy of the obvious steps.

As an immediate consequence we have that if Γ is as in the lemma
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(ΓF )T = Γ (F T ) (12.202)

Some remarks are in order. First, the hypotheses of the lemma and the
notion of summability can be stated respectively as continuity of Γ and con-
vergence of the series with respect to the topology generated by the sets
OM = {F | Fn = 0 ∀n ≤ M}. Second, the lemma provides an operational
way to check when the relations between functions is such that it survives trun-
cation — like in (12.175) and (12.177). In fact, most of such relations can be
stated as a suitable map Γ which is trivially seen to satisfy L1 , L3 and L4 .
Hence this lemma reduces a seemingly complicated proof [cf. the sheer defini-
tion (12.197)] to the verification of the relatively simpler statement L2 . In a
sense this lemma “zeroes in” the heart of the combinatorial difficulties for such
a proof.

12.7.3 Relations between the truncation for Green functions, kernels
and weights

12.7.3.1 Case h = 0 To present the basic ideas more simply, let us start with
the case of no magnetic field. If

X1 = Ω (12.203)

then, every family of weights defines a family

̺ = (̺n)n≥0 ∈ A(X1) , ̺0 = 1 (12.204)

with
̺n ≡ ̺[n] (12.205)

On the other hand, if
X2 = L2 (12.206)

then the kernels defined in (9.3) determine a family of functions

K = (Kk)k≥0 ∈ A(X2) , K0 = 1 (12.207)

with
Kk((x1, y1), . . . , (xk, yk)) = Kk(x1y1)| . . . |xkyk) . (12.208)

Finally, if
X3 = L (12.209)

then, the Green functions (9.7) define a family

S = (Sn)n≥0 ∈ A(X3) , S0 = 1 (12.210)

The respective truncated functions coincide with those defined via the algebraic
formalism discussed above. The relations (9.3) and (9.7) can be expressed in the
following form
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A(X1)
Γ1−→ A(X2)

Γ2−→ A(X3)

̺ K S
(12.211)

with

[Γ1(̺)]k
(
(x1, y1), . . . , (xk, yk)

)
=

∑

ω1: x1 → y1

...
ωk: xk → yk

̺k(ω1, . . . , ωk) , (12.212)

[Γ2(K)]2n(x1, . . . , x2n) =
∑

π∈Q2n

Kn

(
(xπ(1), xπ(2)), . . . , (xπ(2k−1), xπ(k))

)
,

(12.213)

[Γ2(K)]2n+1 = 0 ; (12.214)

and the identities (12.175), (12.177) are a consequence of:

Theorem 12.24

a) [Γ1̺]T = Γ1(̺
T )

b) [Γ2K]T = Γ2(K
T )

Proof. It is enough to check that the maps Γ1 , Γ2 satisfy the hypothesis of
Lemma 12.23. It is immediate to check L1, L3, L4. Let us first prove that Γ1

verifies L2. If ̺ and ξ are elements of A(X1):

[Γ1(̺ ∗ ξ)]k
(
(x1, y1), . . . , (xk, yk))

=
∑

ω1: x1 → y1

...
ωk: xk → yk

(̺ ∗ ξ)k(ω1, . . . , ωk)

=
∑

ω1: x1 → y1

...
ωk: xk → yk

∑

(I1, I2) s.s. part.

of (1, . . . , n)

̺|I1|(ωI1)ξ|I2|(ωI2)

=
∑

(I1, I2) s.s. part.

of (1, . . . , n)

[ ∑

(ω:→y)I1

̺|I1|(ωI1)
][ ∑

(ω:→y)I2

ξ|I2|(ωI2)
]

= [(Γ1̺) ∗ (Γ1ξ)]k((x1, y1), . . . , (xk, yk)) . (12.215)

This completes the proof of part a). With regard to Γ2 we must compare
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[Γ2(F ∗ G)]2n(x1, . . . , x2n) =
∑

π∈Q2n

(F ∗ G)n((xπ(1), xπ(2)), . . . , (xπ(2n−1), xπ(n)))

=
∑

π∈Q2n

∑

(I1, I2) s.s. part.

of (1, . . . , n)

F|I1|

(
(xπ(2i−1), xπ(2i))i∈I1

)
G|I2|(

(
xπ(2i−1), xπ(2i))i∈I2

)

(12.216)

with

[(Γ2F ) ∗ (Γ2G)]2n(x1, . . . , x2n) =
∑

(J1, J2) s.s. part.

of (1, . . . , 2n)

(Γ2F )|J1|(xJ1)(Γ2G)|J2|(xJ2)

=
∑

(J1, J2) s.s. part.

of (1, . . . , 2n)

[ ∑

π1 ∈ Q
(J1)

|J1|

|J1| even

F|J1|

(
(xπ1(j2i−1), xπ1(j2i)

)
1≤i≤|J1|/2

)
]

×
[ ∑

π2 ∈ Q
(J2)

|J2|

|J2| even

G|J2|

(
(xπ2(j′2i−1)

, xπ2(j′2i)
)1≤i≤|J2|/2

)]
(12.217)

where in the last sums we denoted

J1 = (j1, . . . , j|J1|) , J2 = (j′1, . . . , j
′
|J2|

) (12.218)

and Q
(Ji)
|Ji|

is defined analogously to Q|Ji| but involving permutations of Ji. The
restriction Ji even is due to (12.214). The reason why (12.216) and (12.217) are
equal is more easily explained with words. If we read the sums starting outside
in, we see that in (12.216) we first permute the 2n sites xi, we pair sites that
are contiguous in the permuted order and then we group the pairs into two sets:
the pairs labelled by I1 are assigned as arguments for F and those labelled by I2

as arguments of G. On the other hand, in (12.217) we first group the sites into
two sets labelled respectively by J1 and J2, we pair the sites inside each set, and
then we permute the pairs in each set independently. After some thinking one
can convince oneself that each of the terms presented in (12.216) is in (12.217)
and vice versa. To finish the proof of b) we notice that if n is odd

[Γ2(F ∗ G)]n = 0 = [(Γ2F ) ∗ (ΓG)]n (12.219)

where the leftmost inequality is by (12.214), and the rightmost inequality is due
to the fact that if n is odd at least one of the sets J1 , J2 in which 1, . . . , n is
partitioned has an odd number of elements. Hence, again by (12.214) all the
terms in the rightmost expression are zero.

12.7.3.2 Case h 6= 0 The arguments are very similar to the previous ones.
The Green functions again fit into the setting (12.210), but minor changes are
needed for ̺ and K. Now we must consider
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X1 = {0, 1} ∗ Ω (12.220)

and

̺n((j1, ω1), . . . , (jn, ωn) = ̺j1...jn(ω1, . . . , ωk) (12.221)

On the other hand K is as in (12.207)-(12.208) but with

X2 = [L ∪ {•}]2 (12.222)

the map Γ1 takes the form

[Γ1(̺)]k((x1, y1), . . . , (xk, yk)) =
∑

ω1: x1 → y1

...
ωk: xk → yk

̺T
j1...jk

(ω1, . . . , ωk) (12.223)

with

j1 =





1 if yi = •
0 otherwise

(12.224)

while

[Γ2(K)]n(x1, . . . , xn) =
n∑

k=[(n+1)/2]

∑

π∈Q2k,n

Kk(xπ(1)xπ(2)| . . . |xπ(2k−1)xπ(2k))

(12.225)
With these definitions Theorem 12.24 also holds. The proof of part a) for the
present Γ1 is identical to the one for the case h = 0. The only delicate point in
the proof of part b) is the comparison of Γ2(F ∗G) with Γ2(F )∗Γ2(G). We now
have, in place of (12.216)–(12.217):

[Γ2(F ∗ G)]2n(x1, . . . , xn)

=
n∑

k=[(n+1)/2]

∑

π∈Q2n

∑

(I1, I2) s.s. part.of (1, . . . , k)

F|I1|

(
(xπ(2i−1), xπ(2i))i∈I1

)

× G|I2|

(
(xπ(2i−1), xπ(2i))i∈I2

)

(12.226)

and

[(Γ2F ) ∗ (Γ2G)]n(x1, . . . , xn)

=
∑

(J1, J2) s.s. part.

of (1, . . . , n)

[ |J1|∑

k1=[(|J1|+1)/2]

∑

π1∈Q
(J1)

2k1,|J1|

Fk1

(
(xπ1(j2i−1), xπ1(j2i))1≤i≤k1

)]

×
[ |J2|∑

k2=[(|J2|+1)/2]

∑

π2∈Q
(J2)

2k2,|J2|

Gk2

(
(xπ2(j2i−1), xπ2(j2i))1≤i≤k2

)]
. (12.227)
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The sets Q
(Ji)
2k,|Ji|

have a definition analogous to Q2k,|Ji| but for maps π with
image in Ji ∪ {∞}. Reading the sums from left to right we see that in (12.226)
one first permutes the sites and adds bullets “•” so to form 2k pairs; and then
the resulting pairs are split into two groups labelled by I1, I2. In (12.227) these
operations are performed in reverse order, namely we first split the sites into
two groups labelled J1, J2, then to each group we add dots independently —
so as to complete 2ki pairs for the sites with subscripts in Ji — and finally we
permute the pairs. The end product is the same as in (12.226).
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13. Background material

13.1 Models to be considered

In this section we summarize the basic definitions and notations to be used in
the sequel. Most of these have already been introduced in earlier chapters, but
we repeat them here in order to make Part III as self-contained as possible. We
hope that Part III will be accessible to readers interested only in the physical
consequences and not in the technical aspects of the random-walk representa-
tion.

In this monograph we have been considering two types of models: spin
models (such as the Ising and ϕ4 models), and random-walk models. The latter
include models employed in polymer physics (such as the self-avoiding walk and
the Edwards model), as well as “artificial” random-walk models which have been
devised to yield random-walk representations of spin models (i.e. the BFS and
ARW random-walk models defined in Chapters 9 and 10. Our aim has been
to study all these random-walk models by unified methods, and so to derive
results of physical interest (such as correlation inequalities) simultaneously for
the polymer models and (via the relevant identities) for the spin models.

Let us be more precise about this point. The basic objects of spin models are
the correlation functions 〈ϕx1 . . . ϕxn〉 and the truncated correlation functions
〈ϕx1 ; . . . ; ϕxn〉. On the other hand, the basic objects of random-walk models are
the Green functions Sn(x1, . . . , xn) [defined in Sections 9.1 and 10.1] and the
truncated Green functions ST

n (x1, . . . , xn) [defined for general n in Section 12.6].
A random-walk model constitutes a representation of a spin model whenever
there is an identity

〈ϕx1 . . . ϕxn〉 = Sn(x1, . . . , xn) (13.1)

between the correlation functions of the spin models and the Green functions
of the random-walk model. [Of course, (13.1) is equivalent to the corresponding
identity

〈ϕx1 ; . . . ; ϕxn〉 = ST
n (x1, . . . , xn) (13.2)

for the truncated correlation and Green functions.] In particular, for rather
general spin models such identities hold between the correlation functions of
the spin model and the Green functions of the corresponding BFS random-walk
model. Similarly, for Ising models such identities hold between the correlation
functions of the Ising system and the Green functions of the corresponding
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ARW model provided that the sites x1, . . . , xn are all distinct. This restriction
to noncoincident sites is necessary except in two special cases: when n = 1, or
when n = 2 and h = 0.

These identities were exploited in Chapters 11 and 12 to derive correlation
inequalities for suitable classes of spin models. Having done so, we now suppress
all further reference to the “artificial” BFS and ARW random-walk models, and
discuss only the corresponding spin models. However, we do wish to discuss also
the random-walk models arising in polymer physics. To be able to state compact
formulas valid both for random-walk (RW) models and spin models, we adopt
the notation

un(x1, . . . , xn) =





ST
n (x1, . . . , xn) for RW models

〈ϕx1 ; . . . ; ϕxn〉 for spin models
. (13.3)

Now let us review briefly the classes of models to which our analysis applies:
a) Spin systems with ferromagnetic two-body interactions. We consider one-

component spin systems defined by a Hamiltonian

H = −1
2

∑

x,y

Jxyϕxϕy −
∑

x

hxϕx , (13.4)

and an even single-spin measure dP (ϕ). The two-body interaction Jxy = Jyx

is assumed to be ferromagnetic (Jxy ≥ 0 for all x, y) and translation-invariant
(Jxy = Jx+a,y+a for all x, y, a). The magnetic field h is assumed to be nonnegative
(this affects only the sign of various inequalities). We distinguish various classes
of spin models according to the properties of the single-spin measure; for the
reader’s convenience we summarize the definitions of the classes in Table 13.1.
The validity of different correlation inequalities depends on the class of dP (ϕ).

We remind the reader that infinite-volume spin models must be defined
as limits of finite-volume spin models with suitable boundary conditions. Our
correlation inequalities are proven initially for finite-volume systems and are
then carried over to the infinite-volume limit; see the remark at the beginning
of Chapter 12. In the present chapter we are always considering an infinite-
volume translation-invariant system.

b) Polymer models. The most general class of polymer models for which we
have results is that of repulsive polymer-chain models (Section 9.2.1). Among
these, the most important are the simple contact-interacting walk (CIW) mod-
els, in which the walks interact only if they intersect, and the interaction depends
on the total number of visits at each lattice site. In particular, most of our re-
sults apply to repulsive CIW models. An important example of a repulsive CIW
model is the self-avoiding walk (SAW). A more general example, which includes
the SAW as a limiting case, is the Edwards model [160, 28, 97, 75] (see Section
9.2.1 above, Example d). Many of the results can be generalized to contact-
interacting walk models in which the walks carry “color” and the interaction is
color-dependent. In particular, we consider the “intersection properties of ordi-
nary random walks” (IPORW) model in which intersections between different
walks are forbidden but each walk may self-intersect freely. All of our results for
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Model Single-Spin Measure Remarks and References

Ising δ(ϕ2 − 1)

ϕ4 const × e
−λ

4
ϕ4− τ

2
ϕ2

(λ ≥ 0)

GS class Sums of ferromagnetically cou-
pled Ising spins, and limits
thereof

Griffiths-Simon class: includes
spin-l, uniformly dis-
tributed bounded spins, ϕ4-spins
. . . [272], [466], [5], [15]

EMN class e−V (ϕ) with V even and C1, with
V ′ convex on [0,∞); and limits
of such measures

Ellis-Monroe-Newman class: in-
cludes Ising, ϕ4, uniformly dis-
tributed bounded spins . . . [162],
[163]

BFS class e−f(ϕ2) with f convex; and limits
of such measures

Brydges-Fröhlich-Spencer class:
strictly includes EMN class[92],
[97, Sections 5 and 6]

Examples

1. A BFS measure which is not EMN: e−V (ϕ) with V (ϕ) = ϕ8 − εϕ6 + ϕ4 and
2
√

14/5 < ε ≤ 2
√

6/3.

2. A GS measure which is not BFS (hence not EMN): the equal-weight spin-1
measure (1/3)[δ(ϕ + 1) + δ(ϕ) + δ(ϕ − 1)].

3. An EMN measure which is not GS: e−V (ϕ) with V (ϕ) = ϕ6 + aϕ2 and a > 0
large. (For large a, this measure fails to have the Lee-Yang property [414, 413];
but all GS measures have the Lee-Yang property [272, 466].)

Table 13.1. Classes of spin models
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polymer models refer to the “zero-magnetic-field case”, i.e. to a system with a
fixed finite number of polymers. The results for nonzero field — i.e. fixed density
of polymers — only apply to the unphysical “baby” polymer models (Section
10.2.2).

13.2 Critical exponents

From now on we consider only translation-invariant models. The following quan-
tities are of physical interest1:

The (magnetic) susceptibility

χ =
∑

x

u2(0, x). (13.5)

The magnetization

M = u1(0). (13.6)

The bubble diagram (at zero magnetic field)

B0 =
∑

x

S2(0, x)2
h=0. (13.7)

The truncated bubble diagram

BT =
∑

x

u2(0, x)2. (13.8)

The n-th order cumulant at zero momentum

un =
∑

x2,...,xn

un(0, x2, . . . , xn). (13.9)

The correlation length. The (exponential or “true”) correlation length ξ is
defined so that u2(0, x) ∼ e−|x|/ξ, as |x| → ∞, where |x| is, say, the Euclidean
norm of x. More rigorously:

ξ = lim sup
n→∞

−|x|
log u2(0, x)

. (13.10)

Other definitions of correlation length are also useful. For each φ > 0 the cor-
relation length of order φ is

ξφ =

{∑
x |x|φu2(0, x)

χ

}1/φ

. (13.11)

1The definitions given here (and employed in the remainder of this book) are the simplest
from the statistical-mechanical point of view; they differ (by factors of temperature, which
are inessential in the critical region) from the standard thermodynamic definitions expounded
in Chapter 1.
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By Hölder’s inequality ξφ increases with φ , and for reflection-positive spin
models2 [218, 481]

c(d, φ)ξφ ≤ ξ (13.12)

for all φ > 0.
The renormalized coupling constants for the lattice model:

g =
−u4

χ2ξd
(13.13)

gφ =
−u4

χ2ξd
φ

. (13.14)

These constants are a measure of the non-Gaussianness of the model (in zero
magnetic field). It can be proven (modulo some technicalities) [481] that in the
continuum limit g2 becomes the renormalized coupling constant of the contin-
uum quantum field theory.

The derivatives with respect to the “inverse temperature”. Usually the cou-
pling constants are parametrized in the form

Jij = βJ̃ij , (13.15)

in which we fix the geometric structure of the interaction and vary only its
“strength” β.3 We therefore have the formula

β
∂

∂β
= 1

2

∑

x,y

Jxy
∂

∂Jxy

. (13.16)

Let us make two remarks about the notation. First, we shall avoid (wherever
possible) references to the coupling constants J̃ij, in order to use without changes
the formulas developed in previous chapters in terms of the full couplings Jij.
We shall often use the quantity |J | ≡ ∑

j Jij, which plays the same role as β.
Second, we must face the unfortunate fact that the same letter β is used for
one of the critical exponents. To prevent confusion without departing too much
from the standard usage, we shall use the symbol β̂ for this critical exponent.

The specific heat (at zero magnetic field)

CH = 1
4

∑

x,y,z

J0xJyz
∂u2(0, x)

∂Jyz

. (13.17)

In spin systems this coincides (at least formally) with the derivative of the
energy per site with respect to the inverse temperature β.

Let us remark again that all the work done in previous chapters concerns
systems in finite volume. The correlation inequalities not involving derivatives

2Here and in the sequel “reflection-positive models” stands for “infinite-volume translation-
invariant Gibbs states which are reflection-positive for reflections in planes without sites,
parallel to the coordinate planes”. See Section 13.4.

3Note that we do not introduce an analogous parametrization for the magnetic field; i.e.
our “h” corresponds to “βh” of the physics literature.
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carry over immediately to the infinite-volume limit, but for differential inequal-
ities some extra work is needed to prove that the “fluctuation-dissipation rela-
tions” (or “sum rules”) implied formally by (13.16) remain valid in the thermo-
dynamic limit. We shall ignore the details of such a proof (see for instance the
appendix of [479]), and we shall freely use (13.16) for observables in the infinite
system.

We make the assumption that there exists a critical point (β = βc, h = 0)
such that χ(βc, h = 0) = ∞, and χ(β, h = 0) < ∞ for β < βc. For β > βc and
h = 0 we consider the “+” state, i.e. define all the observables A(β, h = 0) as the
limit as h ↓ 0 of A(β, h). In principle, there might exist a second critical point at
a certain β′

c > βc where β′
c = inf{β: M(β, h) > 0}. In this case the range βc <

β < β′
c would be occupied by an intermediate regime with infinite susceptibility

and zero magnetization. The existence of such a regime has, however, been ruled
out for spin systems with single-spin measures in the GS class [6, 9, 10]. We
shall implicitly assume for our models that no such intermediate regime exists
(otherwise the primed critical exponents defined below should be defined for
β > β′

c, and there should be exponents δ, αc and bc for each isotherm in the
range βc < β < β′

c).
To define the critical exponents [487, 479], let us write f(x) ∼ xλ as an

abbreviation of λ = limx↓0
log f(x)

log x
. Let us also define t ≡ βc −β. We then have:

• For t > 0 (T > Tc) and h = 0:

χ ∼ t−γ

ξ ∼ t−ν

ξφ ∼ t−νφ

CH ∼ t−α (13.18)

u2m ∼ t−γ−2
∑m

k=2
∆2k

B0 ∼ t−b

g ∼ t̺ ≡ tdν−2∆4+γ

gφ ∼ t̺φ ≡ tdνφ−2∆4+γ

• For t < 0 (T < Tc) and h = 0+:

χ ∼ |t|−γ′

ξ ∼ |t|−ν′

ξφ ∼ |t|−ν′
φ

CH ∼ |t|−α′

(13.19)

un ∼ |t|−γ′−
∑n

k=3
∆′

k

M ∼ |t|β̂
BT ∼ t−b′

• For t = 0 (T = Tc) and h > 0:
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M ∼ h1/δ

CH ∼ h−αc/δ (13.20)

BT ∼ h−bc/δ

The exponents b, b′ and bc are not part of the standard zoo of critical exponents,
but we find it convenient to introduce them here in view of the central role played
in our analysis by “bubble diagrams”.

For dimensions where the mean-field critical behavior is exact — i.e. d > dc

— the specific heat is no longer divergent at βc but only exhibits a jump discon-
tinuity which is not described by the exponent α defined above (which becomes
identically zero no matter the characteristics of the jump). For this reason, it
is customary to define in addition an exponent αsing which characterizes the
behavior of the singular part of the specific heat. This exponent coincides with
α for d ≤ dc but it is expected to be strictly negative — and d-dependent —
for d > dc.

Finally, we note that the hyperscaling relation

̺ ≡ dν − 2∆4 + γ = 0 (13.21)

(if valid without multiplicative logarithmic corrections) means that the renor-
malized coupling constant g tends to a nonzero value as t → 0, so that the
scaling (continuum) limit is non-Gaussian. Conversely, the failure of hyperscal-
ing

̺ ≡ dν − 2∆4 + γ > 0 (13.22)

means that g tends to zero as t → 0, so that the scaling limit is Gaussian.
For d equal to the upper critical dimension dc (dc = 4 for short-range

models), it is believed that the critical exponents take their mean-field val-
ues (γ = γ′ = 1, ν = ν ′ = 1/2, etc.) with multiplicative logarithmic corrections.

In this case, therefore, we define the logarithmic exponents γ, ν, b, ̺, β̂ and δ
by

• For t > 0 (T > Tc) and h = 0:

χ ∼ t−1|logt|γ
ξ ∼ t−1/2|logt|ν

ξφ ∼ t−1/2|logt|νφ

CH ∼ |logt|α (13.23)

B0 ∼ |logt|b
g ∼ |logt|−̺

gφ ∼ |logt|−̺φ .

• For t < 0 (T < Tc) and h = 0+:

M ∼ |t|1/2|log|t||β̂ . (13.24)
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• For t = 0 (T = Tc) and h > 0:

M ∼ h1/3|logh|δ . (13.25)

Note that ̺ > 0 means that hyperscaling is violated by logarithms, and hence
that the continuum limit is trivial. Field-theoretic renormalization-group calcu-
lations [77] yield the predictions

γ =
n + 2

n + 8

ν = νφ =
n + 2

2(n + 8)

α =
4 − n

n + 8

b = 1 (13.26)

̺ = ̺φ = 1

β̂ =
3

n + 8

δ =
1

3

for the n-vector model in d = 4 (n = 0 is the SAW, and n = 1 is the Ising model).
For the d = 4 IPORW model, we have trivially γ = ν = 0 and α = b = 1; and
it is a rigorous (but highly nontrivial) theorem [351, 185, 7] that ̺ = 1 (see
discussion below).

The above exponents correspond to the usual definitions adopted for the
Ising systems. However, for the nearest-neighbor translation-invariant isotropic
SAW model some of the exponents admit an alternative definition in terms of
the magnitudes relevant to polymer physics. Indeed, if we denote

cN = number of N -step nearest-neighbor SAWs starting at
the origin and ending anywhere;

cN(x) = number of N -step nearest-neighbor SAWs starting at
the origin and ending at x;

〈ω(N)2〉 = mean-square end-to-end distance

=
∑

x |x|2cN(x)/cN ;

cN1,N2 = number of pairs of walks (ω1, ω2) such that ω1 starts at
the origin, ω2 starts anywhere, and they visit at least
one common site;

then the critical exponents can be defined in the form:

cN ∼ µNNγ−1

cN(x) ∼ µNNαsing−2 (x 6= 0)
(13.27)〈ω(N)2〉 ∼ N2ν

cN1,N2 ∼ µN1+N2N2∆4+γ−2g(N1 + N2) .
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Here µ = β−1
c is the connective constant of the lattice, g is some scaling function,

and the limits are taken for N , N1 and N2 tending to infinity. The equivalence
of definitions (13.27) and (13.18) for the SAW is a consequence of the remark by
deGennes that the CIW models are the n → 0 limit of n-component spin models
[see discussion around formulas (9.40)–(9.42)]. Indeed, this remark implies the
identities

χ =
∞∑

N=0

βNcN , (13.28)

ST
2 (0, x) =

∞∑

N=0

βNcN(x) (13.29)

and

u4 = 3
∞∑

N1,N2=0

βN1+N2cN1,N2 . (13.30)

The renormalized coupling constant g has a particularly clear physical in-
terpretation for the SAW. Indeed, from (13.13) and (13.28))–(13.30),

g =
3

ξd

∑

y

Proby[supp(ω1) ∩ supp(ω2) 6= ?] , (13.31)

where

Proby[f(ω1, ω2)] =
1

χ2

∑

ω1:0 → •

ω2:y → •

β|ω1|+|ω2|f(ω1, ω2) (13.32)

and the sum is taken over all SAWs ω1 [resp. ω2] starting at 0 [resp. at y] and
ending anywhere. Thus, roughly speaking, the renormalized coupling constant
g measures the probability that two independent SAWs, starting at a distance
of order ξ apart, will intersect.

13.3 Summary of correlation inequalities

Finally, let us list for the reader’s convenience all the correlation inequalities
that will be used in the present discussion. For spin systems we use the notation
ϕA =

∏
x∈A ϕx. For simplicity, we use the phrases “BFS models” and “GS

models” as a shorthand for “spin model of BFS class” and “spin model of GS
class”, respectively.

a) Griffiths’ first and second inequalities:

〈ϕA〉 ≥ 0 (13.33)

and
〈ϕA; ϕB〉 ≡ 〈ϕAϕB〉 − 〈ϕA〉〈ϕB〉 ≥ 0 . (13.34)

These inequalities are valid for all ferromagnetic spin models [491] with even
single-spin measure, in particular for those with single-spin measures of the
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BFS or GS class. An important consequence of (13.34) is that each correlation
〈ϕA〉 is an increasing function of each of the coupling constants Jij — hence of
β —and of the magnetic fields hx.

b) Ginibre-Newman-Aizenman [410, 5] inequality:

u4(x1, x2, x3, x4) ≥
−2 min[S2(x1, x2)S2(x3, x4), S2(x1, x3)S2(x2, x4), S2(x1, x4)S2(x2, x3)] .

(13.35)

This inequality is valid for all ferromagnetic spin models with even single-spin
measure (it is a consequence of the Ginibre inequality 〈q1q2t3t4〉 ≥ 0 and per-
mutations [491]).

c) Lebowitz inequalities:
In zero magnetic field [362],

u4(x1, x2, x3, x4) ≤ 0 . (12.14)/(13.36)

This is the simplest of the Gaussian upper bounds proved in Section 12.1 for
repulsive polymer chains, BFS and GS models. Two immediate consequences of
(13.36) are the inequalities

u4 ≤ 0 (13.37)

and

β
∂χ

∂β
≤ |J |χ2 . (13.38)

For spin systems one also has the following generalization for nonzero magnetic
field [491, 162]:

〈ϕx1ϕx2ϕx3ϕx4〉 − 〈ϕx1ϕx2〉〈ϕx3ϕx4〉 − 〈ϕx1ϕx3〉〈ϕx2ϕx4〉 − 〈ϕx1ϕx4〉〈ϕx2ϕx3〉
≤ −2〈ϕx1〉〈ϕx2〉〈ϕx3〉〈ϕx4〉 . (13.39)

This inequality is valid, for instance, for ferromagnetic spin systems with single-
spin measures in the EMN or GS class [162, 163].

d) Aizenman-Fröhlich (AF) inequalities: For the repulsive simple CIW, BFS
and GS models [213, 15],

u4(x1, x2, x3, x4) ≥ −
∑

z

S2(x1, z)S2(x3, z)
[
δz,x2 +

∑

z1

Jzz1S2(z1, x2)
]

×
[
δz,x4 +

∑

z2

Jzz2S2(z2, x4)
]
− {2 permutations} . (12.24)/(13.40)

For Ising models one has the slight improvement [5]

u4(x1, x2, x3, x4) ≥ −2
∑

z

〈σx1σz〉〈σx3σz〉〈σzσx2〉〈σzσx4〉 . (13.41)

The “summed” versions of (13.40) and (13.41) are, respectively,
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u4 ≥ −3|J |2χ4

(
1 +

1

|J |χ

)2

(12.30)/(13.42)

and
u4 ≥ −2χ4 . (13.43)

e) Aizenman-Graham (AG) inequality (“once-improved AF inequality”)
[15]: For ferromagnetic spin models with single-spin measures in the GS class,

u4(x1, x2, x3, x4) ≥ −
∑

z,z1,z2

S2(x1, z)Jzz1S2(z1, x2)Jz1z2

∂

∂Jz1z2

S2(x3, x4)

−ε(x1, x2, x3, x4) (12.33)/(13.44)

where the error term ε(x1, x2, x3, x4) becomes negligible in the critical region
(see the discussion in Section 12.2). An analogous inequality holds for self-
avoiding walks [28]. For Ising models one has the following slightly sharper
version:

u4(x1, x2, x3, x4) ≥ −
∑

z,z1

S2(x1, z)S2(x2, z)tanh(Jzz1)
∂

∂Jzz1

S2(x3, x4)

− ε(x1, x2, x3, x4) . (12.32)/(13.45)

These inequalities differ from (13.40) and (13.41) in that one of the products
S2S2 has been replaced by ∂S2

∂J
, which, as discussed in Section 12.2.3, is an

improvement. We shall see that the improvement is especially relevant at (or
below) the upper critical dimension. Summing (13.44) over three of the sites,
we obtain

u4 ≥ −|J |χ2β
∂χ

∂β
− ε . (12.42)/(13.46)

Another consequence of (13.44) is (see Section 12.2.3)

β
∂χ

∂β
≥ |J |χ2

1 + |J |2B0

[1 − ε′] , (12.50)/(13.47)

which complements (13.38).

f) Twice-improved AF inequality: For simple CIW models we can “doubly”
improve the inequality (13.40), i.e. replace both factors S2S2 by factors ∂S2/∂J .
We have (see (12.53))

u4(x1, x2, x3, x4) ≥ −
∑

z

[
S2(x1, z)δz,x2 + (1/2)

∑

z1

Jzz1

∂

∂Jzz1

S2(x1, x2)
]

×
[
S2(x3, z)δz,x4 + (1/2)

∑

z2

Jzz2

∂

∂Jzz2

S2(x3, x4)
]

− {2 permutations} . (13.48)
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The corresponding “summed” inequality is

u4 ≥ −3(β
∂χ

∂β
+ χ)2 . (12.56)/(13.49)

g) Non-Gaussian upper bound on u4 [194]: For translation- invariant Ising
models, the use of the random-current representation and the “dilution trick”
(Section 12.3.1) yields a strictly negative upper bound on u4:

u4 ≤ − 1

48|J |2B0

(
β

∂χ

∂β

)2

[1 − ε] . (12.118)/(13.50)

[This sharpens the Lebowitz inequality (13.37).] A notoriously less transpar-
ent “pointwise” version of this inequality was given in Section 12.3 (formula
(12.115)). If inequality (13.50) is combined with (13.47) we obtain:

u4 ≤ − χ4

48B0(1 + |J |B0)2
[1 − ε] . (12.119)/(13.51)

An inequality analogous to (13.50) can be proven also for the IPORW model
(see Section 12.3.2).

h) The Ginibre inequality for the three-point function:

u3(x, y, z) ≥ −2 min[〈ϕx〉 〈ϕy; ϕz〉, 〈ϕy〉 〈ϕx; ϕz〉, 〈ϕz〉 〈ϕx; ϕy〉] . (13.52)

This inequality is valid for one-component ferromagnetic spin models with even
single-spin measure (it is a consequence of the Ginibre inequality 〈txqyqz〉 ≥ 0
and permutations [491]).

i) The Griffiths-Hurst-Sherman (GHS) inequality [279]:
For one-component spin models with single-spin measures in the EMN or

GS class,
u3(x, y, z) ≤ 0 . (12.164)/(13.53)

One immediate consequence is that

u3 ≡ ∂χ

∂h
≤ 0 . (13.54)

Another consequence [409, 479] is that

∂M

∂β
≤ |J̃ |Mχ . (13.55)

j) The weak GHS inequality: For repulsive polymer-chain, BFS and GS
models,
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S1(x) ≥
∑

y

ST
2 (x, y)hy (12.139)/(13.56)

and hence
M ≥ hχ . (13.57)

This can be interpreted as an integrated version of the GHS inequality (see
Section 12.4.4).

k) Fröhlich-Sokal (FS) inequality [223]: For baby repulsive simple CIW mod-
els and BFS models,

M

h
≤ χ +

(
M

h

)2

[h + |J |M ]2 . (12.156)/(13.58)

The “pointwise” inequality corresponding to (13.58) includes a rather myste-
rious kernel K; see Section 12.4.

l) Aizenman-Barsky-Fernández (ABF) inequality (“once-improved FS in-
equality”) [10]: For models with single-spin measures in the GS class,

M

h
≤ χ +

(
M

h

)2 (
h + |J |M

)(
h +

h

M
β

∂M

∂β

)
(12.162)/(13.59)

while for the Ising model the following version is also valid:

M

h
≤ χ +

(
M

h

)2 (
hM + hβ

∂M

∂β

)
. (12.161)/(13.60)

Substituting (13.55) into the ABF inequality, we obtain the “weak ABF in-
equality”

M

h
≤ χ +

M2

h
(h + |J |M)(1 + |J |χ) (13.61)

for GS models, and
M

h
≤ χ +

M3

h
(1 + |J |χ) (13.62)

for the Ising models. [The FS inequality is a further weakening of (13.61) ob-
tained by substituting the weak GHS inequality χ ≤ M/h.]

m) Tree bound on ū3 (= ∂χ/∂h): For the Ising model we have [12]

ū3 ≥ −4|J | [1 + O(h/M)] [1 + M tanh h]3
M4

(tanh h)3
, (12.168)/(13.63)

which also has a “pointwise” version (formula (12.167)). For models in GS class
there is an analogous inequality [194]:

u3 ≥ −4 |J |2 [1 + O(h/M)]
[
1 + Mh(1 + ε(h))

1 − ε(h)

]3 M4

h3
, (12.173)/(13.64)

where ε(h) → 0 as h → 0. Here ε(h) depends on the single-spin measure; it is
identically zero for ϕ4 and Ising spins.
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n) Non-Gaussian upper bound on ū3: For the Ising model we have the
Aizenman-Fernández (AFe) inequality [12]

ū3 ≤ − [1 − B0(tanh h)/M)]

96B0(1 + 2|J |B0)2
(tanhh) χ4 . (12.166)/(13.65)

o) Schrader–Messager–Miracle-Solé inequality [453, 394, 302, 495]: These
inequalities, which are valid for nearest-neighbor translation-invariant ferromag-
netic spin models (with arbitrary single-spin measure), state that

〈ϕ0; ϕy〉 ≥ 〈ϕ0; ϕx〉 (13.66)

whenever |y|1 ≡ ∑d
i=1 |yi| ≤ |x|∞ ≡ max1≤i≤d |xi|. In particular, this holds

whenever y ≤ d−1|x| (Euclidean distance).

For easy reference we summarize the main conclusions of this discussion on
inequalities in Tables 13.2, 13.3 and 13.4.

13.4 Reflection positivity, spectral representations and in-
frared bounds

A fundamental principle of quantum mechanics is the positivity of the inner
product in the Hilbert space of states; physically this expresses the positivity
of probabilities. When translated to a condition on the imaginary-time Green’s
functions (Schwinger functions), this “physical positivity” condition is known
as reflection positivity (see Section 1.5).

Reflection positivity was first introduced, therefore, in axiomatic quantum
field theory, as a necessary and sufficient condition on the (Euclidean-space)
Schwinger functions to allow an analytic continuation back to a (Minkowski-
space) quantum field theory. It was soon realized, however, that many interest-
ing statistical-mechanical systems also possess reflection positivity; and while
reflection positivity does not play the fundamental role in statistical mechanics
that it does in quantum theory, it is nevertheless an extremely useful techni-
cal tool. In this section we explain what reflection positivity is, and summarize
some of its principal consequences.

Let θ be a reflection in IRd that maps the lattice ZZ
d into itself; it will be

a reflection in some hyperplane {x: n · x = c} for suitable n and c. Then we
denote by Θ be corresponding map on lattice field configurations,

(Θϕ)x ≡ ϕθx , (13.67)

and (by abuse of language) on observables,

(ΘA)(ϕ) ≡ A(Θϕ) . (13.68)
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Table 13.2. Systems satisfying each inequality

Inequality
Name or abbreviation: (Eq.#)

Systems for which it holds

Griffiths II: (13.34) Ferromagnetic spin models with even
single-spin measure

Ginibre-Newman-Aizenman: (13.35) Ferromagnetic spin models with even
single-spin measure

Lebowitz (zero magnetic field): (13.36) Repulsive polymer-chain models; spin
models in GS and BFS classes

Lebowitz (nonzero field): (13.39) Spin models in GS and EMN classes

AF: (13.40), (13.41) Repulsive simple CIW models; spin
models in GS and BFS classes

AG: (13.44), (13.45) Spin models in GS class; SAW

Twice improved AF: (13.48) Simple CIW models

Non-Gaussian upper bound on u4:
(13.50)

Ising, IPORW models

GHS: (13.53) Spin models in GS and EMN classes

Weak GHS: (13.56) Repulsive polymer-chain models; spin
models in GS and BFS classes

FS: (13.58) Baby repulsive CIW models; spin mod-
els in GS and BFS classes

ABF: (13.59), (13.60) Spin models in GS class

AFe: (13.65) Ising model

Schrader–Messager–Miracle-Solé:
(13.66)

Nearest-neighbor translation-invariant
ferromagnetic spin models
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Table 13.3. Summed versions of the correlation inequalities for translation-invariant
models in zero magnetic field

u4 ≥





−3|J |2χ4
(

1 +
1

|J |χ

)2

BFS models

−|J |χ2β
∂χ

∂β
− ε ≥ − |J |2χ4

1 + |J |2B0
[1 − ε′′] GS models

−3

(
β

∂χ

∂β
+ χ

)2

repulsive simple CIW models

u4 ≤





0 repulsive polymer-chain, BFS and GS models

− 1

48|J |2B0

(
β

∂χ

∂β

)2

[1 − ε̃] ≤ − χ4

48B0(1 + 2|J |B0)2
[1 − ε̃′] Ising models

β
∂χ

∂β
≤ |J |χ2 repulsive polymer chains, BFS and GS models

β
∂χ

∂β
≥ |J |χ2

1 + |J |2B0
[1 − ε′] repulsive simple CIW, GS models



13.4 Reflection positivity, spectral representations and infrared bounds 293

Table 13.4. Summed versions of the correlation inequalities for translation-invariant
models in non-zero magnetic field

χ ≤ M

h
≤





χ +

(
M

h

)2

[h + |J |M ]2 simple CIW, BFS and GS models

χ +

(
M

h

)2 [
h + |J |M

][
h +

h

M
β

∂M

∂β

]
GS models

χ +

(
M

h

)2 [
hM + hβ

∂M

∂β

]
Ising models

∂χ

∂h
≥





0 EMN and GS models

− [1 − O(B0h/M)]

96B0(1 + 2|J |B0)2
(tanhh)χ4 Ising models

∂χ

∂h
≤ −32|J |[1 + O(h/M)]

M4

(tanhh)3
Ising models
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Let ZZ
d
≥ denote the half-space ZZ

d ∩ {x: n · x ≥ c}, and let F≥ denote the space

of observables depending only on the fields in ZZ
d
≥. Then a probability measure

µ on IRZZ
d

is said to be reflection-positive (RP) with respect to θ if

〈ΘAA〉µ ≥ 0 for all A ∈ F≥ , (13.69)

where denotes complex conjugation.
In particular, we are interested in the case that µ is the Gibbs measure of

a translation-invariant spin system with quadratic Hamiltonian

H = − 1

2

∑

x,y

J(x − y) ϕxϕy . (13.70)

The pair coupling J = {J(x)}x∈ZZ
d is said to be reflection-positive (with respect

to θ) if ∑

x,y∈ZZ
d
>

f(x) J(θx − y) f(y) ≥ 0 (13.71)

for all complex-valued functions f on ZZ
d whose support is finite and lies in

ZZ
d
> ≡ ZZ

d ∩ {x: n · x > c}. Then a fundamental theorem [218] states that
(under mild technical conditions concerning the infinite-volume limit) if J is a
reflection-positive coupling, then any translation-invariant Gibbs state µ for the
Hamiltonian H is a reflection-positive measure.

Let us now make some general remarks about reflection-positive couplings,
and give some examples:

1) If J is reflection-positive, then so is λJ for any λ ≥ 0. Similarly, if J and
J ′ are reflection-positive, then so is λJ +(1−λ)J ′ for any 0 ≤ λ ≤ 1. Therefore,
the reflection-positive couplings form a convex cone, which we denote R.

2) A slightly less trivial result [218] is that the pointwise product of two
reflection-positive couplings is again reflection-positive: (JJ ′)(x) ≡ J(x)J ′(x).
So R is in fact a multiplicative convex cone.

3) The two types of reflection most commonly considered are reflection in
a lattice hyperplane (e.g. x1 = 0), and reflection in a bisector hyperplane (e.g.
x1 = −1

2
). In these two cases there exist spectral representations completely

characterizing the class R of reflection-positive couplings [218]. Let us consider
first the case of dimension d = 1. Then a coupling J is RP with respect to a
lattice hyperplane if and only if

J(x) = aδx,0 + bδ|x|,1 + cδ|x|,2 +

1∫

−1

λ|x|−2 d̺(λ) (13.72)

where a, b are real, c ≥ 0 and d̺ is a positive measure. A coupling J is RP with
respect to a bisector hyperplane if and only if

J(x) = aδx,0 + bδ|x|,1 +

1∫

−1

λ|x|−1 d̺(λ) (13.73)
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where a is real, b ≥ 0 and d̺ is a positive measure.4 These representations
generalize straightforwardly to dimension d > 1: the d−1 transverse dimensions
simply “go for the ride”. That is, J is RP with respect to reflection in the
hyperplane x1 = 0 if and only if

J(x1,x) =
∫

[−π,π]d−1

dp eip·x


apδx1,0 + bpδ|x1|,1 + cpδ|x1|,2 +

1∫

−1

λ|x1|−2 d̺p(λ)




(13.74)
where ap, bp are real, cp ≥ 0 and d̺p is a positive measure for each p ∈
[−π, π]d−1. Similarly, J is RP with respect to reflection in the hyperplane
x1 = −1/2 if and only if

J(x1,x) =
∫

[−π,π]d−1

dp eip·x


apδx,0 + bpδ|x1|,1 +

1∫

−1

λ|x1|−1 d̺p(λ)


 (13.75)

where ap is real, cp ≥ 0 and d̺p is a positive measure for each p. A more
complicated — and to our knowledge, still unsolved — problem is to characterize
in similar terms the interactions that are simultaneously RP with respect to
lattice (or bisector) hyperplanes in all directions xi (1 ≤ i ≤ d).

Examples.

(a) A nearest-neighbor ferromagnetic coupling

J(x − y) =
{

J if |x − y| = 1
0 otherwise

(13.76)

(J ≥ 0) is reflection-positive with respect to both lattice hyperplanes
and bisector hyperplanes. A nearest-neighbor antiferromagnetic coupling
(J < 0) is reflection-positive with respect to lattice hyperplanes but not
bisector hyperplanes.

(b) Let ∆ be the Laplacian on IRd, and for each a ≥ 0 let Ga(x, y) be the
integral kernel of the operator (−∆+a)−1. Then, for any positive measure
d̺ on IR+, the coupling defined by

J(x − y) =
∫

d̺(a) Ga(x − y) (13.77)

restricted to x, y ∈ ZZ
d is reflection-positive. An explicit example covered

by this remark is

J(x − y) =
{ |x − y|−κ for x 6= y

0 for x = y
(13.78)

with κ ≥ d − 2.

4If we interpret 00 = 1, then the terms cδ|x|,2 in (13.72) and cδ|x|,1 in (13.73) are just the
contributions from a δ(λ) piece in d̺(λ) and could therefore be omitted.
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(c) Let J be a coupling that is reflection-positive with respect to bisectors on
ZZ

1. Then the coupling J̌ on ZZ
d defined by

J̌(x) ≡ J(|x|1) (13.79)

with |x|1 =
d∑

i=1
|xi| is also reflection-positive [13].

We now discuss two important consequences of reflection positivity: spectral
representations and infrared bounds.

Spectral representation [258, 449].
Let µ be a translation-invariant measure that is reflection-positive with

respect to reflection in the lattice hyperplane x1 = 0. Then it is not hard to
show that the truncated two-point function

G(x) ≡ 〈ϕ0 ; ϕx〉 (13.80)

has the spectral representation [258, 449]

G(x1,x) =
∫

[−π,π]d−1

dp

1∫

−1

d̺p(λ) λ|x1|eip·x (13.81)

where x = (x2, . . . , xd) and d̺p(λ) is, for each p, a positive measure on [−1, 1].
If, in addition, µ is RP with respect to reflection in the bisector hyperplane
x1 = −1/2, then each measure d̺p(λ) is supported on [0, 1].

If the exponential correlation length ξ [defined in (13.10)] is finite, then
it is not hard to see that each measure d̺p(λ) is supported on the interval
[−e−1/ξ, e−1/ξ].

Remark. The spectral representation (13.81) for the two-point function G is tanta-
lizingly similar, but not identical, to the spectral representations (13.74) and (13.75)
for the pair coupling J . This is because reflection positivity for a measure (hence
also for that measure’s moments) involves observables living in ZZ

d
≥, while reflection

positivity for a pair coupling involves only observables living in ZZ
d
>(ZZ

d
≥.

Infrared bound [222, 218, 481]. Let

G(x) ≡ 〈ϕ0 ; ϕx〉 (13.82)

be the truncated two-point function, and let

G̃(p) ≡
∑

x

e−ip·x G(x) (13.83)

be its Fourier transform. Similarly, let
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J̃(p) ≡
∑

x

e−ip·x J0x (13.84)

be the Fourier transform of the pair interaction. The infrared bound [222, 218]
states that if J is a reflection-positive coupling, then

0 ≤ G̃(p) ≤ [J̃(0) − J̃(p)]−1 . (13.85)

In particular, for a nearest-neighbor interaction of strength J , we have

0 ≤ G̃(p) ≤
[
2J

d∑

i=1

(1 − cos pi)

]−1

≤ const

J |p|2 (13.86)

(since |pi| ≤ π).
There is also an x-space version of the infrared bound [481, Appendix A],

which is a consequence of the p-space bound combined with the Schrader–
Messager–Miracle-Solé correlation inequality. For nearest-neighbor ferromag-
nets, one gets

0 ≤ G(x) ≤ const

J(|x| + 1)d−2
(13.87)

for d > 2; the constant is universal.

Some further consequences. By combining the spectral representation
(13.81) with the infrared bound (13.86), it is not difficult to prove the following
bounds [481, section 2.2] relating χ to the correlation length ξ (or ξφ):

Jχ ≤ const × ξ2 (13.88)

Jχ ≤ const × ξ2
φ (13.89)

These are universal bounds, which hold for nearest-neighbor ferromagnets with
arbitrary single-spin measure.
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14. Inequalities for critical exponents

The principal goal of the theory of critical phenomena is to make quantita-
tive predictions for universal features of critical behavior — critical exponents,
universal ratios of critical amplitudes, equations of state, and so forth — as
discussed in Section 1.1. (Non-universal features, such as critical temperatures,
are of lesser interest.) The present status of the theory of critical phenomena is
roughly the following:

• Non-rigorous renormalization-group calculations predict mean-field crit-
ical behavior for systems above their upper critical dimension dc (e.g.
dc = 4 for short-range Ising-type models). For systems below their upper
critical dimension (e.g. d = 3), RG methods predict exact scaling laws
relating critical exponents, and give reasonably accurate numerical pre-
dictions of individual critical exponents (and other universal quantities).1

• Rigorous mathematical analysis has given a proof of (some aspects of)
mean-field critical behavior for (certain) systems above their upper critical
dimension (e.g. short-range Ising models for d > 4). For systems below
their upper critical dimension, much less is known. Often one half of a
scaling law can be proven as a rigorous inequality . Likewise, rigorous upper
or lower bounds on individual critical exponents can in many cases be
proven.

The goal of this chapter is to give an exposition of a significant part (but
far from all) of the currently-available rigorous theory of critical exponents
for spin and polymer systems. More precisely, we emphasize those results that
are consequences of the correlation inequalities summarized in Section 13.3,
and especially those that follow from the random-walk and random-current
formalisms. Our main purpose is to explain the basic ingredients behind the
proof of each result; thus, we shall often omit the detailed arguments, referring
the reader to the original publication, except when no readily available reference
exists. We emphasize that this chapter is not a comprehensive review of critical-
exponent inequalities; for complementary material, see [199, 269, 415, 409, 464,
479, 480, 487].

1The situation in dimension d = 2 is special: the combination of exact solutions, Coulomb
gas arguments and conformal invariance has allowed the presumably exact (through at present
non-rigorous) calculation of numerous critical exponents.
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The strongest available results concern the approach to critical point from
the high-temperature side at zero magnetic field (the “symmetric regime”); we
discuss these results in Section 14.1. In the subsequent three sections, we dis-
cuss all other approaches to the critical point (the “non-symmetric regime”).
This regime includes, as a special case, the traditional paths to the critical point
along the critical isotherm and along the coexistence curve. However, we believe
that the traditional focus on these particular paths is too narrow, and one of
our goals will be to establish bounds which are valid in a full neighborhood of
the critical point in the (β, h)-plane. Examples of such bounds are the “extrap-
olation principles”of Section 14.2, and the bounds valid outside certain “horns”
obtained in Section 14.5. These bounds will be of particular importance in our
discussion of the scaling limit (Section 15.3).

It is important to distinguish between two types of bounds — called uni-
versal and non-universal2 — which correspond to different ways of approaching
the critical point:

1) Universal bounds . A universal bound is one that is valid for some large
class of single-spin measures (e.g. GS class, BFS class, etc.), with constants that
are universal numbers (independent of everything except possibly the dimen-
sionality of space).3 For example, the infrared bound

0 ≤ G(x; J) ≤ const

J(|x| + 1)d−2
(13.87)/(14.1)

holds for all nearest-neighbor ferromagnetic spin models in dimension d >
2, irrespective of the single-spin measure. Note, in particular, that since the
GS, BFS, . . . classes are invariant under the field-strength rescaling ϕ → αϕ,
it follows that a universal bound must be dimensionally correct under such
rescalings.Universal bounds are appropriate to the study of quantum field theory
(Chapter 15), in which we must allow an arbitrary manner of approach to the
critical surface (e.g. arbitrary variation of the bare ϕ4 coupling constant λ).

2) Non-universal bound. These are bounds in which the constants are not
universal, but depend on various parameters of the model. For example, consider
a statistical-mechanical model in which one fixes the single-spin measure dP (ϕ)
and increases the nearest-neighbor coupling towards its critical value Jc. Now,
for J ≤ Jc we have

G(x; J) ≤ G(x, Jc) ≤ C

(|x| + 1)d−2+η
(14.2)

2Our use here of the term “universal” is related to, but not identical to, its meaning in
renormalization-group theory.

3That is, in a universal bound, “const” stands for some finite number that we could in
principle calculate if we were less lazy. Example: In the infrared bound 0 ≤ G̃(p) ≤[
2J

d∑
i=1

(1 − cos pi)

]−1

≤ const/J |p|2 for |pi| ≤ π, “const” stands for π2/4 (or any larger

number).
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by Griffiths’ second inequality and (one) definition of the critical exponent
η. However, the constant C depends on the single-spin measure. Thus, non-
universal bounds are appropriate only for the study of certain restricted ways
of approaching the critical surface (e.g. increasing J with fixed single-spin mea-
sure). These are, however, precisely the limits of interest in the statistical-
mechanical theory of critical phenomena. [Note that since η ≥ 0, (14.2) is in
general stronger than (14.1), within its domain of validity.]

As another example, consider the summed Aizenman-Fröhlich inequalities
in “intermediate bound” and “intermediate site” forms:

u4 ≥ −3|J |2χ4

(
1 +

1

|J |χ

)2

(13.42)/(14.3)

u4 ≥ −2χ4 (13.43)/(14.4)

The first form is valid for all single-spin measures in GS class, and is hence
invariant under the rescaling ϕ → αϕ (which takes χ → α2χ, u4 → α4u4,
J → α−2J). In particular, it can be re-expressed in terms of the dimensionless
combinations4 |J |χ and |J |2u4:

|J |2 u4 ≥ −3(|J |χ)4

(
1 +

1

|J |χ

)2

. (14.5)

The second form, by contrast, is valid only for Ising models (with their usual
normalization σ = 1). In particular, this form is not invariant under field-
strength rescalings. [However, (14.4) is somewhat stronger than (14.3) when it
is valid.]

14.1 Symmetric regime

We start with the inequalities regarding exponents defined in the symmetric
regime h = 0, β < βc. The results of this section are summarized in Table 14.1.

14.1.1 Upper bound on the bubble diagram (critical exponent b)

These bounds are a preliminary result needed for practically all the subsequent
inequalities. We shall present them in two different versions:

(a) Universal form. Let G̃(p) ≡ ∑
x eipxu2(0, x), the two-point function in

momentum space; then, by the Plancherel identity,

B0 ≡
∑

x

u2(0, x)2 = (2π)−d
∫

[−π,π]d
G̃(p)2dp . (14.6)

4For further discussion of dimensional analysis in quantum field theory, see [481, Section
2.1].
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Table 14.1. Inequalities for critical exponents. Symmetric regime

Inequality When saturated References Hypothesis Models

b ≤ max
(
0, (2 − d

2
)γ

)

b ≤ 1

Scaling with
η = 0

[478],
[481, App.
A]

Griffiths II +

ref. positivity

ref.-positive
even
ferromagnet

b ≤ max
(
0, (2 − d

2 − η
)γ

)

b ≤ 1

Scaling [481, App.
B]

Griffiths II
even
ferromagnet

b ≥ max
(
0, 2γ − dν) Scaling [477]

Lebowitz
(for b≥0);

ref. positivity
(for b≥2γ−dν)

ref.-positive

BFS class,

GS class

α ≤ b

α ≤ b
Gaussian [478] Lebowitz

BFS class,

GS class

γ ≥ 1

γ ≥ 0

Mean-field

(Gaussian)
[256], [30] Lebowitz

BFS class,

GS class,

repulsive
polymer-chain

γ ≤ b + 1

γ ≤ b
Spherical model

[15],

[12, App. A]

AG +

Griffiths II
GS class

∆4 ≤ 3
2γ Mean-field [5], [213]

AF +

Lebowitz

BFS class,

GS class

∆4 ≤ γ + 1
2 Mean-field [15] AG

GS class,

repulsive
simple CIW

∆4 ≤ γ

2
+ 1 Mean-field [483] Twice-im-

proved AF
Repulsive
simple CIW
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Table 14.1. Inequalities for critical exponents. Symmetric regime (Continued)

Inequality When saturated References Hypothesis Models

∆4 ≥ 2 − b + γ

2
Mean-field with
b = 0

Ineq.
(12.114)

SAW

∆4 ≥ γ

2
+ 1 − b Mean-field with

b = 0 [194]
Non-Gaussian
upper bound
on u4

Ising,

IPORW

dνφ − 2∆4 + γ ≥ 0

(φ ≥ d/2)
Hyperscaling

[256], [30],

[370], [5]

Ginibre-
Newman-
Aizenman;

or Griffiths II

BFS class,

GS class

dνφ − 2∆4 + γ ≥

(d − 4)νφ

Mean-field
[5], [213],
[481, App.
B]

AF +

ref. positivity

BFS class,

GS class

dνφ − 2∆4 + γ ≥

(d − 4)νφ + (γ − 1)
Mean-field [15]

AG +

ref. positivity
GS class

dνφ −2∆4 +γ ≥ dνφ −2 Mean-field [483] Twice-im-
proved AF

Repulsive
simple CIW
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Now, for a large class of reflection-positive models (which includes nearest-
neighbor ferromagnetic models), one has the infrared bound

0 ≤ G̃(p) ≤ const

Jp2
. (13.86)/(14.7)

Moreover, the Griffiths II inequality u2(0, x) ≥ 0 implies that

G̃(p) ≤ G̃(0) ≡ χ . (14.8)

It follows easily (see e.g. [478] or [481, Appendix B]) that

B0 ≤ const×J−2 ×





1 d > 4

log(Jχ) d = 4

(Jχ)2−d/2 2 < d < 4

(14.9)

In terms of critical exponents (14.9) implies that

b ≤ max
(
0,

(
2 − d

2

)
γ

)
for d > 2 (14.10)

b ≤ 1 for d = 4 (provided that γ < ∞) (14.11)

(We remark that this method also yields bounds on b and b for certain long-
range models in which an infrared bound stronger than (14.7) can be proven
[12, 13].)

(b) Non-universal form. More generally, let us define an exponent η as the
supremum of the values for which

〈ϕ0ϕx〉βc ≤ C

(|x| + 1)d−2+η
(14.12)

with some C = C(η) < ∞. Then, for those systems for which the Griffiths’
second inequality is valid one has

〈ϕ0ϕx〉β ≤ 〈ϕ0ϕx〉βc ≤ C

(|x| + 1)d−2+η
(14.13)

for all β ≤ βc, from which it can be shown (see below) that

B0 ≤ const×





1 d > 4 − 2η

log χ d = 4 − 2η

χ2−[d/(2−η)] 2 − η < d < 4 − 2η

(14.14)

This implies the critical-exponent inequality

b ≤ max
(
0,

(
2 − d

2 − η

)
γ

)
for d > 2 − η (14.15)

b ≤ 1 for d = 4 − 2η (14.16)
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In fact, (14.15)/(14.16) are equalities if the two-point function has the usual
scaling behavior.

For systems obeying the infrared bound (14.7), we have

η ≥ 0 (14.17)

and hence (14.14)–(14.15) are stronger than (14.9)–(14.10). On the other hand
(14.14)–(14.15) remain valid even if η ≥ 0 is not true or not proven. We remark
that the bounds (14.14) were previously proven [481, Appendix B] under an
additional hypothesis which corresponds to requiring that 〈ϕ0; ϕx〉βc be roughly
symmetric decreasing. In fact this requirement is not needed. Let us show this
by sketching the proof of (14.14). We have

B0 =
∑

x

〈ϕ0ϕx〉2 =
∑

|x|≤R

〈ϕ0ϕx〉2 +
∑

|x|>R

〈ϕ0ϕx〉2

≤
∑

|x|≤R

(
C

(|x| + 1)d−2+η

)2

+
C

Rd−2+η

∑

|x|>R

〈ϕ0ϕx〉

since d − 2 + η ≥ 0. Hence

B0 ≤ const C2





1 d > 4 − 2η

log R d = 4 − 2η

R4−2η−d 2 − η < d < 4 − 2η





+
C

Rd−2+η
χ . (14.18)

We can now optimize over R: if d ≤ 4− 2η, take R = χ1/(2−η) (this makes sense
because 2 − η ≥ d/2 > 0); if d > 4 − 2η, take R → ∞. This yields (14.14).

14.1.2 Lower bound on the bubble diagram (critical exponent b)

Here we prove lower bounds on the bubble diagram [477] that are complemen-
tary to (14.9) and (14.14).

(a) Bound useful for d > 4. In [482] it is proven that

χ ≤ 〈ϕ2
0〉0

1 − |J |〈ϕ2
0〉0

≤ G(0)

1 − |J |G(0)
(14.19)

(here 〈 · 〉0 denotes the a priori single-spin measure) whenever the denominators
are positive, for any ferromagnetic model satisfying the Lebowitz inequality.
(This is a “mean-field bound”.) Hence

G(0) ≥ |J |−1 |J |χ
|J |χ + 1

→ |Jc|−1 as J ↑ Jc , (14.20)

which immediately yields
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B0 ≤ G(0)2 ≥ |J |−2

(
1 − const

|J |χ

)

→ |Jc|−2 as J ↑ Jc . (14.21)

This proves that (14.9) is sharp for d > 4.

(b) Bound useful for d < 4. Let us assume that the model is reflection-
positive with respect to both lattice and bisector hyperplanes. Then the spectral
representation (13.81), translated to p-space, reads

G̃(p1,p) =

∞∫

cosh m−1

d̺p(a)

1 − cos p1 + a
, (14.22)

where m = ξ−1 is the mass gap. From this it easily follows that

G̃(p1,p) ≥ cosh m − 1

cosh m − cos p1

G̃(0,p) . (14.23)

Using this successively in each coordinate direction, we get

G̃(p) ≥
(

d∏

i=1

cosh m − 1

cosh m − cos pi

)
G̃(0)

≥ χ
d∏

i=1

m2

m2 + p2
i

. (14.24)

Squaring this and inserting it into the Plancherel identity (14.6), we obtain

B0 ≥ const × χ2ξ−d . (14.25)

This bound is most useful for d < 4. Indeed, if the usual scaling law χ ∼ ξ2−η

holds, then both this bound and (14.14) are sharp for 2 − η < d < 4 − 2η.

14.1.3 Upper bound on the specific heat (critical exponent α)

For systems satisfying the Lebowitz inequality (13.36) one readily obtains [478]

CH ≤ 1
2

∑
x,y,z J0xJyz〈ϕ0ϕz〉〈ϕxϕy〉

≤ 1
2
|J |2B0 . (14.26)

In the last step we have used the Plancherel identity, or alternatively the Schwarz
inequality in the space of summable functions of x, y, z with weight J0xJyz. This
yields the inequality

α ≤ b (14.27)

and, if α = b = 0 (as is expected in d = dc), then

α ≤ b . (14.28)
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If these inequalities are combined with (14.10), we conclude [478] that for sys-
tems satisfying Griffiths II, Lebowitz and the infrared bound (14.7),

α ≤ max
(
0,

(
2 − d

2

)
γ

)
(14.29)

and, for d = dc,

α ≤ 1 . (14.30)

More generally, if the long-distance bound (14.12) is assumed,

α ≤ max
(
0,

(
2 − d

2 − η

)
γ

)
. (14.31)

14.1.4 Bounds on the susceptibility (critical exponent γ)

14.1.4.1 Lower bound For systems satisfying the Lebowitz inequality, the
differential inequality (13.38) can easily be integrated to yield [256, 30, 258]

χ ≥
(
|Jc| − |J |

)−1
, (14.32)

which implies the critical exponent inequality

γ ≥ 1 (14.33)

and in the logarithmic case

γ ≥ 0 . (14.34)

This is a “mean-field (Gaussian) lower bound” in the sense that it is an equality
for the Gaussian model — which is not surprising, since in this case the Lebowitz
inequality is in fact an equality.

14.1.4.2 Upper bounds For systems satisfying the AG inequality, we can
combine the differential inequality (13.47) with the bubble bound (14.14) to
obtain

∂χ

∂β
≥ const×





χ2 d > 4 − 2η

χ2/ log χ d = 4 − 2η

χd/(2−η) 2 − η < d < 4 − 2η

(14.35)

This differential inequality can then be integrated to yield

χ ≤ const×





t−1 d > 4 − 2η

t−1(| log t| + 1) d = 4 − 2η

t−(2−η)/(d−2+η) 2 − η < d < 4 − 2η

, (14.36)

which implies
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γ ≤ max

(
1,

2 − η

d − (2 − η)

)
for d > 2 − η (14.37)

γ ≤ 1 for d = 4 − 2η. (14.38)

For nearest-neighbor reflection-positive systems, the bound (14.17) implies that
(14.36)–(14.38) hold with η replaced by 0.

Alternatively, if we assume that the bubble diagram satisfies a bound of the
form

B0 ≤ const×t−b (14.39)

with b ≥ 0, then an integration of the AG inequality (13.47) yields [15], [12,
Appendix A], [484]

χ ≤ const×t−b−1 , (14.40)

so that

γ ≤ b + 1 . (14.41)

In the logarithmic case

B0 ≤ const×|logt|b (14.42)

(with b ≥ 0), we obtain

χ ≤ const×t−1|logt|b (14.43)

and hence

γ ≤ b . (14.44)

We note [484] that (14.36)–(14.44) are “spherical-model upper bounds” in
the sense that they are equalities for the spherical model5. This can be ex-
plained by the fact that the lower bound was obtained by keeping only the
bubble diagrams, and as N → ∞ the geometric series of bubbles dominates the
diagrammatic expansion of the N -vector model [110, 283].

Another interesting remark is that the combination of (13.38), (13.47) and
(14.9) [or (14.14)] shows that for d > 4 (or d > 4 − 2η)

const×t−2 ≤ ∂χ

∂β
≤ const×t−2 (14.45)

and hence

const×t−1 ≤ χ ≤ const×t−1 , (14.46)

which proves that for such dimensions the critical exponent γ really exists. On
the other hand, the situation for d < 4 is less complete; the key missing element
is a set of non-mean-field lower bounds on γ for d < 4.

5The original spherical model was defined by Berlin and Kac [62]. Stanley [486] showed
that it was equivalent (in at least some aspects) to the N → ∞ limit of the N -vector model.
In our opinion, the original spherical model is of mainly historical interest; we use here the
term “spherical model” simply as a shorthand for “N → ∞ limit of the N -vector model”.
The critical exponents for the N -vector model with large N can be found in [77] (cf. also
(13.26) for the case d = 4).
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Finally, by inserting (14.36) back into (14.14), we obtain an upper bound
on the bubble diagram

B0 ≤ const×





1 d > 4 − 2η

| log t| d = 4 − 2η

t−(4−2η−d)/(d−2+η) 2 − η < d < 4 − 2η

(14.47)

and hence

b ≤ max
(
0,

4 − 2η − d

d − 2 + η

)
for d > 2 − η (14.48)

b ≤ 1 for d = 4 − 2η . (14.49)

14.1.5 Upper bounds on the renormalized coupling constant (critical
exponent ∆4)

In this subsection and the next, we study bounds on the connected four-point
function at zero momentum, ū4, or equivalently on the renormalized coupling
constant g ≡ −ū4/χ

2ξd. We consider systems for which Lebowitz inequality
(13.36) is true for them g ≥ 0.

Bound for low dimensions By manipulation of the Ginibre-Newman-Aizenman
inequality (13.35) [5] (or Griffiths’ second inequality), it can be shown [5, 370]
that

−u4 ≤ const×χ2ξd
φ (14.50)

for any φ ≥ d/2. (For φ > d this result was previously obtained by Schrader
[450], extending an earlier result by Glimm and Jaffe [257].) Therefore

gφ ≤ const (φ ≥ d/2), (14.51)

which implies

̺φ ≡ dνφ − 2∆4 + γ ≥ 0 (φ ≥ d/2) (14.52)

and in the logarithmic case

̺φ ≥ 0 (φ ≥ d/2). (14.53)

We refer to (14.51)–(14.53) as the Glimm-Jaffe upper bound on the renormalized
coupling constant gφ. This bound is good for d < 4 — where it is generally
believed to be an equality (hyperscaling) — but very bad for d > 4.
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Bound for high dimensions The Aizenman-Fröhlich inequalities (13.40) and
(13.41) imply that in the vicinity of the critical point

−u4 ≤ const × χ4 , (14.54)

hence

∆4 ≤ 3

2
γ , (14.55)

which is a “mean-field bound”. (We shall see below that this bound is sharp in
d > 4 at least for the Ising and IPORW models.) In terms of the renormalized
coupling constant, (14.54) implies that

gφ ≤ const × χ2

ξd
φ

. (14.56)

If, in addition, the system is reflection-positive, it follows from (14.56) and
(13.89) that

gφ ≤ const

ξd−4
φ

, (14.57)

which implies that
̺φ ≥ (d − 4)νφ . (14.58)

This bound is complementary to (14.52) in the sense that it is a good bound
for d > 4, but horrible for d < 4. We remark that if we use the non-universal
bound γ ≤ (2 − η)ν [199] instead of the universal bound γ ≤ 2ν implicit in
(13.89) above, we get a slightly improved result in the case η > 0. But η > 0 is
believed to occur only for d < 4, and in this case even the “improved” bound is
bad.

Improvement using the AG inequality (“once-improved AF inequality”) For sys-
tems satisfying the Aizenman-Graham inequality (13.46), the bound (14.54) can
be replaced by

−u4 ≤ const ×χ2β
∂χ

∂β
, (14.59)

which implies

∆4 ≤ γ +
1

2
. (14.60)

Inequalities (14.59)–(14.60) are an improvement over (14.54)–(14.55) because,
by (13.38), β∂χ/∂β ≤ const χ2, or equivalently γ ≥ 1. For reflection-positive
systems we obtain the following improvements of (14.56) and (14.57):

gφ ≤ const

ξd
φ

β
∂χ

∂β
≤ const

ξd−4
φ χ2

β
∂χ

∂β
(14.61)

which imply
̺φ ≥ (d − 4)νφ + (γ − 1) . (14.62)
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This is equivalent to the bound (14.58) for d > 4; it is an improvement, but still
disastrously bad, for d < 4. The main relevance of (14.61) is in dimension d = 4,
where it shows that if χ has a logarithm — as permitted by (14.34)/(14.44),
and as believed to occur, cf. (13.26) — so that χ−2∂χ/∂β → 0 as β ↑ βc, then
g → 0 as β ↑ βc, i.e. the continuum limit is trivial. In fact, (14.61) yields the
bound

̺ ≥ ̺φ ≥ γ (14.63)

on the logarithmic exponent controlling the triviality of the continuum limit.

Bound for systems satisfying the twice-improved AF inequality For such systems
(13.49) implies

−u4 ≤ const

(
β

∂χ

∂β

)2

(14.64)

in the vicinity of the critical point, hence

∆4 ≤ γ

2
+ 1 . (14.65)

Moreover,

gφ ≤ const

ξd
φχ

2

(
β

∂χ

∂β

)2

(14.66)

implies
̺φ ≥ dνφ − 2. (14.67)

Therefore
dνφ > 2 =⇒ gφ → 0 as ξφ → ∞ . (14.68)

This result makes rigorous one half of a very beautiful heuristic argument
about self-avoiding walks due to des Cloizeaux [125]. Recall from (13.31) that g
measures, roughly speaking, the probability of intersection of two independent
SAWs that start a distance of order ξ apart. Now, by the alternative definition
of ν in (13.27), we can interpret a near-critical SAW as an object with “fractal
dimension” 1/ν. Two independent such objects will “generically” intersect if and
only if the sum of their fractal dimensions is at least as large as the dimension
of the ambient space. So we expect g to be nonzero at the critical point if and
only if

1

ν
+

1

ν
≥ d , i.e. dν ≤ 2 . (14.69)

Thus, (14.68) makes rigorous the “only if” half of this intuitive argument.6

6We remark that the correlation inequality (14.64), which holds for repulsive simple CIW
models, presumably does not hold for N -component spin models with N greater than some
critical Nc, and it is almost certain that Nc < 4. Indeed, for d = 4 − ε the renormalization
group predicts [77]

ν =
1

2
+

(N + 2)

4(N + 8)
ε +

(N + 2)(N + 3)(N + 20)

8(N + 8)3
ε2 + O(ε3) ,
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14.1.6 Non-Gaussian lower bound on the renormalized coupling con-
stant (critical exponent ∆4)

For the Ising and IPORW models, we can use the non-Gaussian bound (13.50)
to obtain a lower bound

−u4 ≥ const

B0

(
β

∂χ

∂β

)2

, (14.70)

which implies

∆4 ≥ γ

2
+ 1 − b . (14.71)

With the bounds (14.10) or (14.15), this yields

∆4 ≥ γ

2
+ 1 − max

(
0,

(
2 − d

2 − η

)
γ

)
. (14.72)

For the Ising model these bounds are useful only for d > 4: in that case we have
b = 0 and γ = 1, so that (14.71) together with the upper bound (14.55) [or
(14.60)] implies

∆4 =
3

2
, (14.73)

which is the mean-field value. For the Ising model in d < 4, the bounds (14.70))–
(14.72) are terrible (as is the bound ∆4 ≥ γ proven by Sokal [479]). On the
other hand, for the IPORW model (14.70)–(14.72) are essentially sharp in all
dimensions: indeed, (14.71) together with the exact results γ = 1, ν = νφ = 1/2
and b = max(0, 2 − (d/2)) and the upper bounds (14.52)/(14.55) implies

∆4 = min

(
3

2
,

1

2
+

d

4

)
(14.74)

and hence

̺φ = max

(
d − 4

2
, 0

)
. (14.75)

In other words, hyperscaling holds for the IPORW model in d < 4, and is
violated at exactly the mean-field rate for the IPORW model in d ≥ 4. For the
IPORW model in d = 4, hyperscaling is violated by a logarithm, i.e. ̺ = 1.
One half of this inequality, namely ̺ ≤ 1, follows from (14.70). The other half
can be proven by a beautiful renormalization-group argument, as discussed in
Chapter 5.

hence

dν = 2 +
N − 4

2(N + 8)
ε +

(N + 2)2(N + 28)

4(N + 8)3
ε2 + O(ε3) ,

which is > 2 for sufficiently small ε > 0 if N ≥ 4. On the other hand, hyperscaling (g →
const > 0) is expected to hold for all N when d < 4. It follows that the twice-improved AF
inequality cannot be expected to hold for N ≥ 4.
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Sharp results (i.e. hyperscaling) for the Ising model or SAW in d < 4 could
be obtained if either the following two conjectured improvements of (14.70)
could be proven:

−u4 ≥ const

B0

χ4 (?) (14.76)

−u4 ≥ const

CH

(
β

∂χ

∂β

)2

(?) . (14.77)

(14.76) is an improvement over (14.70), since β∂χ/∂β ≤ const×χ2 by (13.38).
It would imply

g ≥ const × χ2

B0ξd
≥ const ×

[
χ1/(2−η)

ξ

]d

(14.78)

for d < 4 − 2η by the last line in (14.14). If we believe the “correlation-length
scaling law” γ = (2 − η)ν we obtain

g ≥ const > 0 =⇒ hyperscaling ! (14.79)

for d < 4 − 2η. Similarly, (14.77) is an improvement of (14.70), since CH ≤
const×B0 by (14.26). It would imply

∆4 ≥ γ − α

2
+ 1 (?) . (14.80)

The equality would correspond to a “thermodynamic scaling law” which is be-
lieved to be true in all dimensions.

Unfortunately, we do not have the slightest idea how to prove either (14.76)
or (14.77) for the Ising model or the SAW. We can, however, prove them for
the IPORW model, for which (14.70), (14.76) and (14.77) are equivalent (γ = 1
and α = b in all dimensions).

14.2 Extrapolation principles

In this section we begin our study of the non-symmetric regime. The first topic
(Section 14.2.1) is a review of the Landau-Ginzburg theory (see e.g. [487, Chap-
ter 10]), which is a version of the mean-field approximation. From a logical point
of view, it may seem somewhat incongruous to consider a heuristic approxima-
tion method in the middle of a chapter devoted to rigorous inequalities. How-
ever, this study will soon pay off: in Section 14.4 we shall prove that, for Ising
models in dimension d > 4, the Landau-Ginzburg prediction for the magnetiza-
tion, MLG(t, h), provides a rigorous two-sided bound on the true magnetization
M(t, h) in a full neighborhood of the critical point, and that similar (but slightly
weaker) bounds hold also for the susceptibility. In other words, we shall prove
that the Landau-Ginzburg theory predicts correctly (up to constant factors)
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the exact critical behavior of Ising models (and partial results for models in GS
class) in dimension d > 4.

A key tool in this analysis will be a pair of extrapolation principles ,derived
in Sections 14.2.2 and 14.2.3, which allow lower or upper bounds on the mag-
netization (or in some cases the susceptibility) to be transferred from one re-
gion of the (t, h)-plane to another. These extrapolation principles are obtained
by interpreting suitable correlation inequalities (here GHS or ABF) as partial
differential inequalities which may then be integrated. In Section 14.6 we sys-
tematize this idea, which we suspect may have additional applications in the
future.

The results of our study may be summarized as follows: Landau-Ginzburg
theory satisfies (and can essentially be defined by) the two identities

∂MLG

∂β
= MLGχLG (14.81)

and

MLG = hχLG + 2M2
LG

∂MLG

∂β
(14.82)

= hχLG + 2M3
LGχLG (14.83)

In the exact theory these identities are replaced by the inequalities

0 ≤ β
∂M

∂β
≤ |J |Mχ (Griffiths II, GHS) (14.84)

and

hχ ≤ M ≤ hχ + |J |M2β
∂M

∂β

(
1 +

h

|J |M

)

1 +

M

β
∂M

∂β




(weak GHS, ABF) (14.85)

≤ hχ + |J |2 M3χ

(
1 +

h

|J |M

) (
1 +

1

|J |χ

)

(weak ABF) (14.86)

which allow some (but not all) of Landau-Ginzburg behavior to be derived for
the exact theory.

14.2.1 Review of Landau-Ginzburg theory

The starting point of Landau-Ginzburg theory is the assumption that the
Helmholtz free energy F (t,M) — which is the Legendre transform of the Gibbs
free energy Φ(t, h) — is a smooth function of t and M near the critical point
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Fig. 14.1. The function (14.87) (broken line) and its convex hull (full line), the free
energy (14.88)

(t = 0,M = 0).7 It then follows from general arguments8 that, after a smooth
change of variables, F has the form

F (M) = 1
4
M4 + 1

2
tM2 . (14.87)

However, it must be noticed that this functional form contradicts the general
principles of statistical mechanics, which require that F be convex in M (and
concave in t). Therefore, we make the minimal modification of (14.87) that has
these properties, by defining F to be the convex hull of (14.87), i.e.

F (t,M) =

{
1
4
M4 + 1

2
tM2 for t ≥ 0 or |M | ≥ √−t

−1
4
t2 for t < 0 and |M | <

√−t
(14.88)

(see Figure 14.1).
By standard thermodynamics, the magnetic field is the derivative of F with

respect to M :

h =
∂F

∂M
. (14.89)

The Landau-Ginzburg magnetization, MLG(t, h), is therefore the solution of the
Landau-Ginzburg equation,

M3
LG + t MLG = h (14.90)

that lies in the region M2 ≥ −t. (For h = 0 and t < 0, M can be any number
between −√−t and

√−t. The interior points correspond to mixed phases.)
Introducing (for h > 0) the scaling variables

7This assumption turns out to be false in dimension d ≤ 4, which is why the Landau-
Ginzburg theory fails in that case.

8Let the qualitative behavior be as in the Ising model, i.e. a second-order transition at
(t = 0, h = 0) and a line of first-order transitions at (t < 0, h = 0). Then it follows from
catastrophe theory [29] that F can be reduced by a smooth change of variables to the normal
form (14.87).
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x = th−2/3 (14.91)

y = Mh−1/3, (14.92)

we can write the Landau-Ginzburg magnetization in the scaling form

MLG(t, h) = h1/3fLG(th−2/3) , (14.93)

where y = fLG(x) is defined implicitly by the equation

y3 + xy = 1 (14.94)

(with y2 ≥ −x). It is not hard to show that fLG is an analytic, strictly decreasing
function of x ∈ (−∞,∞), with the following asymptotic behavior:

fLG(x) =





1 − 1
3
x + O (x2) x ≃ 0

x−1 [1 + O (x−3)] x → +∞

(−x)1/2 + 1
2
(−x)−1 + O

(
(−x)−5/2

)
x → −∞

(14.95)

f ′
LG(x) =





−1
3

+ O(x) x ≃ 0

−x−2 [1 + O (x−3)] x → +∞

−1
2
(−x)−1/2 + 1

2
(−x)−2 + O

(
(−x)−7/2

)
x → −∞

(14.96)

It follows that the Landau-Ginzburg magnetization MLG(t, h) behaves as

MLG(t, h) ∼





h1/3 [1 + O(x)] x ≃ 0

h t−1 [1 + O (x−3)] x → +∞

(−t)1/2
[
1 + O

(
(−x)−3/2

)]
x → −∞

(14.97)

where x ≡ th−2/3, and that the Landau-Ginzburg susceptibility χLG(t, h) ≡
∂MLG(t, h)/∂h behaves as

χLG(t, h) ∼





1
3
h−2/3 [1 + O(x)] x ≃ 0

t−1 [1 + O (x−3)] x → +∞
1
2
(−t)−1

[
1 + O

(
(−x)−3/2

)]
x → −∞

(14.98)

The first line (x ≃ 0) is applicable close to the critical isotherm; the second line
(x → +∞) corresponds to the high-temperature/small-field region; and the
third line (x → −∞) corresponds to the low-temperature/small-field region. In
particular, along the three “standard paths” we have
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Fig. 14.2. High-temperature horn and low-temperature horn in the (β, h)-plane. Here
t ∼ βc − β

MLG ∼





h1/3 h ↓ 0, t = 0

(−t)1/2 t ↑ 0, h = 0+
(14.99)

and

χLG ∼





t−1 t ↓ 0, h = 0

h−2/3 h ↓ 0, t = 0

(−t)−1 t ↑ 0, h = 0

(14.100)

from which we derive the Landau-Ginzburg (or mean-field) predictions for crit-
ical exponents,

δ = 3, β̂ =
1

2
, γ = γ′ = 1. (14.101)

In fact, the behaviors MLG ∼ h1/3 and χLG ∼ h−2/3 hold not only on the critical
isotherm, but in any region of the form

−C1 ≤ x ≡ th−2/3 ≤ C2 (14.102)

(C1, C2 < ∞). The set (14.102) covers the entire (t, h)-plane with the exception
of two “horn-shaped” regions, one at high temperature and one at low temper-
ature (see Figure 14.2). These horns will play an important role in the sequel.
In particular, along any ray t = ah (a finite) we have x → 0 as h → 0, so that
MLG ∼ h1/3 and χLG ∼ h−2/3 hold with a critical amplitude that is independent
of a.

Let us also mention some important combinations of MLG(t, h) and χLG(t, h)
that depend only on the scaling variable x = th−2/3:
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MLG(t, h)

h1/3
= fLG(x) (14.103)

hχLG(t, h)

MLG(t, h)
= g(x) ≡ 1

3

[
1 − 2x

f ′
LG(x)

fLG(x)

]
(14.104)

MLG(t, h)2χLG(t, h) = k(x) ≡ fLG(x)3g(x) (14.105)

The behavior of the function fLG has already been discussed. The function g is
strictly increasing and satisfies 0 ≤ g(x) ≤ 1 for all x; its asymptotic behavior
is

g(x) =





1
3

+ O(x) x ≃ 0

1 + O(x−3) x → +∞
1
2
(−x)−3/2 + O ((−x)−3) x → −∞

(14.106)

In particular, g(x) is bounded above everywhere by 1, and is bounded below by
a nonzero constant in any region x ≥ −C1. This means that χLG is always less
than MLG/h, and it is of the same order of magnitude as MLG/h throughout
the (t, h)-plane except in a “low-temperature horn”. Similarly, the function k is
strictly decreasing and satisfies 0 ≤ k(x) ≤ 1

2
for all x; its asymptotic behavior

is

k(x) =





1
3

+ O(x) x ≃ 0

x−3 + O (x−6) x → +∞
1
2

+ O
(
(−x)−3/2

)
x → −∞

(14.107)

In particular, k(x) is bounded above everywhere by 1
2
, and is bounded below

by a nonzero constant in any region x ≤ C2. This means that M2
LGχLG is

everywhere bounded above (by 1
2
), and it is bounded below throughout the

(t, h)-plane except in a “high-temperature horn”. These combinations of M , χ
and h will play a crucial role in our study of the non-symmetric regime.

Next, we observe that MLG(t, h) satisfies the pair of partial differential equa-
tions

∂MLG

∂t
= −MLG

∂MLG

∂h
(14.108)

MLG = h
∂MLG

∂h
− 2M2

LG

∂MLG

∂t
(14.109)

[Using the definition MLG = h1/3f(th−2/3), these PDEs are equivalent to the
ODEs

f ′
LG = − fLG

x + 3f 2
LG

(14.110)

f ′
LG =

f 2
LG

2xfLG − 3
, (14.111)
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respectively. But the latter are easily derived by differentiating the defining re-
lation f 3

LG + xfLG = 1.] Conversely, this pair of PDEs completely characterizes
MLG(t, h), except for a single constant of integration which corresponds to set-
ting the critical temperature to be t = 0. To see this, first solve (14.108)/(14.109)
for ∂MLG/∂h and ∂MLG/∂t,

∂MLG

∂h
=

MLG

h + 2M3
LG

(14.112)

∂MLG

∂t
=

M2
LG

h + 2M3
LG

(14.113)

and then rewrite these as

∂

∂h

(
M2

LG − h

MLG

)
= 0 (14.114)

∂

∂t

(
M2

LG − h

MLG

)
= −1 . (14.115)

The general solution is

M2
LG − h

MLG

= tc − t (14.116)

where tc is an arbitrary constant of integration (the “critical temperature”).
Taking tc = 0, we recover the Landau-Ginzburg equation M3

LG + tMLG = h.
Numerous second-order PDEs can also be derived from (14.108)/(14.109).

For example, by applying ∂/∂h to (14.112) and doing some algebra, one obtains

∂2MLG

∂h2
= −6(h + 2M3

LG)

(
∂MLG

∂h

)4

(14.117)

∂2MLG

∂h2
= −6MLG

(
∂MLG

∂h

)3

(14.118)

∂2MLG

∂h2
= −6

M4
LG

(h + 2M3
LG)3

(14.119)

and many others. And one can go to higher order, e.g.

∂3MLG

∂h3
= −6

(
∂MLG

∂h

)4 [
1 + 18M2

LG

∂MLG

∂h

]
(14.120)

et cetera ad nauseam.
It is amusing to note [409] that (14.108) is the zero-viscosity limit of Burgers’

equation in fluid dynamics,
∂u

∂t
= −u

∂u

∂x
, (14.121)

if one makes the identifications
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magnetization M ←→ fluid velocity u

temperature t ←→ time t

magnetic field h ←→ spatial position x.

We can then make the interpretations

phase transition ←→ shock wave

critical point ←→ shock formation

Maxwell’s rule ←→ jump construction

and so on.
More important for our purposes, however, is the observation that the true

magnetization M(t, h) satisfies the above PDEs as inequalities (except for small
error terms in some cases). Indeed, corollary (13.55) of the GHS inequality is

∂M

∂t
≥ − const×M

∂M

∂h
, (14.122)

which corresponds to (14.108), while the ABF inequality (13.60) is

M ≤ h
∂M

∂h
− (≈ const) M2∂M

∂t
+ M3 , (14.123)

which corresponds to (14.109). By combining these two inequalities, one gets
the weak ABF inequality (13.61), which corresponds to (14.112). Similarly, for
d > 4 and β ≤ βc (where the “bubble graph” B0 is finite), the AFe inequality
(13.65) reads

∂2M

∂h2
≤ −(≈ const) h

(
∂M

∂h

)4

, (14.124)

which corresponds to (14.117). The tree inequality (13.63) corresponds to
(14.119); the Aizenman-Fröhlich inequality (13.42)/(13.43) corresponds to (14.120)
evaluated at h = 0, β ≤ βc; and so on.

In view of these strong similarities between the equalities of the Landau-
Ginzburg theory and the inequalities of the true theory, one might conjecture
that Landau-Ginzburg theory could provide some kind of one-sided bound on
the true magnetization, and that under certain conditions (e.g. finiteness of
the bubble) it might even provide a two-sided bound . Much of the rest of this
chapter is devoted to showing that these conjectures are correct. That is, we
shall prove that in a full neighborhood of the critical point,

M(t, h) ≥ const ×MLG(t, h) (14.125)

for Ising and ϕ4 models in any dimension d, while

M(t, h) ≤ const ×MLG(t, h) (14.126)

for Ising models in dimension d > 4.

Of course, the mean-field critical exponents (14.101) are not correct in di-
mension d < 4, so the Landau-Ginzburg theory must be taken with a large grain
of salt. Two decades ago9, Widom [508] and Domb and Hunter [137] proposed

9It was two decades ago when this was first written. It is now two decades and a half.
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a phenomenological generalization of (14.93), namely

M(t, h) = h1/δf
(
th−1/β̂δ

)
, (14.127)

where β̂ and δ are unknown critical exponents and f is an unknown scaling
function having the following properties:

• f(x) > 0 for all real x

• f is analytic in a neighborhood of the real axis

• f is strictly decreasing

• f has the asymptotic behavior

f(x) ∼
{

(−x)β̂ x → −∞
x−β̂(δ−1) x → +∞

(14.128)

It is now believed that (14.127) describes correctly the asymptotic behavior of
M(t, h) in a small neighborhood of the critical point.10 The Ansatz (14.127)
implies the scaling relation among critical exponents,

β̂(δ − 1) = γ = γ′. (14.129)

It is believed that (14.129) holds in all dimensions, with γ = γ′ = 1 in dimen-
sions d > 4, and γ = γ′ > 1 in dimensions d < 4.

Let us examine more closely the relation between the scaling Ansatz
(14.127), the partial differential equations (14.108)/(14.109) and the partial
differential inequalities (14.122)/(14.123). It is not hard to see that the scaling
Ansatz satisfies the partial differential equation (14.108) if and only if

β̂(δ − 1) = 1 (14.130)

and

cf δ + xf = 1 (14.131)

for some constant c > 0. We thus have a family of scaling solutions to (14.108),
indexed by a parameter δ, which generalize the Landau-Ginzburg solution (and
reduce to it in case δ = 3). Similarly, the scaling Ansatz satisfies the partial
differential equation (14.109) if and only if

β̂ =
1

2
(14.132)

and

f 2δ/(δ−1) + xf 2/(δ−1) = c̃ (14.133)

10Except for possible multiplicative logarithmic corrections.
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for some constant c̃ > 0. We thus have a family of scaling solutions to (14.109),
indexed by a parameter δ, which generalize the Landau-Ginzburg solution (and
reduce to it in case δ = 3).

It is convenient to combine these two one-parameter families into a single
two-parameter generalized Landau-Ginzburg equation

fp + xf q = 1 , (14.134)

which defines the generalized Landau-Ginzburg scaling function fp,q(x). For p >
q, the function fp,q is real-analytic and strictly decreasing, with the asymptotic
behavior

fp,q(x) =





1 − 1
p
x + O (x2) x ≃ 0

x−1/q [1 + O (x−p)] x → +∞

(−x)1/(p−q) + 1
p−q

(−x)−(p−1)/(p−q)

+O
(
(−x)−(2p−1)/(p−q)

) x → −∞

(14.135)

f ′
p,q(x) =





−1
p

+ O(x) x ≃ 0

−1
q
x−(q+1)/q [1 + O (x−p)] x → +∞

− 1
p−q

(−x)−(p−q−1)/(p−q) + p−1
(p−q)2

(−x)−(2p−q−1)/(p−q)

+O
(
(−x)−(3p−q−1)/(p−q)

) x → −∞

(14.136)

There is an obvious relation between fp,q and fp′,q′ whenever p/q = p′/q′, namely

fp,q = [fp′,q′(x)]p
′/p. The scaling Ansatz

M(t, h) = h1/δfp,q

(
th−1/(β̂δ)

)
(14.137)

satisfies the partial differential equation (14.108) in case

p = δ , q = 1 , β̂ =
1

δ − 1
, δ arbitrary ,

while it satisfies (14.109) in case

p =
2δ

δ − 1
, q =

2

δ − 1
, β̂ =

1

2
, δ arbitrary .

The intersection of these two one-parameter families is the ordinary Landau-
Ginzburg theory

p = 3 , q = 1 , β̂ =
1

2
, δ = 3 ,

and fLG = f3,1.

On the other hand, the scaling Ansatz (14.127) satisfies the partial differ-
ential inequality (14.27) for small h, t if and only if
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β̂(δ − 1) ≥ 1 (14.138)

[together with a condition on f in case β̂(δ− 1) = 1]; and it satisfies the partial
differential inequality (14.123) for small h, t if and only if

β̂ ≤ 1

2
(14.139)

[together with a condition on f in case β̂ = 1/2]. We have thus “morally proven”
the critical-exponent inequalities β̂(δ − 1) ≥ 1 and β̂ ≤ 1/2; a proof which does
not rely on the scaling Ansatz (14.127) will be given in Sections 14.3.4 and
14.4.1, respectively.

14.2.2 Consequences of the GHS inequality

In this section we prove an important extrapolation principle [409, 12] which
allows lower or upper bounds on the magnetization to be transferred from one
region of the (β, h)-plane to another. This principle is a consequence of the GHS
inequality (together with Griffiths’ second inequality). In the sequel we shall use
this extrapolation principle to relate the critical behavior along different lines
of approach to the critical point.

The starting point is the observation [409] that the inequality

∂M

∂β
≤ |J̃ |M ∂M

∂h
, (13.60)/(14.140)

which is an easy consequence of the GHS inequality [409, 479], can be rephrased
as saying that the curves of constant magnetization

M (β, h(β)) = m (14.141)

have a slope which is no more negative than −|J̃ |m. Indeed, differentiat-
ing (14.141) and using (14.140), we obtain

0 =
∂M

∂β
+

∂M

∂h

dh

dβ

∣∣∣
M=const

(14.142)

≤
(

∂M

∂h

) [
|J̃ |M +

dh

dβ

∣∣∣
M=const

]
. (14.143)

Since ∂M/∂h ≥ 0 by Griffiths’ second inequality, we have

dh

dβ

∣∣∣
M=const

≥ −|J̃ |M. (14.144)

(We ignore here all subtleties associated with the infinite-volume limit; see [12]
for a detailed treatment.)
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Fig. 14.3. Graphical summary of Lemma 14.1

The following result is an almost immediate consequence of (14.144) to-
gether with Griffiths’ second inequality:

Lemma 14.1 GHS extrapolation principles (based on [12, Appendix]).
Consider some β0, h0 ≥ 0.

(a) Assume that M(β0, h0) ≥ m ≥ 0. Then M(β, h) ≥ m for every (β, h) in
the region

{
(β, h) : h ≥ max

[
h0, h0 − |J̃ |m(β − β0)

]}
.

(b) Assume that M(β0, h0) ≤ m with m > 0. Then M(β, h) ≤ m for every
(β, h) in the region

{
(β, h) : h ≤ min

[
h0, h0 − |J̃ |m(β − β0)

]}

except possibly at the “corner” β = β0 + [|J̃ |m(h0)]
−1h0, h = 0.

Lemma 14.1 is summarized graphically in Figure 14.3.

Proof. We find it convenient to integrate (14.140) not along the curves of con-
stant M , but rather along the curves in the (β, h)-plane which would be curves
of constant M if (14.140) were an equality , namely the straight lines of slope
−|J̃ |m. More generally, let us consider M along an arbitrary curve h = h(β),
and write M(β) ≡ M (β, h(β)). We then have
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dM
dβ

=
∂M

∂β
+

∂M

∂h

dh

dβ
(14.145)

≤ ∂M

∂h

[
|J̃ |M +

dh

dβ

]
, (14.146)

where ∂M/∂h ≥ 0 by Griffiths’ second inequality. In particular, if h = h(β) is
a straight line of slope −|J̃ |m, we have

dM
dβ

≤ |J̃ |∂M

∂h
[M− m] . (14.147)

(a) Let M (β0, h0) ≥ m > 0 and consider M along the straight line β ≤ β0,
h = h0 − |J̃ |m (β − β0). We claim that M(β) ≥ m for all β ≤ β0. Suppose the
contrary, i.e. suppose that there exists β1 < β0 such that M (β1) < m. Then
(assuming that M is once continuously differentiable11) there must exist β ∈
(β1, β0) such that M(β) < m and dM/dβ > 0. But this contradicts (14.147).
The claim is therefore proven; the rest follows from Griffiths’ second inequalities
∂M/∂h ≥ 0 and ∂M/∂β ≥ 0.

(b) Assume first the strict inequality M (β0, h0) < m with m > 0, and
consider M along the straight line β ≥ β0, h = h0 − |J̃ |m (β − β0). We claim
that M(β) < m and dM/dβ ≤ 0 for all β ≥ β0. Indeed, suppose that the
first of these claims is false, i.e. suppose that there exists β1 > β0 such that
M (β1) ≥ m. Then (assuming that M is once continuously differentiable there
must exist β ∈ (β0, β1) such that M(β) < m and dM/dβ > 0. But this
contradicts (14.147). Hence we must have M(β) < m for all β ≥ β0; and
dM/dβ ≤ 0 then follows immediately from (14.147). The rest follows from
Griffiths’ second inequalities ∂M/∂h ≥ 0 and ∂M/∂β ≥ 0.

If we only have M (β0, h0) = m, then we use the above argument with m
replaced by m + ε, and take the limit ε ↓ 0. Since the (weak) GHS inequality
implies that M is a continuous function of h except possibly at h = 0, we can
pass to the limit in the inequality except possibly at the “corner.”

Remark. A careful reader will note that the proofs of parts (a) and (b) are
different in an essential way; they are not merely related by a few changes of
signs.

Using Lemma 14.1, lower bounds on the magnetization can be extrapo-
lated “upwards and to the left” in the (β, h)-plane, while upper bounds on the
magnetization can be extrapolated “downwards and to the right.”

As a first example, suppose that the spontaneous magnetization M0(β) ≡
M(β, h = 0+) is bounded below by some function m(β), for β in some interval
[0, β1]. Without loss of generality we can assume that m(β) is nonnegative and

11A careful argument would prove Lemma 14.1 first in finite volume (with periodic boundary
conditions), where all thermodynamic quantities are smooth, and then pass to the infinite-
volume limit in the final result.
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Fig. 14.4. Construction of the function m∗(β, h) in the region (14.149). The line
originating at β′ ∈ [0, β1] has slope −|J̃ |m(β′), and along this line m∗(β, h) = m(β‘)

nondecreasing, and for simplicity let us assume also that m(β) is continuous.
Now let m∗(β, h) be the unique solution to the partial differential equation

∂m∗

∂β
= |J̃ |m∗∂m∗

∂h
(14.148)

in the region {
(β, h): 0 < h ≤ |J̃ |m(β1)(β1 − β)

}
(14.149)

with initial condition m∗(β, h = 0+) = m(β). (The existence and uniqueness
of this solution is easily demonstrated: the point is that the curves of constant
m∗ are straight lines of slope −|J̃ |m∗, and every point in the region (14.149)
can be connected to the initial surface {0 ≤ β ≤ β1, h = 0} by one and only one
such line — see Figure 14.4.) Then we claim that m∗(β, h) is a lower bound for
M(β, h) everywhere in the region (14.149):

Proposition 14.2 Suppose that M(β, h = 0+) ≥ m(β) ≥ 0 for β in some
interval [0, β1], where the function m(β) is nondecreasing and continuous. Let
m∗(β, h) be the unique solution to the partial differential equation (14.148) in
the region (14.149) with the initial condition m∗(β, h = 0+) = m(β). Then, for
all (β, h) in the region (14.149),

M(β, h) ≥ m∗(β, h). (14.150)
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Proof. For each (β, h) in the region (14.149), there exists a unique β0 ∈ [0, β1]
such that h = |J̃ |m(β0)(β0 − β), and moreover m∗(β, h) = m(β0). The claim
follows immediately from Lemma 14.1(a).

Clearly Proposition 14.2 gives the best possible bound based only on the
partial differential inequality (14.140), since m∗(β, h) is itself a solution to this
inequality — as an equality !

Typically we shall use Proposition 14.2 to extrapolate a lower bound on the
magnetization from the coexistence curve {β > βc, h = 0+} to the remainder of
the (β, h)-plane. In this case we shall use functions m(β) of the form

m(β) =





0 if β ≤ βc

c(β − βc)
λ if βc ≤ β ≤ β1

(14.151)

with c, λ > 0 and some β1 > βc. It is a calculus exercise to compute the behavior
of the corresponding m∗(β, h):

m∗(β, h) = c

(
h

c|J̃ |

)λ/(1+λ)

f1+ 1
λ

, 1




(
c|J̃ |
h

)λ/(1+λ)

t


 (14.152)

where t ≡ βc − β and f1+ 1
λ

, 1(x) is the generalized Landau-Ginzburg scaling

function (14.134) with p = 1 + 1/λ and q = 1, defined by the equation

f 1+ 1
λ + xf = 1 . (14.153)

(In particular, if λ = 1
2
, then f1+ 1

λ
,1 is the ordinary Landau-Ginzburg scaling

function fLG = f3,1.) Using (14.135) and Proposition 14.2, we conclude that
hence

M(β, h) ≥ m∗(β, h)

= c

(
h

c|J̃ |

)λ/(1+λ)

f1+ 1
λ

, 1




(
c|J̃ |
h

)λ/(1+λ)

t




=





c(c|J̃ |)−λ/(1+λ) hλ/(1+λ) [1 + O(x)] x ≃ 0

|J̃ |−1
h t−1

[
1 + O

(
x−(1+ 1

λ)
)]

x → +∞

c(−t)λ
[
1 + O

(
|x|−(1+λ)

)]
x → −∞

(14.154)

where x ≡
(
c|J̃ |/h

)λ/(1+λ)
t. The first line is useful close to the critical isotherm;

the second line is useful in the high-temperature/small-field region; and the third
line reproduces the initial data in the low-temperature/small-field region.It is
worth emphasizing that neither c nor λ appears in the leading term on the
second line — we thus get a universal (mean-field) lower bound on the high-
temperature zero-field susceptibility [which is precisely the Glimm-Jaffe bound
(14.32)].
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Complementary results are obtained from part (b) of Lemma 14.1. Let us
consider, for example, the extrapolation from the initial isotherm to the coex-
istence curve. The basic result is the following complement of Proposition 14.2,
which is proven in exactly the same way but using Lemma 14.1(b).

Proposition 14.3 Suppose that M(β = βc, h) ≤ m(h) for h in some interval
[0, h1], where the function m(h) is nondecreasing and continuous. Let m∗(β, h)
be the unique solution to the partial differential equation (14.148) in the region

{
(β, h): 0 ≤ h ≤ h1 and 0 ≤ β − βc ≤

h − h1

|J̃ |m(h1)

}
(14.155)

with the initial condition m∗(β = βc, h) = m(h). Then

M(β, h) ≤ m∗(β, h) (14.156)

for all (β, h) in the region (14.155) except possibly at the “corner” β = βc +
[|J̃ |m(h1)]

−1h1, h = 0.

The relevant application of this proposition is for a magnetization on the
critical isotherm bounded above by a function of the form

m(h) = ch1/µ (14.157)

with c > 0 and µ > 1. We then obtain

m∗(β, h) = ch1/µfµ,1

(
c|J̃ |t
h1− 1

µ

)
(14.158)

where t = βc − β as above and fµ,1 is the generalized Landau-Ginzburg scaling
function satisfying

fµ + xf = 1 . (14.159)

Using (14.135) and Proposition 14.3, we conclude that for β ≥ βc the magneti-
zation satisfies

M(β, h) ≤ m∗(β, h)

= ch1/µfµ,1

(
c|J̃ |t
h1− 1

µ

)

=





ch1/µ [1 + O(x)] x <∼ 0
(
cµ|J̃ |

)1/(µ−1)
(−t)1/(µ−1)

[
1 + O

(
|x|−µ/(µ−1)

)]
x → −∞

(14.160)

where x ≡ c|J̃ |t/h1− 1
µ . The first line reproduces the initial data close to the

critical isotherm, and the second line is useful in the low-temperature/small-
field region.
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Another important consequence of Lemma 14.1 (and Griffiths’ second in-
equality) follows from the fact that the bounds on M extrapolate along lines of
slope proportional to the magnetization. Therefore, close to the critical point
where the magnetization vanishes, such lines become almost horizontal. This
implies that the regions

C+
c,κ = {(t, h): t ≥ −chκ} (14.161)

C−
c,κ = {(t, h): t ≤ chκ} (14.162)

— where t = βc−β as before and c > 0 — have the property that certain power-
law bounds on the magnetization propagates throughout the whole region. The
complement of a region C+

c,κ is a “low-temperature horn”, while the complement
of a region C−

c,κ is a “high-temperature horn”. [In particular the regions C±
c, 2/3

are of relevance in the discussion of triviality (Sections 14.5 and 15.3).

Proposition 14.4 Fix κ > 0 and let Γ be a continuous curve of the form
t = g(h), 0 ≤ h ≤ ε̃, with g(0) = 0. Suppose that M(h) = M(g(h), h) is a
continuous function satisfying

M(h) ≤ C+hµ+ [1 + o(1)] (14.163)

as h ↓ 0, with
µ+ > max(1 − κ, 0) . (14.164)

(a) If Γ lies entirely in some region C−
c′,κ, then

M(t, h) ≤ C+hµ+ [1 + o(1)] (14.165)

uniformly in C+
c,κ.

(b) If Γ lies entirely in some region C+
c′,κ and M(h) satisfies

M(h) ≥ C−hµ− [1 + o(1)] (14.166)

as h ↓ 0, then
M(t, h) ≥ C−hµ− [1 + o(1)] (14.167)

uniformly in C−
c,κ.

Remarks. In words, part (a) of the proposition states that power-law upper
bounds of the form M ≤ const×hµ+ propagate from a curve Γ to a neighbor-
hood of the critical point which excludes a low-temperature horn. This exclusion
is to be expected, because on the low-temperature side of criticality (t < 0) the
magnetization is strictly positive as h ↓ 0; it is impossible to get an upper bound
on M in terms of h alone. The restriction Γ ∈ C−

c′,κ means that the initial curve
Γ cannot be too close to the high-temperature h = 0 regime. This restriction is
understandable, because as we shall see [cf. (14.285) below], close to this regime
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M <∼ ht−γ and hence by taking t = g(h) “flat” enough (t ∼ hκ with κ very

small), we get bounds of the type M ≤ const ×h1−ε′ . These bounds cannot
possibly propagate to (for instance) the critical isotherm, where M ∼ h1/δ with
δ ≥ 3.

Analogous arguments can be made for the restrictions and conclusions of
part (b).

We point out, finally, that straight lines t = ah lie asymptotically in C+
c1,κ1

∩
C−

c2,κ2
for every c1, c2 > 0 and every 0 < κ1, κ2 < 1.

Proof. (a) The curve Γ divides the (β, h) plane in two regions: left and right.
The left region [t ≥ g(h)] is the “easy” part; the bound (14.163) propagates
there just by Griffiths second inequality:

M(t, h) ≤ M(g(h), h) ≤ C+hµ+ [1 + o(1)] [t ≥ g(h)] . (14.168)

The proof for the points to the right of the curve is based on the fact that each
such point can be joined to a point in Γ via a straight line of slope − |J |M
(the extrapolation lines of Lemma 14.1):

Claim: For every point P = (t1, h1) ∈ C+
c,α, with t1 < g(h1) and h1 small enough,

there exists a point Q = (g(h0), h0) ∈ Γ such that the straight line through Q
of slope −|J̃ |M(h0) passes through P (Figure 14.5). Moreover,

h1 ≤ h0 ≤ h1[1 + o(1)] . (14.169)

This claim can be proven for instance by showing that for fixed small enough
h1, the function

F (h) ≡ h − h1 − |J |M(h) [g(h) − t1] (14.170)

has some h0, very close to h1, for which F (h0) = 0. Indeed, on the one hand for
t1 < g(h1),

F (h1) = − |J |M(h1)[g(h1) − t1] < 0 . (14.171)

and on the other hand

F (2h1) = h1

[
1 − |J |M(2h1)[g(2h1) − t1

h1

]
(14.172)

= h1[1 − ε] . (14.173)

But by (14.163) and the hypotheses g(h) ≤ c′hκ and t1 ≥ −chκ:

ε ≤ const×h
µ++κ−1
1 −→

h1→0
0

if µ+ > max(1 − κ, 0). Therefore F (2h1) > 0 for h1 small enough, and from
(14.171) and the continuity of F we find that there is an h0 as claimed, with

h1 ≤ h0 ≤ 2h1 . (14.174)

However, from (14.174), (14.163) and the assumed bounds on f(h) and t:
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Fig. 14.5. Extrapolations used in Proposition 14.4(a). Every point P ∈ C+
c,κ can be

connected to some point Q(g(h0), h0) on the curve Γ by a line of slope −|J̃ |M(h0).
Note that t = βc − β

h0 − h1 = |J |M(h0) [g(h0) − t1]

≤ [const h
µ++κ−1
1 ] h1

= o(1) h1 . (14.175)

This concludes the proof of the claim. Part (a) of the proposition now follows
immediately from Lemma 14.1 which implies

M(t1, h1) ≤ M(h0)

and by (14.163) and (14.169)

M(t1, h1) ≤ C+h
µ+

1 [1 + o(1)] [t1 < g(h1)] . (14.176)

(b) The proof is analogous and is left as an exercise.

14.2.3 Consequences of the ABF inequality

In this section we show how the ABF inequality

M

h
≤ ∂M

∂h
+ M2

[
1 +

|J |M
h

] [
1 +

β

M

∂M

∂β

]
, (13.59)/(14.177)
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(together with the weak GHS and Griffiths II inequalities) can be employed
to prove an extrapolation principle which goes in the opposite direction to the
one derived from the GHS inequality. [Analogous results can be obtained using
the Ising-model ABF inequality (13.60).] Defining R to be the dimensionless
combination

R =
|J |M

h
, (14.178)

we can rewrite the ABF inequality (14.177) as

∂R

∂β
≥ − |J̃ |

h(R2 + R)

∂R

∂h
(14.179)

(recall that |J | = β|J̃ |). Now consider R along some curve h = h(β), and write
R(β) ≡ R(β, h(β)). We then have

dR
dβ

=
∂R

∂β
+

∂R

∂h

dh

dβ
(14.180)

≥ −∂R

∂h

[
|J̃ |

h(R2 + R)
− dh

dβ

]
, (14.181)

where −∂R/∂h = − |J | ∂(M/h)/∂h ≥ 0 by the weak GHS inequality. In par-
ticular, fix β0, h0 ≥ 0 and 0 < r < ∞, and consider the curve

h = h∗(β) ≡
[
h2

0 +
2|J̃ |

r2 + r
(β − β0)

]1/2

, (14.182)

which solves the equation dh/dβ = |J̃ |/h(r2 + r) with initial condition h(β0) =
h0. With this choice of h(β), (14.180) becomes

dR
dβ

≥ −∂R

∂h

|J̃ |
h

[
1

R2 + R − 1

r2 + r

]
. (14.183)

We can now prove an extrapolation principle which is analogous (but opposite)
to Lemma 14.1:

Lemma 14.5 ABF extrapolation principles Consider some β0, h0 ≥ 0.

(a) Assume that R(β0, h0) ≡ β0|J̃ |M(β0, h0)/h0 ≥ r > 0. Then R(β, h) ≥ r
for every (β, h) in the region



(β, h): β ≥ β0, h ≤

[
h2

0 +
2|J̃ |

r2 + r
(β − β0)

]1/2


 . (14.184)

(b) Assume that R(β0, h0) ≡ β0|J̃ |M(β0, h0)/h0 ≤ r with r > 0. Then
R(β, h) ≤ r for every (β, h) in the region



(β, h): 0 ≤ β ≤ β0 and h ≥

[
h2

0 +
2|J̃ |

r2 + r
(β − β0)

]1/2

+



 (14.185)

where [x]+ = max(x, 0).
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Fig. 14.6. Graphical summary of Lemma 14.5

Lemma 14.5 is summarized graphically in Figure 14.6.

Proof.

(a) Let R(β0, h0) ≥ r > 0 and consider R(β) ≡ R(β, h∗(β)). We claim that
R(β) ≥ r for all β ≥ β0. Suppose the contrary, i.e. suppose that there exists
β1 > β0 such that R(β1) < r. Then (assuming that R is once continuously
differentiable12) there must exist β ∈ (β0, β1) such that R(β) < r and dR/dβ <
0. But this contradicts (14.183).

We have thus shown that R(β, h∗(β)) ≥ r for all β ≥ β0. The weak GHS
inequality ∂R/∂h ≤ 0 then implies that R(β, h) ≥ R(β, h∗(β)) ≥ r whenever
β ≥ β0 and 0 ≤ h ≤ h∗(β).

(b) Assume first that the strict inequality R(β0, h0) < r with r > 0, and
consider R(β) ≡ R(β, h∗(β)). We claim that R(β) < r and dR/dβ ≥ 0 for all

β in the interval
[
β0 − (r2 + r)h2

0/2|J̃ |
]1/2 ≤ β ≤ β0. Indeed, suppose that the

first of these claims is false, i.e. suppose that there exists β1 in this interval such
that R(β1) ≥ r. Then (assuming that R is once continuously differentiable12)
there must exist β ∈ (β1, β0) such that R(β) < r and dR/dβ < 0. But this
contradicts (14.183). Hence we must have R(β) < r for all β in the interval

12A careful argument would prove Lemma 14.5 first in finite volume (with periodic boundary
conditions), where all thermodynamic quantities are smooth, and then pass to the infinite-
volume limit in the final result.
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[
β0 − (r2 + r)h2

0/2|J̃ |
]1/2 ≤ β ≤ β0; and dR/dβ ≥ 0 then follows immediately

from (14.183). The rest follows from the weak GHS inequality ∂R/∂h ≤ 0 and
Griffiths’ second inequality ∂R/∂β ≥ 0.

If we only have R(β0, h0) = r, then we use the above argument with r
replaced by r + ε, and take the limit ε ↓ 0. Since the weak GHS inequality
implies that R is a continuous and decreasing function of h for h > 0, and we
are considering R to be defined at h = 0 by its limit as h ↓ 0, we can pass to
the limit in the inequality.

Remark. If we start instead from the Ising-model form of the ABF inequality, (13.60),
we can derive a completely analogous extrapolation principle: Define

R =
βM

h
,

so that the ABF inequality reads

∂R

∂β
≥ − β

hR2

∂R

∂h
. (14.186)

Considering R along a curve h = h(β), and setting R(β) ≡ R(β, h(β)), we have

dR
dβ

≥ −∂R

∂h

[
β

hR2
− dh

dβ

]
. (14.187)

In particular, we can consider the curve

h = h∗(β) ≡
[
h2

0 +
1

r2

(
β2 − β2

0

)]1/2

, (14.188)

which solves the equation dh/dβ = β/hr2 with initial condition h(β0) = h0. With
this choice of h(β), (14.187) becomes

dR
dβ

≥ −∂R

∂h

β

h

[
1

R2
− 1

r2

]
. (14.189)

These formulae are completely analogous to (14.179)–(14.183) with the following
changes:

1) R2 + R is replaced by R2, a slight simplification. In the applications, R will be
very large (or at least bounded away from zero) near the critical point, so R2

behaves essentially the same as R2 + R.

2) |J̃ | is replaced by β. This change destroys the dimensional correctness of the
formulae; they are valid only for the Ising model with its standard normalization
σ = ±1.

One can therefore prove an extrapolation principle completely analogous to Lemma
14.5, in which h2

0 + 2|J̃ |(β − β0)/(r2 + r) is replaced by h2
0 + (β2 − β2

0)/r2 in defining
the regions (14.184)–(14.185). The proof is identical to that of Lemma 14.5; the key
fact is that r2 is (like r2 + r) an increasing function of r.
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Using Lemma 14.5, lower bounds on the magnetization can be extrapolated
“upwards and to the right” in the (β, h)-plane, while upper bounds can be ex-
trapolated “downwards and to the left.” Note that this direction of extrapolation
is opposite to that given by the GHS extrapolation principle (Lemma 14.1).

As a first example, suppose that the zero-field susceptibility χ0(β) =
χ(β, h = 0) is bounded below by some function c(β), for β in some interval
[β1, βc) on the high-temperature side of criticality. Without loss of generality
we can assume that c(β) is nonnegative, nondecreasing, continuous, and tends
to +∞ as β → βc (since χ0(β) has these properties). For convenience let us
work instead with the function R0(β) ≡ R(β, h = 0+) = β|J̃ |χ0(β); then our
assumption becomes R0(β) ≥ r(β) ≡ β|J̃ |c(β) for β ∈ [β1, βc).

Now let r∗(β, h) be the unique solution to the partial differential equation

∂r∗

∂β
= − |J̃ |

h(r∗2 + r∗)

∂r∗

∂h
(14.190)

in the region

{
(β, h): β ≥ β1, 0 < h ≤

[
2|J̃ |[r(β1)

2 + r(β1)]
−1 (β − β1)

]1/2
}

(14.191)

with initial condition r∗(β, h = 0+) = r(β) for β ∈ [β1, βc). (The existence
and uniqueness of this solution is easily demonstrated: the point is that the
curves of constant r∗ are the parabolae β − β0 = (2|J̃ |)−1[r(β0)

2 + r(β0)]h
2,

and every point in the region (14.191) can be connected to the initial surface
{β1 ≤ β ≤ βc , h = 0} by one and only one such curve — see Figure 14.7.) Then
we claim that r∗(β, h) is a lower bound for R(β, h) everywhere in the region
(14.191):

Proposition 14.6 Suppose that β|J̃ |χ0(β) ≡ R(β, h = 0+) ≥ r(β) ≥ 0 for β
in some interval [β1, βc), where the function r(β) is nondecreasing, continuous,
and tends to +∞ as β → βc. Let r∗(β, h) be the unique solution to the partial
differential equation (14.190) in the region (14.191) with the initial condition
r∗(β, h = 0+) = r(β). Then, for all (β, h) in the region (14.191),

R(β, h) ≥ r∗(β, h) (14.192)

and hence

M(β, h) ≡ h

β|J̃ |
R(β, h) ≥ h

β|J̃ |
r∗(β, h). (14.193)

Proof. For each (β, h) in the region (14.191), there exists a unique β0 ∈ [β1, βc)

such that h =
[
2|J̃ |[r(β0)

2 + r(β0)]
−1 (β − β0)

]1/2
, and moreover r∗(β, h) =

r(β0). The claim follows immediately from Lemma 14.5(a).
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Fig. 14.7. Construction of the function r∗(β, h) in the region (14.191). The curve
originating at β0 ∈ [β1, βc) is the parabola β − β0 = (2|J̃ |)−1[r(β0)

2 + r(β0)]h
2, and

along this curve r∗(β, h) = r(β0)

Clearly Proposition 14.6 gives the best possible bound based only on the
partial differential inequality (14.179), since r∗(β, h) is itself a solution to this
inequality — as an equality !

Typically we shall assume a power-law behavior for the lower bound r(β),
i.e.

r(β) = c (βc − β)−κ (14.194)

with c, κ > 0 and some β1 < βc. It is now a calculus exercise to compute the
behavior of the corresponding r∗(β, h): it is the unique positive solution of the
equation

h2

2|J̃ |c1/κ
(r∗)2+1/κ

[
1 +

1

r∗

]
+

t

c1/κ
(r∗)1/κ = 1 (14.195)

where t ≡ βc − β. In particular, as (t, h) → (0, 0) the solution r∗ tends to
infinity. Therefore, the term 1/r∗ becomes negligible in comparison with 1, and
r∗ satisfies asymptotically the equation

h2

2|J̃ |c1/κ
(r∗)2+1/κ +

t

c1/κ
(r∗)1/κ = 1 . (14.196)

Defining the dimensionless combinations

f = (2|J̃ |)−κ/(2κ+1)C−1/(2κ+1) h2κ/(2κ+1) r∗ (14.197)

x =

(
2|J̃ |
c2

)1/(2κ+1)

t h−2/(2κ+1) (14.198)
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we find that f satisfies asymptotically the generalized Landau-Ginzburg equa-
tion

f 2+ 1
κ + xf

1
κ = 1 . (14.199)

That is, f = f(x) is precisely the generalized Landau-Ginzburg scaling function
f2+ 1

κ
, 1
κ

defined in (14.134) ff. (In particular, if κ = 1, then f2+ 1
κ

, 1
κ

equals the

ordinary Landau-Ginzburg scaling function fLG = f3,1.) Using (14.135) and
Proposition 14.6, we obtain

M(β, h)

≥ h

β|J̃ |
r∗(β, h)

=
1

β

(
2κc

|J̃ |κ+1

)1/(2κ+1)

h1/(2κ+1)f2+ 1
κ

, 1
κ




(
2|J̃ |
c2

)1/(2κ+1)

t h−2/(2κ+1)




=





1
β

(
2κc

|J̃ |κ+1

)1/(2κ+1)

h1/(2κ+1) [1 − O(x)] x ≃ 0

c

β|J̃ |
ht−κ

[
1 + O

(
x−(2κ+1)

)]
x → +∞

1
β

(
2

|J̃ |

)1/2

(−t)1/2
[
1 + O

(
|x|−(1+ 1

2κ
)
)]

x → −∞
(14.200)

The first line is useful close to the critical isotherm; the second line reproduces
the initial data in the high-temperature/small-field region; and the third line
yields information on the spontaneous magnetization (by taking h ↓ 0 at fixed
t < 0) and more generally on the low-temperature/small-field region. It is worth
emphasizing that neither c nor κ appears in the leading term on the third
line — we thus get a universal (mean-field) lower bound on the spontaneous
magnetization (in particular, β̂ ≤ 1

2
).

Remark. If we use instead the Ising-model form of the extrapolation principle and
define r(β) = c(β2

c − β2)−κ [which is equivalent to (14.194) near the critical point],
then with the definitions t̂ = β2

c − β2, x = (ch)−2/(2κ+1)t̂ and f = c−1(ch)2κ/(2κ+1)r∗,
we find that f satisfies exactly the generalized Landau-Ginzburg equation (14.199). So
the Ising-model form of the extrapolation principle leads to slightly simpler algebra.

A second example of the consequences of Lemma 14.5 is the extrapolation
from the critical isotherm down to the high-temperature zero-field region.

Proposition 14.7 Suppose that R(β = βc, h) ≤ r(h) for h in some interval
(0, h1] where the function r(h) is nonincreasing, continuous and tends to +∞
as h → 0. Let r∗(β, h) be the unique solution of the partial differential equation
(14.190) in the region
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{
(β, h): 0 < h ≤ h1, and βc +

r(h1)
2 + r(h1)

2|J̃ |
(h2 − h2

1) ≤ β ≤ βc

}
(14.201)

with the initial condition r∗(β = βc, h) = r(h). Then for all (β, h) in the region
(14.201)

R(β, h) ≤ r∗(β, h) (14.202)

This proposition is proven in the same way as Proposition 14.6 but using
part (b) of Lemma 14.5.

In particular, if we assume a power-law behavior

r(h) = ch−ψ (14.203)

with c > 0 and 0 < ψ < 1, we find that r∗(β, h) is the unique positive solution
of the equation

h2

c2/ψ
(r∗)2/ψ +

2|J̃ |t
c2/ψ

(r∗)(2/ψ)−2

1 + (r∗)−1
= 1 (14.204)

where t ≡ βc−β. In particular, as (t, h) ↓ (0, 0) the solution r∗ tends to infinity.
Therefore, the term (r∗)−1 becomes negligible in comparison with 1, and r∗

satisfies asymptotically the equation

h2

c2/ψ
(r∗)2/ψ +

2|J̃ |t
c2/ψ

(r∗)(2/ψ)−2 = 1 . (14.205)

Defining the dimensionless combinations

f =
1

c
hψr∗ (14.206)

x =
2|J̃ |
c2

th−(2−2ψ) (14.207)

we find that f satisfies asymptotically the generalized Landau-Ginzburg equa-
tion

f 2/ψ + xf (2/ψ)−2 = 1 . (14.208)

That is, f = f(x) is precisely the generalized Landau-Ginzburg scaling function
f 2

ψ
, 2
ψ
−2 defined in (14.134) ff. (In particular, if ψ = 2

3
, then f 2

ψ
, 2
ψ
−2 equals the

ordinary Landau-Ginzburg scaling function fLG = f3,1.) Using (14.135) and
Proposition 14.7, we conclude that for β ≤ βc (t ≥ 0) the magnetization satisfies

M(β, h)

≤ h

β|J̃ |
r∗(β, h)

=
c

β|J̃ |
h1−ψf 2

ψ
, 2
ψ
−2

(
2|J̃ |
c2

th−(2−2ψ)

)
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=





c

β|J̃ |
h1−ψ [1 − O(x)] x ≃ 0

1
β

(
c2

2ψ |J̃ |2−ψ

)1/(2−2ψ)

t−ψ/(2−2ψ) h
[
1 + O(x−2/(2−2ψ))

]
x → +∞

(14.209)

The first line reproduces the initial data close to the critical isotherm, and the
second line is useful in the small-field/high-temperature region.

Remark. If we use instead the Ising-model form of the extrapolation principle, then
with the definitions t̂ = β2

c − β2, x = c−2h2ψ−2t̂ and f = c−1hψr∗, we find that
f satisfies exactly the generalized Landau-Ginzburg equation (14.208). So the Ising-
model form of the extrapolation principle leads to slightly simpler algebra.

14.3 Non-symmetric regime:
Standard approaches to the critical point

We now consider bounds for the region h > 0 or β > βc. In this section we
focus on the critical exponents for the standard approaches to the critical point,
namely the critical isotherm (β = βc, h ↓ 0) and the two-phase coexistence curve
(h = 0+, β ↓ βc). In Section 14.4 we discuss the much deeper bounds that hold
in a full neighborhood of the critical point in the (β, h)-plane.

To simplify the notation we shall abbreviate

M0 = lim
h↓0

M(h) , χ0 = lim
h↓0

χ(h) . (14.210)

Table 14.2 summarizes the critical-exponent inequalities proven in this sec-
tion and in Section 14.4.
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Table 14.2. Inequalities for critical exponents. Non-symmetric regime

Inequality When saturated References Hypothesis Models

b′ ≤ max
(
0, (2 − d

2
)γ′

)
Scaling with

η = 0

[478],
[481, App.
A]

Griffiths II +

ref. positivity

ref.-positive
even
ferromagnet

b′ ≥ max
(
0, 2γ′ − dν ′) Scaling [477]

Lebowitz
(h = 0)

+

M continuous
(for b′≥0);

ref. positivity
(for b′≥2γ′−dν′)

BFS class,

GS class

bc ≤

max
(
0, (2 − d

2)(δ − 1)
) Scaling with

η = 0

[478],
[481, App.
A]

Griffiths II +

ref. positivity

ref.-positive
even
ferromagnet

bc ≤

max
(
0, (2 − d

2−η )(δ − 1)
) Scaling [481, App.

B]

Griffiths II +

GHS

even
ferromagnet

α′ ≤ max(b′, γ′ − 2β̂) [478] Lebowitz
(h 6= 0)

EMN class,

GS class

αc ≤ max(bc, δ − 3) [478] Lebowitz
(h 6= 0)

EMN class,

GS class

γ′ ≥ 1 Mean-field [479]

GHS +

Griffiths II +

M continuous

EMN class,

GS class

γ′ ≥ β̂(δ − 1) Scaling [269]
GHS +

Griffiths II

EMN class,

GS class
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Table 14.2. Inequalities for critical exponents. Non-symmetric regime (Continued)

Inequality When saturated References Hypothesis Models

β̂(δ − 1) ≥ 1 Mean-field [409]
GHS +

Griffiths II

EMN class,

GS class

β̂ ≤ 1
2

Mean-field,

spherical model

[6], [8],

[10]

ABF +

Griffiths II +

weak GHS

GS class

β̂ ≥ min

(
1

2
,
1 − 3b

2

)
[12]

AFe + AG +

Griffiths II +

weak GHS +

restriction
b < 1/3

large-d
Ising

δ ≥ 3 Mean-field [218]
FS +

weak GHS
BFS class

[10]
ABF +

Griffiths II +

weak GHS

GS class

δ ≥ 2γ + 1
Mean-field,

spherical model

ABF +

Griffiths II +

weak GHS

GS class

δ ≤ min

(
3,

3(1 − b)

1 − 3b

)
[12]

AFe + AG +

Griffiths II +

weak GHS +

restriction
b < 1/3

large-d
Ising

∆′
3 ≤ dν ′

φ − β for φ ≥ d Hyperscaling [479]
GHS +

Lebowitz
(or Ginibre)

EMN class,

GS class
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Table 14.2. Inequalities for critical exponents. Non-symmetric regime (Continued)

Inequality When saturated References Hypothesis Models

dν ′ ≥ γ′ + 2β Hyperscaling [479]

GHS +

Griffiths II +

new Lebowitz
(or Ginibre) +

ref. positivity

ref.-positive

EMN class,

GS class

γ′ ≥ 2(2 − η)β

d − 2 + η
Hyperscaling [199]

Griffiths II +

M continuous

even
ferromagnets

ν ′ ≥ 2β

d − 2 + η
Hyperscaling [199], [479]

GHS +

Griffiths II +

new Lebowitz
(or Ginibre) +

M continuous
+

ref. positivity

ref.-positive

EMN class,

GS class

14.3.1 Upper bound on the truncated bubble diagram (critical expo-
nents b′ and bc)

These preliminary results are the basis for many of the subsequent inequalities.
As in the symmetric regime, we distinguish two versions:

(a) For systems satisfying Griffiths II and the infrared bound (14.7) for the
Fourier transform of 〈ϕ0; ϕx〉, we have [481, Appendix B]

BT ≤ const×





1 d > 4

log χ d = 4

χ2−d/2 2 < d < 4

(14.211)

This implies

b′ ≤ max
(
0,

(
2 − d

2

)
γ′

)
(14.212)

and

bc ≤ max
(
0,

(
2 − d

2

)(
δ − 1

))
(14.213)

In (14.213) we used that χ ≤ M/h by the (weak) GHS inequality.

(b) If Griffiths II and GHS inequalities are satisfied, we have that for β ≤ βc

(in particular on the critical isotherm)

u2(0, x)β,h ≤ u2(0, x)β,h=0 = S2(0, x)β,h=0 ≤ S2(0, x)βc,h=0 (14.214)
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where the first inequality is due to GHS and the last one to Griffiths II. There-
fore, the bounds (14.14) are also valid for BT :

BT (β ≤ βc) ≤ const×





1 d > 4 − 2η

log χ d = 4 − 2η

χ2−[d/(2−η)] 2 − η < d < 4 − 2η

(14.215)

In particular for the critical isotherm this implies

bc ≤ max
(
0,

(
2 − d

2 − η

)(
δ − 1

))
. (14.216)

No analogous bound has been proven for b′ because (14.215) is not known to be
true on the low-temperature side of the critical point (β > βc).

14.3.2 Lower bound on the truncated bubble diagram (critical expo-
nents b′ and bc)

As in the symmetric regime, we prove two versions of the bound:

(a) Bound useful for d > 4. The mean-field bound (14.19) implies that
|Jc|〈ϕ2

0〉0 ≥ 1, and hence

〈ϕ2
0〉 ≥ 〈ϕ2

0〉0 ≥ |Jc|−1 (14.217)

for all J ≥ 0. Assuming that the magnetization is continuous at the critical
point (this is proven in Section 14.4.2 for d ≥ 4), we have

u2(0, 0) = 〈ϕ2
0〉 − M2 −→ ≥ |Jc|−1 (14.218)

as the critical point is approached. It follows immediately that

BT ≥ u2(0, 0)2 −→ ≥ |Jc|−2 . (14.219)

This proves that (14.211) is sharp for d > 4.

(b) Bound useful for d < 4. The reasoning (14.22)–(14.25) applies without
change to the truncated two-point function in the non-symmetric regime. Hence

BT ≥ const × χ2ξ−d . (14.220)

If the usual scaling law χ ∼ ξ2−η holds, then both this bound and (14.215) are
sharp for 2 − η < d < 4 − 2η.

14.3.3 Upper bound on the specific heat (critical exponents α′ and
αc)

For systems satisfying the Lebowitz inequality in nonzero field (13.39) one ob-
tains the following generalization of (14.26) [478]
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CH ≤ (1/2)
∑

x,y,z

J0xJyz

[
〈ϕ0; ϕy〉〈ϕx; ϕz〉 + 〈ϕ0; ϕy〉〈ϕx〉〈ϕz〉

+〈ϕx; ϕz〉〈ϕ0〉〈ϕy〉
]

= (1/2)|J |2BT + |J |2M2χ , (14.221)

which implies

α′ ≤ max(b′, γ′ − 2β̂) (14.222)

αc ≤ max(bc, δ − 3) (14.223)

The combination of these results with the bounds (14.212) and (14.213) for the
bubble exponents yields

α′ ≤ max
(
0,

(
2 − d

2

)
γ′, γ′ − 2β̂

)
(14.224)

αc ≤ max
(
0,

(
2 − d

2

)
(δ − 1), δ − 3

)
, (14.225)

or, from (14.216),

αc ≤ max
(
0,

(
2 − d

2 − η

)
(δ − 1), δ − 3

)
. (14.226)

14.3.4 Bounds on the susceptibility (critical exponent γ′)

The only rigorous bound for γ′ available at present is the “mean-field” bound

γ′ ≥ 1 (14.227)

proven for systems satisfying Griffiths II and GHS inequalities and for which
the magnetization is continuous at βc. This is the analogue of the bound γ ≥ 1
stated above. We do not have a proof that γ′ = 1 for d > 4 as we do for γ ,
because no inequality of the form of the AG inequality (involving BT instead
of B0) has been proven for the non-symmetric regime. We discuss two different
proofs of (14.227).

(a) The first proof employs an argument [479] very similar to the proof that
γ ≥ 1, but using (13.55) instead of (13.38). If we integrate (13.55) between
βc + ε and some fixed β∗ > βc + ε), we obtain

log M0(β
∗) − log M0(βc + ε) ≤ |J̃ |

∫ β∗

βc+ε
χ0(β

′)dβ′ . (14.228)

Since M0(β
∗) > 0, we conclude that if M0 → 0 as β ↓ βc, then the RHS

diverges as ε ↓ 0. Under the additional assumption that γ′ exists, this implies
that γ′ ≥ 1.
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(b) If we assume that the exponents γ′, β̂ and δ exist, we can obtain (14.227)
by proving two intermediate inequalities which show more clearly what is going
on:

(i) Griffiths [269]
γ′ ≥ β̂(δ − 1) . (14.229)

(This inequality is an equality if thermodynamic scaling holds, as is believed to
occur in all dimensions. In particular, it is an equality in mean-field theory.)

Proof. For h ≥ 0, β ≥ βc:

M0(β) + χ0(β)h ≥ M(β, h) ≥ M(βc, h) ≥ const×h1/δ . (14.230)

The first inequality follows from GHS, the second from Griffiths II and the third
one by the assumed existence of δ . Therefore

M0(β) ≥ const×h1/δ − χ0(β)h (14.231)

for all h ≥ 0. We can now optimize over h by taking h = const×χ
−δ/(δ−1)
0 to

obtain
M0(β) ≥ const ×χ0(β)−1/(δ−1) (14.232)

which implies β̂ ≤ γ′/(δ − 1). This can be written as (14.229) because the
assumed divergence of χ implies that δ ≥ 1.

(ii) Newman [409]
β̂(δ − 1) ≥ 1 . (14.233)

(This is a “mean-field bound”.)

Proof. This is an immediate consequence of the GHS extrapolation principle
(Lemma 14.1 and Proposition 14.3). Indeed, setting µ = δ in (14.157), we
conclude from (14.160) that M(β, h = 0+) ≤ const×(β − βc)

1/(δ−1), hence that
β̂ ≥ 1/(δ − 1). [Alternatively we could use the GHS extrapolation principle in
the other direction: applying Proposition 14.2 and setting λ = β̂ in (14.151),

we conclude from (14.154) that M(βc, h) ≥ const×hβ̂/(1+β̂), hence that δ ≥
(1 + β̂)/β̂.]

In Section 14.4.2 we shall present an extended version of Newman’s argu-
ment, which proves an upper bound on M(β, h) in the entire region {β ≥ βc, h ≥
0}.

14.3.5 Other hyperscaling inequalities

Let us mention a few other critical-exponent inequalities that can be obtained
by clever use of the Griffiths, GHS and related inequalities:
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∆′
3 ≤ dν ′

φ − β for φ ≥ d (14.234)

dν ′ ≥ γ′ + 2β (14.235)

γ′ ≥ 2(2 − η)β

d − 2 + η
(14.236)

ν ′ ≥ 2β

d − 2 + η
(14.237)

Here (14.234) and (14.235) are due to Sokal [479], (14.236) is due to Fisher
[199], and (14.237) is an immediate corollary of (14.235) and (14.236). All of
these inequalities become equality when hyperscaling holds, and (14.235) has a
beautiful physical interpretation [509, 198, 510, 288]. In Section 14.4.1 we shall
prove that (14.235)–(14.237) are in fact strict inequalities for d > 4, i.e. hyper-
scaling is violated. Note also that (14.234) is an absolute upper bound on the

“dimensionless renormalized three-point coupling constant” g
(3)
φ ≡ −u3/Mχξd

φ,
completely analogous to the Glimm-Jaffe bound (14.50)/(14.51) for the sym-
metric phase.

14.4 Non-symmetric regime:
Bounds in a full neighborhood of the critical point

In this section we do not limit ourselves to any particular path of approach to
the critical point; rather, we prove bounds that hold in a full neighborhood of
the critical point in the (β, h) plane. (This is particularly natural for applications
to quantum field theory, as discussed in Section 15.3.) The main results of this
section are the “Landau-Ginzburg” bounds on the magnetization,

M(t, h) ≥ const ×MLG(t, h) [GS class, all d] (14.238)

M(t, h) ≤ const ×MLG(t, h) [Ising, d > 4] (14.239)

along with similar but weaker inequalities for the susceptibilities.
Let us remark on the difference between (14.239) and the “mean-field upper

bounds on the magnetization” previously obtained in the literature [427, 474].
The usual bounds are of the form

M(β, h) ≤ MMF (β, h) . (14.240)

This proves, for example that the mean-field prediction for the inverse critical
temperature, βc,MF , is a lower bound for the true critical inverse temperature
βc; but if βc,MF 6= βc (as is almost always the case), the bound (14.240) gives
no information about the critical region.

14.4.1 Lower bounds on the magnetization

The best lower bounds on the magnetization can be proven for models in GS
class (which includes Ising and ϕ4 models), using the ABF inequality (13.59).
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For these models, we can prove (among other things) the universal Landau-
Ginzburg lower bound (14.238) in a full neighborhood of the critical point.
Somewhat weaker inequalities can be obtained for models of BFS class, using
the FS inequality (13.58).

Consequences of the ABF inequality The main tool in our analysis is the
extrapolation principle derived in Section 14.2.3 from the ABF inequality. Start-
ing from a lower bound on the zero-field susceptibility on the high-temperature
side of criticality,

χ0(β) ≥ C (βc − β)−κ , (14.241)

the extrapolation principle (Proposition 14.6) implies a lower bound on the
magnetization M(β, h) in a full neighborhood of the critical point in the (β, h)-
plane:

M(β, h)

≥ C

(
2

C2β2|J̃ |

)κ/(2κ+1)

h1/(2κ+1)f2+ 1
κ

, 1
κ




(
2

C2β2|J̃ |

)1/(2κ+1)

th−2/(2κ+1)




(14.242)

∼





h1/(2κ+1) for th−2/(2κ+1) bounded

ht−κ for th−2/(2κ+1) → +∞

(−t)1/2 for th−2/(2κ+1) → −∞
(14.243)

[cf. (14.200)]; here f2+ 1
κ

, 1
κ

is the generalized Landau-Ginzburg scaling function

defined in (14.199).
We can use (14.242)/(14.243) in two ways:

(a) Universal bounds. Firstly, (14.241) always holds as a universal bound
with κ = 1 and C = 1/|J̃ |; this is the Glimm-Jaffe bound (14.32) on the high-
temperature susceptibility. But for κ = 1, the generalized Landau-Ginzburg
function f2+ 1

κ
, 1
κ

becomes the ordinary Landau-Ginzburg function f3,1 ≡ fLG,

and (14.242) becomes

M(β, h) ≥ 21/3|J |−1/2 MLG

(
21/3t

β
,

h

|J |1/2

)
. (14.244)

We have thus proven a universal Landau-Ginzburg lower bound on the magne-
tization in a full neighborhood of the critical point . Note that this expression is
dimensionally correct13: it bounds the dimensionless magnetization |J |1/2M in
terms of the dimensionless parameters

13Since in our development of Landau-Ginzburg theory we set the coefficients of F (M)
to be pure numbers [cf. (14.87)], all “Landau-Ginzburg” quantities — such as MLG and its
arguments — are dimensionless.
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t̃ =
21/3t

β
= 21/3

(
βc

β
− 1

)
(14.245)

h̃ =
h

|J |1/2
(14.246)

The bound (14.244) can be summarized rather sloppily (i.e. ignoring dimen-
sionful constants) as

M(β, h) ≥ const ×MLG(t, h) (14.247)

Interesting special cases of (14.242) can be obtained by evaluating it on the
critical isotherm or on the coexistence curve, yielding

M(βc, h) ≥ const ×h1/3 (14.248)

M(β, h = 0+) ≥ const × (β − βc)
1/2 (14.249)

(again we are being sloppy about dimensionful constants). These bounds can
be summarized in the critical-exponent inequalities

δ ≥ 3 (14.250)

β̂ ≤ 1

2
. (14.251)

(14.250) and (14.251) are mean-field bounds which complement the Buckingham-
Gunton [285, 286, 199, 415], Fisher [199] and Sokal [479] inequalities

δ ≥ d + 2 − η

d − 2 + η
(14.252)

β̂ ≤ d − 2 + η

4 − 2η
γ′ (14.253)

β̂ ≤ 1

2
(dν ′ − γ′) (14.254)

in the same sense that the Aizenman-Fröhlich mean-field bound ∆4 ≤ 3
2
γ [cf.

(14.55)] complements the Glimm-Jaffe inequality ∆4 ≤ 1
2
(γ + dνφ). In all four

cases, the latter (hyperscaling) inequality is expected to be better for low di-
mension, while the former (mean-field) inequality is better for high dimension.
In particular, if d > 4 − 2η (e.g. d > 4 for reflection-positive models), then the
Buckingham-Gunton, Fisher and Glimm-Jaffe inequalities are all strict inequal-
ities — that is, hyperscaling is violated. Likewise, if d > 4 (and the model is
reflection-positive), then the Sokal inequality is strict14 — hyperscaling is again
violated.

Let us also remark that the bound β̂ ≤ 1/2 is saturated in the spherical
model (in all dimensions).

14Here we use the bound γ′ ≤ 2ν′, which can be obtained for reflection-positive models
using the spectral representation and the infrared bound: see (13.88).
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A further consequence of (14.249) is that for spin models of GS class, there
is a single critical temperature βc which signals both the divergence of the
susceptibility and the onset of spontaneous magnetization — that is, there does
not exist an “intermediate phase” in which χ0 = ∞ but M0 = 0.

Historical remark. Aizenman [9, 6] used the AG inequality together with an in-
genious finite-size argument to derive β̂ ≤ 1/2 (and many other interesting results)
under an additional hypothesis of “regularity”. With the ABF inequality the regular-
ity hypothesis can be dispensed with, at least for getting β̂ ≤ 1/2.

(b) Non-universal bounds. A second way of using (14.242)/(14.243) is to
note that (14.241) holds by definition with κ = γ (or κ = γ − ε for any
ε > 0 if there are multiplicative logarithmic corrections). Therefore, evaluat-
ing (14.242)/(14.243) on the critical isotherm, we have

M(βc, h) ≥ const×h1/(2γ+1) , (14.255)

which proves the new critical-exponent inequality

δ ≥ 2γ + 1 . (14.256)

This bound becomes equality in mean-field theory and also for the spherical
model; it can be looked at as a “spherical-model upper bound” on γ, somewhat
similar to the Aizenman-Graham bounds (14.37) et seq.

Consequences of the FS inequality (and weak GHS inequality) Similar but
weaker lower bounds on M can be proven15 for a slightly larger class of models — the
BFS class — using the FS inequality (13.58). We sketch the analysis, leaving many
of the details to the reader.

Our reasoning is based on the inequalities

M0 ≤ M (14.257)

hχ ≤ M (14.258)

M ≤ hχ +

(
M2

h

)
(h + |J |M)2 , (14.259)

which follow from the Griffiths II, weak GHS and FS inequalities, respectively. The
method consists in using χ = ∂M/∂h and considering (14.258) and (14.259) at fixed
β as differential inequalities for the function M(h).

First we define F (h) ≡ M(h)/h and note that the weak GHS inequality (14.258)
implies that

15These results were obtained by Fröhlich and Sokal in 1984-85, and were supposed to
appear in [223]. However, the writing of this paper was delayed by “unforeseen circumstances”,
and in the meantime stronger versions of these results were obtained (for a slightly smaller
class of models) by Aizenman, Barsky and Fernández [12, 10]. We have incorporated the
principal results of [223] into this book (Sections 10.2.3, 11.1.1, 11.1.2, 12.4 and the present
paragraph), thereby relieving Fröhlich and Sokal of the responsibility of writing [223].
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dF

dh
≤ 0 . (14.260)

It follows that
F0 ≡ lim

h↓0
F (h) (14.261)

exists (it may be +∞). In fact:

a) If M0 > 0, then F0 = +∞.

b) If M0 = 0 and χ0 ≡ limh↓0 χ(h) exists (as it does, in particular, if the GHS
inequality (13.54) holds), then F0 = χ0 (which may be +∞).

The FS inequality (14.259) can now be written as

dF

dh
≥ −hF 2(1 + |J |F )2 , (14.262)

valid for h ≥ 0. Integrating this from F0 to F (h), we find

−
∫ F (h)

F0

dF ′

F ′2(1 + |J |F ′)2
≤

∫ h

0
h′dh′ (14.263)

and hence

ψ(|J |F (h)) − ψ(|J |F0) ≤ h2

2 |J | , (14.264)

where

ψ(x) ≡
∫ ∞

x

dx

x2(1 + x)2
(14.265)

=
1

x
+

1

1 + x
− 2 log

(
1 +

1

x

)
. (14.266)

Since ψ is a decreasing function of its argument, it follows that

F (h) ≥ 1

|J |ψ
−1

[
ψ(|J |F0) +

h2

2 |J |

]
. (14.267)

We content ourselves with two weakened versions of (14.267) which are sufficient for
our purposes.

(i) Assume that F0 < ∞ (i.e. β < βc). The function ψ is convex and decreasing,
hence so is ψ−1. It then follows from (14.267) [or directly from (14.264)] that

F (h) ≥ F0 − F 2
0 (1 + |J |F0)

2

2
h2 (14.268)

and hence that

M(h) ≥ F0h − F 2
0 (1 + |J |F0)

2

2
h3 . (14.269)

(This is a good bound only if h ≪ |J |−1F
−3/2
0 .) On the other hand, the weak GHS

inequality (14.260) implies that

M(h) ≤ F0h . (14.270)
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We see that (14.269) and (14.270) agree through second order in h. It follows that

(u3)h=0 ≡ d2M

dh2

∣∣∣∣∣
h=0

= 0 (14.271)

and

0 ≥ (u4)h=0 ≡ d3M

dh3

∣∣∣∣∣
h=0

≥ −3F 2
0 (1 + |J |F0)

2 . (14.272)

Since F0 = χ0 in the case at hand (assuming that χ0 exists), we see that we have
recovered the summed versions of the Lebowitz and AF inequalities, (13.37) and
(13.42), respectively.

(ii) Assume that |J |F0 is large (in particular this includes the case F0 = ∞ (i.e.
β ≥ βc). Using simple bounds in (14.266) for x large, it is not hard to show that

M(h) = hF (h) ≥
(

F−3
0 +

3 |J |2
2

h2

)−1/3

h − O

(
h

|J |

)
(14.273)

provided that (|J |F0)
−1 and |J |−1/2 h are sufficiently small. In particular, if F0 = ∞

(i.e. β ≥ βc) we have

M(h) ≥ (
2

3|J |2 )1/3h1/3 − O(h) . (14.274)

For β = βc, (14.274) implies the critical-exponent inequality

δ ≥ 3 , (14.275)

which proves the failure of the hyperscaling law δ = (d + 2 − η)/(d − 2 + η) for BFS
models in dimension d > 4−2η. This together with the GHS inequality implies (after
a little work) the bound

γ′ ≥ 2β̂ . (14.276)

But this is nothing new, because it follows already from γ′ ≥ β̂(δ − 1) [eq. (14.229)]
and δ ≥ 3 [eq. (14.275)]. In any case, (14.276) combined with γ′ ≤ 2ν ′ [see comments
following (14.254)] proves the failure of the hyperscaling law dν ′ > γ′ + 2β̂ for d > 4
for reflection-positive BFS models in dimension d > 4.

14.4.2 Upper bounds on the magnetization

For the nearest-neighbor Ising model, the AFe inequality (13.65) can be com-
bined with the GHS extrapolation principle (Lemma 14.1) to derive an upper
bound on the magnetization in a full neighborhood of the critical point in the
(β, h)-plane. For d > 4, this bound is precisely of Landau-Ginzburg form. For
d ≤ 4, this is of course weaker (since the Landau-Ginzburg exponents are not
correct), but we do in any case obtain bounds on the exponents δ and β̂ that
are complementary to (14.250) and (14.251). We expect that these bounds are
true also for ϕ4 and other GS models, but they have been proven so far only
for the Ising model.
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The argument proceeds in two steps: The first step is to obtain an upper
bound on M valid in a full high-temperature neighborhood of the critical point,

N+ ≡ {t ≥ 0, h ≥ 0, t, h small} . (14.277)

The restriction to t ≥ 0 arises from the B0 factors in the AFe inequality, which
render it useless at temperatures where there is spontaneous magnetization (i.e.
t < 0).16 The second step is to remove the restriction to t ≥ 0, by applying the
GHS extrapolation principle. The result is a bound in a full neighborhood of
the critical point.

Step 1. The main tool is the AFe inequality (13.65),

∂χ

∂h
≤ − [1 − B0(tanh h)/M)]

96B0(1 + 2|J |B0)2
(tanhh) χ4 ,

which at fixed β is a first-order differential inequality for the function χ(h).
Near the critical point, tanhh ≈ h and |J | is bounded, so we can simplify the
inequality to

∂χ

∂h
≤ − c

B3
0

[
1 − B0h/M

]
hχ4 . (14.278)

Let us fix (t, h) ∈ N+ and divide into two cases according to the size of
B0(t)h/M(t, h):

Case 1. B0(t)h/M(t, h) > 1/2.
Clearly in this case we have

M(t, h) < 2B0(t)h (14.279)

by definition.

Case 2. B0(t)h/M(t, h) ≤ 1/2.
By the weak GHS inequality, h/M(t, h) is an increasing function of h (at fixed
t), so we have

B0(t)h
′/M(t, h′) ≤ 1/2

for all h′ in the interval 0 ≤ h′ ≤ h. Substituting this into (14.278) and inte-
grating from h′′ = 0 to h′′ = h′, we obtain

χ(t, h′) ≤
(
χ0(t)

−3 +
3c

4B0(t)3
h′2

)−1/3

(14.280)

≤ const × min
[
χ0(t), B0(t)h

′−2/3
]

for 0 ≤ h′ ≤ h. Integrating once more, we obtain

16We may dream of an analogous inequality with BT or BT
0 in place of B0, but we have no

idea how to prove such an inequality.
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M(t, h) ≤ const × min
[
χ0(t)h,B0(t)h

1/3
]

. (14.281)

Now B0(t) ≤ χ0(t) for the Ising model (since 〈σ0σx〉 ≤ 1), and clearly
h ≤ const ×h1/3 for h small. Therefore, the bound in Case 1 is stronger than
that in Case 2, so we can conclude that (14.281) holds throughout the region
N+.

Step 2. The next step is to extrapolate the upper bound (14.281) “downwards
and to the right” in the (β, h)-plane, using the GHS extrapolation principle.
Let us consider separately the cases d > 4 and d ≥ 4.

(a) d > 4. We know already that B0(t) ≤ const [bubble bound (14.9)] and
χ0(t) ≤ const×t−1 [Aizenman-Graham bound (14.36)] uniformly for t ≥ 0.
Therefore, (14.281) implies that

M(t, h) ≤ const × min
[
ht−1, h1/3

]

≤ const ×MLG(t, h) (14.282)

uniformly for (t, h) ∈ N+. Now we use the GHS extrapolation principle (Propo-
sition 14.3) to extrapolate this upper bound from the critical isotherm to a
low-temperature neighborhood

N− ≡ {t ≤ 0, h ≥ 0, t, h small} . (14.283)

We have already performed the relevant computation [cf. (14.157) ff. with µ =
3]; the result is that

M(t, h) ≤ const ×MLG(t, h) (14.284)

also in N−. So we have proven the promised Landau-Ginzburg upper bound
on the magnetization for Ising (but unfortunately not ϕ4) models in dimension
d > 4, in a full neighborhood of the critical point.

(b) d < 4. Let us assume that

B0(t) ≤ const × t−b

χ0(t) ≤ const × t−γ

for t ≥ 0 small17; then (14.281) states that

M(t, h) ≤ const × min
[
ht−γ, t−bh1/3

]
(14.285)

uniformly for (t, h) ∈ N+. Clearly, (14.285) is useless on and near the critical
isotherm (if b > 0), but the bound t−bh1/3 can be improved in large parts
of N+ by using the GHS extrapolation principle. The same extrapolation will
also produce a bound valid in the low-temperature neighborhood N−. So fix

17Multiplicative logarithmic corrections, if present, can be handled by similar methods; see
[12].
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(t0, h0) ∈ N+ ∪ N− and define m = M(t0, h0). Then, by Lemma 14.1(a), we
have

m ≤ inf
t≥t0

M(t, h0 + (t − t0)m|J̃ |)

≤ inf
t≥max(t0,0)

const × t−b
[
h0 + (t − t0)m|J̃ |

]1/3
(14.286)

[Note that h ≡ h0 + (t − t0)m|J̃ | will be small whenever h0 and t are, since
m ≤ 1 and |J̃ | is bounded; so (t, h) will lie in N+ provided that t ≥ max(t0, 0).]
Simple calculus shows that if b < 1/3 — as we shall assume henceforth — then
the minimum of (14.286) is attained at

t =
3b

1 − 3b

(
h0

m|J̃ |
− t0

)
, (14.287)

provided that this point lies within the allowable region t ≥ max(t0, 0). For
t0 ≤ 0, this calculation is always satisfied; and for t0 > 0, we can use the bound
m ≤ const × t−b

0 h
1/3
0 to conclude that t ≥ t0 > 0 whenever

t0 ≤ const ×h
2/(3−3b)
0 . (14.288)

This defines the complement of a “high-temperature horn”. Inserting (14.287)
into (14.286), we obtain

m(3−3b)/(1−3b) + c|J̃ |t0m ≤ ch0 (14.289)

where c =
(
|J̃ |/3b

)3b/(1−3b)
/(1 − 3b). Defining now the scaling variables

f = (ch0)
−(1−3b)/(3−3b)m (14.290)

x = c(ch0)
−2/(3−3b)t0 (14.291)

we obtain
f (3−3b)/(1−3b) + xf ≤ 1 (14.292)

— a generalized Landau-Ginzburg inequality ! It is not hard to show18 that all
solutions of this inequality are bounded above by the largest solution of the
corresponding equality, i.e.

f ≤ f 3−3b
1−3b

, 1(x) , (14.293)

where fp,q(x) is the generalized Landau-Ginzburg function (14.134).
We conclude that

18For x ≥ 0, the left-hand side of (14.292) is an increasing function of f . For x < 0, the
left-hand side is also an increasing function of f at least for f ≥ 0, f ≥ f 3−3b

1−3b
, 1. Indeed,

if we denote ε = (3 − 3b)/(1 − 3b), we observe that ε ≥ 3 because 0 ≤ b < 1/3. Then
the definition fε

ε,1 + xfε,1 = 1 implies ∂(LHS)/∂f = fε,1 = (ε/fε,1) − (ε − 1)x ≥ 0. As

∂2(LHS)/∂f2 = ε(ε − 1)fε−2 ≥ 0, we conclude that ∂(LHS)/∂f ≥ 0 for f ≥ fε,1.
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M(t, h) ≤ (ch)(1−3b)/(3−3b)f 3−3b
1−3b

, 1

(
c(ch)−2/(3−3b)t

)

=





(ch)(1−3b)/(3−3b) [1 + O(x)] x ≃ 0

c(−t)−(1−3b)/2
[
1 + O

(
x−(3−3b)/2

)]
x → −∞

(14.294)

for (t, h) in the region t ≤ const h2/(3−3b). For points outside this region we have
to resort to the original bound (14.285). Indeed, each of the three bounds in
(14.285)/(14.294) is sharper than the other two in some nonempty region of the
(t, h)-plane.

(c) d = 4. In this case the bubble exhibits a logarithmic divergence:

B0(t) ≤ | log t|b (14.295)

with b ≤ 1. The same procedure as for the d < 4 case can be performed. For
b < 1/3, b = 1 the result is [12]

M(β = βc, h ↓ 0) ≤ const×h1/3| log h| (14.296)

for h ↓ 0, and
M0(β) ≤ const×|t|1/2| log |t||3/2 (14.297)

for β ↓ βc.

From the discussion in this section we conclude that if b < 1/3 we obtain
the critical-exponent inequalities

δ ≤ 3 min
(
1,

1 − b

1 − 3b

)
(14.298)

β̂ ≥ 1

2
min(1, 1 − 3b) . (14.299)

In particular, if we invoke the bound (14.48) on the bubble exponent b, we
obtain

δ ≤ 3 min
(
1,

2d − 3(2 − η)

4d − 7(2 − η)

)
(14.300)

β̂ ≥ 1

2
min

(
1,

4d − 7(2 − η)

d − (2 − η)

)
(14.301)

valid for d > 7
4
(2 − η). For nearest-neighbor Ising models the infrared bound

(14.17) implies that inequalities (14.300) and (14.301) hold with η replaced by
0. Combining this with (14.250) and (14.251), we conclude that for the nearest-
neighbor Ising model in dimension d ≥ 4, the critical exponents δ and β̂ exist
and take their mean-field values

δ = 3 and β̂ = 1/2 , (14.302)
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with possible logarithmic corrections for d = 4.

This results also imply the continuity of the magnetization at the critical
temperature whenever b < 1/3, and in particular whenever d > 7

4
(2 − η). For a

nearest-neighbor Ising model, which has η ≥ 0, this corresponds to “d > 3.5”,
which unfortunately does not include any physical dimension strictly less than
four. The trouble here is the appearance of B3

0 in the denominator of the AFe
inequality, where one would hope for a single power of B0. In any case, these
bounds can be applied to some long-range reflection-positive Ising models in
dimensions d = 1, 2, 3 [13], and the bounds obtained for the critical exponents
are consistent with predictions based on renormalization-group arguments [207].

14.5 Horns and all that

14.5.1 The fundamental quantities

In Section 14.2.1 we saw that in Landau-Ginzburg theory the combinations
M3/h and hχ/M (and their product M2χ) play a special role, in that they
depend only on the scaling variable x ≡ th−2/3. In this section we study the
relations which hold between these quantities in the exact theory.

The “dimensionless” combinations of interest to us are |J |2 M3/h and
hχ/M , together with their product |J |2 M2χ. By the weak GHS and weak ABF
inequalities, we have

hχ

M
≤ 1 ≤ hχ

M
+ |J |2 M2χ

(
1 + ‘

h

|J |M

) (
1 +

1

|J |χ

)
(14.303)

≤ hχ

M
+ |J |2 M2χ

(
1 +

1

|J |χ

)2

. (14.304)

Therefore,
[
1 +

|J |2 M3

h
(1 + ε)2

]−1

≤ hχ

M
≤ 1 (14.305)

where ε ≡ 1/(|J |χ). Note that ε is expected to be small everywhere in a neigh-
borhood of the critical point (later we will prove this for Ising models). In any
case, we have proven:

Proposition 14.8 If |J |2 M3/h and 1/(|J |χ) are bounded above, then hχ/M
is bounded below away from zero (with universal constants). The precise bound
is (14.305).

We remark that the lower bound in (14.305) is (up to constants) an equality
in Landau-Ginzburg theory.

We can also get an interesting result by multiplying (14.305) by |J |2 M3/h:
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|J |2 M3

h

1 +
|J |2 M3

h
(1 + ε)2

≤ |J |2 M2χ ≤ |J |2 M3

h
(14.306)

Thus, we have proven:

Proposition 14.9

(a) If |J |2 M3/h is bounded above, then so is |J |2 M2χ.

(b) If |J |2 M3/h is bounded below and 1/(|J |χ) is bounded above, then |J |2 M2χ
is bounded below.

(c) If |J |2 M2χ is bounded below, then so is |J |2 M3/h.

(d) If |J |2 M2χ is sufficiently small [namely, < (1+ε)−2 < 1], then |J |2 M3/h
is bounded above.

In all cases the precise bound is (14.306).

In summary, we have the following implications (assuming that ε ≡ 1/(|J |χ)
is bounded above):

1)
|J |2 M3

h
≥ const ⇐⇒ |J |2 M2χ ≥ const

We shall see in the next subsection that for Ising models these equivalent condi-
tions hold everywhere in the (β, h)-plane except in a “high-temperature horn”.

2)
|J |2 M3

h
≤ const

⇐
=⇒ |J |2 M2χ ≤ const

⇓
hχ
M

≥ const

where the little arrow denotes an implication which holds only if |J |2 M2χ is
sufficiently small.

We shall see in the next subsection that all of these three (inequivalent)
conditions hold everywhere in the (β, h)-plane except in a “low-temperature
horn”, provided that the dimension is > 4.

14.5.2 Horns and the susceptibility

The next step is to verify the hypotheses of Proposition 14.8 or 14.9 for some
explicit region of the (β, h)-plane. But we have already done the hard work:

• In Section 14.4.1 we proved, for GS-class models in any dimension d,
a Landau-Ginzburg lower bound on the magnetization, valid in a full
neighborhood of the critical point.
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• In Section 14.4.2 we proved, for Ising models in dimension d > 4, a
Landau-Ginzburg upper bound on the magnetization, valid in a full neigh-
borhood of the critical point.

It remains only to put the ingredients together.
The first order of business is to show that the “error terms” in the weak ABF

inequality (14.303) are indeed negligible in a full neighborhood of the critical
point. We argue as follows:

1. h/M → 0 along any path of approach to the critical point. This is a con-
sequence of the Landau-Ginzburg lower bound on M , (14.244), together
with the properties (14.95) of the Landau-Ginzburg function.

2. If b < 1
3

(e.g. d > 7
2

for nearest-neighbor models), then the general-
ized Landau-Ginzburg upper bound on M , (14.284)/(14.294), implies that
M → 0 along any path of approach to the critical point.

3. The weak ABF inequality (14.303) can be written as

χ ≥
1 − |J |M2

(
1 +

h

|J |M

)

h

M
+ |J |2 M2

(
1 +

h

|J |M

) . (14.307)

The preceding results h/M → 0 and M → 0 then imply that χ → ∞ along any
path of approach to the critical point, provided that b < 1

3
. (We suspect that

χ → ∞ can be proven without this assumption, but we have so far been unable
to do so.)

Next we invoke the Landau-Ginzburg lower bound on magnetization, (14.244).
The properties (14.95) of the Landau-Ginzburg scaling function imply that
|J |2 M3/h is bounded below in any region of the form x ≡ th−2/3 ≤ C2, i.e.
the complement of a “high-temperature horn”. By Proposition 14.9(b), we con-
clude that |J |2 M2χ is also bounded below in this region. (And of course hχ/M
is bounded above, by 1.)

Finally, we invoke the Landau-Ginzburg upper bound on the magnetization,
(14.284), which holds whenever the bubble B0 is bounded as the critical point
is approached from the high-temperature side (e.g. d > 4 for nearest-neighbor
models). The properties (14.95) of the Landau-Ginzburg scaling function imply
that |J |2 M3/h is bounded above in any region of the form x ≡ th−2/3 ≥ −C1,
i.e. the complement of a “low-temperature horn.” By Propositions 14.9(a) and
14.8, we conclude that |J |2 M2χ is bounded above and hχ/M is bounded below
in this region.

We can now put these facts together to deduce Landau-Ginzburg-type
bounds on the susceptibility for dimension d > 4:

1) In any region of the form x ≡ th−2/3 ≤ C2, i.e. away from a “high-
temperature horn,” we have
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χ ≥ const

|J |2 M2
≥ const

M2
LG

≥ const×χLG

and

χ ≤ M

h
≤ const×MLG

h
.

If we also stay away from a “low-temperature horn”, then χLG ∼ MLG/h, and
these bounds are sharp. However, inside the low-temperature horn we have
χLG ≪ MLG/h, and our bounds on χ are not sharp.

2) In any region of the form x ≡ th−2/3 ≥ −C1, i.e. away from a “low-
temperature horn,” we have two-sided bounds of the form

χ ∼ M

h
∼ MLG

h
∼ χLG .

In summary: For d > 4 we have proven that

• Away from a low-temperature horn,

χ ∼ M

h
∼ MLG

h
∼ χLG .

• Inside the low-temperature horn,

χLG
<∼ χ <∼

M

h
∼ MLG

h
.

[The true behavior is believed to be χLG ∼ χ ≪ M
h
∼ MLG

h
.]

14.6 General considerations on extrapolation principles

As remarked above, Landau-Ginzburg theory can be defined by a system of
first order partial differential equations (PDEs), while the exact theory only
satisfies the corresponding partial differential inequalities (PDIs). In this sense,
a comparison between exact and mean-field theory corresponds to a comparison
between solutions of PDIs and solutions of the corresponding PDEs. In this
section we present a general discussion of this latter point of view, showing
how extrapolation principles, or the resulting comparison theorems, become a
natural tool.

14.6.1 Extrapolation principles for a single ordinary differential equa-
tion

For pedagogical reasons, as well as for future use, let us discuss first the case of
the simple ordinary differential equation (ODE)
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f ′(τ) + b(τ)f(τ) = 0 . (14.308)

This equation can be easily integrated (if b is locally integrable); its solutions
are exponential. We are interested in the properties of smooth functions F
constrained only by the ordinary differential inequality (ODI)

F ′(τ) + b(τ)F (τ) ≤ 0 , (14.309)

or by
F ′(τ) + b(τ)F (τ) ≥ 0 . (14.310)

We shall only consider the case in which b(τ) never changes sign. Let us start
by (14.310), which we write as

F ′ ≥ −b F . (14.311)

We see that certain combinations of signs of F and F ′ are forbidden. For exam-
ple, if b ≥ 0 we can not have a function that is negative and strictly decreasing at
the same time. By continuity this implies that such F can not pass from positive
or zero to negative values as τ increases. That is, F (τ0) ≥ 0 implies F (τ) ≥ 0
for all τ ≥ τ0. Analogously, F (τ0) < 0 implies F (τ) < 0 for all τ ≤ τ0 and,
moreover, by (14.311) F has to be increasing for τ ≤ τ0. We leave to the reader
the argument for the case b ≤ 0 [which, for instance, follows from the b ≥ 0
case by a time reflection], and for the cases corresponding to (14.309) [which
correspond to those for (14.310) applied to −F ]. The results can be summarized
as follows:

Lemma 14.10 Extrapolation principles Consider a function b(τ) of con-
stant sign and locally integrable.
a) For a solution of F ′ + bF ≤ 0:

a1) If b ≥ 0

i) F (τ0) ≤ 0 implies F (τ) ≤ 0 for all τ ≥ τ0.

ii) F (τ0) > 0 implies F (τ) > 0 for all τ ≤ τ0; moreover F is decreasing
for all τ ≤ τ0.

a2) If b ≤ 0

i) F (τ0) < 0 implies F (τ) < 0 for all τ ≥ τ0; moreover F is decreasing
for all τ ≥ τ0.

ii) F (τ0) ≥ 0 implies F (τ) ≥ 0 for all τ ≤ τ0.

b) For a solution of F ′ + bF ≥ 0:

b1) If b ≥ 0
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i) F (τ0) ≥ 0 implies F (τ) ≥ 0 for all τ ≥ τ0.

ii) F (τ0) < 0 implies F (τ) < 0 for all τ ≤ τ0; moreover F is increasing
for all τ ≤ τ0.

b2) If b ≤ 0

i) F (τ0) > 0 implies F (τ) > 0 for all τ ≥ τ0; moreover F is increasing
for all τ ≥ τ0.

ii) F (τ0) ≤ 0 implies F (τ) ≤ 0 for all τ ≤ τ0.

In all cases the result is that certain bounds “extrapolate” to τ ≥ τ0 or τ ≤
τ0. In fact, the above lemma can be summarized by the following extrapolation
principles: If F ′ + bF ≤ 0, then upper bounds (by 0) extrapolate to larger τ ,
and lower bounds (by 0) extrapolate to smaller τ (irrespective of the sign of b).
If F ′ + bF ≥ 0 the directions of extrapolation reverse. The sign of b determines
in which direction the solution exhibits monotonic behavior.

Instead of comparing F with 0 we can compare it with a solution f ∗ of the
ODE (14.308). Indeed, F satisfies (14.309) or (14.310) if so does F − f ∗, hence
we can apply Lemma 14.10 to the latter. The resulting comparison theorem is
stated next. To abbreviate — and also to exhibit more clearly which hypotheses
determine which behavior — we shall deal simultaneously with both cases: one
corresponds to the upper line inside each pair of curly brackets, while the other
corresponds to the lower line.

Theorem 14.11 Comparison theorem Let b(τ) be a function with constant
sign and locally integrable, and let f ∗ be the solution of f ′(τ) + b(τ)f(τ) = 0
with initial condition f ∗(τ0) = f0. Let F be a solution of

F ′ + bF





≤
≥



 0 .

Then

i) F (τ0)





≤
≥



 f0 implies F (τ)





≤
≥



 f ∗(τ) for all τ ≥ τ0; moreover, if

b ≤ 0 and F (τ0)





<

>



 f0, F − f ∗ is





decreasing

increasing



 for τ ≥ τ0.

ii) F (τ0)





≥
≤



 f0 implies F (τ)





≥
≤



 f ∗(τ) for all τ ≤ τ0; moreover, if

b ≥ 0 and F (τ0)





>

<



 f0, F − f ∗ is





decreasing

increasing



 for τ ≤ τ0.
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Proof. Most of the statements follow from applying Lemma 14.10 to F − f ∗.
The only exceptions are the “equality” part for those signs of b for which there
are monotonicity statements. These require an extra argument based on the
continuous dependence of f ∗ on the initial condition. As an example, let us
prove the lower line of Part ii) for b ≥ 0: If F ′ + bF ≥ 0 with b ≥ 0,

F (τ0) ≤ f0 =⇒ F (τ) ≤ f ∗ ∀τ ≤ τ0 . (14.312)

If F (τ0) < f0 then the result follows from Lemma 14.10. If F (τ0) = f0 then
F (τ0) < f0 + ε for every ε > 0. Hence, by Lemma 14.10 F (τ) < f ∗

ε (τ) for every
τ ≤ τ0 and every ε > 0, where f ∗

ε is the solution of the ODE (14.308) with
initial condition f ∗

ε (τ0) = f0 + ε. By letting ε → 0 we obtain F (τ) ≤ f ∗(τ).

In particular, since f ∗ = 0 is the solution of (14.308) for f0 = 0, this theorem
implies Lemma 14.10 but with all strict inequalities replaced by non-strict ones.

As we shall see in the rest of this section, the ideas discussed above gener-
alize to the types of PDIs in two variables of interest here — sub- and supra-
conservation laws: there appear curves along which bounds extrapolate (and
there is monotonic behavior in one direction), which yield comparison theo-
rems. This generalizes the discussion of Sections 14.2.2 and 14.2.3.

14.6.2 Conservation laws. Characteristics

We start by an overview of the PDE approach to Landau-Ginzburg theory. As
shown above, this theory can be reconstructed (except for the position of the
critical point) from the system of PDEs

∂M

∂β
− |J̃ |M ∂M

∂h
= 0 (14.313)

∂R

∂β
+

β

hR2

∂R

∂h
= 0 (14.314)

with R = βM/h. Both equations have the form of conservation laws [356], i.e.
they are first order nonlinear PDE of the form

∂u

∂τ
+ A(u)

∂u

∂z
= 0 (14.315)

with the identifications

Equation u τ z A(u)

(14.313) M β h −|J̃ |u
(14.314) R = βM/h β2 h2 1/u2

(14.316)

The equation (14.313) is in fact the zero-viscosity limit of Burger’s equation,
which describes the velocity of a one-dimensional compressible gas at time β and
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position h. On the other hand, (14.314) has the form of a chromatographic equa-
tion for a cylindrical adsorption column. The equations of the form 14.315 have
been extensively studied in the literature [475]. For the genuinely (or strictly)
nonlinear case [355], that is when A′(u) 6= 0 — as is the case in our appli-
cations (14.313)/(14.314) — the only possible singularities of the solution are
shocks which occur only under certain monotonicity behavior of the boundary
conditions.

To see this, note that if A where a constant, the solutions of the PDE
(14.315) would be waves propagating with velocity A. The most natural guess
for the nonlinear case is therefore a wave with nonconstant velocity A(u), that
is a solution implicitly defined by

u(τ, z) = g(z − A(u)τ) (14.317)

where g(z) = u(τ = 0, z) is the initial condition. A simple implicit differentiation
shows that ∂u/∂τ = −Ag′/(1 + τA′g′) and ∂u/∂z = g′/(1 + τA′g′) and hence
(14.317) indeed determines the solution of (14.315) but only for times τ < τc

where

τc = − 1

A′g′
. (14.318)

At such time the solution becomes discontinuous; a shock develops and addi-
tional conditions are needed to select the physical solution (jump construction
= Maxwell rule). As we are interested in τ > 0, such shock only takes place if
A′g′ < 0. In (14.313)–(14.314) A′ < 0, hence a shock will develop only if the
initial condition g is increasing. This is the case for (14.313) where the β = 0
(infinite temperature) magnetization is

M(β = 0, h) = tanh h .

The solution (14.317) is therefore

MMF = tanh[h + β|J̃ |MMF ] (14.319)

a well known equation for the mean-field magnetization, and (14.318) implies
that the shock “starts” at

βc =
1

|J̃ |
cosh2[hc + βc|J̃ |MMF ] (14.320)

whose unique solution is

hc = 0 βc =
1

|J̃ |
, (14.321)

the mean-field critical point.

The systematic way to solve (14.315) is by the method of characteristics.
These are curves Γ obtained by integrating, for instance, the system of ODEs
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Fig. 14.8. Characteristics of (14.313) and (14.314)

dz

dτ

∣∣∣∣∣
Γ

= A(u) (14.322)

du

dτ

∣∣∣∣∣
Γ

= 0 . (14.323)

The equations (14.322)–(14.323) are easily integrated; they yield straight lines
with slope A(u) along which the solution u is constant. Hence the solution at
each point (τ, z) is the value of the boundary condition at the intersection with
the characteristic passing through the point (there is only one such characteristic
if no shock has yet developed).

In Figure 14.8 we show superimposed characteristics of (14.313) and (14.314)
through a point (β0, h0). From (14.322)–(14.323) and (14.316), the correspond-
ing equations are

h = h0 − |J̃ |M(β0, h0)(β − β0) (14.324)

for the “Burgers” equation (14.313), and

h2 = h2
0 +

β2 − β2
0

R(β0, h0)2
(14.325)

for the “chromatographic” equation (14.314).

14.6.3 Sub- and supra-conservation laws. Extrapolation principles
and comparison theorems

We now turn to the PDIs (14.140) and (14.179):
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∂M

∂β
− |J̃ |M ∂M

∂h
≤ 0 (14.326)

∂R

∂β
+

β

hR2

∂R

∂h
≥ 0 (14.327)

satisfied by the exact theory. They have respectively the form of a sub- and a
supra-conservation law. that is they have the form

∂U

∂τ
+ A(U)

∂U

∂z





≤
≥



 0 (14.328)

with the identifications (14.316). We look for solutions smooth enough on the
region τ, z > 0 [we need only once-differentiability, but by Lee-Yang theory [371]
we know that M and R are in fact analytic in that region].

If we try to adapt the method of the characteristics to the PDI problem
(14.328) we naturally obtain a possible generalization of (14.322)–(14.323) by
replacing one of the equal signs by an inequality. Indeed, a curve ΓI defined by

dz

dτ

∣∣∣∣∣
ΓI

= A(U) (14.329)

must satisfy, by (14.328)

dU

dτ

∣∣∣∣∣
ΓI





≤
≥



 0 . (14.330)

Such a curve ΓI is not a curve of constant U (and hence not a straight line),
but at least we know that along it the solutions U have monotonic behavior. As
a consequence, the curve can be used to extrapolate bounds: if (τ0, z0) ∈ ΓI , a



upper

lower



 bound on U(τ0, z0) is then a





upper

lower



 bound of U for all points

in ΓI with τ ≥ τ0. Analogously, the opposite bounds extrapolate to τ ≤ τ0.
Of course, ΓI is of little use for practical purposes because to determine it

we need to know the actual U . But at least, the discussion suggests a possible
line of action: try to find curves

dz

dτ

∣∣∣∣∣
Γs

= s (14.331)

where the slope s can be determined without knowing the solution U and along
which bounds extrapolate. The total rate of change of a solution of (14.328)
along a curve (14.331) is

dU

dτ

∣∣∣∣∣
Γs

=
∂U

∂τ
+ s

∂U

∂z




≤
≥



 [s − A(U)]

∂U

∂z
. (14.332)
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From this we immediately conclude:

Proposition 14.12 If along the curve Γs

sgn[s − A(U)] =





−
+



 sgn

[
∂U

∂z

]
, (14.333)

then the solutions of (14.328) are of monotonic behavior:

du

dτ

∣∣∣∣∣
Γs





≤
≥



 0 .

To arrive to more concrete results, we restrict ourselves to cases in which
A′ and ∂U/∂z never change signs. [These hypotheses are certainly true for
the PDIs (14.326) and (14.327) by second Griffiths and weak GHS inequalities
respectively; moreover in both cases A′ < 0.] Then the requirement (14.333) is
equivalent to determine functions s(τ) such that

F (τ) ≡ s(τ) − A(U)|Γs
(14.334)

has always the same sign. This problem can be reduced to the study of an ODI
of the type discussed in Section 14.6.1. Indeed, differentiating (14.334) and using
(14.332) we get

F ′ = s′ − A′(U)
du

dτ

∣∣∣∣∣
Γs








≤
≥



 s′ − A′∂U

∂z
F if A′ ≤ 0





≥
≤



 s′ − A′∂U

∂z
F if A′ ≥ 0

(14.335)

Therefore, if A′ ≤ 0 [as in the PDIs (14.326) and (14.327)] and we demand

s′





≤
≥



 0 (14.336)

then F satisfies the equation

F ′ +
(
A′∂U

∂z

)
F





≤
≥



 0 . (14.337)

If A′ ≥ 0, all the inequality signs must be reversed in (14.336)–(14.337).
If at this point we apply to the ODI (14.337) the Comparison Theorem

14.11 for the case f0 = 0 = f ∗, in combination with (14.332), we obtain the
following lemma.
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Lemma 14.13 For a differentiable monotonic function s(τ), let Γs = {(τ, z(τ)}
be the curve defined by dz/dτ |Γs

= s(τ) and the condition (τ0, z(τ0)) = (τ0, z0).
Let U be a solution of

∂U

∂τ
+ A(U)

∂U

∂z





≤
≥



 0

where A is a monotonic differentiable function. We assume that on the curve

Γs, A′∂U/∂z is of constant sign and locally integrable, and s′A′





≥
≤



 0. Then

i) U(τ0, z0)





≤
≥



 A−1(s(τ0)) implies U(τ, z(τ))





≤
≥



 A−1(s(τ)) for all τ ≥

τ0; moreover if A′ ∂U/∂z ≤ 0 then U(τ, z(τ)) is





decreasing

increasing



 for

τ ≥ τ0.

ii) U(τ0, z0)





≥
≤



 A−1(s(τ0)) implies U(τ, z(τ))





≥
≤



 A−1(s(τ)) for all τ ≤

τ0; moreover if A′ ∂U/∂z ≥ 0 then U(τ, z(τ)) is





decreasing

increasing



 for

τ ≤ τ0.

Proof. We shall prove the upper line when A′ ≤ 0 (and hence s′ ≤ 0); the
other cases are analogous. We apply the upper line of Theorem 14.11 [with
f0 = 0 = f ∗] to the upper equation (14.337). The result is

s(τ0) − a(U(τ0, z0)) ≤ 0 =⇒ s(τ) − a(U(τ, z(τ))) ≤ 0 ∀τ ≥ τ0(14.338)

s(τ0) − a(U(τ0, z0)) ≥ 0 =⇒ s(τ) − a(U(τ, z(τ))) ≥ 0 ∀τ ≤ τ0(14.339)

or, as A−1 exists and is decreasing

A−1(s(τ0)) ≥ U(τ0, z0) =⇒ A−1(s(τ)) ≥ U(τ, z(τ))∀τ ≥ τ0 (14.340)

A−1(s(τ0)) ≤ U(τ0, z0) =⇒ A−1(s(τ)) ≤ U(τ, z(τ))∀τ ≤ τ0 (14.341)

as stated in i) and ii) of the lemma. To obtain the monotonicity requirements we
must look to the upper inequality in (14.332): if (14.338) holds, then ∂U/∂z ≥ 0
implies dU/dτ |Γs

≤ 0; analogous conclusion holds for (14.339) but if ∂U/∂z ≤
0.

The form of this lemma useful to obtain comparison theorems is when Γs is
a straight line, i.e. s(τ) = A(u0).

Lemma 14.14 Extrapolation principles Let Γu0 = {(τ, z): z = z0 +
A(u0(τ − τ0)}. Let U be a solution of
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∂U

∂τ
+ A(U)

∂U

∂z





≤
≥



 0

where A is a monotonic differentiable function. We assume that on the curve
Γu0, A′∂U/∂z is of constant sign and locally integrable. Then

i) U(τ0, z0)





≤
≥



 u0 implies U |Γu0





≤
≥



 u0 for τ ≥ τ0; moreover if A′ ∂U/∂z ≤

0 then U(τ, z(τ)) is





decreasing

increasing



 for τ ≥ τ0.

ii) U(τ0, z0)





≥
≤



 u0 implies U |Γu0





≥
≤



 u0 for τ ≤ τ0; moreover if A′ ∂U/∂z ≥

0 then U(τ, z(τ)) is





decreasing

increasing



 for τ ≤ τ0.

Lemma 14.14 can be summarized by saying that along straight lines — that
is along characteristics of the PDE — for a sub-conservation law upper bounds
extrapolate to larger τ while lower bounds extrapolate to smaller τ . For supra-
conservation laws the directions of extrapolation are reversed. Lemmas 14.1
and 14.5 are particular applications of Lemma 14.1419 for the case A′ < 0 (plus
bounds derived from correlation inequalities). The results of Lemma 14.14 for
these cases are summarized in Figure 14.9.

In addition, Lemma 14.13 can be applied to certain non-straight curves
z(τ), which must either be convex [for a sub-conservation law with A′ ≥ 0, or a
supra-conservation law with A′ ≤ 0] or concave [for a sub-conservation law with
A′ ≤ 0, or a supra-conservation law with A′ ≥ 0]. One example is the curve ΓI

defined by dz/dτ = A(U) ≡ A(U(τ, z(τ))) [cf. (14.329)]: by (14.333) we have

that dU/dτ
∣∣∣
ΓI

is of constant sign, and hence z′′(τ) = dA(U)/dτ = A′ dU/dτ

is also of constant sign. However, as mentioned before, this curve is not very
useful in practice because the function U(τ, z) is unknown. A second example
is the curve ΓII where U is constant:

dU

dτ

∣∣∣∣∣
ΓII

= 0 . (14.342)

Note that if ∂z/∂τ |ΓII
= s then by (14.328) we have that for sub- and supra-

conservation laws

0





≤
≥



 [s(τ) − A(U(τ))]

∂U

∂z
.

19The “corner” excluded in Lemma 14.1 corresponds to a point where U is not even
continuous.
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Fig. 14.9. Extrapolation — and monotonicity — for the PDIs (14.326) and (14.327).
Arrows indicate directions in which the solutions are known to increase

In the case ∂U/∂z ≥ 0 this implies

dz

dτ

∣∣∣∣∣
ΓII





≤
≥



 A(U) . (14.343)

The pair (14.342)–(14.343) provides another possible generalization of the
(14.322)–(14.323) in which the equality and inequality signs are in different
places respect to (14.329)–(14.330).

Lemma 14.14 immediately yields comparison theorems between solutions of
the PDI (14.328) and solutions of the PDE (14.315). In particular, when the
initial conditions are given on the τ axis, we obtain the following generalization
of Propositions 14.2 and 14.6:

Theorem 14.15 Comparison theorem Let u∗ be the solution of the PDE

∂u

∂τ
+ A(u)

∂u

∂z
= 0

with initial condition u∗(τ, z = 0) = k(τ). We assume that A and k are differen-
tiable and strictly monotonic, A′k′ < 0 and A(g(τ)) 6= 0. Let U be the solution
of the PDI

∂U

∂τ
+ A(U)

∂U

∂z





≤
≥



 0
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with U differentiable and ∂U/∂z of constant sign . Then:
i) If A(k(τ)) < 0,

U(τ, z = 0)





≥
≤



 k(τ) for τ0 ≤ τ ≤ τ1 =⇒ U(τ, z)





≥
≤



 u∗(τ, z)

at all points in the region

∆1 =
{[

A(k(τ0))(τ − τ0)
]
+

≤ z ≤ A(k(τ1))(τ − τ1) ; τ ≤ τ1

}
.

ii) If A(k(τ)) > 0,

U(τ, z = 0)





≤
≥



 k(τ) for τ0 ≤ τ ≤ τ1 =⇒ U(τ, z)





≤
≥



 u∗(τ, z)

at all points in the region

∆2 =
{[

A(k(τ1))(τ − τ1)
]
+

≤ z ≤ A(k(τ0))(τ − τ0) ; τ ≥ τ0

}
.

Here we have used the notation [x]+ = max(x, 0). The proof of this theorem
is an immediate consequence of the fact that the solution of the PDE is constant
along the characteristics while the solution of the PDI takes larger or smaller
values as stated in Lemma 14.14. The condition A′k′ < 0 ensures that no shock
occurs for z ≥ 0, while the regions ∆1 and ∆2 are defined so that each point
inside is connected to the boundary segment z = 0, τ0 ≤ τ ≤ τ1 by exactly
one characteristic. The requirement A(g(τ)) 6= 0 is equivalent to asking that
the τ -axis be nowhere characteristic (otherwise, in general there would be no
solution). We remark that u∗ is implicitly defined by

u∗(τ, z) = k

(
τ − z

A(u∗)

)
.

In an analogous way one can obtain the following generalization of Propo-
sitions 14.3 and 14.7.

Theorem 14.16 Comparison theorem Let u∗ be the solution of the PDE

∂u

∂τ
+ A(u)

∂u

∂z
= 0

with initial condition u∗(τ = τc, z) = g(z). We assume that A and g are differ-
entiable and strictly monotonic. Let U be the solution of the PDI

∂U

∂τ
+ A(U)

∂U

∂z





≤
≥



 0
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with U differentiable and ∂U/∂z of constant sign . Then:
i) If A′g′ < 0,

U(τ = τc, z)





≥
≤



 g(z) for z0 ≤ z ≤ z1 =⇒ U(τ, z)





≥
≤



 u∗(τ, z)

at all points in the region

∆3 = {z0 + A(g(z0))(τ − τc) ≤ z ≤ z1 + A(g(z1))(τ − τc) ; τ ≤ τc} .

ii) If A′g′ > 0,

U(τ = τc, z)





≤
≥



 g(z) for z0 ≤ z ≤ z1 =⇒ U(τ, z)





≤
≥



 u∗(τ, z)

at all points in the region

∆4 = {z0 + A(g(z0))(τ − τc) ≤ z ≤ z1 + A(g(z1))(τ − τc) ; τ ≥ τc} .

The solution u∗ is implicitly defined by

u∗(τ, z) = g(z − A(u∗τ)) .
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15. Continuum Limits

In this chapter we describe how continuum Euclidean quantum field theories
can be obtained as limits of rescaled lattice theories. Our main goal is to give a
precise exposition of what is known about the triviality of continuum limits for
d > 4 and d = 4.

15.1 Generalities on continuum limits

15.1.1 What is a continuum limit? What is triviality?

Let 〈ϕx1ϕx2 . . . ϕxn〉Γ be the n-point correlation function of an infinite-volume
translation-invariant spin model, indexed by some parameters Γ . For example,
for the Ising model one might take Γ = (J, h), where J is the nearest-neighbor
interaction and h is the magnetic field; for the ϕ4 model, one might take Γ =
(J, λ, τ, h), where J and h are as before, λ is the ϕ4 coupling, and τ is the ϕ2

coupling.
A continuum quantum field theory is obtained from a sequence of lattice

theories by rescaling lengths by a factor θ → ∞ and possibly rescaling field
strengths by a factor α(θ):

Sθ
n(x1, . . . , xn) ≡ α(θ)n〈ϕθx1 . . . ϕθxn〉Γ (θ) (15.1)

Scont
n (x1, . . . , xn) ≡ lim

θ→∞
Sθ

n(x1, . . . , xn) (15.2)

Thus, we are observing the lattice models at longer and longer distance scales
(of order θ lattice spacings). Equivalently, we are shrinking the lattice so that
its lattice spacing a = θ−1, measured in “centimeters”, tends to zero. These
two points of view are often called the “scaling limit” and “continuum limit”,
respectively, but there is no real difference between them: they are just two
different verbal interpretations of the same limiting process (15.1)–(15.2). It is
important to note that the parameters Γ (θ) are allowed to — and in general
must — vary with θ.

One way of posing the general problem of quantum field theory is the follow-
ing: Consider all possible choices of Γ (θ) and α(θ); classify all limiting theories
{Scont

n } and study their properties.
For any given choice of Γ (θ) and α(θ) there are several possible behaviors:
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(a) No limit . For at least one n, the limit (15.2) fails to exist. This is the
typical behavior if α(θ) is chosen inappropriately.

(b) Boring limit . The limiting theory {Scont
n } exists but is completely boring,

e.g. identically zero, or identically zero at x1 6= x2 6= . . . 6= xn (“ultra-local
theory”).

(c) Gaussian limit . The limiting theory {Scont
n } is Gaussian, i.e. a generalized

free field. This situation is commonly called triviality .

(d) Non-Gaussian limit . The limiting theory is non-Gaussian. This situa-
tion is commonly called nontriviality . (We emphasize, however, that non-
Gaussianness does not necessarily imply that the scattering matrix is
different from the identity. For example, the Wick square of a free field is
non-Gaussian but nevertheless describes noninteracting particles.)

It is obvious heuristically that, in order to obtain a non-boring continuum
limit, the lattice theories Γ (θ) should have correlation lengths of order at least
θ, as θ → ∞ (otherwise, the rescaled theories would have correlation lengths,
measured in centimeters, which tend to zero).1 In particular, the parameters
Γ (θ) should approach or sit on the critical surface as θ → ∞. The two most
common ways of achieving this are the following:

• Massive scaling limit . The parameters Γ (θ) approach the critical surface
in such a way that the rescaled correlation lengths ξθ ≡ θ−1ξ(Γ (θ)) tend
to a finite nonzero constant as θ → ∞. Usually α(θ) is chosen so that the
rescaled susceptibilities

χθ ≡
∫

ddxSθ
2(0, x) ≡ θ−d

∑

x∈θ−1ZZ
d

Sθ
2(0, x) = α(θ)2θ−dχ

also tend to a finite nonzero constant as θ → ∞. Heuristically this should
yield a massive, non-boring continuum theory.2

• Massless scaling limit . The parameters Γ (θ) sit on the critical surface for
all θ, i.e. ξ(Γ (θ)) ≡ +∞. For a suitable choice of α(θ) this should yield a
massless (non-boring) continuum theory.

Of course, other ways of approaching the critical surface are also permissible,
provided that the limits (15.2) exist.

1Indeed, for reflection-positive theories, it is not hard to prove rigorously that if
θ−1ξ(Γ (θ)) → 0, then the limit (15.2) for n = 2 either does not exist or else vanishes identi-
cally for x1 6= x2. If the Griffiths I and Gaussian correlation inequalities hold, then this result
also extends to higher n. See Proposition 15.4 for a precise result.

2Indeed, one expects heuristically that the continuum susceptibility χcont ≡∫
ddx Scont

2 (0, x) should equal limθ→∞ χθ, the limit of the rescaled lattice susceptibilities.
For a rigorous result, see Proposition 15.8.
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Remark on normalization conventions. Consider, for concreteness, a ϕ4

lattice model with Hamiltonian3

H = −J
∑

〈xy〉

ϕxϕy +
∑

x

(
λ

4
ϕ4

x +
τ

2
ϕ2

x − hϕx

)
, (15.3)

where 〈xy〉 denotes nearest-neighbor pairs of sites (each pair counted once). If
we adopt the “continuum limit” viewpoint and imagine this lattice to have a
spacing a = θ−1 (in centimeters), then under the identification θ−d ∑

x ≈ ∫
ddx

we can write

H ≈
∫

ddx

[
JFT

2
(∇ϕ)2 +

τFT

2
ϕ2 +

λFT

4
ϕ4 − hFT ϕ

]
, (15.4)

where we have made the definitions

JFT = Jθd−2 (15.5)

λFT = λθd (15.6)

hFT = hθd (15.7)

τFT = (τ − 2dJ)θd . (15.8)

That is, we can imagine the lattice Hamiltonian (15.3) to be the discretization
of the formal continuum Hamiltonian (15.4). Equations (15.5)–(15.8) provides a
“translation dictionary” between the statistical-mechanical variables (J, λ, τ, h)
and the field-theoretic variables (JFT , λFT , τFT , hFT ).

Note also that the lattice ϕ4 model has a trivial rescaling-of-field covariance

〈ϕx1 . . . ϕxn〉α−2J,α−4λ,α−2τ,α−1h = αn〈ϕx1 . . . ϕxn〉J,λ,τ,h . (15.9)

It follows that the introduction of the explicit field-strength renormalization
factor α(θ) is redundant. We are thus free to impose, without loss of generality,
one normalization condition on the redundant set (α, J, λ, τ, h). The following
normalization conventions are often used:

(a) α(θ) = 1. The fields ϕ are then “renormalized fields”.

(b) JFT (θ) = 1. The fields ϕ are then “canonical fields”, in the sense that
they formally satisfy canonical equal-time commutation relations.

(c) J(θ) → Jc (a finite constant) as θ → ∞. This is the convention usually
employed in discussions of critical phenomena in statistical mechanics.
(The statistical-mechanical approach to the limit usually keeps λ and τ
constant, as well. It is thus less general than the approaches studied in
field theory.)

3Here we are using the field theorists’ convention, which takes the a priori measure to
be Lebesgue measure and places all other factors into the Hamiltonian (which, incidentally,
field theorists call the “action”). Earlier in this monograph we put the ϕ4

x and ϕ2
x terms into

the single-spin measure dPx (as is most appropriate for proving correlation inequalities). The
difference is purely one of notation.
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In our discussion of ϕ4 field theory (Section 15.2) we shall adhere to the conven-
tion α(θ) = 1, as it makes the formulas a bit simpler and easier to understand.
In the meantime we shall keep the factor α(θ) in order to allow for models
without the rescaling-of-field covariance (15.9), such as the Ising model with its
standard normalization σ = ±1.

Note, finally, that in the ϕ4 model the ratios λ̂SM ≡ λ/J2 and λ̂FT ≡
λFT /J2

FT are invariant under the field rescaling (15.9); they can thus serve as
normalization-independent measures of the bare ϕ4 coupling strength. They are
related by

λ̂SM = λ̂FT θd−4 . (15.10)

The physics is of course the same whether one uses λ̂SM or λ̂FT as the fundamen-
tal variable, but the verbal description is somewhat different — a circumstance
which has sometimes caused confusion. As practice in learning to translate be-
tween the two languages, let us consider two commonly used ways of taking the
continuum limit (θ → ∞):

(a) λ̂FT fixed . This is the standard procedure in superrenormalizable field
theory (d < 4). From the point of view of field theory, no nontrivial
coupling-constant renormalization is being performed; and none need be
performed, since the ultraviolet divergences are not so severe in d < 4.
From the point of view of statistical mechanics, the theory is becoming
extremely weakly coupled (λ̂SM ∼ θd−4); but the effects of this coupling
are amplified by the infrared divergences of the ϕ4 lattice theory near the
critical point in d < 4, leading to a non-Gaussian continuum limit.

(b) λ fixed (hence λ̂SM → a finite constant). This is the standard procedure
in the statistical-mechanical theory of critical phenomena. In this case it
is for d > 4 that matters are simple: correlation functions are given by a
perturbation expansion that is free of infrared divergences. From the point
of view of field theory this might seem surprising, since the ϕ4

d field theory
for d > 4 is perturbatively nonrenormalizable, with horrendous ultraviolet
divergences; but this is mitigated by the fact that the theory is becoming
extremely weakly coupled (λ̂FT ∼ θ4−d). On the other hand, for d < 4
the theory of critical phenomena is very complicated, by virtue of infrared
divergences; this is reflected in field theory in the fact that the theory is
becoming extremely strongly coupled (λ̂FT ∼ θ4−d), causing perturbation
theory to break down even though the internal momentum integrations
are ultraviolet convergent.

Clearly it is the factor θd−4 in (15.10) that accounts for the interplay between
ultraviolet and infrared as one translates from one viewpoint to the other.
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15.1.2 Precise mathematical formulation I:
The continuum limit

A continuum Euclidean quantum field theory is, by definition, a set of Schwinger
distributions {Sn} satisfying the Osterwalder-Schrader axioms. More precisely,
one can ask for either of the following:

(a) Schwinger distributions Sn ∈ S ′
6=(Rnd) that satisfy the Osterwalder-

Schrader axioms [419, 420, 418]. Here S ′
6=(Rnd) is the space of tempered

distributions at noncoinciding arguments x1 6= x2 6= . . . 6= xn ∈ R
d. It

is the dual of S6=(Rnd), the space of test functions in S(Rnd) that van-
ish together with all their derivatives on each hyperplane xi − xj = 0
(1 ≤ i < j ≤ n).

(b) Extended Schwinger distributions Sn ∈ S ′(Rnd) that satisfy the extended
Osterwalder-Schrader axioms [146, 159]. Here the Sn must be defined also
at coinciding arguments.

Each of these axiom schemes is “physically natural” for certain purposes:

(a′) A G̊arding-Wightman relativistic quantum field theory determines, by an-
alytic continuation, the Euclidean Green’s functions (Schwinger functions)
only at noncoinciding arguments;and conversely, only the Schwinger dis-
tributions at noncoinciding arguments play any role in the Osterwalder-
Schrader reconstruction of the relativistic quantum field theory.

(b′) Eckmann and Epstein [217, 159] have set out axioms for time-ordered
products in relativistic quantum field theory; these axioms are stronger
than the G̊arding-Wightman axioms. An Eckmann-Epstein relativistic
quantum field theory determines, by analytic continuation, the Schwinger
distributions also at coinciding arguments; and conversely, these ex-
tended Schwinger distributions (which must satisfy an extended form of
Osterwalder-Schrader positivity) are required for the reconstruction of the
time-ordered vacuum expectation values in Minkowski space.

Thus, what one demands in Euclidean space depends on what one wants to
reconstruct in Minkowski space. Of course, from the point of view of probability
theory (i.e. classical statistical mechanics), the extended OS axioms are more
natural.

We now describe how to obtain continuum Schwinger distributions as a
limit of rescaled lattice correlation functions. The first step is to make the
lattice theories “live” in the continuum configuration space. The lattice n-point
function

Sn(x1, . . . , xn) = 〈ϕx1 . . . ϕxn〉 (15.11)

is an ordinary (pointwise-defined) function, defined for x1, . . . , xn ∈ ZZ
d; simi-

larly, the rescaled lattice n-point function
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Sθ
n(x1, . . . , xn) = αn〈ϕθx1 . . . ϕθxn〉 (15.12)

is an ordinary (pointwise-defined) function, defined for x1, . . . , xn ∈ θ−1
ZZ

d. On
the other hand, a continuum n-point Schwinger distribution is a distribution in
the sense of Schwartz, i.e. an element of D′(IRnd) [or S ′(IRnd)]. There are many
ways to associate a distribution in D′(IRnd) with a given function on θ−1

ZZ
d; the

simplest is as a sum of delta functions.4 That is, we let Sθ,dist
n be the distribution

Sθ,dist
n = αnθ−nd

∑

x1,...,xn∈θ−1ZZ
d

〈ϕθx1 . . . ϕθxn〉 δ(x1,...,xn) (15.13)

where δy denotes the delta function located at y ∈ R
nd. In other words, if

f1, . . . , fn are test functions in D(IRnd), then

Sθ,dist
n (f1, . . . , fn)

= αnθ−nd
∑

x1,...,xn∈ZZ
d

f1(θ
−1x1) . . . fn(θ−1xn) 〈ϕx1 . . . ϕxn〉 .

(15.14)

Clearly Sθ,dist
n is a well-defined distribution; and if the lattice correlation func-

tions are polynomially bounded in x-space (as they obviously are in any
translation-invariant theory), then the Sθ,dist

n are tempered, i.e. belong to
S ′(IRnd).

This construction has also a probabilistic interpretation. A lattice field con-
figuration is a sequence ϕ = {ϕx}x∈ZZ

d , i.e. an element of R
ZZ

d
. A continuum

field configuration is a distribution in the sense of Schwartz, i.e. an element of
D′(Rd) [or S ′(Rd)]. There are many ways to associate a continuum field con-
figuration with a given lattice field configuration; the simplest is as a sum of
delta functions. So let θ and α be strictly positive real numbers; we call θ the
length rescaling factor (corresponding to the lattice spacing a = θ−1) and α the

field-strength rescaling factor . We then define a map Pθ,α: R
ZZ

d → D′(Rd) by

Pθ,αϕ = αθ−d
∑

x∈ZZ
d

ϕx δθ−1x . (15.15)

Note also that Pθ,α maps s′(ZZd), the space of polynomially bounded sequences,
into S ′(Rd), the space of tempered distributions. Then Pθ,α carries each proba-

bility measure µ on R
ZZ

d
[or s′(ZZd)] into a probability measure µθ,α = µ ◦ P−1

θ,α

on D′(Rd) [or S ′(Rd)]. The moments of µθ,α are precisely the rescaled lattice
Schwinger distributions Sθ,dist

n defined in (15.13)–(15.14). That is,

Sθ,dist
n (f1, . . . , fn) =

∫

D′(Rd)

ϕ(f1) . . . ϕ(fn) dµθ,α(ϕ) , (15.16)

as can be easily verified.

4Alternatively one could use piecewise-constant interpolation, piecewise-linear interpola-
tion, etc. The only subtle point is the preservation of Osterwalder-Schrader positivity.
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Now let {µm} be a sequence of lattice probability measures, and let {θm} and
{αm} be a sequence of length and field-strength rescaling factors. The rescaled
lattice Schwinger functions

S(µm,θm,αm),dist
n (f1, . . . , fn) =

∫

D′(Rd)

ϕ(f1) . . . ϕ(fn) dµθm,αm
m (ϕ) (15.17)

may or may not converge as m → ∞. If they do converge (for all n), we say that
the continuum limit exists along the sequence {(µm, θm, αm)} of lattice theories,
and we denote the limit Scont

n . We could ask for convergence in either of two
senses:

(a) Weak convergence in the space S ′
6=(Rnd) of tempered distributions at

noncoinciding arguments. This means that S(µm,θm,αm),dist
n (f1, . . . , fn) con-

verges for all choices of test functions f1, . . . , fn ∈ S(Rd) with nonover-
lapping supports . The limit is then a distribution Scont

n ∈ S ′
6=(Rd) [457, pp.

74–75].

(b) Weak convergence in the space S ′(Rnd) of tempered distributions. This
means that S(µm,θm,αm),dist

n (f1, . . . , fn) converges for all choices of test func-
tions f1, . . . , fn ∈ S(Rd). The limit is then a distribution Scont

n ∈ S ′(Rd)
[457, pp. 74–75].

Technical remark . Weak convergence of sequences (not nets!) in S ′(Rnd) is
equivalent to strong convergence in S ′(Rnd) [441, Theorem V.26]; and likewise
for S ′

6=(Rnd).

The next step is to check the Osterwalder-Schrader (or Eckmann-Epstein)
axioms for the continuum theory {Scont

n }:
(OS0) Temperedness and growth condition. The temperedness is obvious

by construction. The growth condition has to be checked case-by-case, but it
certainly holds for any model satisfying the Gaussian inequalities [255, 411, 412].

(OS1) Euclidean invariance. We show below that the {Scont
n } are translation-

invariant whenever the lattice spacings am ≡ θ−1
m tend to zero. This result is not

entirely trivial, but it is physically reasonable: the amZZ
d-translation invariance

of the rescaled lattice theories goes over to an R
d-translation invariance in the

continuum limit. The rotation invariance of the {Scont
n } is, however, a much

more subtle question. The lattice theories are obviously not invariant under the
rotation group SO(d), but only under its discrete hypercubic subgroup. It is
plausible that SO(d) invariance might be restored in the continuum limit, but
this is far from assured. Indeed, the restoration of rotation invariance in the
continuum limit is a detailed dynamical question: it depends on whether the
hypercubic-invariant SO(d)-breaking operators are “relevant” or “irrelevant” in
the sense of the renormalization group at the appropriate RG fixed point. For
“normal” models (such as ϕ4), the continuum limit is expected to be rotation-
invariant, but there do exist examples of “pathological” models in which the
continuum limit seems not to be rotation-invariant [329]. All lattice-based work
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in constructive quantum field theory must face, therefore, the difficult problem
of proving rotation invariance of the continuum-limit theory (in those cases
where it in fact holds!): this requires rather strong control over the approach
to the continuum limit. See [339] for a beautiful idea which works in at least
one case. On the other hand, lattice-based work in destructive quantum field
theory (i.e. triviality proofs) usually need not worry about rotation invariance:
one simply proves that the continuum-limit theory is Gaussian whether or not
it is rotation-invariant.

(OS2) Osterwalder-Schrader positivity . If the lattice theories are reflection-
positive with respect to the hyperplane x1 = 0, then it is easy to see that
the continuum-limit theory will be reflection-positive with respect to this same
hyperplane. If, instead, the lattice theories are reflection-positive with respect to
the hyperplane x1 = −1

2
, then with a little work one can again show reflection-

positivity of the continuum-limit theory with respect to the hyperplane x1 = 0,
provided that the lattice spacings am = θ−1

m tend to zero.
(OS3) Permutation symmetry . This is trivial.

We now give the detailed proof of translation invariance:

Proposition 15.1 Let {µm} be a sequence of translation-invariant lattice mod-
els, and consider a continuum limit {θm, αm} in which lim

m→∞
θ−1

m = 0. Sup-

pose that, for some given n, the rescaled n-point function S(µm,θm,αm),dist
n con-

verges in D′(IRnd) [resp. D′
6=(IRnd)] to a limiting distribution Scont

n . Then Scont
n

is translation-invariant.

Proof. Fix f1, . . . , fn ∈ D(IRd) and b ∈ IRd; our goal is to show that

Scont
n (f1, . . . , fn) = Scont

n (f
(b)
1 , . . . , f (b)

n ) , (15.18)

where
f (b)(x) ≡ f(x − b) . (15.19)

Since am ≡ θ−1
m → 0, there exists a sequence of bm ∈ amZZ

d with bm → b. By
the ZZ

d-translation invariance of the lattice theories {µm}, we have

S(µm,θm,αm),dist
n (f1, . . . , fn) = S(µm,θm,αm),dist

n (f
(bm)
1 , . . . , f (bm)

n ) . (15.20)

On the other hand, it is easy to show that f
(bm)
i → f

(b)
i in the topology of

D(IRd). If we now let m → ∞ in (15.20), we obtain (15.18), by resorting on
the right-hand side to a standard lemma from the theory of distributions [446,
Theorem 6.18].

The proof for D′
6=(IRnd) is identical: we restrict attention to f1, . . . , fn with

nonoverlapping supports, and note that their translates also have this property.
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15.1.3 Precise mathematical formulation II:
Necessary conditions for non-boring limit

We start by discussing some general results relating “distributional” to “point-
wise” convergence; these will play an important role in the remainder of this
subsection, as well as in the ϕ4 triviality proof (Section 15.2). The first proposi-
tion shows that locally uniform pointwise convergence to a continuous function
(e.g. zero) implies distributional convergence; the second proposition shows, in a
much more restricted setting, that distributional convergence implies pointwise
boundedness.

Proposition 15.2 Let {Sθm} be a sequence of functions defined on θ−1
m ZZ

N , and
let {Sθm,dist} be the corresponding distributions, i.e.

Sθm,dist = θ−N
m

∑

y∈θ−1
m ZZ

N

Sθm(y)δy . (15.21)

Let T be a continuous function on IRN . Now let Ω be an open subset of IRN ,
and suppose that {Sθm} converges to T uniformly on compact subsets of Ω, i.e.

lim
m→∞

sup
y∈K ∩ θ−1

m ZZ
N

|Sθm(y) − T (y)| = 0 (15.22)

for each compact K ⊂ Ω. Then {Sθm,dist} converges to T in the sense of distri-
butions on Ω, i.e. in the space D′(Ω).

Proof. Let f be a test function with compact support K ⊂ Ω [i.e. f ∈ D(Ω)].
Then

Sθm,dist(f) −
∫

T (y)f(y) dy =

θ−N

m

∑

y∈θ−1
m ZZ

N

[
Sθm(y) − T (y)

]
f(y)




+


θ−N

m

∑

y∈θ−1
m ZZ

N

T (y)f(y) −
∫

T (y)f(y) dy


 . (15.23)

The first term tends to zero by the hypothesis (15.22); the second term tends
to zero by the usual theorem on the convergence of a Riemann sum to the
corresponding integral.

Example. Let N = nd, and let

Ω = {(x1, . . . , xn): xi 6= xj for all i 6= j} . (15.24)

Then D′(Ω) = D′
6=(IRnd), the space of distributions at noncoinciding arguments.

Now suppose that {Sθm} converges to zero uniformly on
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Ωε = {(x1, . . . , xn): |xi − xj| ≥ ε for all i 6= j} (15.25)

for each ε > 0. Then {Sθm,dist} converges to zero in D′
6=(IRnd). This result will

be used in the next section.

Remark. Under slightly stronger hypotheses, one can prove convergence in
S ′(Ω), the space of tempered distributions on Ω.

Proposition 15.3 Let {µm} be a sequence of nearest-neighbor ferromagnetic
models. Consider a continuum limit with length rescaling factors {θm} → ∞ and
field-strength rescaling factors {αm}, and suppose that the rescaled lattice two-

point truncated Schwinger distributions S
(µm,θm,αm),dist
2,T converge in the space of

distributions at noncoinciding arguments to a limiting distribution Scont
2,T . Then

the pointwise-defined functions

S
(µm,θm,αm)
2,T (x) = α2

m〈ϕ0 ; ϕθmx〉µm , (15.26)

defined for x ∈ θ−1
m ZZ

d ⊂ IRd, are bounded uniformly on |x| ≥ ε, for any fixed
ε > 0 — that is,

sup
m

sup
x∈θ−1

m ZZ
d

|x|≥ε

α2
m〈ϕ0 ; ϕθmx〉µm < ∞ . (15.27)

Proof. The Schrader–Messager–Miracle-Solé inequality (13.66) implies that S2,T

is “almost symmetric decreasing”, in the sense that if x, y ∈ θ−1
m ZZ

d with |y| ≤
d−1x, then

〈ϕ0 ; ϕθmy〉µm ≥ 〈ϕ0 ; ϕθmx〉µm

(see e.g. [481, Appendix A]). In particular, this holds if x, y ∈ θ−1
m ZZ

d with |x| ≥ ε
and |y| ≤ d−1ε. Therefore, if there were a subsequence {mi} such that

lim
i→∞

sup
x∈θ−1

m ZZ
d

|x|≥ε

α2
mi
〈ϕ0 ; ϕθmix

〉µmi
= +∞ ,

then we would also have

lim
i→∞

inf
x∈θ−1

m ZZ
d

|x|≤d−1ε

α2
mi
〈ϕ0 ; ϕθmix

〉µmi
= +∞ ,

i.e. S
(µmi ,θmi ,αmi )
2,T → +∞ uniformly on {x: |x| ≤ d−1ε}. But this would contra-

dict the assumed convergence of S
(µm,θm,αm),dist
2,T in the sense of distributions at

noncoinciding arguments (just consider a test function f ≥ 0 supported in the
open set {x: 0 < |x| < d−1ε}).
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Remark. This proposition is expected to hold for any physically reasonable
model. But unfortunately we have been unable to prove it except under the re-
strictive hypotheses of the Schrader–Messager–Miracle-Solé correlation inequal-
ity.

Consider now a sequence of lattice theories {µm}; we ask which choices
{(θm, αm)} of length- and field-strength rescaling factors could lead to sensible
continuum limits. The next three propositions deal with this question:

1. It was argued heuristically in Section 15.1.1 that the length rescaling factor
θm cannot be ≫ the correlation length ξm of the lattice model (measured
in lattice spacings), since otherwise the rescaled theories would have corre-
lation lengths ξθ

m ≡ θ−1
m ξm which tend to zero (measured in centimeters).

Proposition 15.4 makes this reasoning precise.

2. The infrared bound places a limitation on the allowable choices of field-
strength renormalization: if α(θ) is too small, then the correlation func-
tions tend to zero. Proposition 15.5 makes this precise.

3. If we insist that the rescaled susceptibilities χθ
m ≡ α2

mθ−d
m χm be bounded

(as is typical in a massive scaling limit), then θm cannot be ≪ (Jmχm)1/2.
Proposition 15.6 makes this precise.

Propositions 15.4 and 15.6 together show that we must take

(Jmχm)1/2 <∼ θm
<∼ ξm (15.28)

to obtain a non-boring massive scaling limit. [Note that (Jχ)1/2 ≤ const× ξ by
reflection positivity and the infrared bound [cf. (13.88)], and that in dimension
d > 4 it is expected that (Jχ)1/2 ∼ ξ.] In fact we believe that the only sensible
choice for a massive scaling limit (in any dimension) is θm ∼ ξm, but we do not
know how to prove this.

Proposition 15.4 Let {µm} be a sequence of nearest-neighbor ferromagnetic
models, with correlation lengths

ξm ≡ lim sup
|x|→∞

−|x|
log 〈ϕ0 ; ϕx〉µm

. (15.29)

Consider a continuum limit with length rescaling factors {θm} → ∞ and field-
strength rescaling factors {αm}, and suppose that lim

m→∞
θ−1

m ξm = 0. Suppose,

further, that the rescaled truncated two-point distributions S
(µm,θm,αm),dist
2,T con-

verge in the space D′
6=(IRnd) of distributions at noncoinciding arguments to a

limiting distribution Scont
2,T . Then:

(a) Scont
2,T ≡ 0 (at noncoinciding arguments).
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(b) Suppose, in addition, that the lattice theories are even and satisfy the
Griffiths I and Gaussian inequalities. Then, for each n > 0, the rescaled n-point
function S(µm,θm,αm),dist

n converges to zero in the space D′
6=(IRnd) of distributions

at noncoinciding arguments.

Proof. (a) Using reflection positivity in lattice hyperplanes (e.g. x1 = 0) and
bisector hyperplanes (e.g. x1 = −1

2
), it is not hard to show (see Section 13.4)

that

〈ϕ0 ; ϕ(x1,x2,...,xd)〉 ≤ 〈ϕ0 ; ϕ(|x1|,0,...,0)〉 (15.30)

and

〈ϕ0 ; ϕ(x1,0,...,0)〉 =

e−1/ξ∫

0

d̺(λ) λ|x1| , (15.31)

where d̺(λ) is a positive measure. Analogous representations hold in each of
the d coordinate directions. It follows from (15.31) and permutations that

〈ϕ0 ; ϕbei
〉 ≤ e−(|b|−|c|)/ξ 〈ϕ0 ; ϕcei

〉 (15.32)

for |b| ≥ |c| and 1 ≤ i ≤ d. Combining this with (15.30) and permutations, we
conclude that

〈ϕ0 ; ϕx〉 ≤ e−(|x|∞−c)/ξ max
1≤i≤d

〈ϕ0 ; ϕcei
〉 (15.33)

for |x|∞ ≡ max
1≤i≤d

|xi| ≥ c ≥ 0. Now apply this to the functions

S
(µm,θm,αm)
2,T (x) ≡ α2

m〈ϕ0 ; ϕθmx〉µm , (15.34)

which are defined for x ∈ θ−1
m ZZ

d. Fix ε > 0; then Proposition 15.3 guarantees

that S
(µm,θm,αm)
2,T (x) is bounded uniformly on |x| ≥ ε. Taking cm = ⌈θmε⌉ ≤

θmε + 1 and using (15.33), we conclude that

S
(µm,θm,αm)
2,T (x) ≤ const × e−θm(|x|∞−ε−θ−1

m )/ξm (15.35)

uniformly in m, for |x|∞ ≥ ε + θ−1
m . Since lim

m→∞
θ−1

m = 0 and lim
m→∞

θmξ−1
m = +∞,

it follows that

lim
m→∞

S
(µm,θm,αm)
2,T (x) = 0 (15.36)

uniformly for |x|∞ ≥ 2ε. But since ε > 0 is arbitrary, Proposition 15.2 implies

that S
(µm,θm,αm),dist
2,T → 0 in D′

6=.

(b) The Griffiths I and Gaussian inequalities imply that

0 ≤ S(µm,θm,αm)
n (x1, . . . , xn) ≤

∑

pairings

∏
S

(µm,θm,αm)
2 (xi, xj) . (15.37)

So the claim is an immediate consequence of (15.36) and Proposition 15.2.
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The infrared bound (13.86)/(13.87) places a limitation on the allowable
choices of field-strength renormalization if we are to have a non-boring contin-
uum limit. For simplicity we restrict attention to nearest-neighbor ferromag-
netic models (certain long-range reflection-positive ferromagnetic models could
be considered as well). Formally the argument goes as follows:

Scont
2,T (x) = lim

θ→∞
α2〈ϕ0 ; ϕθx〉

≤ lim
θ→∞

α2 const

J |θx|d−2
by the infrared bound

= 0 if α2J−1θ2−d → 0 (15.38)

For the rigorous argument, all we have to do is smear everything with test
functions f and g:

Proposition 15.5 Let d > 2, and let {µm} be a sequence of nearest-neighbor
ferromagnetic models with nearest-neighbor coupling strengths {Jm}. Consider
now a continuum limit with length rescaling factors {θm} → ∞ and field-
strength rescaling factors {αm}, and suppose that lim

m→∞
α2

mJ−1
m θ2−d

m = 0. Then:

(a) The rescaled truncated two-point functions S
(µm,θm,αm),dist
2,T converge to

zero in S ′(IR2d).
(b) Suppose, in addition, that the lattice theories are even and satisfy the

Griffiths I and Gaussian inequalities. Then, for each n > 0, the rescaled n-point
function S(µm,θm,αm),dist

n converges to zero in S ′(IRnd).

Proof. The x-space infrared bound (13.87) [which is valid for nearest-neighbor
ferromagnets in d > 2 with arbitrary single-spin measure] states that

0 ≤ 〈ϕ0 ; ϕx〉 ≤
const

J(1 + |x|)d−2
. (15.39)

Now let f, g ∈ S(IRd). By definition (15.14), we have

Sθ,dist
2,T (f, g) = α2θ−2d

∑

x,y∈θ−1ZZ
d

f(x)g(y) 〈ϕθx ; ϕθy〉 . (15.40)

Inserting the bound (15.39), we find
∣∣∣Sθ,dist

2,T (f, g)
∣∣∣ ≤

const × α2J−1θ2−d ×
[
θ−2d

∑

x,y∈θ−1ZZ
d

f(x) g(y) (θ−1 + |x − y|)−(d−2)
]

.

(15.41)

As θ → ∞, the sum in square brackets approaches the integral
∫

IRd

dx
∫

IRd

dy f(x)g(y) |x − y|−(d−2) , (15.42)
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which is finite. Since α2J−1θ2−d → 0 by hypothesis, this proves part (a). Part
(b) is proven as in Proposition 15.4.

Remark. This proposition can also be proven using the p-space infrared bound
[222, 218]

0 ≤ G̃(p) ≤
[
2J

d∑

i=1

(1 − cos pi)

]−1

, (15.43)

which is somewhat more “elementary” (i.e., doesn’t require the Schrader–
Messager–Miracle-Solé inequality). But the proof is a bit messier.

If we use the convention α ≡ 1, then Proposition 15.5 says that JFT ≡ Jθd−2

must stay bounded if we are to obtain a non-boring continuum limit.

Proposition 15.6 Let d > 2, and let {µm} be a sequence of nearest-neighbor
ferromagnetic models with nearest-neighbor coupling strengths {Jm} and sus-
ceptibilities {χm}. Consider now a continuum limit with length rescaling fac-
tors {θm} → ∞ and field-strength rescaling factors {αm}. Suppose that χθ

m ≡
α2

mθ−d
m χm is bounded as m → ∞, and that lim

m→∞
θm(Jmχm)−1/2 = 0. Then

lim
m→∞

α2
mJ−1

m θ2−d
m = 0, so that the rescaled truncated two-point functions S

(µm,θm,αm),dist
2,T

converge to zero in S ′(IR2d).

Proof.
α2

Jθd−2
= χθ θ2

Jχ
→ 0

as m → ∞ by hypothesis. The rest follows from Proposition 15.5.

15.1.4 Precise mathematical formulation III:
Convergence of summed quantities

The next question is whether the rescaled summed lattice quantities converge
to their continuum counterparts. For example, it is natural to expect that the
rescaled lattice susceptibilities

χθ ≡
∫

ddx Sθ
2,T (0, x) ≡ θ−d

∑

x∈θ−1ZZ
d

Sθ
2,T (0, x) ≡ α2θ−dχ (15.44)

should converge to the continuum susceptibility

χcont ≡
∫

ddxScont
2,T (0, x) . (15.45)
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Do they?
The first problem is to make sense of the expression (15.45): since the con-

stant function does not belong to S(Rd), it is not a priori valid to integrate
the distribution Scont

2,T,diff(x) ≡ Scont
2,T (0, x) over all space. However, let us suppose

that:

(a) The lattice theories satisfy Sθ
2,T ≥ 0 (e.g. by the Griffiths II or FKG

inequality).

(b) The convergence Sθ
2,T → Scont

2,T takes place in D′, the space of distributions
defined at all (not just noncoinciding) arguments.

Then it follows that Scont
2,T ≥ 0; but since every positive distribution is a positive

measure [457, p. 29], we can integrate any positive function on it (although the
result may be +∞). It follows that χcont is well-defined and satisfies 0 ≤ χcont ≤
+∞.

Under these same hypotheses, we can study the convergence of χθ to χcont.
The main tool is the following measure-theoretic lemma:

Lemma 15.7 Let {νm}, ν be positive measures on R
k, and suppose that νm →

ν in D′(Rk) [this means that
∫

f dνm →
∫

f dν for all f which are infinitely

differentiable and of compact support]. Then:

(a)
∫

f dνm →
∫

f dν for all f which are continuous and of compact support.

(b) 0 ≤
∫

f dν ≤ lim inf
m→∞

∫
f dνm for all f which are nonnegative and contin-

uous.

(c) Let f be continuous, and suppose that there exists a function F ≥ 0

which goes to +∞ at infinity, such that lim sup
m→∞

∫
|f |F dνm < ∞. Then

∫
f dνm →

∫
f dν.

[Here (a) says that, for positive measures, distributional convergence implies
vague convergence; (b) is a kind of “Fatou lemma” for measures; and (c) is a
sufficient condition for the “non-escape of mass to infinity”.]

Proof. (a) Let K be any compact set in Rk, and let hK ∈ D be a nonnegative function
which is equal to 1 on K. Then νm(K) ≤ ∫

hK dνm → ∫
hK dν < ∞, so the sequence

{νm(K)} is bounded. Similarly, ν(K) ≤ ∫
hK dν < ∞. So for each compact K, there

exists MK < ∞ such that νm(K) ≤ MK for all m and ν(K) ≤ MK .

Now let f be continuous and of compact support, and let K be a compact set
whose interior contains the support of f . Then for any ε > 0, there exists g ∈ D with
supp g ⊂ K such that ‖f − g‖∞ ≤ ε. We then have
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∣∣∣∣
∫

f dνm −
∫

f dν

∣∣∣∣ ≤
∣∣∣∣
∫

g dνm −
∫

g dν

∣∣∣∣ +

∣∣∣∣
∫

(f − g) dνm

∣∣∣∣ +

∣∣∣∣
∫

(f − g) dν

∣∣∣∣

≤
∣∣∣∣
∫

g dνm −
∫

g dν

∣∣∣∣ + 2εMK ,

so that lim sup
m→∞

| ∫ f dνm − ∫
f dν| ≤ 2εMK . Since ε is arbitrary, we have

∫
f dνm →

∫
f dν.

(b) Let f be nonnegative and continuous, and let 0 ≤ g1 ≤ g2 ≤ . . . be an
increasing sequence of continuous functions of compact support such that gn ↑ f
pointwise. Then

∫
f dν = lim

n→∞

∫
gn dν = sup

n

∫
gn dν by the monotone convergence

theorem. On the other hand, by (a) we have for each n

∫
gn dν = lim

m→∞

∫
gn dνm ≤ lim inf

m→∞

∫
f dνm ,

which proves the claim.

(c) It is not hard to see that there exists a continuous function G ≤ F having all
the properties required of F . [Let g1(r) = inf

|x|≥r
F (x), which is nonnegative, increasing

and tends to +∞ as r → +∞; let g2(r) =





min
(
r, g1(r)

)
if r ≥ 0

0 if r < 0



, which in

addition is everywhere finite; and let g3(r) =
∫ r
r−1 g2(r

′) dr′, which in addition is
continuous. Now let G(x) = g3(|x|).] So we can assume without loss of generality that
F is continuous. It then follows from (b) that

∫ |f |F dν ≤ lim sup
m→∞

∫ |f |F dνm ≡ M <

∞.
Now fix ε > 0, and choose R < ∞ such that F (x) ≥ 1/ε whenever |x| > R. Let

g(x) =





f(x) for |x| ≤ R
(R + 1 − |x|)f(x) for R ≤ |x| ≤ R + 1
0 for |x| ≥ R + 1

Clearly g is continuous and of compact support, and satisfies |f(x) − g(x)| ≤
ε|f(x)|F (x) for all x. We then have

lim sup
m→∞

∣∣∣∣
∫

f dνm −
∫

f dν

∣∣∣∣ ≤ lim sup
m→∞

[∣∣∣∣
∫

g dνm −
∫

g dν

∣∣∣∣ +

∣∣∣∣
∫

(f − g) dνm

∣∣∣∣ +

∣∣∣∣
∫

(f − g) dν

∣∣∣∣
]

≤ 0 + εM + εM

= 2εM ,

where we have used (a) to conclude that lim
m→∞

| ∫ g dνm − ∫
g dν| = 0. Since ε is

arbitrary, we have
∫
f dνm → ∫

f dν.

Applying this lemma to Sθ
2,T,diff and Scont

2,T,diff we obtain:

Proposition 15.8 Suppose that Sθ
2,T ≥ 0 and that Sθ,dist

2,T → Scont
2,T in D′. Then:
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(a) 0 ≤ χcont ≤ lim inf
θ→∞

χθ.

(b) Assume that there exists a function F ≥ 0 which goes to +∞ at infinity,

such that lim sup
θ→∞

∫
ddxF (x)Sθ

2,T (0, x) < ∞. Then χθ → χcont.

In a massive scaling limit, we typically choose the length and field-strength
rescaling factors so that both the rescaled susceptibilities χθ and the rescaled
second-moment correlation lengths

ξθ
2 ≡




∫
ddx |x|2Sθ

2,T (0, x)
∫

ddxSθ
2,T (0, x)




1/2

=




θ−d
∑

x∈θ−1ZZ
d

|x|2Sθ
2,T (0, x)

θ−d
∑

x∈θ−1ZZ
d

Sθ
2,T (0, x)




1/2

= θ−1ξ2

have limits (or are at least bounded). In this case we can apply Proposition
15.8 with F (x) = |x|2 to conclude that χθ → χcont. Of course, to conclude
that ξθ

2 → ξcont
2 (as we would also like to do), we would need to assume the

boundedness of some higher-moment correlation length ξθ
φ with φ > 2.

Summarizing this discussion, we have proven:

Proposition 15.9 Suppose that Sθ
2,T ≥ 0 and that Sθ,dist

2,T → Scont
2,T in D′. Suppose

further that for some φ > 0, the rescaled correlation lengths ξθ
φ ≡ θ−1ξφ are

bounded. Then:

(a) χθ → χcont.

(b) ξθ
φ′ → ξcont

φ′ for all φ′ < φ.

We can also apply Lemma 15.7 to truncated n-point functions un ≡ Sn,T

with n ≥ 3, with the aim of showing that ūθ
n → ūcont

n . In particular, for n = 3, 4
we can control ūcont

n by Lemma 15.7(c) combined with correlation inequalities.5

Consider first n = 3 with h ≥ 0, and suppose that uθ,dist
3 → ucont

3 in the sense of
distributions. Now the GHS and Ginibre inequalities (13.53)/(13.52) state that

0 ≥ u3(x1, x2, x3) ≥ −2M min[〈ϕx1 ; ϕx2〉, 〈ϕx1 ; ϕx3〉, 〈ϕx2 ; ϕx3〉] . (15.46)

5The basic technique is taken from [481, Section 2.3], with simplifications inspired by [5,
Section 15].
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Let us fix x1 = 0, multiply both sides by

F (x2, x3) = |x2|κ + |x3|κ (15.47)

with κ > 0, and then sum over x2, x3. We get

0 ≥
∑

x2,x3

u3(0, x2, x3)F (x2, x3) ≥ −4M
∑

x2,x3
|x2|≤|x3|

〈ϕ0 ; ϕx3〉F (x2, x3)

≥ −const × M
∑

x

|x|d+κ 〈ϕ0 ; ϕx〉

= −const × Mχ(ξd+κ)
d+κ (15.48)

Now insert the appropriate rescaling factors θ and α. If the rescaled magne-
tization M θ ≡ αM , the rescaled susceptibility χθ ≡ α2θ−dχ and the rescaled
φth-moment correlation length ξθ

φ ≡ θ−1ξφ are all bounded (for some φ > d),
then Lemma 15.7(c) implies that ūθ

3 → ūcont
3 .

Consider next n = 4 with h = 0, and suppose that uθ,dist
4 → ucont

4 in the
sense of distributions. The Lebowitz and Ginibre-Newman-Aizenman inequali-
ties (13.36)/(13.35) state that

0 ≥ u4(x1, x2, x3, x4) ≥ −2 min[〈ϕx1ϕx2〉〈ϕx3ϕx4〉, permutations] . (15.49)

Let us fix x1 = 0, multiply both sides by

F (x2, x3, x4) = |x2|κ + |x3|κ + |x4|κ (15.50)

with κ > 0, and then sum over x2, x3, x4. We get

0 ≥
∑

x2,x3,x4

u4(0, x2, x3, x4)F (x2, x3, x4)

≥ −12
∑

x2,x3,x4
|x3|≤|x2|

|x3|≤|x4−x3|

〈ϕ0ϕx2〉 〈ϕx3ϕx4〉F (x2, x3, x4)

≥ −12
∑

x2,x3,x4

|x3|≤|x2|
1/2|x4−x3|

1/2

〈ϕ0ϕx2〉 〈ϕx3ϕx4〉F (x2, x3, x4)

= −const ×
(

∑

x

|x| d
2
+κ 〈ϕ0ϕx〉

) (
∑

x

|x|d/2 〈ϕ0ϕx〉
)

= −const × χ2(ξd/2)
d/2(ξ(d/2)+κ)

(d/2)+κ . (15.51)

Now insert the appropriate rescaling factors θ and α. If the rescaled susceptibil-
ity χθ ≡ α2θ−dχ and the rescaled φth-moment correlation length ξθ

φ ≡ θ−1ξφ are
both bounded (for some φ > d/2), then Lemma 15.7(c) implies that ūθ

4 → ūcont
4 .

In summary:

Proposition 15.10
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(a) Consider a sequence of lattice models satisfying the GHS and Ginibre
inequalities (e.g. ferromagnetic models in the EMN class). Suppose that
uθ,dist

3 → ucont
3 in D′. Suppose further that M θ ≡ αM , χθ ≡ α2θ−dχ and

ξθ
φ ≡ θ−1ξφ are all bounded, for some φ > d. Then ūθ

3 → ūcont
3 .

(b) Consider a sequence of lattice models satisfying the Lebowitz and Ginibre-
Newman-Aizenman inequalities (e.g. ferromagnetic models in the BFS
class, in the symmetric regime). Suppose that uθ,dist

4 → ucont
4 in D′. Sup-

pose further that M θ ≡ αM , χθ ≡ α2θ−dχ and ξθ
φ ≡ θ−1ξφ are all bounded,

for some φ > d/2. Then ūθ
4 → ūcont

4 .

An even simpler situation arises in proofs of triviality: suppose that un(x1, . . . , xn)
has constant sign [e.g. u3 ≤ 0 for h ≥ 0 by the GHS inequality, u4 ≤ 0 for h = 0
by the Lebowitz inequality, or (−1)ku2k ≤ 0 for h = 0 by the Shlosman inequal-
ity] and that

ūθ
n ≡ αnθ−(n−1)d

∑

x2,x3,...,xn

un(0, x2, x3, . . . , xn) (15.52)

tends to zero. Then uθ,dist
n → 0 in the sense of distributions (i.e. ucont

n ≡ 0). [In
fact, if {νm} is a sequence of finite positive measures with total mass tending
to zero, then

∫
f dνm → 0 for every bounded measurable function f .] This

condition is often convenient for proving the triviality of massive scaling limits
(note that it is a sufficient but not necessary condition). Indeed, if the length
and field-strength rescalings are chosen so that χθ = const and ξθ

2 = const,
then ūθ

4 = −const× g2, where g2 ≡ −ū4/χ
2ξd

2 is the dimensionless renormalized
4-point coupling constant. So g2 → 0 is a sufficient condition for ucont

4 ≡ 0 —
which, as we shall see shortly, is a sufficient condition for triviality (Propositions
15.11 and 15.12).

15.1.5 Some criteria for triviality

In this section we record some useful sufficient conditions for the triviality of a
quantum field theory.

We recall that a quantum field theory is called a generalized free field
(GFF) if all its truncated Schwinger functions Sn,T of order n ≥ 3 vanish at
noncoinciding arguments. One example is the free field of mass m, in which
S2 = (−∆+m2)−1. Colloquially we use the adjective “trivial” as a synonym for
“generalized free field”.

The goal of a triviality theorem is to show that some class of quantum field
theories — often some class of continuum limits of lattice theories — are neces-
sarily GFFs. Usually this is done by “hard analysis”, i.e., by detailed estimates
based typically on either correlation inequalities or renormalization-group argu-
ments. However, there are also a number of “soft” theorems which give sufficient
conditions for a quantum field to be a GFF, and these can sometimes be useful.



392 15. Continuum limits

One class of theorems asserts that if Sn,T ≡ 0 for “sufficiently many” n ≥ 3,
then in fact Sn,T ≡ 0 for all n ≥ 3. The best general theorem of this kind
(known to us) is that of Baumann [52]:

Proposition 15.11 [52] Consider a quantum field theory satisfying all of
the G̊arding-Wightman (or equivalently, Osterwalder-Schrader) axioms. Sup-
pose that for at least one even n ≥ 4, the truncated n-point Schwinger function
Sn,T vanishes identically at noncoinciding arguments. Then the field is a gener-
alized free field.

Remarks. 1. This theorem is actually proven in Minkowski space. We have
restated it in Euclidean space, using the Osterwalder-Schrader reconstruction
theorem. It would be interesting to find a purely Euclidean proof.

2. This theorem assumes all of the Wightman axioms, including Lorentz
invariance. Therefore, it is applicable to continuum limits of lattice theories
only if Euclidean invariance holds.

3. It would be interesting to try to prove the following conjectured extension
of Baumann’s theorem: Suppose that Sn,T ≡ 0 at noncoinciding arguments for
at least one odd n ≥ 3. Then Sn,T ≡ 0 at noncoinciding arguments for all odd
n ≥ 3.

There also exist theorems of this kind which avoid the assumption of Lorentz
invariance, at the price of dealing with much more restricted classes of quantum
field theories. One result of this kind is due to Newman [411, Theorem 10]:

Proposition 15.12 Consider a continuum quantum field theory {Scont
n } ob-

tained as the limit in S ′ of rescaled lattice theories {Sθ
n} which are even (i.e.

Sθ
n ≡ 0 for n odd) and satisfy the Lee-Yang theorem.6 Suppose that for at least

one even n ≥ 4, the truncated n-point Schwinger function Scont
n,T vanishes iden-

tically. Then Scont
n,T ≡ 0 for all n ≥ 3, i.e. the field is a generalized free field.

A similar result was proven by Aizenman [5, Corollary 12.1] for models of
Griffiths-Simon class.

In zero magnetic field, the theorems of Baumann and Newman are conve-
nient but not indispensable, because the same methods (i.e. Aizenman-Fröhlich
inequality) which show that Sθ

4,T → 0 can also be adapted to show directly
that Rθ

2n ≡ Sθ
2n − ∑

pairings

∏
Sθ

2 → 0. However, in nonzero magnetic field, the
higher-point correlation functions are very difficult to work with; therefore, the
theorem of Baumann may play an important role in future work, by reducing
everything to the study of S4,T . Unfortunately, at present we are unable to say
anything about S4,T in nonzero magnetic field; indeed, we have only rather weak
results for S3,T !

6This class includes ferromagnetic ϕ4 models with N ≤ 3 components (and their limiting
cases, the Ising, plane-rotator and classical Heisenberg models). See [148, 371].
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A quite different class of triviality theorems asserts that if the two-point
function S2,T has sufficiently “soft” ultraviolet (high-momentum) behavior, then
the theory is a generalized free field. The most important of these theorems is
due to Jost, Schroer and Pohlmeyer:

Proposition 15.13 [320, 433]. Consider a quantum field theory satisfying all
of the G̊arding-Wightman (or equivalently, Osterwalder-Schrader) axioms. Sup-
pose that the truncated two-point function S2,T equals (at noncoinciding argu-
ments) that of a free field of mass m, namely,

S2,T = const × (−∆ + m2)−1

for some m ≥ 0. Then the field is a free field of mass m.

Remarks. 1. This theorem was first proven by Jost and Schroer [320] for the
case m > 0; see also [179, 488]. Some years later, Pohlmeyer [433] proved, by a
different method, the case m = 0; his proof actually handles all cases m ≥ 0 in
a unified way.

2. The m = 0 case of this theorem says, in particular, that a nontrivial
scale-invariant quantum field theory must have noncanonical dimensions , i.e.
S2,T = const × (−∆)−p with p > 1.

3. All known proofs of the Jost-Schroer-Pohlmeyer theorem work in Minkowski
space. It would be interesting to find a purely Euclidean proof.

A stronger result was proven recently by Baumann [53]:

Proposition 15.14 [53] Consider a quantum field theory in d-dimensional
space-time satisfying all of the G̊arding-Wightman axioms. Suppose that the
truncated two-point Wightman distribution W2,T decays exponentially in mo-

mentum space, in the sense that eα
√

p2
W̃2,T (p) ∈ S ′(Rd) for some α > 0, where

p2 ≡ p2
0 − p2. Then, if either

(a) d ≥ 3, or

(b) d = 2 and there are no zero-mass states in the energy spectrum,

the field is a generalized free field.

Another theorem of vaguely related type is the ICAR theorem of Powers
[439, 145, 54] for Fermi fields satisfying canonical anticommutation relations,
and its analogue for Bose fields [55, 56]. These theorems also state (though in a
very different sense) that a quantum field theory with sufficiently soft ultraviolet
behavior is necessarily a generalized free field.

15.1.6 Summary of what is known

Nontriviality Nearly all the known results on nontriviality are for models that
are perturbatively superrenormalizable [P (ϕ)1, P (ϕ)2 and ϕ4

3] or at least asymp-
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totically free [Gross-Neveu2, ϕ4
4 with λ < 0, Yang-Mills4]. Only quite recently

has progress been made in constructing certain perturbatively nonrenormalizable
models, notably the three-dimensional Gross-Neveu model at large N . Finally,
the continuum limit of the two-dimensional Ising model has been constructed
by quite different methods.

1) P (ϕ)1. These models are just anharmonic oscillators, and can be con-
structed and analyzed by standard methods of nonrelativistic quantum me-
chanics [463].

2) P (ϕ)2. These models require only Wick ordering to make them well-
defined. Their rigorous construction was the first major achievement of the
Constructive Quantum Field Theory program (1964–1972), and is described in
detail in the books of Glimm and Jaffe [260] and Simon [462].

3) ϕ4
3. This model requires a nontrivial mass renormalization (as well

as vacuum-energy renormalizations). The first rigorous construction, due to
Glimm, Jaffe, Feldman, Osterwalder, Magnen and Sénéor (1972–75), used
deep methods of phase-space-cell localization [254, 193, 380]. Different but
closely related methods have been proposed by Gallavotti and collaborators
[230, 231, 59, 60], Balaban [35], Battle and Federbush [49, 50, 48, 174], and
Feldman-Magnen-Rivasseau-Sénéor [380, 190, 192] these recent works stress the
connection with renormalization-group ideas. A much simpler (though much
weaker) proof of existence and nontriviality for weakly-coupled ϕ4

2 and ϕ4
3 was

given by Brydges, Fröhlich and Sokal [97, 96], using skeleton inequalities derived
from the BFS random-walk representation (see Section 6.3).

4) Gross-Neveu2. The Gross-Neveu [398, 283] model of an N -component
fermion with (ψψ)2 interaction is asymptotically free in d = 2. This model
has been rigorously constructed by Feldman et al. [191] and by Gawedzki and
Kupiainen [243] using renormalization-group ideas. The correlation functions
are the Borel sum of the renormalized perturbation expansion [191], so the
theory is nontrivial (at least for weak coupling).

5) ϕ4
4 (λ < 0). The ϕ4

4 model with the “wrong” sign of the coupling constant
(λ < 0) can be defined by analytic continuation from λ > 0, and it is asymptot-
ically free. Gawedzki and Kupiainen [245] constructed the continuum limit of a
hierarchical version of this model, and proved that renormalized perturbation
theory is asymptotic; in particular, the correlation functions are nontrivial (at
least for |λ| small). With more work, the full (non-hierarchical) theory could
presumably be constructed by similar methods. However, ϕ4

4 with λ < 0 is not
an honest quantum field theory: the correlation functions are almost certainly
not OS-positive. Its value is as a “toy model” on which to practice dealing with
asymptotic freedom. The same goes for Rivasseau’s construction [444] of the
planar version of this model (which is equivalent to the N → ∞ limit of an
N × N matrix ϕ4 model).

6) Yang-Mills4. Balaban [34, 36, 37, 39, 41, 40, 42, 43, 44, 45] has recently
constructed the continuum limit of four-dimensional pure lattice gauge theory in
finite volume; see also Federbush [171, 178, 172, 175, 176, 173]. The correlation
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functions of this theory are presumably nontrivial, although the proof of this
fact is not yet complete.

7) Perturbatively nonrenormalizable models. By extending the work on
asymptotically free theories, several authors have succeeded in constructing per-
turbatively nonrenormalizable quantum field theories that are controlled by a
non-Gaussian fixed point “sufficiently close” to the Gaussian one. The first re-
sults in this direction concerned a hierarchical model at small ε or large N
[242, 249]; see also [342] for an extension to ε = 1, N = 1. Later, Gawedzki and
Kupiainen [246] constructed the Gross-Neveu model in dimension d = 2 with
the modified propagator p//|p|2−ε, for ε sufficiently small; this mimics the ordi-
nary Gross-Neveu model in dimension “d = 2 + ε”. By similar methods, Felder
[182] constructed the planar ϕ4

4 theory with a propagator 1/p2−ε/2 at negative
coupling; this mimics the negative-coupling planar ϕ4

4+ε theory. However, none
of these are honest quantum field theories: OS-positivity almost certainly fails.
Very recently, however, de Calan et al. [119] have constructed the first perturba-
tively nonrenormalizable quantum field theory satisfying all the OS axioms: the
Gross-Neveu model in dimension d = 3 with a large number N of components.

8) Ising2. The scaling limit of the two-dimensional ferromagnetic Ising model
is known to be nontrivial. For a nearest-neighbor interaction, the continuum-
limit correlation functions can be computed explicitly [1, 387]. For general finite-
range interactions, the nontriviality can be proven by a very simple and beautiful
geometric argument using the random-current representation [5, Section 8].

Triviality The principal triviality theorems concern the continuum limit of the
symmetric phase of ϕ4 and Ising models in dimension d > 4 and d = 4.

1) d > 4. Here the continuum limit is trivial (or boring or nonexistent) no
matter what renormalizations J(θ), λ(θ), τ(θ) are chosen.

2) d = 4. The continuum limit is believed by most physicists to be trivial
(or boring or nonexistent) no matter what renormalizations are chosen, but
this has not yet been proven. The existing triviality theorems cover only some
tantalizing special cases:

(a) If the field-strength renormalization constant α−2
FT JFT (θ) tends to zero as

θ → ∞ (“infinite field-strength renormalization”).

(b) If the continuum two-point function has non-canonical short-distance be-
havior , i.e. lim

p→∞
p2S̃cont

2 (p) = ∞.

(c) If the continuum two-point function is scale-invariant , i.e., S̃cont
2 (p) =

const × |p|−α for some α.

(d) If the rescaled susceptibilities χθ are bounded (“massive scaling limit”)
and χ−2 ∂χ/∂J → 0 (“logarithmic corrections to mean-field theory”).
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(e) If the bare coupling constant λ̂FT (θ) = λFT (θ)/JFT (θ)2 remains bounded
and sufficiently small as θ → ∞.

The proofs of (1) and (2a) are based on the Aizenman-Fröhlich inequality;
(2b) is an easy consequence of (2a); (2c) follows from (2b) together with the
Jost-Schroer-Pohlmeyer theorem; and (2d) is a consequence of the Aizenman-
Graham inequality. A detailed exposition of these proofs is the principal aim of
this chapter. The proof of (2e) uses renormalization-group methods [290, 298].

These partial results on ϕ4
4 leave us in a rather strange situation:

(i) The “traditional” view of ϕ4
4 (circa 1950), based on renormalized pertur-

bation theory, is that ϕ4
4 is nontrivial provided that one makes suitable infinite

field-strength, coupling-constant and mass renormalizations. This scenario is
ruled out by (2a).

(ii) The “modern” (post-1971) view of how ϕ4
4 could potentially be non-

trivial, based on renormalization-group ideas, is that the ϕ4
4 theory may be

controlled by some (as-yet-undiscovered) nontrivial RG fixed point. Since the
theory at such a fixed point would be scale-invariant, this scenario is ruled out
by (2c): there does not exist a non-trivial RG fixed point that can be reached
from ϕ4 lattice theories.

(iii) The only possibility left open for nontrivial ϕ4
4 theory is the least plau-

sible one: finite field-strength renormalization, with no clear connection to RG
theory.

This strange situation, in which we have solved the supposedly “hard” case
(infinite field-strength renormalization) but failed to solve the “easy” case (finite
field-strength renormalization), is presumably an artifact of present methods of
proof rather than a real feature of ϕ4

4. But until someone proves a complete
triviality theorem for ϕ4

4 — or its negation — the question remains open. We
emphasize, also, that very little is known about the non-symmetric regime of
ϕ4

d, even for d > 4.

Recently, attempts have been made to extend the random-walk representation
and the triviality theorems to scalar quantum electrodynamics [88, 149] and to four-
fermion theories [312]. However, no rigorous triviality theorems have yet been proven.
Another important contribution for QED is [375]. The practical consequences of triv-
iality for elementary-particle physics are reviewed in [102].

15.2 Triviality of ϕ4
d (d ≥ 4) in the symmetric phase

The triviality (Gaussianness) of the continuum limit for ϕ4 quantum field the-
ories in dimension d > 4 (in the symmetric phase) was proven independently
and almost simultaneously by Aizenman [5] and Fröhlich [213]. These papers
also proved some partial results in dimension d = 4, which were later strength-
ened by Aizenman and Graham [15] and Aragão de Carvalho, Caracciolo and
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Fröhlich [28]. The purpose of this section is to give a detailed exposition of all
these proofs.

In this section we shall adhere to the normalization convention α(θ) ≡ 1.
The reader who prefers another convention can easily put back all the α’s.

The key to the triviality proofs is the Aizenman-Fröhlich correlation in-
equality (13.40)

S4,T (x1, x2, x3, x4) ≥ −
∑

z

S2(x1, z)S2(x3, z)

[
δz,x2 +

∑

z1

Jzz1S2(z1, x2)

]
×

[
δz,x4 +

∑

z2

Jzz2S2(z2, x4)

]
− {2 permutations}

(15.53)

combined with the Lebowitz inequality

S4,T (x1, x2, x3, x4) ≤ 0 . (15.54)

To see what is going on, let us first consider a simple special case: a “massive
scaling limit” in which J(θ), λ(θ) and τ(θ) are chosen so that the rescaled
susceptibilities

χθ ≡
∫

ddxSθ
2(0, x) ≡ θ−d

∑

x∈θ−1ZZ
d

S2(0, x) = θ−dχ (15.55)

are bounded as θ → ∞. We use the “summed” version (13.42)/(13.37) of the
Lebowitz and Aizenman-Fröhlich inequalities, namely7

0 ≥ S4,T ≥ −3J 2χ4

(
1 +

1

J χ

)2

(15.56)

where
S4,T ≡

∑

x2,x3,x4

S4,T (0, x2, x3, x4) (15.57)

and
J ≡

∑

j

Jij = 2dJ (15.58)

for a nearest-neighbor interaction of strength J . Inserting the definitions

JFT = Jθd−2 (15.59)

χθ = θ−dχ (15.60)

S
θ

4,T = θ−3dS4,T (15.61)

7In the preceding chapters we have used the letter J to denote the matrix of couplings
{Jij}, which in the translation-invariant case reduces to a vector of couplings {J(i − j)};
and we have used the symbol |J | to denote the l1 norm of this vector. In the present chapter,
however, we are using the letter J to denote the nearest-neighbor coupling strength. Therefore,
to avoid confusing formulas like |J | = 2dJ , we use the symbol J for what was formerly called
|J |.
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into (15.56), we obtain

0 ≥ S
θ

4,T ≥ − const ×
[
J2

FT θ4−d(χθ)4 + θ−d(χθ)2
]

. (15.62)

Now, by assumption, χθ is bounded as θ → ∞. On the other hand, by Proposi-
tion 15.5, JFT (θ) must be bounded as θ → ∞ if we are to obtain a non-boring
continuum limit.

We conclude that if either
(a) d > 4

or
(b) d = 4 and lim

θ→∞
JFT (θ) = 0,

then
lim
θ→∞

S
θ

4,T = 0 . (15.63)

But this implies, by the discussion surrounding (15.52), that Sθ,dist
4,T converges

to zero in the space S ′(IR4d). Hence

Scont
4,T ≡ 0 , (15.64)

i.e. the continuum-limit truncated four-point function vanishes!
To finish the proof of triviality, we must show that Scont

2n,T ≡ 0 for all n ≥ 2.
This can be done in either of three ways:

(a) a direct argument using a generalization of the Aizenman-Fröhlich in-
equality to 2n-point functions [5];

(b) invocation of Newman’s theorem (Proposition 15.12); or

(c) invocation of Baumann’s theorem (Proposition 15.11), which applies if the
continuum-limit theory satisfies all the Osterwalder-Schrader axioms (in
particular, rotation invariance). [Of course, if the continuum-limit theory
fails to satisfy all the OS axioms, then it is of no interest for quantum
field theory anyway!]

From now on we concentrate on proving that Scont
4,T ≡ 0, as this is really the

heart of the problem.

Now let us return to the general case, in which we allow an arbitrary se-
quence of bare parameters J(θ), λ(θ), τ(θ) subject only to the requirement that
the theories lie in the ferromagnetic single-phase region and that the rescaled
two-point functions Sθ,dist

2 converge in the sense of distributions at noncoinciding
arguments to some limit Scont

2 .
Let us first recall Proposition 15.5: for any sequence of theories in which

JFT ≡ Jθd−2 tends to infinity as θ → ∞, the rescaled n-point functions Sθ,dist
n

converge to zero in S ′(IRnd) — in particular, Scont
4,T ≡ 0. So we can restrict

attention henceforth to sequences of theories in which JFT is bounded : for if
we can prove Scont

4,T ≡ 0 in this case too, then the general result (for arbitrary
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sequences of theories) follows from these two special cases by some abstract
nonsense about sub-subsequences.

Consider the set

Ωε = {(x1, x2, x3, x4) ∈ IR4d: |xi − xj| ≥ ε for i 6= j} . (15.65)

Our strategy will be to show that Sθ
4,T (x1, x2, x3, x4), considered as a pointwise-

defined function for (x1, x2, x3, x4) ∈ θ−1
ZZ

4d, converges to zero (as θ → ∞)
uniformly on Ωε, for each ε > 0. By Proposition 15.2 and the remark following
it, this implies that Sθ,dist

4,T converges to zero in the space S ′
6=(IR4d) of tempered

distributions at noncoinciding arguments.
For x1, x2, x3, x4 ∈ IRd, let Di,ε be the open ball of radius ε/2 centered at xi

(i = 1, 2, 3, 4), i.e.
Di,ε = {y ∈ IRd: |y − xi| < ε/2} . (15.66)

Note that if (x1, x2, x3, x4) ∈ Ωε, then the balls Di,ε are disjoint. Now let us study
the principal terms in the Aizenman-Fröhlich inequality (15.53): this means that
we shall temporarily neglect the terms involving δz,x2 and δz,x4 , and we shall
temporarily approximate z1, z2 by z. (We shall return later to the error terms
caused by these approximations.) We obtain

−Sθ
4,T (x1, x2, x3, x4)

= −S4,T (θx1, θx2, θx3, θx4)

<∼ 3J 2
∑

z∈ZZ
d

S2(θx1, z)S2(θx2, z)S2(θx3, z)S2(θx4, z)

= 12d2J2
FT θ4−d

∑

z∈θ−1ZZ
d

θ−dS2(θx1, θz)S2(θx2, θz)S2(θx3, θz)S2(θx4, θz)

= 12d2J2
FT θ4−d

∑

z∈θ−1ZZ
d

θ−dSθ
2(x1, z)Sθ

2(x2, z)Sθ
2(x3, z)Sθ

2(x4, z) (15.67)

We consider (x1, x2, x3, x4) ∈ Ωε, and break up the sum over z into five pieces:

z ∈ Di,ε (i = 1, 2, 3, 4) and z ∈
(⋃4

i=1 Di,ε

)c
.

Case z ∈ Di,ε: The factors Sθ
2(xj, z) for j 6= i are uniformly bounded, by Propo-

sition 15.3, since |xj − z| > ε
2
. The factor Sθ

2(xi, z) is controlled by the x-space
infrared bound (13.87),

0 ≤ Sθ
2(xi, z) ≤ const

JFT (θ−1 + |xi − z|)d−2
. (15.68)

The contribution to (15.67) is therefore bounded by

const × JFT θ4−d
∑

y∈θ−1
ZZ

d

|y|< ε
2

θ−d(θ−1 + |y|)−(d−2) . (15.69)
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As θ → ∞, the sum approaches the integral

∫

y∈IRd

|y|< ε
2

dy |y|−(d−2) , (15.70)

which is finite. Therefore, if either d > 4, or d = 4 with JFT → 0, this
contribution vanishes in the limit. Moreover, the convergence is uniform for
(x1, x2, x3, x4) ∈ Ωε.

Case z ∈
(⋃4

i=1 Di,ε

)c
: For the factors Sθ

2(x1, z) and Sθ
2(x2, z) we use the uniform

bound from Proposition 15.3. For the factors Sθ
2(x3, z) and Sθ

2(x4, z) we use the
infrared bound (15.68).8 The contribution to (15.67) is therefore bounded by

const × θ4−d
∑

z∈θ−1
ZZ

d

|z−x3|≥
ε
2

|z−x4|≥
ε
2

θ−d|z − x3|−(d−2)|z − x4|−(d−2) . (15.71)

For d > 4, the sum is convergent, and it is not hard to see that it is bounded
uniformly in θ (≥ const), x3 and x4. It follows that, for d > 4, this contri-
bution to (15.67) vanishes in the limit; and the convergence is uniform for
(x1, x2, x3, x4) ∈ Ωε.

To control this term for d = 4, we make the additional assumption that

Sθ
2(0, x) ≤ C|x|−κ for |x| ≥ R (15.72)

for some constants C,R < ∞ and κ > 0, uniformly in θ. This is a stronger no-
tion of convergence to the continuum limit than the distributional convergence
we have been assuming until now; but it is still very weak. Note also that if
(15.72) holds for some R < ∞, then in fact it holds for all R > 0 (no mat-
ter how small) with a suitable C = C(R); this is a consequence of the known
uniform bound on Sθ

2 (Proposition 15.3). So let us use (15.72) with R = ε/2
to bound Sθ

2(x1, z), Sθ
2(x2, z) and Sθ

2(x3, x)δ, where δ is a small positive number
(≤ 1) to be chosen later; and let us use the infrared bound (15.68) to control
Sθ

2(x3, z)1−δ and Sθ
2(x4, z). The contribution to (15.67) is therefore bounded by

const ×Jδ
FT θ4−d

∑

z∈θ−1
ZZ

d

|z−xi|≥
ε
2

∀i

|z−x1|−κ|z−x2|−κ|z−x3|−δκ−(1−δ)(d−2)|z−x4|−(d−2)

(15.73)
This sum is convergent for d = 4 provided that we take δ < 2κ/(2 − κ), and
in this case it is not hard to see that the sum is bounded uniformly in θ (≥

8To motivate this tactic, recall that the Aizenman-Fröhlich inequality (15.53) has a prefac-
tor J2

FT , while each infrared bound (15.68) carries a factor J−1
FT . Since JFT is bounded above

but could go to zero, we need to end up with JFT raised to a nonnegative power. So we can
use the infrared bound at most twice.
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const), x1, x2, x3 and x4. On the other hand, by taking δ > 0 we gain a factor
Jδ

FT , which vanishes if JFT → 0.

We now return to the terms from the Aizenman-Fröhlich inequality that
were neglected in (15.67). The first error comes from the fact that z1 and z2

are not equal to z, as in (15.67), but are rather nearest neighbors of z, so that
|z1− z| = |z2− z| = θ−1. This change is obviously irrelevant when θ−1 ≪ ε. The
other error terms come from the δ’s; these terms come in two kinds, depending
on whether we take one δ or two. A typical contribution to −Sθ

4,T with one δ is

∑

z∈ZZ
d

S2(θx1, z)S2(θx3, z)δz,θx2

∑

z2

Jzz2S2(θx4, z2)

≈ J S2(θx1, θx2)S2(θx3, θx2)S2(θx4, θx2)

= 2dJFT θ2−dSθ
2(x1, x2)S

θ
2(x3, x2)S

θ
2(x4, x2) . (15.74)

The Sθ
2 factors are uniformly bounded provided that (x1, x2, x3, x4) ∈ Ωε; simi-

larly, JFT is bounded; and so this contribution vanishes as θ → ∞ for any d > 2.
A typical contribution to −Sθ

4,T with two δ’s is

∑

z

S2(θx1, z)S2(θx3, z)δz,θx2δz,θx4 , (15.75)

which is zero if x2 6= x4. We conclude that the “error terms” in the Aizenman-
Fröhlich inequality are indeed irrelevant.

Let us make one final technical remark. The foregoing argument shows that
Sθ,dist

4,T → 0 for test functions f ∈ S(IR4d) with support in some set Ωε, i.e.
with support strictly away from the hyperplanes xi − xj = 0. Convergence
in S ′

6=(IR4d) requires, however, convergence on a slightly larger class of test
functions, namely those that vanish together with all their derivatives on the
hyperplanes xi − xj = 0. (For example, a sequence of delta functions approach-
ing such a hyperplane, with exponentially growing strengths, would converge
to zero in the first sense but not in the second.) With a little extra technical
work, this stronger convergence can be proven, using the assumed convergence
in S ′

6=(IR2d) of the rescaled two-point functions together with the Lebowitz and
Ginibre-Newman-Aizenman inequalities (13.36)/(13.35).

To summarize the results obtained so far, we have proven the following two
theorems9:

Theorem 15.15 Let d > 4, and let {µm} be a sequence of nearest-neighbor
ferromagnetic ϕ4 or Ising models in the single-phase region. Consider a contin-
uum limit with arbitrary length rescaling factors {θm} → ∞ and field-strength
rescaling factors {αm}. Assume that the rescaled lattice two-point Schwinger dis-

tributions S
(µm,θm,αm),dist
2 converge in the space of distributions at noncoinciding

arguments. Then the rescaled lattice truncated four-point Schwinger distribu-
tions

9We restore the α’s for the convenience of those readers who dislike our convention α ≡ 1.
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S
(µm,θm,αm),dist
4,T → 0

in the space of tempered distributions at noncoinciding arguments.

Theorem 15.16 Let d = 4, and let {µm} be a sequence of nearest-neighbor fer-
romagnetic ϕ4 or Ising models in the single-phase region, with nearest-neighbor
coupling strengths {Jm}. Consider a continuum limit with length rescaling fac-
tors {θm} → ∞ and field-strength rescaling factors {αm}. Assume that the

rescaled lattice two-point Schwinger distributions S
(µm,θm,αm),dist
2 converge in the

space of distributions at noncoinciding arguments, and in addition that they
satisfy the uniform upper bound (15.72). If

lim
m→∞

Jmθd−2
m α−2

m = 0 , (15.76)

then the rescaled lattice truncated four-point Schwinger distributions S
(µm,θm,αm),dist
4,T

converge to zero in the space of tempered distributions at noncoinciding argu-
ments.

Remark. Results closely related to Theorem 15.15, but of a more probabilistic
flavor (“scaling limits of block spins”), have recently been obtained by DeCon-
inck and Newman [124].

We can now derive some easy — but extremely important — corollaries of
Theorem 15.16. Recall first that the continuum free field (of any mass m ≥ 0)
has the short-distance behavior

Scont
2 (0, x) ∼ |x|−(d−2) as |x| → 0 . (15.77)

Such a field is said to have canonical short-distance behavior . If Scont
2 is more

singular than this, i.e. if

lim sup
|x|→0

|x|d−2Scont
2 (0, x) = ∞ , (15.78)

then the field is said to have non-canonical short-distance behavior . (By the
Källén-Lehmann representation [442, Section IX.], it is impossible for a quantum
field theory satisfying all the OS axioms to have short-distance behavior which
is less singular than that of a free field, unless Scont

2 ≡ 0.) Theorem 15.16 has the
consequence that if the continuum ϕ4

4 theory has non-canonical short-distance
behavior, then it is trivial . More precisely:

Corollary 15.17 Let d = 4, and let {µm} be a sequence of nearest-neighbor
ferromagnetic ϕ4 or Ising models in the single-phase region. Consider a contin-
uum limit with length rescaling factors {θm} → ∞ and field-strength rescaling
factors {αm}. Assume that the rescaled lattice two-point Schwinger distributions
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S
(µm,θm,αm),dist
2 converge in the space of distributions at noncoinciding arguments

to a limiting distribution Scont
2 , and in addition that they satisfy the uniform up-

per bound (15.72). Then either
(a) there exists a constant C < ∞ such that

0 ≤ Scont
2 (0, x) ≤ C|x|−(d−2) (15.79)

(in the sense of distributions at noncoinciding arguments); or else
(b) the rescaled lattice truncated four-point Schwinger distributions

S
(µm,θm,αm),dist
4,T converge to zero in the space of tempered distributions at nonco-

inciding arguments.

Proof. By the infrared bound (15.68), we have

0 ≤ Sθm
2 (0, x) ≤ const × α2

mJ−1
m θ2−d

m (θ−1 + |x|)−(d−2) . (15.80)

If, for some subsequence {mi}, the sequence {α2
mi

J−1
mi

θ2−d
mi

} is bounded , then we
can pass to the limit and deduce (15.79). Otherwise, we must have

lim
m→∞

α2
mJ−1

m θ2−d
m = +∞ , (15.81)

in which case Theorem 15.16 implies S
(µm,θm,αm),dist
4,T → 0.

Corollary 15.18 Let d = 4, and consider a quantum field theory satisfying all
of the Osterwalder-Schrader axioms, whose two-point and four-point Schwinger
distributions are obtainable as a limit of nearest-neighbor ferromagnetic ϕ4 or
Ising models in the single-phase region as described in Corollary 15.17. If the
two-point function is exactly scale-invariant, i.e.

Scont
2 (0, x) = const × |x|−p (15.82)

for some p, then the theory is a generalized free field.

Proof. By the Källén-Lehmann representation, we must have p ≥ d − 2. If
p = d−2, then the Jost-Schroer-Pohlmeyer theorem (Proposition 15.13) implies
that the theory is a massless free field. If p > d−2, then Corollary 15.17 implies
that Scont

4,T ≡ 0; and Baumann’s theorem (Proposition 15.11) implies that the
theory is a generalized free field.

We discuss next the refinements which can be obtained in dimension d = 4
by using the Aizenman-Graham inequality in place of the Aizenman-Fröhlich
inequality. Let us again consider a massive scaling limit in which J(θ), λ(θ) and
τ(θ) are chosen so that the rescaled susceptibilities χθ ≡ θ−dχ are bounded as
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θ → ∞. We use the “summed” version (13.42)/(13.46) of the Lebowitz and
Aizenman-Graham inequalities, namely

0 ≥ S4,T ≥ −2J χ2 J
∂χ

∂J
− 2J χ3 − 2χ2 . (15.83)

This improves the Aizenman-Fröhlich inequality (15.56) because 0 ≤
J ∂χ/∂J ≤ J χ2 is a corollary of the Lebowitz inequality [see (13.38)]. Inserting
the definitions (15.59)-(15.61), we obtain

0 ≥ S
θ
4,T ≥ − const ×

[
J2

FT θ4−d(χθ)4∂χ/∂J

χ2
+ JFT θ2−d(χθ)3 + θ−d(χθ)2

]
.

(15.84)
Now, by assumption, χθ is bounded as θ → ∞. On the other hand, by Proposi-
tion 15.5, JFT (θ) must be bounded as θ → ∞ if we are to obtain a non-boring
continuum limit. We conclude that if χ−2 ∂χ/∂J → 0 along the chosen path to
the critical surface, then

lim
θ→∞

S
θ
4,T = 0 , (15.85)

i.e. Scont
4,T ≡ 0. We have therefore proven:

Theorem 15.19 Let d = 4, and let {µm} be a sequence of nearest-neighbor
ferromagnetic ϕ4 or Ising models in the single-phase region, with nearest-
neighbor coupling strengths {Jm}, susceptibilities {χm} and susceptibility de-
rivatives {(∂χ/∂J)m}. Consider a continuum limit with length rescaling fac-
tors {θm} → ∞ and field-strength rescaling factors {αm}, and suppose that the
rescaled susceptibilities χθ

m ≡ α2
mθ−d

m χm are bounded. Assume further that

lim
m→∞

χ−2
m (∂χ/∂J)m = 0 . (15.86)

then the rescaled lattice truncated four-point Schwinger distributions
S

(µm,θm,αm),dist
4,T converge to zero in the space S ′(IR4d) of tempered distributions.

The conventional wisdom, as predicted by perturbative renormalization-
group calculations [77], is that for the statistical-mechanical approach to the
critical surface (λ > 0 fixed, τ fixed and J ↑ Jc), the susceptibility behaves as a
mean-field law modified by a logarithm10:

χ ∼ (Jc − J)−1 | log(Jc − J)|1/3 (15.87)

and hence

χ−2 ∂χ

∂J
∼ | log(Jc − J)|−1/3 → 0 . (15.88)

10This behavior has been proven by Hara and Tasaki [290, 298] provided that the bare

coupling constant λ̂SM ≡ λ/J2 is sufficiently small.
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More generally, this behavior is expected to hold for any approach to the critical
surface in which λ̂SM ≡ λ/J2 is bounded away from zero. If this prediction is
correct, then Theorem 15.19 shows that the continuum limit is trivial along such
paths. On the other hand, it can be proven rigorously that the continuum limit
is trivial along any path with λ̂SM → 0: this is a consequence of the Hara-Tasaki
theorem discussed below, or more simply, of the first-order skeleton inequality
[5, 97].

Finally, we state without proof a theorem due to Hara and Tasaki [298,
Proposition 1.2], which shows that the continuum limit is trivial (or boring
or nonexistent) for any approach to the critical surface in which λ̂SM ≡ λ/J2

is bounded and sufficiently small. This theorem is proven by controlling the
renormalization-group flow in a small neighborhood of the Gaussian fixed point.

Theorem 15.20 There exists ε > 0 such that the following statement is true:
Let d = 4, and let {µm} be a sequence of nearest-neighbor ferromagnetic ϕ4 or
Ising models in the single-phase region, with nearest-neighbor coupling strengths
{Jm} and bare ϕ4 coupling strengths {λm}. Consider a continuum limit with
length rescaling factors {θm} → ∞ and field-strength rescaling factors {αm},
and assume that

λm/J2
m ≤ ε (15.89)

for all m. Then, in the continuum limit (m → ∞), either
(a) all the correlation functions diverge (“nonexistent limit”); or
(b) all the correlation functions tend to zero (“boring limit”); or else
(c) the limit is a generalized free field (“triviality”).

15.3 Non-symmetric regime for d > 4

In this section we discuss what is known about continuum limits for ϕ4 and
Ising models in dimension d > 4 from the non-symmetric regime (h 6= 0 or
β > βc). These results fall into two classes:

• Bounds relating the one-point function (magnetization) and two-point
function. We show that for a large class of approaches to the critical
surface — those avoiding a “high-temperature horn” — it is impossible to
have a broken-symmetry continuum theory with finite magnetization and
nonzero two-point function (Section 15.3.1).

• Bounds on the connected three-point function u3. We show that for a
large class of approaches to the critical surface — those avoiding a “low-
temperature horn” — the dimensionless renormalized three-point coupling
constant g(3) ≡ −ū3/(χ

3/2ξd/2) tends to zero. This implies that certain
massive scaling limits have ucont

3 ≡ 0 (Section 15.3.2).
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Unfortunately, though our general results (Propositions 15.21 and 15.22) are
straightforward to prove, we are unable to verify the hypotheses of these results
except by relying on the non-universal bounds of Sections 14.4.2 and 14.5. As
a consequence, we are able at present to control the scaling limit only for Ising
(not ϕ4!) models. The key stumbling block to further progress appears to be
the lack of a GS-class version of the AFe inequality (12.166).

15.3.1 Cases of non-existence of broken-symmetry phase

The standard scenario for broken discrete symmetry in quantum field theory
starts from a sequence of lattice theories approaching the critical point from
the broken-symmetry phase (e.g. β ↓ βc at h = 0+, or h ↓ 0 at β = βc), and
constructs in the usual way a massive scaling limit (i.e. using a length rescaling
factor θ ∼ ξ); the result is thought to be a massive continuum quantum field
theory with finite nonzero magnetization Scont

1 ≡ M cont ≡ limθ→∞ M θ and a
finite not-identically-zero truncated two-point function Scont

2,T = limθ→∞ Sθ,dist
2,T .

In this section we show that such a scenario cannot occur in dimension
d > 4, at least for Ising models. More generally, we show that for a large class
of approaches to the critical surface — those avoiding a “high-temperature
horn” — either the rescaled magnetizations M θ ≡ αM tend to infinity, or else
the rescaled truncated two-point functions Sθ,dist

2,T tend to zero (or both).
Our proof is based on the properties of the broken-symmetry phase derived

in Section 14.5 from the GHS, ABF and AFe inequalities. In particular, it was
shown there that for all approaches to the critical surface avoiding a “high-
temperature horn”, the quantity J 2M2χ is bounded below away from zero. We
now show that along any such approach to the critical surface, the boundedness
of M θ implies that Sθ,dist

2,T → 0.

Proposition 15.21 Consider a scaling limit of nearest-neighbor ferromagnetic
models in which M θ ≡ αM is bounded, and J2M2χ is bounded below away
from zero.

(a) If Jχ/θd/2 → 0, then χθ → 0 (and hence Sθ,dist
2,T → 0 in S ′).

(b) If Jχ/θd−2 → 0, then α2J−1θ2−d → 0 (and hence Sθ,dist
2,T → 0 in S ′).

Hypotheses (a) and (b) hold, in particular, if d > 4 and θ ≥ const×ξφ for some
φ > 0.

Proof. (a) By definition,

χθ ≡ α2θ−dχ =
(M θ)2

M2
θ−dχ

= (M θ)2(J2M2χ)−1θ−d(Jχ)2 .
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By hypothesis, M θ and (J2M2χ)−1 are bounded, and θ−d(Jχ)2 → 0. Hence
χθ → 0. It follows trivially that Sθ,dist

2,T → 0 in S ′(IR2d) [see the discussion
surrounding (15.52)].

(b) By definition,

α2J−1θ2−d ≡ (M θ)2

M2

1

Jθd−2
= (M θ)2(J2M2χ)−1 Jχ

θd−2
.

By hypothesis, M θ and (J2M2χ)−1 are bounded and Jχ/θd−2 → 0. Hence
α2J−1θ2−d) → 0. It follows from Proposition 15.5 that Sθ,dist

2,T → 0 in S ′(IR2d).

The last statement follows from the universal bound Jχ ≤ const(φ) × ξ2
φ,

which is a consequence of reflection positivity [see (13.89)].

The trouble with Proposition 15.21 is that we are unable to verify its key
hypothesis — the boundedness below of J2M2χ — except by using the non-
universal inequalities of Sections 14.4.2 and 14.5. The stumbling block appears
to be the lack of a universal (GS-class) version of the AFe inequality (12.166),
and as a result, the lack of a universal lower bound on Jχ in the critical region.
Indeed, such a lower bound on Jχ is the only missing ingredient: the Landau-
Ginzburg lower bound on M , which follows from the ABF inequality, implies
a universal (GS-class) lower bound on J2M3/h outside a “high-temperature
horn” (Section 14.4.1); and the universal boundedness below of J2M3/h and
Jχ implies, by the weak ABF and weak GHS inequalities, the universal bound-
edness below of J2M2χ [Proposition 14.9(b)]. On the other hand, we are at
present rather far from proving such a universal lower bound on Jχ. For exam-
ple, it is not yet proven that χ → ∞ (or even that χ is bounded below away
from zero!) along all paths to the critical point for ϕ4 models with fixed non-
Ising single-spin measure (although we certainly expect that it is true); and it
is even less clear that Jχ must tend to ∞ (or even be bounded below) in ev-
ery reasonable continuum limit of ϕ4 models with possibly varying single-spin
measure.

It should also be noted that the conclusion of Proposition 15.21 cannot
be expected to hold without some hypothesis (like the boundedness below of
J2M2χ) that restricts the path of approach to the critical point so as to exclude
a “high-temperature horn”. Consider, for example, the Gaussian lattice theory
(free field): take t ↓ 0 with h ∼ t(d+2)/4, and use rescaling factors θ ∼ ξ ∼
t−1/2 and α(θ) ∼ th−1 ∼ t−(d−2)/4. Then the limiting theory is a continuum
massive free field with finite nonzero magnetization (and of course finite nonzero
susceptibility). Note how this example evades Proposition 15.21:

• For d ≤ 4, J2M2χ ∼ t(d−4)/2 ≥ const > 0, but hypotheses (a) and (b) fail
[i.e. Jχ/θd/2, Jχ/θd−2 ≥ const > 0].

• For d > 4, hypotheses (a) and (b) hold, but J2M2χ ∼ t(d−4)/2 → 0.
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15.3.2 Partial results on triviality

The result of the previous subsection shows that for Ising models in dimension
d > 4 (and paths avoiding a “high-temperature horn”), it is impossible to choose
the field-strength rescaling factor α(θ) so as to obtain in the continuum limit
a finite magnetization and at the same time a nonzero truncated two-point
function. One must therefore choose one or the other. A theory with Scont

2,T ≡ 0
is not terribly interesting, as it corresponds to a field ϕ with no fluctuations.
The other possibility is to choose α(θ) so as to obtain Scont

2,T 6≡ 0; although
the magnetizations M θ tend to infinity, we can subtract out the magnetization
and ask whether the fluctuation fields ψ ≡ ϕ − 〈ϕ〉 have rescaled correlation
functions with a good continuum limit.11 If so, we can ask about the properties
of this continuum limit, e.g. is it Gaussian?

The truncated correlation functions Sn,T ≡ un of ψ are the same as those
of ϕ (except of course for n = 1). So it suffices to ask whether the continuum
truncated correlation functions Scont

n,T ≡ limθ→∞ Sθ,dist
n,T are identically vanishing

for n ≥ 3. We have only a very weak partial result for the three-point function:
for a large class of massive scaling limits — those avoiding a “low-temperature
horn” — the truncated three-point function uθ,dist

3 tends to zero (in fact, the
summed three-point function ūθ

3 tends to zero as well).

Our proof is based on the properties of the broken-symmetry phase for
Ising models derived in Section 14.5 from the GHS, ABF and AFe inequali-
ties. In particular, it was shown there that for all approaches to the critical
surface avoiding a “low-temperature horn”, the quantities J 2M3/h and M/hχ
are bounded above. We now show that along any such approach to the crit-
ical surface, if χθ is bounded (as in a usual massive scaling limit), then the
continuum-limit theory is either boring (Scont

2,T ≡ 0) or “trivial” (ucont
3 ≡ 0).12

Proposition 15.22 Consider a scaling limit of nearest-neighbor ferromagnetic
models of GS class in which χθ, J2M3/h and M/hχ and hM are all bounded
above. Then, either

(a) ūθ
3 → 0 (and hence uθ,dist

3 → 0 in S ′); or

(b) α2/Jθd−2 → 0 (and hence Sθ,dist
2,T → 0 in S ′).

Proof. Recall that

ūθ
3 = α3θ−2dū3 (15.90)

χθ = α2θ−dχ (15.91)

11This is reminiscent of the standard procedure in the central limit theorem for independent
random variables with nonzero mean: we must subtract out a mean of order n before applying
the rescaling n−1/2 to the fluctuation fields.

12We emphasize that we have not proven that ucont
n ≡ 0 for n ≥ 4, although we expect that

it is true.
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By the GHS inequality (13.54) and the u3 tree inequality (13.64) [or (13.63) in
the Ising case],

0 ≤ −ū3 ≤ const × J2M4

h3
. (15.92)

Hence

0 ≤ −ūθ
3 ≤ const × (χθ)3/2

(
J2M3

h

)1/2 (
M

hχ

)5/2 (
Jχ

θ2

)
θ−(d−4)/2 . (15.93)

By hypothesis, χθ, J2M3/h and M/hχ are all bounded. Moreover, since d > 4,
θ−(d−4)/2 → 0 as θ → ∞. Therefore, there are two possibilities:

(a) If Jχ/θ2 is bounded, then ūθ
3 → 0 as θ → ∞. This implies that uθ,dist

3 → 0
in S ′(IR3d), as discussed around (15.52).

(b) If Jχ/θ2 → +∞, then Proposition 15.6 implies that α2/Jθd−2 → 0 and
hence that Sθ,dist

2,T → 0 in S ′(IR2d).

Again, the trouble is that we are unable to verify the hypotheses of Proposi-
tion 15.22 except for Ising models: our proofs of the boundedness of J2M3/h and
M/hχ outside a “low-temperature horn” rely on the AFe inequality (12.166).
We need desperately a universal (GS-class) version of this inequality.

Mafalda cartoon “¿Cómo era todo?”
c© Quino (Joaqúın Lavado). Reprinted with permission.
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[81]E. Brézin, E. Marinari, and G. Parisi. A non-perturbative ambiguity free solution
of a string model. Phys. Lett. B242, 35–38 (1990).
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Basel–Stuttgart, 1983.

[230]G. Gallavotti. Some aspects of the renormalization problems in statistical me-
chanics and field theory. Mem. Accad. Lincei 15, 23–59 (1978).

[231]G. Gallavotti. On the ultraviolet stability in statistical mechanics and field
theory. Ann. Mat. Pura Appl. 120, 1–23 (1979).

[232]G. Gallavotti. Renormalization theory and ultra-violet stability for scalar fields
via renormalization group methods. Rev. Mod. Phys. 57, 471–561 (1985).

[233]G. Gallavotti and G. Jona-Lasinio. Limit theorems for multidimensional markov
processes. Commun. Math. Phys. 41, 301–307 (1975).

[234]G. Gallavotti, A. Martin-Löf, and S. Miracle-Solé. Some problems connected
with the description of coexisting phases at low temperatures in the Ising model.
In A. Lenard, editor, Statistical Mechanics and Mathematical Problems, pages
162–204. Springer-Verlag, 1971.
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[360]J. Lebowitz and A. Martin-Löf. On the uniqueness of the equilibrium state for
Ising spin systems. Commun. Math. Phys. 25, 276–282 (1972).

[361]J. Lebowitz and O. Penrose. Decay of correlations. Phys. Rev. Lett. 31, 749–752
(1973).

[362]J. L. Lebowitz. GHS and other inequalities. Commun. Math. Phys. 35, 87–92
(1974).

[363]T. D. Lee and C. N. Yang. Statistical theory of equations of state and phase
transitions. II. Lattice gas and Ising model. Phys. Rev. 87, 410–419 (1952).

[364]A. Lesniewski. Effective action for the Yukawa2 quantum field theory. Commun.
Math. Phys. 108, 437–467 (1987).

[365]S. S. Leung and R. B. Griffiths. Thermodynamic properties near the vapor-liquid
critical line in mixtures of He3 and He4. Phys. Rev. A8, 2670–2683 (1970).
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[367]P. Lévy. La mesure de Hausdorff de la courbe du mouvement brownien. Giorn.

Ist. Ital. Attuari 16, 1–37 (1953).



References 429

[368]B. Li and A. D. Sokal. High-precision Monte Carlo test of the conformal-
invariance predictions for two-dimensional mutually avoiding walks. J. Stat.
Phys. 61, 723–748 (1990).

[369]E. H. Lieb. Exactly soluble models. Physica 73, 226–236 (1974).
[370]E. H. Lieb and A. D. Sokal. Improved rigorous upper bound for the renormalized

4-point coupling. Unpublished. See also: E. H. Lieb, Sharp constants in the
Hardy-Littlewood-Sobolev and related inequalities, Ann. Math. 118, 349–374
(1983).

[371]E. H. Lieb and A. D. Sokal. A general Lee-Yang theorem for one-component
and multicomponent ferromagnets. Commun. Math. Phys. 80, 153–179 (1981).

[372]H. E. Lieb. A refinement of Simon’s correlation inequality. Commun. Math.
Phys. 77, 127–135 (1980).

[373]M. J. Lowe and D. J. Wallace. Instantons and the Ising model below Tc. J.
Phys. A13, L381–L385 (1980).

[374]M. J. Lowe and D. J. Wallace. Membrane models and generalized Z2 gauge
theories. Phys. Lett. 93B, 433–436 (1980).
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– Osterwalder-Schrader, 33, 377

baby polymer-chain model, 214
bare
– cosmological constant, 127, 144
– parameters, 37
– string tension, 130
Bernoulli plaquette percolation, 129
beta function, 82, 92
BFS class, 206, 281
BFS models, see also BFS representa-

tion, 206, 214, 215

– correlation inequalities, 234, 236, 238,
240, 257–259, 261, 262, 287, 288, 290,
291

– critical-exponent inequalities, 306–309,
311–312, 344–345, 352

– differentiation of the weights, 231, 232

– family-partition inequalities, 221, 224,
225

– path-splitting inequalities, 227, 228

BFS representation, see also BFS mod-
els, 109–114, 119, 189, 203–208, 214–
216

– Gaussian model, 206

– ϕ4 model, 206

bifurcation point, 69

binary mixture, 18

– phase diagram, 18

Bloch walls, 44

block spin transformations, 65–73

– rigorous uses of, 83–84

Boltzmann-Gibbs distribution, 13, 24

boring limit, 374

bounds

– non-universal, 302–303

– on the bubble diagram, 306–308, 311

– on the magnetization, 329–330, 339–
340

– on the renormalized coupling constant,
311–315

– on the specific heat, 308, 345

– on the susceptibility, 309–310, 346–347

– on the truncated bubble diagram, 344

– universal, 302–306, 329, 339, 349

branched polymers, 4

– and triviality of RS models, 132, 136

– upper critical dimension, 102

branching random walks, 114

437
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breathing, 142

Brillouin zone, 51

Brownian paths, 4, 87

Brownian-path representation, 115

bubble diagram, 94, 282

– as an expansion parameter, 246

– bounds on the, 306–308, 311

– modified, 243

– restricted, 253

– truncated, see truncated bubble dia-
gram

Burger’s equation, 321, 364

capillary waves, 140

characteristics, 327, 337, 365, 366

chromatographic equation, 364

CIW, see contact-interacting walks

Clausius-Clapeyron equation, 9

coexistence

– line, 14, 17, 21

– manifold, 19

– surface, 18, 20, 21

liquid-liquid, 18

liquid-vapor, 18

comparison theorems

– for ABF inequality, 336–340

– for general sub- and supra-conservation
laws, 370–372

– for GHS inequality, 327–329

– for ordinary differential equations, 362–
363

compatible

– contours, 45, 46

– walks, 209

condensed matter, 9

– and random surfaces, 125

conformal field theory, 17, 20, 63, 72

connected correlation functions, see trun-
cated correlation functions

conservation laws, 363

consistent walks, 209

contact-interacting walks (CIW), see also
polymer-chain models, 201–203

– correlation inequalities, 236, 238, 240,
244, 257, 261, 262, 288–291

– critical-exponent inequalities, 312–313

– differentiation of the weights, 231

– family-partition inequalities, 224, 225

– models

Domb-Joyce, 202

Edwards, 202

generalized CIW, 201

ordinary, see simple random walks

self-avoiding (SAW), see self-avoiding
random walks

simple, see simple random walks

simple CIW, 201–203

– path-splitting inequalities, 227, 228

continuous

– symmetry, 47

breaking, see N -vector model, ex-
istence of phase transition

– transition, 11

continuum limit, see also scaling limit,
37, 373–409

– and renormalization conventions, 375–
376

– and scaling limit, 373

– and the Osterwalder-Schrader axioms,
379–380

– boring, 374

– definition, 373–376

– distributional vs pointwise convergence,
381–383

– for RS models, 131–132

– necessary conditions for non-boring-
ness, 383–386

– precise formulation, 377–380

– triviality of the, see triviality

contours, 45

– compatible families of, 45, 46

– gas of, 45–46

correlation functions, 24

– relation with thermodynamic quanti-
ties, 13

– rescaled, 61, 63, 65, 377

– truncated, see truncated correlation
functions

correlation inequalities, 233–269

– ABF, 263–264, 291

comparison theorems, 336–340

extrapolation principle, 334–336

– AF, 89, 99, 117, 236–240, 288

– AFe, 265–266, 292

– AG, 118, 240–244, 289
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– for the kernel K(x, y), see kernel K(x, y),
correlation inequalities

– FS, 262, 291

– Gaussian, 234

– GHS, 259, 264, 290

comparison theorems, 327–329

extrapolation principle, 325–327

– Ginibre, 220, 223, 290

for the three-point function, 290

– Ginibre-Newman-Aizenman, 288

– Griffiths, 115, 120, 220, 222, 223, 230,
239, 287

– Lebowitz, 116, 235, 239

– non-Gaussian upper bounds, see non-
Gaussian upper bounds, 290

– pointwise, 233

– Schrader–Messager–Miracle-Solé, 292

– Simon-Lieb, 239

– summary of, 287–295

– summed, 233, 240, 242, 243, 253, 256–
258, 262, 263, 265, 266, 288–292

– tree, see tree inequalities

– twice-improved AF, 244–245

– twice-improved Aizenman-Fröhlich, 289

– weak ABF, 291, 359

– weak GHS, 119, 259, 290

correlation length, 25, 282

cosmological constant, 127

coupling constant, 12

– renormalized, see renormalized cou-
pling constants

– running, 77

critical

– behavior, see also critical exponents,
11, 12

magnetic system, 15

mean-field, 3

– curve, 18, 22

liquid-liquid, 19

liquid-vapor, 19

– dimension

for the Polyakov model, 148

upper, see upper critical dimen-
sion

– endpoint, 17–19

– exponents, see also critical-exponent,
4, 11, 16, 26, 53–58, 284–287

and Euclidean field theories, 71–
72

and the scaling limit, 61–63

definition for SAW, 286

definition for spin systems, 284–
286

for Potts spins on a random lat-
tice, 160

for RS models, see random-surface
critical exponents

for the Gaussian model, 54

for the Ising model (2-d), 55

mean-field, 16, 56

– phenomena, 3

and quantum field theory, 38

– points, 9, 11, 14, 23, 26, 284

and the formation of shocks, 321,
364

existence of, 53

for RS models, see random-surface
critical point

liquid-vapor, 10

manifold of, 19–21

– region, 9, 11

– surface, 40

for simple random walks, 40

critical-exponent inequalities, 16, 57–58,
244

– for the bubble, 306–308, 311

– for the four-point truncated function,
311–315

– for the magnetization, 349–357

– for the specific heat, 308–309, 345

– for the susceptibility, 309–310, 346–
347

– for the truncated-bubble, 344

– non-symmetric regime, 341–357

summary, 342–343

– symmetric regime, 303–315

summary, 304–305

crumpling, 143

cumulants, 282

“deep”

– h-dependence, 214

– J-dependence, 213

defects, gas of, 44, 47–50

differentiation of the weights, 229–232
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– with respect to h, 232

– with respect to J , 229–231

dilution trick, 89, 93–94, 191, 246–249

Dobrushin uniqueness theorem, 43

Domb-Joyce random walk model, 202

double scaling limit, 163–165, 173–183

– Alvarez-Windey approach, 175, 178

– Douglas approach, 175, 178–182

– Douglas-Shenker approach, 175

– for even-k-critical models, 184–186

– Gross-Migdal approach, 175, 176

– scaling variables, 164, 173–175

– vs simple scaling limit, 163–165

dual temperature, 145

Eckmann-Epstein axioms, 377

Edwards random walk model, 202

effective

– action, 75

– potentials, 77

EMN class, 264, 281

EMN models, see also BFS models

– correlation inequalities, 264, 288, 290

– critical-exponent inequalities, 345–347

end-to-end distance, 41–42

energy-entropy arguments, 44–50

entropic repulsion, 141

entropy, 13

equilibrium distribution (finite volume),
13, 24

Euclidean

– field theories, manifold of, 63, 71, 74

– field theory, 20, 32–38

advantages of, 34

and critical exponents, 71–72

axioms, see Osterwalder-Schrader
axioms

non-renormalizable, 75

renormalizable, 75

superrenormalizable, 4, 120, 376,
393

– Green functions, see Schwinger func-
tions

Euler’s formula, 153

exact solutions of spin systems, 43

expected number of intersections, 98

exponents

– critical, see critical exponents

– tricritical, 20

extrapolation principles, 315–341, 360–
372

– for ABF inequality, 334–336

– for general sub- and supra-conservation
laws, 369–370

– for GHS inequality, 325–327

– for ordinary differential equations, 361–
362

– general considerations, 360–372

extremal invariant Gibbs measure, 70

extrinsic curvature, 149

factorization properties of walks, 198,
219–228

family-partition inequalities, 115–116, 219–
225

– attractiveness, 223–225

for ARW models, 224, 225

for BFS models, 224, 225

for CIW, 224, 225

– repulsiveness, 219–223

for ARW models, 223

for BFS models, 221

for polymer-chain models, 220

Feigenbaum

– map, 75

– theory, 65, 73

ferromagnetic spin systems, 12, 24

Feynman diagrams for matrix field the-
ories, 152–153

field

– free, see free scalar field

– theory, see quantum field theory

field-strength rescaling factor, 378

field-theoretic random walks, see ARW
and BFS representations

first-order transition, 9, 14, 17

fixed points, 11, 23, 67–68

– Gaussian, 67, 73, 83

– manifold of, 67

– non-Gaussian, 68, 73

fluctuation-dissipation theorems, 14, 26,
284

forbidden region argument, 122

Fortuin-Kasteleyn representation, 129

free energy density

– Gibbs, 13, 17
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– Helmholtz, 17, 19

free scalar field, 34–36

– generalized, 36

sufficient conditions, 391–393

– massive, 36

FS inequality, 262, 291

fundamental identity (between RW mod-
els and spin systems), 41, 204, 207–
208, 210, 215, 216

fundamental integration-by-parts iden-
tity, 111

γstr, 131

– for k-critical models, 173

– for Polyakov string

in dimension one, 162

in dimension zero, 158

– for Potts spins on a random lattice,
161

– for randomly triangulated models, 146–
148

higher genera, 150

– for the planar model, 136

– KPZ formula, 148

generalization for higher genera,
150

– mean-field value, 135

G̊arding-Wightman axioms, 28–29, 377

gas

– of contours, 45–46

– of defects, 44, 47–50

– of loops, 114, 205, 215

– of vortices, 49–50

– of walks, 109–123

gauge theories, 125, 129, 142, 394

Gaussian

– fixed points, 67, 73, 83

– inequalities, 234

– limit, see triviality

– measure, 35, 67

– model, 24, 53–54, 206

critical exponents, 54

massless, 51

random-walk representation, 41,
110

truncated correlation functions, 53–
54

generalized CIW, 201

generalized free field, 36

– sufficient conditions, 391–393

GHS inequality, 259, 264, 290

– comparison theorems, 327–329

– extrapolation principle, 325–327

Gibbs

– free energy density, 13, 17

– measure, 13, 67

extremal invariant, 70

– states, see Gibbs measure

Ginibre inequality, 220, 223, 290

– for the three-point function, 290

Ginibre-Newman-Aizenman inequality, 288

Goldstone modes, 27

gravitational degrees of freedom, 127

Green functions, 39

– Euclidean, see Schwinger functions

– for random walks, see random-walk
Green functions

– for randomly triangulated models, 144

– n-loop, 130

Griffiths inequalities

– first and second, 115, 120, 220, 222,
223, 230, 287

– third, 239

Griffiths-Hurst-Sherman inequality, see
GHS inequality

Gross-Neveu model, 394, 395

GS class, 281

GS models, 242

– correlation inequalities, 240, 242, 243,
263, 266, 287–291

– critical-exponent inequalities, 306–313,
344–347, 349–350

Hausdorff dimension, 42

– of Brownian paths, 88

– of field-theoretic walks, 118

– of non-interacting branched polymers,
102

Heisenberg model (classical), 24

Helmholtz free energy density, 17, 19

hierarchical model, 83

high-temperature horn, 320, 331, 355,
359, 360

horns, 302, 319, 357–360

– and the extrapolation of bounds, 330–
333
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– high-temperature, 320, 331, 355, 359,
360

– low-temperature, 320, 331, 358, 360

hyperscaling, 57, 62, 314, 315, 350

– and triviality, 285, 286

– inequalities, 347

inclusion-exclusion, 89, 102–107, 191

– diluted, 249

inequalities

– correlation, see correlation inequalities

– critical-exponent, see critical-exponent
inequalities

– for the partition of a family of walks,
see family-partition inequalities

– from differentiation of the weights, see
differentiation of the weights

– path-splitting, see path-splitting in-
equalities

– skeleton, 120–122, 246

infinite-volume

– Gibbs measure, see Gibbs measure

– limit, 12, 13, 24, 233, 284

infrared

– bounds, 50–52

– divergences, 376

infrared bounds, 298–299

interacting fields, formulation troubles,
36–37

interaction

– ferromagnetic, 24

– long-range, 11, 47

– reflection-positive, 296–298

– repulsive, 39, 201

– short-range, 11

intermediate-site splitting, 226

intermediate-step splitting, 226–228

internal energy, 13

intersection properties of random walks,
20, 39, 87–107

intrinsic curvature, 148

inverse correlation length (for RS), 130

IPORW model, 203

– correlation inequalities, 253, 290

– critical-exponent inequalities, 314–315

irrelevant

– operators, 78

– perturbations, 68, 69

Ising model, see also ARW, BFS, EMN
and GS models, 3, 4, 12, 24, 281

– and the ARW representation, 209–210,
216

– and the BFS representation, 203
– continuum limit

nontriviality (d = 2), 395
triviality, see triviality for ϕ4

d and
Ising models

– correlation inequalities, 238, 265, 288–
292

– critical exponents (2-d), 55
– critical-exponent inequalities, 314–315,

356–357
– existence of phase transition, see also

Peierls argument, 48

k-critical models, 172
– γstr, 173
– problems for k even, 173, 177, 184–186
– string anomalous dimension, 173
Kadanoff block spin transformations, see

block spin transformations
Källen-Lehmann spectral representation,

51
kernel K(x, y), 119
– and the magnetization, 257–258
– and the truncated two-point function,

258–260
– and the two-point function, 258
– correlation inequalities, 257–264

lower bounds, 257–260
monotonicity in h, 258
upper bounds, 257, 258, 261–264

kernels, 39, 198, 211–213
– for simple random walks, 40
– K(x, y), see kernel K(x, y)
– non-return, 102
– truncated, 267
Kirchhoff formula, 147
Klein-Gordon equation, 34
Korteweg-deVries (KdV)
– flow, 176, 183
– operator, 176
KPZ formula, 148
– generalization for higher genera, 150

Lagrangian quantum field theory, 36
Landau-Ginzburg
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– ansatz for the free energy, 17, 19, 316–
317

– bounds for the magnetization, 348–357

– magnetization, 317–321

– phase diagram, 19

– scaling variables, 317

– susceptibility, 318–320

– theory, 17, 19–20, 56, 316–325

and Burger’s equation, 321

as solution of PDEs, 320–321, 363–
365

lattice

– field theory, see quantum field theory

– regularization, 37

lattice-gas model, 12

Lebowitz inequality, 116, 235, 239, 288

Lee-Yang theorem, 14, 43

length rescaling factor, 378

liquid-vapor

– critical point, 10

– phase transition, 10

– systems (equivalence with spin sys-
tems), 12

local-time representation, 90, 113

locality, 29, 31

logarithmic corrections to mean field,
16, 20, 285–286

– and triviality, 312

– renormalization-group predictions, 286

long-range interactions, 11, 47

loop

– diagram, 102

– expansion, 114, 205, 215

Lorentz group, 30

low-temperature horn, 320, 331, 358, 360

magnetic

– monopoles, 44

– susceptibility, 13, 26, 282

– system, see also spin systems

critical behavior, 15

phase diagram, 15

magnetization, 4, 13, 15, 17, 26, 282

– as solution of PDIs, 322

– bounds on the, 329–330, 339–340, 349–
357

– Landau-Ginzburg, 317–321

– scaling ansatz, see scaling ansatz for
the magnetization

– spontaneous, 14, 15, 26, 48

manifold

– of coexistence, 19

– of critical points, 19, 20

– of Euclidean field theories, 63, 71, 74

– of fixed points, 67

– of triple points, 19

– Riemannian, 127

– stable, 68

– unstable, 11, 23, 68

marginal

– operators, 77

– perturbations, 68, 69

mass, 25

– for RS models, 130

physical, 132

– gap, 4, 114

for RS models, 146

massive

– quantum field theory, 23, 374

free, 36

– scaling limit, 374

massless

– quantum field theory, 23, 374

– scaling limit, 374

matrix field theories, 150–156

– and quantum gravity, 152, 156–162

– Feynman diagrams, 152–153

– perturbation expansion, 153–156

matrix integration, 165–171

– orthogonal polynomials, 166–167

matter field, 127

mean-field, see also Landau-Ginzburg

– critical behavior, 3

logarithmic corrections, see loga-
rithmic corrections to mean field

– critical exponents, 16, 56

for RS models, 133–136

– string tension, 134–135

– theory, 17, 20

approaches to, 56–57

for RS models, 132–135

Mermin-Wagner theorem, 52

minimal models, A-series, 63, 73

mixture

– binary, 18
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phase diagram, 18

– ternary, 19

models

– in the EMN class, see EMN models

– in the GS class, see GS models

– lattice-gas, 12

– random-surface, see random-surface
models

– random-walk, see random-walk mod-
els

– spin, see spin systems

modified bubble diagram, 243

multi-component spin systems, 27

multicritical

– behavior, 73

– points, 17–20

upper critical dimension, 20

n-loop Green functions, 130

N -vector model, 24, 50–51

– absence of phase transition (d ≤ 2), 51

– critical exponents for N → ∞, 55

– existence of phase transition (d > 2),
50–51

Nambu-Goto action, 126, 128

Nelson-Symanzik positivity, 34

– of a free field, 35

non-Gaussian

– fixed points, 68, 73

– limit, see nontriviality

– upper bounds, 245–246, 290

for the truncated four-point func-
tion, 250–257

for the truncated three-point func-
tion, see AFe inequality

non-renormalizable Euclidean field the-
ory, 75

non-return

– kernel, 102

– susceptibility, 102

non-symmetric regime, 302

– critical-exponent inequalities, 341–357

summary, 342–343

– magnetization on a full neighborhood,
347–357

lower bound, 349–352

upper bound, 353–357

– standard approaches

bounds on the specific heat, 345

bounds on the susceptibility, 346–
347

bounds on the truncated bubble,
344

non-universal bounds, 302–303

nonoverlapping families of walks, 197

nontriviality, 4, 120–123

– and the scattering matrix, 374

– known results, 393–395

– of randomly triangulated models, 149

once-improved AF inequality, see AG in-
equality

ordinary random walks, see simple ran-
dom walks

orthogonal polynomials for matrix inte-
gration, 166–167

Osterwalder-Schrader

– axioms, 33, 377

– reconstruction theorem, 33

– reflection-positivity, 33

in interacting fields, 36

Painlevé I-equation, 176

pair-interacting walks (PIW), 201

partial differential inequalities

– and comparison theorems, 370–372

– and extrapolation principles, 366, 369–
370

– and the true magnetization, 322, 325,
333–334, 365

– for spin models (summary), 294–295

partition function, 13, 24

– for randomly triangulated RS models,
145

“passing to the left” trick, 191, 243, 247,
250

path-splitting inequalities, 116, 225–228

– for ARW models, 227, 228

– for BFS models, 227, 228

– for contact-interacting walks (CIW),
227, 228

PDIs, see partial differential inequalities

Peierls

– argument, 44–46

– contours, see contours

perturbation
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– expansion for matrix field theories,
153–156

– irrelevant, 68, 69

– marginal, 68, 69

– of the string equation, 182–183

– relevant, 68, 69

– theory, 4, 123

phase diagram

– binary mixture, 18

– H2O, 10

– Landau-Ginzburg ansatz, 19

– magnetic system, 15

phase transition

– absence of, 43

– continuous, 11

– existence of a, 26, 43–52

– first order, 9, 14, 17

– liquid-vapor, 10

– roughening, 140

– second order, 11

– sharpness of the, 4, 284, 350

ϕ4 field theory, 3, 4, 23, 36

– superrenormalizable, 4, 120, 246, 394

– triviality, see triviality for ϕ4
d and Ising

models

– with negative coupling constant, 394

ϕ4 model, see also BFS, EMN and GS
models, 24, 83, 206, 281

physical

– mass, 132

– string tension, 132

PIW, see pair-interacting walks

planar limit, see also simple scaling limit,
157

planar random-surface model, 129, 136–
140

– critical exponents, 136

– triviality, 136

plane-rotator (XY ) model, 24, 48–49

– existence of phase transition, 49–50

plaquette percolation, 129, 142

Poincaré group, 28

pointwise inequalities, 233

Polyakov

– action, 128, 144

– model

and matrix field theories, 161

critical dimensions, 148

solution in dimension one, 162

solution in dimension zero, 157–
158

– string, see also Polyakov model, 162

polygonizations, 152, 155, 158

polymer

– models, see also random-walk models

branched, see branched polymers

summary, 280

– physics

and spin systems, 193, 194

magnitudes, 286

– representation, 114, 205, 215

polymer-chain models, 96, 200–203, 213–
214

– and spin systems, 205

– baby, 214

– carrying “color”, 203

– contact-interacting walks (CIW), see
contact-interacting walks

– correlation inequalities, 236, 258, 259,
290

– critical-exponent inequalities, 309

– differentiation of the weights, 231, 232

– Domb-Joyce model, 202

– Edwards model, 202

– family-partition inequalities, 220

– generalized CIW, 201

– ordinary, see simple random walks

– pair-interacting walks (PIW), 201

– repulsive, 201

– self-avoiding (SAW), see self-avoiding
random walks

– simple, see simple random walks

– simple CIW, 201–203

– with “color”

IPORW model, see IPORW model

positive definiteness, 31

Potts spins on a random lattice, 159–161

– critical exponents, 160

P (ϕ) model, 394

pre-string equations, 169

pure gravity, 127, 156–159

– solutions, 157–159

quantum field operator, 28–30

quantum field theory, 3

– and critical phenomena, 38
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– and random surfaces, 125

– and random walks, 20–23

interacting walks, 109–123

simple walks, 87–107

– conformal, 17, 20, 63, 72

– Euclidean, see Euclidean field theory

– existence, 4, 120, 121

– free, see free scalar field

– Gross-Neveu model, 394, 395

– interacting, formulation troubles, 36–
37

– Lagrangian, 36

– massive, 23, 374

free, 36

– massless, 23, 374

– nontriviality, see nontriviality, 4

– ϕ4, see ϕ4 field theory

– P (ϕ) model, 394

– relativistic, 20, 27–32

axioms, see G̊arding-Wightman ax-
ioms

– triviality, see triviality

– Yang-Mills gauge theory, 394

quantum gravity, see also quantum-gravity,
127–129

– and matrix field theories, 152, 156–162

– coupled to matter fields, 159–162

– pure gravity, see pure gravity

quantum-gravity actions

– Nambu-Goto, 126, 128

– Polyakov, 128, 144

random surfaces, see also random-surface,
5

– problems in condensed matter, 125

– problems in quantum field theory, 125

– typical phenomena, 140–143

– upper critical dimension, 142

random walks, see also random-walk

– and quantum field theory, 20–23

interacting walks, 109–123

simple walks, 87–107

– and spin systems, 20–23

– branching, 114

– factorization properties, 198, 219–228

– intersection properties, 20, 39, 87–107

– nonoverlapping families of, 197

– scaling limit, see scaling limit for ran-
dom walks

– splitting of, see splitting of a walk

– support of, 39, 197

random-current

– expansion, 216

random-current representation, 4, 5, 190,
209–210, 242

random-matrix models, 150–162

random-surface

– actions, see quantum-gravity actions

– critical exponents, 131

γstr, see γstr

mean-field, 133–136

planar model, 136

– critical point, 131

for random triangulated models,
146

– mass gap, 146

– mean-field theory, 132–135

– models, 125–186

gauge theory, 129

planar, see planar random-surface
model

randomly polygonized, see randomly
polygonized RS models

randomly triangulated, see ran-
domly triangulated RS models

self-avoiding, 129

solid-on-solid (SOS), 129, 141

random-walk expansions, see random-
walk representations

random-walk Green functions, 198–200,
213

random-walk models, see also random-
walk representations, 3, 38–42, 197–
217

– baby polymer-chain, 214

– carrying “color”, 203

– contact-interacting walks (CIW), see
contact-interacting walks

– Domb-Joyce, 202

– Edwards, 202

– field-theoretical random walks, see ARW
and BFS representations

– general definitions

with magnetic field, 211–213

without magnetic field, 197–200
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– generalized CIW, 201

– IPORW, see IPORW model

– ordinary, see simple random walks

– pair-interacting walks (PIW), 201

– polymer-chain, see polymer-chain mod-
els

– repulsive, 201

– self-avoiding (SAW), see self-avoiding
random walks

– simple, see simple random walks

– simple CIW, 201–203

– typical problems, 41–42

random-walk representations, 3–5

– Aizenman, see ARW representation

– fundamental integration-by-parts iden-
tity, 111

– Gaussian model, 41, 110

– of truncated correlation functions, 267,
269–276

– Symanzik-BFS, see BFS representa-
tion

randomly polygonized RS models, 158–
159

– solutions for pure gravity, 158–159

– with Potts spins, 159–161

critical exponents, 160

randomly triangulated RS models, 143–
150

– critical point, 146

– Green functions, 144

– partition function, 145

– solution for pure gravity, 157–158

– with extrinsic curvature, 149–150

nontriviality, 149

reflection positivity, 292–298

– Osterwalder-Schrader, 33

reflection-positive

– couplings, 296–298

relativistic quantum field theory, 20, 27–
32

– axioms, see G̊arding-Wightman ax-
ioms

relevant

– operators, 77

– perturbations, 68, 69

renormalizable Euclidean field theory,
75

renormalization

– condition, 60

– conventions, 375–376

– group, 5, 11, 20, 52, 67–75

flow, 101

for short-range ferromagnetic in-
teractions, 72–73

for simple random walks, see sim-
ple random walks renormalization group

– theory, 37–38

renormalized coupling constants, 83, 92,
283

– four-point, 26

and triviality, 38

bounds on the, 311–315

for self-avoiding walks, 287

– string , 164

repulsive interaction, 39, 201

rescaled

– correlation functions, 61, 63, 65, 377

– lattice Schwinger functions, 378

notions of convergence, 379

– summed truncated functions

convergence, 386–391

– susceptibility, 60, 386

restricted bubble diagram, 253

Riemannian manifold, 127

roughening transition, 140

RS, see random surfaces

running coupling constants, 77

RW, see random walks

SAW, see self-avoiding random walks

scaling

– ansatz for the magnetization, 322–325

– function, 317, 322–324, 329, 330, 338,
340, 349

– limit, see also continuum limit, 59–84

and continuum limit, 373

and critical exponents, 61–63

double, see double scaling limit

for random walks, 41, 87

massive, 374

massless, 374

simple, see simple scaling limit

– relation, 57, 61

thermodynamic, 57, 315

– variables
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for Landau-Ginzburg theory, 317,
357

for the double scaling limit, 164,
173–175

for the magnetization, 349, 355

Schrader–Messager–Miracle-Solé inequal-
ity, 292

Schwinger functions, 32–34, 63

– as limits of lattice correlation func-
tions, 377–380

– as moments of a measure, 34

– coinciding vs noncoinciding arguments,
377

– lattice, rescaled, see rescaled lattice
Schwinger functions

– of a free field, 35

– symmetry of, 34

second-order transition, 11

self-avoiding

– random surfaces, 129

– random walks (SAW), see also contact-
interacting walks, 3, 4, 41, 202

correlation inequalities, 269

possible correlation inequality, 253–
255

truncated correlation functions, 268–
269

sharpness of the phase transition, 4, 284,
350

shocks, 364

– and the critical point, 321, 364

short-range interactions, 11

Simon-Lieb inequality, 239

simple CIW, 201–203

simple random walks, 3, 4, 40–41, 202

– and quantum field theory, 87–107

– critical surface, 40

– kernels, 40

– renormalization group

heuristic argument, 89–93

rigorous argument, 99–101

– with weak mutual avoidance, 89–91

simple scaling limit, 163, 171–173

– vs double scaling limit, 163–165

single-phase region, 4

skeleton

– inequalities, 120–122, 246

– surfaces, 136

solid-on-solid (SOS) model, 129, 141

specific heat, 13, 283

– bounds on the, 308, 345

spectral

– condition, 29–31

– representation, 298

spherical model, 55

spin systems, 3, 23–24

– and polymer physics, 193, 194

– and polymer-chain models, 205

– and random walks, 20–23

– BFS class, see BFS models

– EMN class, see EMN models

– exact solutions, 43

– ferromagnetic, 12, 24

– Gaussian, see Gaussian model

– GS class, see GS models

– Heisenberg (classical), 24

– hierarchical, 83

– Ising, see Ising model

– multi-component, 27

– N -vector model, see N -vector model

– ϕ4, see ϕ4 model

– plane-rotator (XY ) model, see plane-
rotator (XY ) model

– single-spin measures, 281

– spherical, 55

– summary, 280

spin-wave theory, see infrared bounds

splitting of a walk, 91

– inequalities for the, see path-splitting
inequalities

spontaneous magnetization, 14, 15, 26,
48

stable

– distributions, 68

– manifold, 68

string

– anomalous dimension, 164

for k-critical models, 173

– equation, 176

boundary conditions, 177

perturbation of the, 182–183

– renormalized (or true) coupling con-
stant, 164

– tension, 130

mean-field, 134–135

physical, 132
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– theory, see also quantum gravity, 126–
127

triviality, see triviality for RS mod-
els

sub- and supra-conservation laws, see
partial differential inequalities

sum rules, see fluctuation-dissipation the-
orems

summed inequalities, 233, 240, 242, 243,
253, 256–258, 262, 263, 265, 266, 288–
292

– summary of, 294–295

support of a walk, 39, 197

surface roughening, 140

susceptibility

– bounds on the, 309–310, 346–347

– for random-surface models, 130

– for random-walk models, 260

– for randomly triangulated RS models,
146

– Landau-Ginzburg, 318–320

– magnetic, 13, 26, 282

– non-return, 102

– rescaled, 60, 386

Symanzik-BFS random-walk representa-
tion, see BFS representation

symmetric regime, 302

– bounds on the bubble diagram, 306–
308, 311

– bounds on the specific heat, 308, 311–
315

– bounds on the susceptibility, 309–310

– critical-exponent inequalities, 303–315

summary, 304–305

symmetry, 14

– breaking, see also phase transition, ex-
istence of a, 26

– continuous (abelian), 47

– enhancement, 73, 140

– group, 11

– of the Schwinger functions, 34

ternary mixture, 19

theorem

– Dobrushin, uniqueness, 43

– fluctuation-dissipation, 14, 26, 284

– Lee-Yang, 14, 43

– Mermin-Wagner, 52

– Osterwalder-Schrader, reconstruction,
33

– Wightman, reconstruction, 32

thermodynamic

– fields, 18

– parameters, 18, 19

– quantities, 13

relation with correlation functions,
13

– scaling relation, 57, 315

topological

– complexity, 142

– defects, 44

– expansion, 128, 163–183

double scaling limit, see double
scaling limit

simple scaling limit, see simple
scaling limit

tree

– diagram, 4

– expansion, 75–83

– inequalities

for the truncated four-point func-
tion, see AF inequality

for the truncated three-point func-
tion, 265, 291

tree-like surface, 142

triangulations, 143–144

tricritical

– behavior, 63

– exponents, 20

– points, 18, 19, 21, 22

curves of, 19

triple points

– line of, 18, 19

– manifold of, 19

trivial

– h-dependence, 214

– J-dependence, 200

triviality, 3, 4, 23, 114–120, 374

– and any even truncated function, 391–
392

– and soft ultraviolet behavior, 392–393

– and the four-point coupling constant,
38, 391

– and the hyperscaling hypothesis, 285,
286
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– for contact-interacting walks (CIW),
245

– for ϕ4
d and Ising models

non-symmetric regime, d > 4, 401

symmetric regime, d = 4, 401–405

symmetric regime, d > 4, 405–409

– for ϕ4
d and Ising models, 396–409

– for RS models, 132

and branched polymers, 132, 136

– known results, 395–405

– non-symmetric regime, 119–120

– planar RS model, 136

– sufficient conditions for, 391–393

truncated bubble diagram, 282

– bounds on the, 344

truncated correlation functions, 25

– four-point, 4, 26

inequalities for the, 235–257

random-walk representation, 113

– Gaussian model, 53–54

– higher order, 267–269

– random-walk representation, 267, 269–
276

– rescaled

convergence, 386–391

– three-point

inequalities for the, 264–267, 290,
291

truncated kernels, 267

twice-improved AF inequality, 244–245,
289

two-dimensional gravity, see quantum
gravity

ultraviolet

– cutoff, 76

– divergences, 376

universal bounds, 299, 302–306, 329, 339,
349

universality, 11, 16, 23, 63

– classes, 11, 70

unstable manifold, 11, 23, 68

upper critical dimension

– for branched polymers, 102

– for multicritical points, 20

– for RS models, 142

– for simple random walks, 88

– for three simple random walks, 101

Ursell functions, see truncated correla-
tion functions

vacuum, 28
– expectation values, see Wightman dis-

tributions
– uniqueness, 30
visitation function, 201
vortices, 44
– gas of, 49–50

waiting times, 90, 113, 202
walks carrying “color”, 203
weak ABF inequality, 291, 359
weak GHS inequality, 119, 259, 290
Wightman
– distributions, 30–31

of a free field, 35
– positivity, 31
– reconstruction theorem, 32
Wilson renormalization group transfor-

mations, see renormalization group

Yang-Mills gauge theory, 394


