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1. Introduction

Thermal bath models such as Langevin dynamics or Nosé-Hoover dynamics are widely used
techniques for maintaining the canonical distribution in molecular simulation. Simple thermal
baths allow the simulation of bidirectional energy flow, whereas more complicated methods can be
designed to provide momentum transfer (barostats) or mimic relaxation processes (generalized
Langevin dynamics). As there are natural parallels between turbulent fluids and molecular
dynamics, it is interesting to adapt these techniques to hydrodynamics applications. In this
paper, as a first step, we consider an artificial thermal bath for semi-discretized partial differential
equations, specifically the Burger’s and KdV equations.

Molecular dynamics (in the common use of the term) has the structure of a finite dimensional
Hamiltonian system, with a total energy function that is a function of positions and momenta.
Under typical conditions (the so-called NVT ensemble), the volume of the simulation cell is
restricted and the number of atoms is fixed, and these may be assumed to share energy equally
(equipartition). The system is assumed to be immersed within a larger system (and freely
exchanging energy with it) and the energy of the entire system including thermal bath is assumed
to remain fixed. In this situation, Gibbs proposed that the microstates of the isolated system
will be distributed according to the law

ρβ ∝ e−βH ,

where H is the Hamiltonian (total energy function) of the subsystem, meaning that the invariant
measure of the extended system has an associated density which, when integrated out with respect
to the bath degrees of freedom, is proportional to ρβ . The Gibbs (canonical) distribution is only
rigorous for special systems in the so-called thermodynamic limit (N → ∞, V → ∞, N/V fixed);
for typical systems such as molecular liquids or proteins, the Gibbs distribution is often assumed
and is the starting point for simulation. In order to maintain the canonical distribution in
simulation, various devices are used. The sampling problem refers to the calculation of averages of
given functions with respect to a specified invariant (equilibrium) distribution. Molecular models
may involve constraints (for example fixing the distance between two atoms) or modifications
such as those required to model an imposed environmental pressure, so the form of the Gibbs
distribution is often modified in practice to reflect such considerations.

In the case of the Gibbs distribution, or, more generally, any distribution defined by a
suitably bounded smooth, positive density function, we have a few choices for the mechanism by
which sampling is achieved. The Monte-Carlo method [1] is an iteration strategy that combines a
randomly generated step with a Metropolis-Hastings accept/reject condition in order to guarantee
that the points generated have the desired distribution. In some cases, for example with steep
molecular potentials, Monte-Carlo methods may experience large numbers of rejected steps,
which can lead to an inefficient sampling of the phase space. Moreover, the sequence of points
generated by a Monte-Carlo method has no temporal correlation. For these reasons, molecular
modellers often rely on dynamical approaches or the use of stochastic differential equations. These
techniques generate paths in phase space which can be used to calculate thermodynamic averages
under an ergodic hypothesis: the assumption that the path emanating from any particular initial
condition densely covers the relevant portion of phase space with an appropriate probability
density. The ergodicity of stochastic dynamics sampling methods such as Brownian or Langevin
dynamics can be demonstrated by showing that the adjoint generator (i.e. the Fokker-Planck,
or Kolmogorov forward operator) is elliptic or, more generally, hypoelliptic [2, 3, 4, 5, 6, 7].

An alternative to Langevin dynamics often used in molecular simulations is the Nosé-Hoover
thermostat [8, 9, 10] which modifies Newtonian dynamics to include an auxiliary variable that
provides partial control of the molecular dynamics ensemble; when applied to a sufficiently
strongly mixing dynamical system, such deterministic schemes can be effective in practice,
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although in order to have a rigorous ergodic property it is necessary to incorporate an additional
stochastic perturbation. Generalized thermostat methods which combine auxiliary dynamics
with stochastic perturbation are studied in [11, 12, 13, 14].

1.1. Thermostats and PDE models

The foundation for studying the motions of a fluid dynamics model by reference to an invariant
distribution has been considered by a variety of authors [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25],
and there is numerical evidence that these systems typically evolve near thermodynamic
equilibrium [26, 27, 28, 29]. Thus it is also natural to consider adapting the thermostatting
methodologies to partial differential equations (or their semi-discrete analogues). Equilibrium
statistical mechanics is largely dictated by the conservation laws of the system. These constrain
the probability space and enter directly into the invariant measure. For partial differential
equations, the discretization in space destroys or modifies some or all of the conservation laws,
and thereby the invariant measure, resulting in numerical bias [28, 29]. This creates a potential
application for thermostats which is distinct from their motivation in the molecular dynamics
setting: they may allow the correction of defects in the distribution due to spatial discretization.

For example, for 2D ideal fluids, the most comprehensive mean field equilibrium theory
yields the Miller-Robert-Sommeria (MRS) measure [20, 21, 22, 23], which is grounded in the
conservation of the full infinite family of vorticity invariants of the Euler equations. By
contrast, standard numerical methods preserve total energy, and at most two of the vorticity
invariants. Consequently, when the dynamics of such a system is ergodic, its invariant measure
is necessarily significantly different from the MRS measure. (Possible exceptions are the sine-
bracket truncation [30] and particle methods [29].)

In addition to perturbing the invariant measure, models for fluids involve dynamics at a range
of spatio-temporal scales, and in particular, there may be no clear scale separation. Additionally,
there is usually a downscale cascade of vorticity and in some cases kinetic energy, i.e. a secular
tendency to excite motion on ever smaller scales: the phenomena known as turbulence. Spatial
discretization must arrest this cascade and some sort of closure model (either implicit in the
discretization or explicitly modelled and parameterized) is necessary. The choice of closure
has consequences for statistical mechanics, and it may be desirable to restore the invariant
distribution to correct for the numerical bias. Hence, solely for the purpose of correcting
thermodynamic calculations for discretization effects, there is a need to study thermostatting
methods in the context of partial differential equations. In Section 2 of this article, we describe
a general framework for treating semi-discrete PDEs using a reasonably general thermostatting
methodology.

1.2. Weak thermostats and accurate dynamical approximation

In the setting of fluids modelling, there can be an additional issue in play. While it can be
said that much of molecular modelling is solely focused on the recovery of Gibbs averages, the
purpose of simulation in fluids is more often to model dynamics in the vicinity of a Gibbs
state. The thermostats used in PDEs may thus be viewed as model corrections to maintain
the environment for a dynamical simulation. The requirements of: (1) fast convergence to the
invariant distribution (as needed to efficiently compute ensemble averages) and (2) minimal
disturbance of the short term time dynamics (as needed for accurately computing correlations)
are mutually competing ones, and the design of a good thermostat implies a choice in the tradeoff
between these. For this reason, we discuss the concept of a weak thermostat.

In the meteorology literature, DelSole [31] observed that the covariance matrix of a variable
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satisfying a smooth deterministic ordinary differential equation must take the form

C(τ) = C0 + τS + τ2A + · · ·
with S a skew-symmetric and A a symmetric matrix. By comparison, the covariance matrix of
a variable satisfying a multivariate Ornstein-Uhlenbeck process must take the form

C(τ) = C0 exp(τÃ),

where Ã is a (different) symmetric matrix with nonpositive eigenvalues.
In particular, a stochastic process η(t) is mean-square differentiable if there exists a function

η̇(t) such that the expectation

lim
ε→0

〈[
η(t + ε) − η(t)

ε
− η̇(t)

]2〉
= 0

holds in mean-square sense. This derivative is consistent with the deterministic concept.
The solution of a smooth dynamical system is differentiable, whereas that of a stochastic
differential equation is not so. For accurate computation of dynamical quantities, mean-square
differentiability is a desirable property for thermostated dynamics.

Recently, Leimkuhler, Noorizadeh and Penrose [32] have proposed a criterion for assessing
the efficiency of a thermostat as a function of the above two criteria. Their analysis in the
context of Hamiltonian dynamics showed that the velocity auto-correlation function (VAF) of
Nosé-Hoover-Langevin (NHL) dynamics [12] scales as c(τ) = 1 − κ2τ

2 in the limit of small
correlation times τ , just as the unperturbed dynamics. By comparison, for Langevin dynamics
the VAF scales as c(τ) = 1 − κ1τ in this limit. In particular, this implies that VAFs under
Langevin dynamics have the wrong curvature at τ = 0, making accurate computation of auto-
correlations impossible. For NHL dynamics the noise process is only present in the differential
equation for the auxiliary thermostat variable; hence it is integrated once before influencing the
momenta variables (and twice before influencing the positions). Consequently the noise in the
NHL dynamics takes the form of a memory term or colored noise process and allows for a more
accurate computation of correlations.

We mention in passing that another potential application in which the trade-off between
fast sampling and accurate dynamics can be expected to play a prominent role is the application
of the fluctuation-dissipation theorem to determine the sensitivity of an invariant measure to
perturbations in the underlying dynamics [33, 34, 35]. The non-equilibrium response of a system
to a small change in its vector field is computed from correlation functions in the unperturbed
equilibrium measure. To do so it is necessary both to ensure that the numerical simulation
samples the correct measure, and at the same time to perturb the system as little as possible,
while allowing the accurate computation of temporal autocorrelations.

1.3. Results for the Burgers and KdV equations

Herein, we apply stochastic-dynamical thermostats to truncated PDE models, in the form of
discretized nonlinear wave equations, under the restrictions: (1) that the finite dimensional
phase flow is divergence-free, and that (2) the invariant measure is a smooth function of the
conserved quantities of the finite dimensional flow (possibly conditional on δ-function measures
involving additional conserved quantities).

We demonstrate weakly coupled thermal regulation techniques in the setting of the inviscid
Burgers-Hopf (BH) and Korteweg-de Vries (KdV) models

ut + uux + µuxxx = 0, (1)

where µ = 0 for BH and µ > 0 for KdV. Both equations are one-dimensional models inheriting
the quadratic nonlinearity of fluid motion. The models share a bi-Hamiltonian structure and
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are formally integrable. However, classical solutions of the Burgers-Hopf equation fail to exist
for all time, whereas solutions of the the KdV equation remain smooth. Finite truncation
of the BH and KdV models typically breaks integrability. Truncated BH models exhibit
chaos and decorrelation of modes on a range of different time scales, and as such it has been
used in the literature as a highly simplified model representative of certain aspects of climate
[36, 37, 38]. In contrast, truncated solutions of the KdV model may be supposed to retain
KAM tori, obstructing ergodicity, and making it a good test model for thermostatting. The
truncated BH/KdV models preserve discrete approximations to the first three integrals of the
bi-Hamiltonian hierarchy, i.e. the momentum M =

∫
u dx, kinetic energy E =

∫
1
2u2 dx, and

Hamiltonian H =
∫

1
6u3 − µ

2 u2
x dx.

In a series of papers, [36, 37, 38] Majda and co-workers studied the equilibrium statistical
mechanics of finite difference and spectral discretizations of the Burgers-Hopf equation (µ = 0),
discussing the associated conservation laws and weak invariant sets, and their relation to
ergodicity. They computed pdfs of the spectral coefficients, mean spectra, and time-correlation
functions. Since the BH equation can be written as a Hamiltonian system in two distinct forms,
the definition of the Gibbs measure ρ ∝ exp(−βH) depends on the choice of Hamiltonian.
Abramov et al. [38] choose the linear Poisson bracket and cubic Hamiltonian, for which the
associated Gibbs measure is unbounded. However, since their deterministic dynamics also
preserves a quadratic invariant, the resulting product measure (the Gibbs measure restricted
to a level set of a hypersphere) does define a probability measure. In this paper we introduce
a perturbation to the Burgers/KdV model to ensure ergodic sampling of this measure, ρ ∝
exp(−βH)δ(E − E0)δ(M), where H ≈ H, E ≈ E and M ≈ M, and E0 is the initial energy.

1.4. Ergodicity

For the truncated incompressible Navier-Stokes equation, E and Mattingly [39] proved ergodicity
under highly degenerate stochastic forcing of just two modes in the low wave number range, with
viscous damping at the large wave number end of the spectrum. Their proof requires establishing
a Lyapunov function and verifying the Hörmander condition for their drift and diffusion vector
fields. Our concept of thermostatting is meant to provide a realistic model for the interaction
of a semidiscrete PDE with the unresolved high modes of the full (infinite) representation, thus
we introduce thermostatting only in the high modes and have in effect a situation opposite
to that of E and Mattingly. Nevertheless we show that their method based on commutators
could in principle be applied in the present instance, were the phase space is flat. In fact
our vector fields (in the case of a N -mode truncation) are confined to the tangent space of
the (2N − 1)-dimensional hypersphere, so that the calculation of high order brackets becomes
extremely involved. We therefore rely on numerical experiments to verify the ergodic property
and show that the expected density is obtained with a high degree of accuracy.

The remainder of this paper is laid out as follows. In Section 2 we introduce the thermostat
techniques and discuss the relevant theory. In Section 3 we describe the pseudospectral
truncations of the BH and KdV equations, present their equilibrium statistical mechanics, discuss
ergodicity in the context of thermostatting, and propose some perturbation vector fields. Results
with the thermostated dynamics of the BH and KdV are presented in Section 4. Discussion and
conclusions are given in Section 5.

2. Thermostats

In this section we discuss thermostats in the context of finite-dimensional Hamiltonian
systems. In particular we encounter noncanonical Hamiltonian systems with multiple conserved
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quantities. We discuss the statistical mechanics of general Hamiltonian systems by introducing
microcanonical, canonical and mixed canonical distribution functions. To sample the mixed
canonical distribution function we discuss the use of a generalized thermostat method for
the Hamiltonian system with conserved quantities and consider its theoretical foundation (in
particular the ergodicity property).

2.1. Finite-dimensional Hamiltonian dynamics and statistical mechanics

Consider a Hamiltonian system on Rd, i.e. an initial value problem of the form

dX

dt
= f(X) ≡ J ∇H(X), X(t) ∈ D ⊂ Rd, X(0) = X0, (2)

where J = −JT is a constant skew-symmetric matrix, H(X) : D → R is the Hamiltonian, and
∇ denotes the vector of partial derivatives with respect to X . The Poisson bracket is an abstract
geometrical object associated with the form J and defined by

{F, G} := ∇F (X)
T
J ∇G(X), (3)

for arbitrary functions F (X), G(X) : D → R. Note that the time derivative of a function
F (X(t)) : D → R along a solution to (2) is given by

dF

dt
= {F, H}.

Evident from the antisymmetry of the Poisson bracket, H(X) is invariant under the flow, since
dH/dt = {H, H} = 0. In fact, it can be easily checked that any function µ(H(X)) is also
invariant. More generally, a first integral of the system is a function I(X) such that

{I, H} = ∇I(X)
T
J ∇H(X) = 0.

The Hamiltonian vector field f(X) defines a flow on Rd. A probability density function
ρ(X, t) : D × R → R, satisfying ρ(X, t) ≥ 0,

∫
ρ(X, t) dX = 1, ∀t, is transported under the

Hamiltonian flow according to

∂

∂t
ρ(X, t) + ∇ · ρ(X, t)f(X) = 0. (4)

Equilibrium statistical mechanics is concerned with stationary solutions of (4). An equilibrium
pdf is a solution of

∇ · ρ(X)f(X) = 0.

It may be readily checked that the vector field f(X) associated with (2) is divergence-free,
∇ · f(X) = 0, in which case the above relation simplifies to

f(X) · ∇ρ(X) = 0. (5)

It follows that ρ(X) is itself a first integral of the flow ({ρ, H} = 0). In particular, if (2) admits
precisely J + 1 independent first integrals H , I1, . . . , IJ , then any equilibrium pdf must be a
function of these:

ρ(X) = ρ(H(X), I1(X), · · · , IJ (X)). (6)

On the other hand, it is clear that any such function ρ that depends on X only through its
invariants is stationary under (4).

For a system of particles in thermal contact with a heat reservoir, such that energy is
exchanged at constant temperature, volume and mass, the likelihood of states is given by the
canonical Gibbs density

ρ(X) ∝ exp(−βH(X)), (7)
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where β is the inverse temperature. When more invariants are present, this pdf may be
generalized to

ρ(X) ∝ exp(−βH(X) − β1I1(X) − · · · − βJIJ (X)). (8)

For the Gibbs measure to define a pdf, it has been assumed that the function is normalizable,
i.e. there exists a finite proportionality constant such that

∫
ρ(X) dX = 1.

More generally, one can define an equilibrium pdf as a generalized function, such as the
singular measure

ρ(X) ∝ δ(H(X) − H0) δ(I1(X) − I0
1 ) · · · δ(IJ (X) − I0

J ), (9)

where δ is the Dirac distribution. In statistical physics this pdf is referred to as the microcanonical
ensemble and specifies the relative probabilities of various microstates of a system at fixed values
of energy, volume and mass (as well as the other first integrals). It is a stationary solution to (4)
only in a weak sense.

In some cases it is useful to define a mixed canonical-microcanonical measure such as

ρ(X) ∝ exp (−βH(X)) δ(I1(X) − I0
1 ) · · · δ(IJ (X) − I0

J ). (10)

For example, [38] investigated the statistics of finite-truncations of the Burgers-Hopf equation in
a pdf of the form

ρ(X) ∝ exp(−βH(X))δ(E(X) − E0)δ(M(X)), (11)

where the level sets of a quadratic invariant E define compact subspaces upon which the Gibbs
measure (in the cubic Hamiltonian, see Appendix A) can be normalized.

The expectation of an observable F (X) under the measure ρ(X) is defined as the ensemble
average

〈F 〉 =

∫

D

F (X)ρ(X) dX =

∫

D

F (X) ν(dX)

for some proper measure ν such that ν ≥ 0 and
∫
D ν(dX) = 1. In general the approximation of

such an integral by numerical quadrature is prohibitively expensive due to the large dimension of
X encountered in practical applications. Instead Metropolis Monte-Carlo methods are frequently
used to compute expectation, despite their slow convergence rate. Such methods give us no
information about the dynamics of (2) however.

An equilibrium distribution ρ is practically meaningful when it is the density of the unique
invariant measure ν under (4). Let Φt(X) denote the time-t flow map of (2), and denote
by Φn

t (X), its nth iterate. We say the flow of (2) samples the distribution ρ if the iterates
{Φn

t (X), n ∈ Z} ∼ ρ, for almost all t and almost all X . In particular, if the flow is ergodic
with respect to ρ(X), then for almost every initial condition X0, the solution to (2) samples the
equilibrium density ρ, and the time average

F̄ = lim
T→∞

1

T

∫ T

0

F (X(t)) dt

equals the ensemble average F̄ = 〈F 〉.
We remark that solutions to the transport equation (4) starting from a smooth,

nonstationary initial density function ρ(X, 0) do not asymptotically approach a steady state
in the sense of classical solutions, due to lack of diffusion. However, they may converge weakly
to an equilibrium measure (for example, a uniform measure with compact support on a proper
subset of the kinetic energy manifold may converge weakly to the uniform measure on the whole
manifold).
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The autocorrelation function c(τ) of observable F (X) is defined by

c(τ) =
〈F (ΦτX)F (X)〉

〈F (X)2〉 .

If the flow is ergodic, the autocorrelation can be computed from the time average according to

c(τ) = c−1
0 lim

T→∞

1

T

∫ T

0

F (X(t))F (X(t + τ)) dt, c0 = lim
T→∞

1

T

∫ T

0

F (X(t))2 dt.

2.2. Generalized Bulgac-Kusnezov thermostats

A typical trajectory of (2) cannot ergodically sample a distribution like (7) due to preservation
of the Hamiltonian H . Therefore, in molecular dynamics a number of mechanisms have been
introduced to model the thermal exchange with the reservoir, so perturbing the Hamiltonian
vector field that typical trajectories of the perturbed dynamics do ergodically sample (7).

One such approach is Langevin dynamics, in which balanced stochastic noise and dissipation
are added to the Hamiltonian flow, such that the desired measure becomes the unique, globally
attracting invariant measure of the associated Fokker-Planck equations. A generalized form of
Langevin dynamics that perturbs (2) such that it samples the Gibbs distribution (7) is

dX = f(X) dt − βσ2

2
∇H(X) dt + σ dW,

where W (t) is a vector of independent Wiener processes. One limitation of this approach is
that it destroys all invariants of the original system. In order to retain some of these it would
be necessary to introduce constraint projections which would also create significant difficulties
in discretization. It is well known that additive noise is much easier to treat accurately in
discretization than multiplicative noise.

Another approach, proposed by Nosé [8, 9] and Hoover [10], involves the introduction of an
auxiliary variable, embedding the Hamiltonian flow in a higher dimensional phase space, such that
the projected dynamics on the original phase space is (one hopes) ergodic. The deterministic
approach is often non-ergodic, however, motivating the inclusion of Langevin forcing of the
auxiliary variable [11]. Nosé-Hoover type schemes can be expanded to include multiple auxiliary
variables and more general couplings than originally conceived; a broadened framework was
proposed in [14] and termed Generalized Bulgac-Kusnetzov (GBK) thermostatting. In the
simplest form of a GBK thermostat, we augment the system (2) with a small number of additional
variables ξk, k = 1, . . . , dT , and perturbation vector fields which for our purposes may be assumed
to be linear in the ξk. Let gk(X) : D → Rd, k = 1, . . . , dT , be smooth vector fields. The complete
system is then a set of coupled ordinary and stochastic differential equations of the form:

dX = f(X) dt +

dT∑

k=1

ξkgk(X) dt, (12)

dξk = hk(X) dt − γξk dt + σ dwk, k = 1, . . . , dT , (13)

where the wk(t) are independent scalar Wiener processes. The number of thermostat variables
dT is typically small, say dT = 1 or dT = 2, so the computational cost of simulating the
thermostatted system is essentially equivalent to that of simulating the physical model.

Recall that the Ornstein-Uhlenbeck (OU) process

dξ = −γξ dt + σ dw (14)

has analytical solution

ξ(t) = e−γtξ(0) + σ

√
1 − e−2γt

2γ
∆w,
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where ∆w ∼ N (0, 1). Choosing γ = ασ2/2, the normal distribution with mean zero and variance
α−1, i.e.

ϑ(ξ) =

√
α

2π
exp

(−α

2
ξ2

)
, (15)

satisfies the stationary Fokker-Planck equation

γ
∂

∂ξ
ϑ(ξ)ξ +

1

2
σ2 ∂2

∂ξ2
ϑ(ξ) = 0. (16)

In particular, it is well known that the density (15) is the unique, globally attracting, steady state
solution of the Fokker-Planck equation associated to (14). Hence, solutions of (14) ergodically
sample (15).

Of course our interest is not in the simple Ornstein-Uhlenbeck equation but in (12)-(13).
Given a desired distribution ρ(X), we seek hk(X) : Rd → R, k = 1, . . . , dT , such that the
product distribution

π(X, ξ) = ρ(X)ϑ(ξ) (17)

is a stationary solution of the Fokker-Planck equation associated with (12)–(13), i.e.

∇ · π(X, ξ)

(
f(X) +

∑

k

ξkgk(X)

)

+
∑

k

[
∂

∂ξk
(π(X, ξ)(hk(X) − γξk)) − σ2

2

∂2

∂ξ2
k

π(X, ξ)

]
= 0. (18)

We proceed formally, assuming a smooth density of the general form (6), but note that for
singular measures such as (10), the above requirement must be satisfied in an appropriate weak
sense. The case when the measure depends on a subset of Ij via a Dirac distribution will be
handled later.

For concreteness, let ρ(X) = exp(−F (X)), where F (X) = F (H(X), I1(X), . . . , IJ(X))
is differentiable with respect to all of its arguments, and denote β0(X) = ∂F/∂H and
βj(X) = ∂F/∂Ij, j = 1, . . . , J . The expression (18) simplifies under the conditions ∇·f = 0 and
∇H · f = ∇Ij · f = 0. Additionally using the fact that the terms of the OU process (14) satisfy
the stationary Fokker-Planck equation (16), the relation (18) reduces to

0 =
∑

k

ξk ∇ · π(X, ξ)gk(X) + hk(X)
∂

∂ξk
π(X, ξ),

=
∑

k

ξkπ(X, ξ)∇ · gk(X) − ξkπ(X, ξ)


β0 ∇H +

∑

j=1

βj ∇Ij


 · gk(X)

− αξkπ(X, ξ)hk(X),

=
∑

k

ξk


∇ · gk(X) −


β0 ∇H +

∑

j=1

βj ∇Ij


 · gk(X) − αhk(X)


 .

Hence it is sufficient to take

hk(X) =
1

α


∇ · gk(X) −


β0 ∇H +

∑

j=1

βj ∇Ij


 · gk(X)




for a given vector field gk(X). For the Gibbs distribution (7), hk(X) reduces to

hk(X) =
1

α
(∇ · gk(X) − β ∇H · gk(X)) . (19)
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We have yet to specify the vector fields gk. The construction of this section ensures that the
target distribution is invariant under the thermostated Fokker-Planck operator for any choice of
gk.

2.3. The ergodic property

The previous derivation of the GBK method ensures that the augmented probability distribution
π is invariant under the Fokker-Planck flow associated with the GBK dynamics (12)–(13). To
ensure correct sampling, one must also show that π is the density of the unique ergodic invariant
measure. By construction, (12)–(13) define a phase flow under which the density π is invariant.
The associated measure is positive for all open sets on the phase space. Hence, to show uniqueness
and thereby ergodicity, it suffices to show that the Fokker-Planck operator associated to (12)–(13)
is hypoelliptic, which follows from the controllability condition due to Hörmander [3, 5, 4, 7, 6].

Hörmander’s condition can be tailored slightly for the GBK thermostat, as demonstrated
next. Let L(V0, V1, . . . , VdT ) denote the ideal of the vector fields Vk with k > 0 within the Lie
algebra generated by all of the Vk:

L(V0, V1, . . . , VdT ) = {Vk0
, [Vk0

, Vk1
], [[Vk0

, Vk1
], Vk2

], . . .},
where [·, ·] denotes the commutator of vector fields, k0 takes values in the set {1, . . . , dT }, and
k1, k2, etc. take values in {0, · · · , dT }. Denoting by ∂ξk

the unit vector in Rd+dT corresponding
to the variable ξk, Hörmander’s condition [2] to ensure a smooth probability measure for this
system is

Rd+dT ⊂ spanL(F, ∂ξ1
, . . . , ∂ξdT

),

where

F =




f(X) +
∑

k ξkgk(X)
h1(X) − γξ1

...
hdT (X) − γξdT




denotes the deterministic vector field of (12)–(13). Defining

Gk = [F, ∂ξk
] =

(
gk(y)
−γ∂ξk

)
, k = 1, . . . , dT , (20)

we find that

[F, Gk] =

(
[f, gk]

0

)
+ c1Gk + c2(X)∂ξk

. (21)

Since the unit vectors ∂ξk
form a globally defined basis for the auxiliary space of the thermostat

variables ξk, it remains to construct a basis for the original space Rd. Eliminating the ξk and
the Gk from (21), shows that the following reduced Hörmander condition holds:

Lemma 1 The GBK method (12)–(13) satisfies Hörmander’s condition at a point
(X, ξ1, . . . , ξdT ) ∈ Rd+dT if the related Hörmander condition on Rd holds at X:

Rd ⊂ spanL(f, g1, g2, . . . , gdT ).

When choosing appropriate vector fields gk, it is important to ensure that f and the
gk do not all share an invariant manifold of co-dimension one. For example, in the case
dT = 1, g = g1, if N = {X ∈ D | η(X) = 0} defines a smooth invariant manifold such that
∇η(X) · f(X) = ∇η(X) · g(X) = 0 for all X ∈ N , then it follows that

f, g ∈ TXN ⇒ [f, g] ∈ TXN ,
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and consequently, the Lie algebra will be rank deficient on N , and Hörmander’s condition will
fail there. Furthermore, if N is of co-dimension one, it may partition the phase space.

When constructing thermostats for a mixed measure such as (10) we take advantage of the
just noted symmetry of the Lie algebra. That is, we choose the perturbation vector fields gk(X)
to satisfy ∇Ij · gk(X) = 0, ∀j, k, and subsequently determine the hk(X) to ensure the invariance
of the smooth part of the measure (10), according to (19).

To choose the gk(X), one can either appeal to underlying symmetries of the Hamiltonian
vector field (2), or make use of a projector onto the tangent bundle of the manifold defined by
intersection of the conditions Ij(X) = I0

j , j = 1, . . . , J . Let A(X) ∈ Rd×dT denote the matrix
whose columns are the gradients of the first integrals Ij(X):

A(X) = (∇I1, · · · , ∇IJ ) ,

and assume A has full column rank. Then for a given perturbation vector field g̃(X), the projected
vector field

g(X) = (I − A(AT A)−1AT )g̃(X) (22)

preserves the invariants Ij .

3. Semidiscrete PDE models

To illustrate the application of thermostats to PDEs, we select two related model problems,
the inviscid Burgers-Hopf (BH) and Korteweg-De Vries (KdV) equations. We choose these
models as simple one-dimensional problems with features in common with more sophisticated
fluid models, i.e. quadratic nonlinearity, multiple conserved quantities, a tendency to generate
fine scale dynamics from smooth initial conditions, and slow (fast) decorrelation times for low
(high) wave numbers.

The BH/KdV model (1) is discretized using a pseudospectral truncation (see Appendix A),
resulting in an equation of the form (cf. A.14)

∂

∂t
uN +

1

2

∂

∂x
PN (u2

N) + µ
∂3

∂x3
uN = 0, (23)

where uN := PNu(x) is the projection of the function u onto N Fourier modes.
The truncated model retains as first integrals the discrete analogs of M, E and H,

respectively [36]:

M =

∫ 2π

0

uN dx, (24)

E =
1

2

∫ 2π

0

u2
N dx, (25)

H =

∫ 2π

0

1

6
u3

N − µ

2

(
∂

∂x
uN

)2

dx. (26)

3.1. Statistical mechanics of the truncated model

Abramov et al. [38] proposed a statistical mechanics for the pseudospectral truncation of the
Burgers-Hopf equation, which carries over to the KdV equation. The spectral representation of
(23) is (cf. A.15)

dûn

dt
= f̂n(û) = − in

2


 ∑

|n−m|≤N

ûn−mûm


+ in3µûn, |n|, |m| ≤ N, (27)
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Figure 1: Probability density functions of the Hamiltonian H(û) for different values of β, E0 = 1.
Left: BH equation. Right: KdV equation.

where û, f̂ ∈ C2N+1, û−n = û∗
n. First note that the vector field f̂(û) is divergence-free:

∇ · f̂(û) = 2Re
∑

|n|≤N

∂

∂ûn
f̂n = 2Re

∑

|n|≤N

−inû0 + in3µ = 0,

since û0 ∈ R for a real smooth 2π-periodic function u(x). This implies that an equilibrium
density is a function of the conserved quantities

In [38] it is noted that a Gibbs-like density ρ(û) = exp(−βH(û)) − γE(û)) cannot be
normalized due to the unboundedness of level sets of the highest order terms in H . Noting that
level sets of E are hyperspheres when M = 0, and hence compact, [38] instead propose a mixed
ensemble that is microcanonical in E and M , and canonical in H , i.e.

ρ(û) ∝ exp(−βH(û))δ(E(û) − E0)δ(M(û)).

We adopt this density here. Since the phase space is compact, the system supports both positive
and negative regimes for the statistical temperature β−1 [15].

We used the Metropolis-Hastings algorithm to compute probability density functions of the
Hamiltonian H for E0 = 1 and different values of β. The pdfs shown in Figure 1 were obtained
using 108 samples and N = 15. Because the phase space is compact the temperature assumes
both positive and negative values. For the Burgers-Hopf equation we note that the skewness
varies in a nonlinear way as a function of β, but that the pdfs are anti-symmetric with respect
to β = 0. For the KdV equation the pdf with β = 0 has negative skewness and it changes to
positive near the value β = 0.1.

In Figure 2 we plot expectation values of the kinetic energy spectrum |ûn|2 as a function
of wave number n. Note that the energy is equipartitioned for β = 0 which corresponds to the
case of a uniform distribution on the sphere δ(E(û) − E0). For the Burgers-Hopf equation we
observe significant tilt in the spectrum for values β 6= 0. More energy resides in the large scales
(small wave numbers). Furthermore, the spectra are identical for opposite signed β. For the
KdV equation we observe opposite tilt in the spectrum depending on the sign of β, with more
energy at low wave numbers for β < 0 and at high wave numbers for β > 0.



Weakly coupled heat bath models for nonlinear wave equations 13

0 5 10 15

0.005

0.01

0.015

0.02

Fourier mode

〈|û
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Figure 2: Mean kinetic energy spectrum, for different values of β. Left: BH equation. Right:
KdV equation.

3.2. Ergodicity of stochastic hydrodynamics models

For the truncated incompressible Navier-Stokes equation, E and Mattingly [39] proved ergodicity
under highly degenerate stochastic forcing of just two modes in the low wave number range, with
viscous damping at the large wave number end of the spectrum. The proof of [39] requires
establishing a Lyapunov function and verifying the Hörmander condition for the drift and
diffusion vector fields.

In this paper we use GBK thermostats [14] to effect a simple non-dissipative closure model,
with forcing implemented at the small scales/large wave numbers. Because the thermostats
control the flux of energy into and out of the system, they do not require a separate dissipation
term to maintain stability. Here we illustrate through analysis that thermostatting the small
scales (essentially through “backscatter”) can be effective, i.e. we show the Hörmander condition
for this type of forcing. Our starting point is the GBK method (12)–(13) on C2N+1 × RdT .

The form of Lemma 1 suggests adapting the analysis of E and Mattingly to Burgers’
equation, and forcing at large wave numbers. We next derive a suitable set of perturbation
vector fields ĝ1, . . . , ĝM that ensure Hörmander’s condition.

The truncated Burgers/KdV model (27) is derived in Appendix A. For the rest of this
section we restrict our attention to the case µ = 0 of Burgers’ equation, because the formulas are
simpler, and the dispersion term does not contribute to mixing between distinct wave numbers.
Following [39], define ûn = an+ibn, and denote the unit vectors in the respective real coordinates
by ∂an and ∂bn . Then

f̂n = − in

2

∑

|m−n|<N

(an−m + ibn−m)(am + ibm)

=
n

2

∑

|m−n|<N

(an−mbm + ambn−m)∂an + (bn−mbm − an−mam)∂bn .

Since the solution u(x, t) of the Burgers/KdV model is real valued, the Fourier modes ûn satisfy
û−n = û∗

n, which in turn implies the conditions a−n = an and b−n = −bn. We also assume

û0 ≡ f̂0 ≡ 0.
Fixing n > 0 for the moment, define the index sets N+

n = {n + 1, . . . , N} and N−
n =
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{1, . . . , n − 1}, and note that

m ∈ N+
n ⇒ m > 0, n − m < 0,

m ∈ N−
n ⇒ m > 0, n − m > 0,

m ∈ (n − N+
n ) ⇒ m < 0, n − m > 0.

With this in mind, the vector field f̂n is written as

f̂n =
n

2

∑

m∈N−
n

(an−mbm + ambn−m)∂an + (bn−mbm − an−mam)∂bn +

n

2

∑

m∈N+
n

(am−nbm − ambm−n)∂an + (−bm−nbm − am−nam)∂bn +

n

2

∑

m∈(N+
n −n)

(−an+mbm + ambn+m)∂an + (−bn+mbm − an+mam)∂bn ,

where now all indices are positive. Furthermore, it can be checked that the last two sums are
equivalent, so the formula simplifies to

f̂n =
n

2

∑

m∈N−
n

(an−mbm + ambn−m)∂an + (bn−mbm − an−mam)∂bn +

n
∑

m∈N+
n

(am−nbm − ambm−n)∂an + (−bm−nbm − am−nam)∂bn .

Next we compute commutators with the canonical unit vectors, for future reference. (These

are the columns of the Jacobian matrix of f̂ .) We find:

Xℓ = [f̂ , ∂aℓ
] = n(bn−ℓ − bℓ−n + bℓ+n)∂an + n(−an−ℓ − aℓ−n − aℓ+n)∂bn ,

Yℓ = [f̂ , ∂bℓ
] = n(an−ℓ + aℓ−n − aℓ+n)∂an + n(bn−ℓ − bℓ−n − bℓ+n)∂bn ,

where henceforth it is understood that the index of each term is either an element of the set
{1, . . . , N}, or the term itself is neglected, meaning that each expression in parentheses above
has at least one and at most two (when ℓ + m ≤ N) nontrivial terms.

The commutators of Xℓ and Yℓ with respect to generic unit vectors ∂am and ∂bm are:

[Xℓ, ∂am ] = n(−δn−ℓ,m − δℓ−n,m − δℓ+n,m)∂bn

= −(m + ℓ)∂bm+ℓ
− (ℓ − m)∂bℓ−m

− (m − ℓ)∂bm−ℓ
,

[Xℓ, ∂bm ] = (m + ℓ)∂am+ℓ
− (ℓ − m)∂aℓ−m

+ (m − ℓ)∂am−ℓ
,

[Yℓ, ∂am ] = (m + ℓ)∂am+ℓ
+ (ℓ − m)∂aℓ−m

− (m − ℓ)∂am−ℓ
,

[Yℓ, ∂bm ] = (m + ℓ)∂bm+ℓ
− (ℓ − m)∂bℓ−m

− (m − ℓ)∂bm−ℓ
,

where δm,ℓ is the Kronecker delta.

If the unit vector ∂aℓ
is an element of the Lie algebra L(f̂ , ĝ1, . . . , ĝK) (hereafter simply

denoted by L), then so is Xℓ. Likewise, inclusion of ∂bℓ
implies that of Yℓ. As a result, we have

the following inclusions:

∂aℓ
, ∂am ∈ L ⇒ (∂b|ℓ−m|

± ∂bℓ+m
) ∈ L,

∂aℓ
, ∂bm ∈ L ⇒ (∂a|ℓ−m|

± ∂aℓ+m
) ∈ L,

∂bℓ
, ∂bm ∈ L ⇒ (∂b|ℓ−m|

± ∂bℓ+m
) ∈ L,

where the second term on the right in each relation is present only if ℓ + m ≤ N . From the
last of these three recursions, it immediately follows that if ∂b1 is in L, so are all of the ∂bℓ

. If
additionally ∂a1

∈ L, then from the second implication above, all of the ∂aℓ
also follow, and the
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Hörmander condition is satisfied. Hence, to demonstrate the Hörmander condition, it suffices to
thermostat only the lowest wave number, taking ĝ1 = ∂a1

, ĝ2 = ∂b1 .
On the other hand, directly thermostatting the low wave numbers is likely to be intrusive

in the dynamics. Instead we wish to thermostat the highest wave numbers, which constitute an
uncertain component in the solution anyway. If ∂aN and ∂aN−1

are in L, then we obtain ∂b1 ∈ L
from the commutator [XN , ∂aN−1

], and subsequently all of the ∂bℓ
and associated Yℓ. Finally,

the commutator [YN , ∂aN−1
] yields ∂a1

∈ L, subsequently all of the ∂aℓ
, and Hörmander is again

satisfied. Therefore, we can construct a GBK thermostat satisfying Hörmander’s condition for
Burgers’ equation and perturbations only to the real parts of the two highest wave numbers,
taking ĝ1 = ∂aN , ĝ2 = ∂aN−1

. Combining this with a Lyapunov function would ensure ergodicity
in the measure ρ(X) = exp(−βE(X)), where E is the quadratic invariant of Burgers/KdV.

The above approach will not allow sampling of a mixed measure (11), however, since the
perturbation vector fields so defined do not lie in the tangent bundle to the hypersphere of
constant kinetic energy E. Instead, we may choose a single perturbation vector field ĝ that is a
rotation about one or more coordinate axes, for example,

ĝ = bN∂aN − aN∂bN . (28)

Since both f̂ and ĝ are defined in the tangent space to the manifold of constant E, the Lie
algebra generated by these vectors also preserves the first integral. The phase space is compact,
and ergodicity follows from the Hörmander condition. However, with quadratic f̂ and linear ĝ,
the commutators are all quadratic or higher in order, making this condition difficult to check.
Instead we include numerical experiments to assess ergodicity.

3.3. Thermostated dynamics for the semidiscrete model

In this section we specify the thermostated dynamics in the context of the truncated BH/KdV
equation (23) and the mixed canonical distribution (11). The GBK thermostat for equation (23)
and a single thermostat variable ξ is:

duN = fN (uN ) dt + ξgN (uN ) dt, (29)

dξ = 2 Reh(uN ) dt − γξ dt + σ dw, (30)

where fN(uN ) = − 1
2

∂
∂xPN (u2

N )−µ ∂3

∂x3 uN . The function g(uN ) is chosen such that its projection
gN (uN) := PNg(uN ) satisfies the constraints

∫ 2π

0

δM

δuN
gN (uN ) dx = 0,

∫ 2π

0

δE

δuN
gN (uN) dx = 0. (31)

These relations constrain the dynamics to the Dirac distributions on M and E. Taking into
account that PN is symmetric, the constraints (31) reduce to

∫ 2π

0

g(uN) dx = 0,

∫ 2π

0

uNg(uN) dx = 0. (32)

Without loss of generality one may assume M = 0, since the nonzero case may be handled
with a change of variables. Furthermore, in spectral representation this condition takes the
simple form û0 ≡ 0, which can be easily enforced by simply neglecting the constant mode in the
spectral representation, taking û = (ûn; 1 ≤ |n| ≤ N).

To preserve the kinetic energy constraint we either choose g(uN) to respect the rotation
symmetry, as in (28), or use a projection such as (22).

For a given function g̃(uN ), using the definitions (24) and (25) of M and E, and taking
M = 0, we observe that the function

g(uN) = g̃(uN ) − 1

2π

∫ 2π

0

g̃(uN ) dx − 1

2E
uN

∫ 2π

0

uN g̃(uN ) dx (33)
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satisfies the constraints (32). In spectral representation, ĝ0 = 0 and

ĝn(û) =
1

2π

∫ 2π

0

g(uN)e−inx dx, 1 ≤ |n| ≤ N.

Using (19) we compute h(û) from

h(û) =
1

α
(∇û · ĝ(û) − β∇ûH(û) · ĝ(û)).

The gradient of the Hamiltonian H(û) is

∂H(û)

∂ûn
=

∫ 2π

0

δH

δuN

∂uN

∂ûn
dx =

∫ 2π

0

δH

δuN
einx dx = 2π

(
δ̂H

δuN

)∗

n

, 1 ≤ |n| ≤ N,

which yields

∇ûH(û) · ĝ(û) =
∑

1≤|n|≤N

∂H(û)

∂ûn
ĝn(û)

= 2π
∑

1≤|n|≤N

(
δ̂H

δuN

)∗

n

ĝn(û) =

∫ 2π

0

δH

δuN
gN (uN ) dx.

The spectral representation of h(uN ) follows:

h(û) =
1

α


∇û · ĝ(û) − 2πβ

∑

1≤|n|≤N

(
δ̂H

δuN

)∗

n

ĝn(û)


 .

For each value of 1 ≤ |n| ≤ N :

∂ĝn(û)

∂ûn
=

1

2π

∫ 2π

0

∂g(uN)

∂uN

∂uN

∂ûn
e−inx dx =

1

2π

∫ 2π

0

∂g(uN)

∂uN
dx.

This gives us

h(uN) =
1

α

(
N

π

∫ 2π

0

∂g̃(uN)

∂uN
dx − N

E

∫ 2π

0

uN g̃(uN ) dx − β

∫ 2π

0

δH

δuN
gN(uN ) dx

)
.

4. Numerical study

We rely on a series of numerical simulations to test the performance of the thermostats mentioned
above in the setting of the Burgers and KdV equations. Our interest here is in two crucial issues:
(i) the ergodic nature of the extended SDE models, even under limited contact with the stochastic
heat bath, and (ii) the degree to which thermodynamic corrections alter dynamic observables (e.g.
temporal correlation functions). In evaluating the experimental results, we use the terminology
from Subsection 2.1 and explicitly define the autocorrelation functions of the real part of the
Fourier modes, i.e.

cn(τ) = C lim
τ→∞

τ−1

∫ τ

0

Re{ûn(t + τ)}Re{ûn(t)} dt, n = 1, . . . , N, (34)

where C is a suitable normalization constant so that cn(0) = 1.
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4.1. Burgers’ equation

In our computations we set N = 15, E0 = 1 and β = −30. We solve equations (29)–(30) in
time by applying a Strang splitting method, thus dividing the calculation into two steps: (1) the
solution of the equation for the auxiliary variable, and (2) the solution of the equations governing
Fourier coefficients of the solution. The stochastic differential equation for the auxiliary variable
can be solved exactly when uN is fixed, whereas in step (2) the system for uN is treated using the
implicit midpoint rule (a scheme which preserves quadratic first integrals, i.e. the hypersphere).

The numerical method is

ξ∗ = e−γ τ
2 ξ0 +

2Reh(u0
N )

γ

(
1 − e−γ τ

2

)
+ σ

√
1 − e−γτ

2γ
∆w0,

u1
N = u0

N + τfN (u
1/2
N ) + τξ∗gN (u

1/2
N ), u

1/2
N :=

u1
N + u0

N

2
,

ξ1 = e−γ τ
2 ξ∗ +

2Reh(u1
N )

γ

(
1 − e−γ τ

2

)
+ σ

√
1 − e−γτ

2γ
∆w1,

where ∆w0, ∆w1 ∼ N (0, 1) and τ is a time step.
The first question concerns the ergodic sampling of the target distribution. This can depend

on the choice of g. We let g̃(uN) = u2
N . With this particular choice of function g̃(uN) from

expression (33) we find

g(uN) = u2
N − 1

2π

∫ 2π

0

u2
N dx − 1

2E
uN

∫ 2π

0

u3
N dx

and compute

h(uN) = − 1

α

(
N

E

∫ 2π

0

u3
N dx + β

∫ 2π

0

δH

δuN
gN(uN ) dx

)
.

Numerical results are presented in Figure 3. In the computations we used 109 data points
and τ = 0.001. In Figure 3 we compare the numerically computed histogram of H(û) and the
spectrum to the Monte Carlo simulations using the Metropolis-Hastings algorithm. Since a single
trajectory produces what is essentially a perfect Hamiltonian pdf and spectrum we infer that the
method is ergodic.

We then set about constructing a thermostat that controls the invariant measure using only
forcing at high wave numbers. To this end we work with a spectral representation of g(uN ). For
any skew-Hermitian matrix B(û) the vector field

ĝ(û) = B(û)û

is norm preserving and therefore retains the first integral E. We choose matrix B such that it
only acts on the large wave number Fourier coefficients, i.e.

ĝ(û)n =

{
0, |n| < n∗,
i sign(n)ûn, |n| ≥ n∗,

(35)

and refer to this method as GBK(n∗). In this case the effect of the perturbation is to directly
modify the phase of only the (N − n∗ + 1) highest Fourier modes. This can be contrasted
directly with the approach of E & Mattingly [39], who stochastically force the lowest modes of
a truncated Navier-Stokes model using a Langevin approach. Here we thermostat at the finest
scales, effectively controlling the measure through backscatter.

The results for n∗ = 11 are shown in Figure 4 using 109 data points. All computations are
done with τ = 0.01. These results again suggest that the method is ergodic. Not only can we
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Figure 3: Gentle thermostatting of BH equation with GBK method, taking g̃(uN) = u2
N , α = 30

and γ = 20. Left: probability density function of H(û). Right: mean kinetic energy spectrum.
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Figure 4: Gentle thermostatting of BH equation with GBK(n∗ = 11) method, α = γ = 1. Left:
probability density function of H(û). Right: mean kinetic energy spectrum.

get away with thermostatting directly only the highest five wave numbers, it is in fact possible
to control the distribution using only a single mode. In Figure 5, the pdfs are shown for the
real parts of the Fourier coefficients 1, 5, 10 and 15 when only the highest wave number û15 is
directly coupled to the stochastic auxiliary variable ξ. Note that while E0 = 1, the dynamics is
constrained to the hypersphere with radius 1/

√
2π ≈ 0.4, and this number bounds the support

of the pdfs.
Thermostatting only the high wave numbers leads to a reduced rate of convergence of

averages compared to a thermostat that acts directly on all components. This effect can be
seen in Figure 6. Slope values are approximate. When plotted as a function of n∗ and compared
to the least square fitted exponential function in Figure 7 on a logarithmic scale we observe good
agreement. This suggests that the rate of convergence decreases exponentially with respect to
n∗.

On the other hand, although the convergence rate of averages may be reduced by using a
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Figure 5: Probability density function of real parts of Fourier coeffiecients 1, 5, 10 and 15.
GBK(n∗ = 15) thermostat method compared to reference.
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Figure 6: Convergence of the expected value of Hamiltonian for an ensemble of 20 000 initial
conditions, α = γ = 1.
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weak thermostat, the perturbation of slow dynamics is simultaneously reduced, meaning that
where the dynamics of slow variables is relevant, these methods are likely to be of greatest
value. As we noted in the introduction, the advantage of the GBK thermostat over direct
Langevin thermostating is that the stochastic forcing only influences the original dynamics
after integration—as a memory or red noise term—leading to a second order perturbation of
autocorrelation functions of the fast modes ûn, n ≥ n∗. In fact, a straightforward calculations
shows that we would expect only third order or higher perturbations to autocorrelations of the
slow modes ûn, n < n∗, which are not directly thermostated.

In Figure 8a we plot the L2 error of the pdf of the Hamiltonian as a function of sampling time,
showing the convergence to the reference pdf. We observe the expected sampling convergence
rate, 1/2. In Figures 8b, 8c and 8d we plot L2 errors, computed on the interval τ ∈ [0, 50], as
a function of sampling time of the autocorrelation functions c1(τ), c3(τ) and c5(τ), respectively.
Observe that the graphs level off indicating a convergence to a limiting value of the net
perturbation. (To see that the graph for the method GBK(n∗ = 15) eventually stabilizes, we
would have to integrate even longer in time.) Complementary to Figure 8 we plot in Figure
9 the same autocorrelation functions and visually compare them to reference curves. The
reference curves are computed using constant Hamiltonian simulations from a mixed canonically
distributed ensemble of 106 initial conditions.

Note the big differences in errors between GBK(n∗ = 1) and the others in Figure 8b. Only
in the case of GBK(n∗ = 1) is the equation for Re û1 directly perturbed. This leads to the second
order perturbation of autocorrelation function while the other methods, GBK(n∗ > 1), lead to
third order or higher perturbations of autocorrelation functions. This can be seen in Figure
9b where we compare the autocorrelation functions c1(τ) for two methods, GBK(n∗ = 1) and
GBK(n∗ = 11), with the reference curve for the small correlation times τ . It is clearly evident
that the method GBK(n∗ = 11) is more accurate than GBK(n∗ = 1).

Interestingly errors in autocorrelation functions also depend on the value of n∗. For larger
value of n∗ we observe smaller errors, see Figures 8b, 8c and 8d. In Figure 9a it is easy to see
that two methods GBK(n∗ = 3) and GBK(n∗ = 11), which do not directly perturb the equation
for Re û1, have better autocorrelation functions compared to method GBK(n∗ = 1). But it is
also notable that the more gentle method, i.e. the GBK(n∗) method with larger value of n∗, has
the more accurate autocorrelation function.

Similar effects of perturbation order to autocorrelation functions can be seen in Figures 8c
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Figure 8: L2 errors as a function of sampling time with small scale forcing (35) of wave numbers
n ≥ n∗. Top left: evolving pdf of the Hamiltonian, Top right and bottom: autocorrelation
functions for Re û1, Re û3 and Re û5. in the evolving pdf of the Hamiltonian, α = γ = 1.

and 8b. In both methods, GBK(n∗ = 1) and GBK(n∗ = 3), the thermostat variable ξ is directly
coupled to the equation for Re û3. This gives larger errors compared to the other methods,
GBK(n∗ > 3), as seen in Figure 8c. We observe similar trends in the results in Figure 8d. And
these translate also to Figures 9c and 9d.

Numerical results presented in Figures 8 and 9 show that the direct coupling to the
thermostat ξ in the equations for the slow modes can significantly effect the errors in
autocorrelation functions of these modes and vice versa. Since errors in autocorrelation functions
decrease with larger value of n∗ while, at the same time the convergence rate decreases with
larger value of n∗ (Figure 6), it suggests seeking n∗ to obtain the optimal trade-off between rate
of convergence and rate of perturbation to dynamics. (Of course the choice would also depend
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Figure 9: Gentle thermostatting of BH equation with GBK(n∗) method, α = γ = 1. (a)
autocorrelation function c1(τ). (b) autocorrelation function c1(τ) for small correlation times τ .
(c) autocorrelation function c3(τ). (d) autocorrelation function c5(τ). The reference curves were
computed using constant Hamiltonian simulations from a mixed canonically distributed ensemble
of 106 initial conditions.

on the goal of simulation.)

4.2. Thermostated KdV equation

In the case of the KdV equation we note that the Hamiltonian function H(û) can be written as
the sum of two parts H = H1 + H2, where

H1(uN ) =

∫ 2π

0

u3
N dx, H2(uN) = −1

2

∫ 2π

0

(
∂

∂x
uN

)2

dx.

The Hamiltonian systems generated by H1(uN) and H2(uN) each conserves the first integrals M
and E individually. Now we consider the following GBK thermostated KdV equation:

∂

∂t
uN = − ∂

∂x
PN

δH

δuN
− ξ

∂

∂x
PN

δH2

δuN
= − ∂

∂x
PN

δH1

δuN
− (1 + ξ)

∂

∂x
PN

δH2

δuN
,
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Figure 10: Gentle thermostatting of KdV equation with GBK method, α = 15 and γ = 40. Left:
probability density function of H(û). Right: mean kinetic energy spectrum.

dξ = 2
β

α
Re

∫ 2π

0

δH1

δuN

∂

∂x
PN

δH2

δuN
dxdt − γξ dt + σ dw,

where dw is scalar Wiener process. This approach was suggested in a slightly different form (and
for finite dimensional systems only) in [14] and is referred to as a force-perturbation thermostat
since it perturbs the ‘natural forces’ of the system, or rather the balance between these, to realize
a thermal control. For the KdV equation we effectively thermostat the system by controlling the
strength and direction of dispersion.

To integrate the dynamics numerically in time, we use the following splitting method, which
generates a map (u0

N , ξ0) 7→ (u1
N , ξ1) with time step τ :

ξ1/2 = e−γ τ
2 ξ0 +

2

γ
Reh(u0

N )
(
1 − e−γ τ

2

)
+ σ

√
1 − e−γτ

2γ
∆w0,

u∗
N = e−(1+ξ1/2) τ

2
∂3

∂x3 u0
N ,

u∗∗
N = u∗

N + τfN (u
1/2
N ), u

1/2
N :=

1

2
(u∗

N + u∗∗
N ),

u1
N = e−(1+ξ1/2) τ

2
∂3

∂x3 u∗∗
N ,

ξ1 = e−γ τ
2 ξ1/2 +

2

γ
Reh(u1

N )
(
1 − e−γ τ

2

)
+ σ

√
1 − e−γτ

2γ
∆w1,

where ∆w0, ∆w1 ∼ N (0, 1). Numerical results with τ = 0.001 are presented in Figures 10–11
(showing, in Figure 10, the convergence of the Hamiltonian probability density function and
the spectrum, and, in Figure 11, the autocorrelation functions). 109 data points were used to
compute the graphs in Figure 10 and 11.

Results from Figure 10 demonstrate that a single trajectory produces what is essentially a
perfect Hamiltonian pdf and spectrum, hence we infer that the method is ergodic. On the other
hand Figure 11 shows that, for the particular values of α and γ, the GBK method has only a
small impact on dynamics as measured by autocorrelation functions.
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Figure 11: Gentle thermostatting of KdV equation with GBK method, α = 15 and γ = 40. Left:
autocorrelation function c1(τ). Right: autocorrelation function c2(τ). The reference curves were
computed using constant Hamiltonian simulations from a mixed canonically distributed ensemble
of 106 initial conditions.

5. Conclusions

In this paper we have outlined a framework for controlling the invariant measures of discretized
PDEs, via coupling to one or more thermostat variables. Ergodicity is guaranteed if the
perturbation vector fields satisfy Hörmander’s condition.

The convergence rate of the time averages to the ensemble average in the desired measure
depends on the strength of the thermostat, which can be controlled either through method
parameters, or through choosing the degree of coupling between dynamical and thermostat wave
numbers. The strength of the thermostat must be weighed against the degree of perturbation of
dynamical quantities such as correlations.

For the example of the Burgers-Hopf equation, we have demonstrated that effective sampling
can be achieved with perturbation only to the Fourier mode with largest wave number, providing
a simple model of energetic exchange with unresolved modes. In this way the invariant measure
is controlled by perturbing the least accurate component of the solution, and without introducing
explicit viscous terms, which might suppress an inverse cascade. A test for this framework will
come in extending the results to the 2D Euler equations, which is the subject of current work of
the authors.
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Appendix A. Burgers/Korteweg-de Vries model and spectral truncation

The BH and KdV equations can be written in unified form

ut + uux + µuxxx = 0, (A.1)
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where the dispersion constant µ is zero for the BH equation and nonzero for the KdV equation.
The classical KdV equation is obtained for µ = 1/6 by rescaling time by the same factor. The
BH and KdV equation are Hamiltonian PDEs with similar structure, as we briefly review in the
next section.

Appendix A.1. Hamiltonian structure and conserved quantities of BH and KdV equations

We consider Hamiltonian PDEs on a function space U of smooth, 2π-periodic functions equipped
with an inner product. The Poisson bracket (3) generalizes to an integral

{F ,G} :=

∫ 2π

0

δF
δu

J δG
δu

dx, F ,G : U → R,

i.e. a skew-symmetric, bilinear form acting on functionals on U and satisfying the Jacobi identity
[40]. Here, u(x, t) ∈ U is a (possibly vector-valued) function, δ

δu denotes the variational derivative
with respect to u, and J is a (matrix) differential operator, skew-symmetric with respect to the
inner product on U . The Hamiltonian PDE is given by

∂

∂t
u = {u,H}. (A.2)

Hence the evolution of any functional F under the dynamics of a Hamiltonian PDE (A.2) obeys
the equation

∂

∂t
F = {F ,H}.

A functional I satisfying {I,H} = 0 is a first integral and constant along classical solutions to
(A.2), as long as these exist.

Equation (A.1) has a bi-Hamiltonian structure [40] and is therefore integrable. The
Hamiltonian structure we will use here is defined by

J = − ∂

∂x
, H =

∫ 2π

0

1

6
u3 − µ

2

(
∂

∂x
u

)2

dx. (A.3)

Hence the corresponding Poisson bracket is

{F ,G} := −
∫ 2π

0

δF
δu

∂

∂x

δG
δu

dx. (A.4)

One conserved quantity of (A.2) is the linear momentum

M =

∫ 2π

0

u dx, (A.5)

which we can assume to be zero up to Galilean change of coordinates.
Equation (A.1) has infinitely many conserved quantities, as mentioned above, depending on

the value of µ. For the BH equation (µ = 0), the integral of any function of u is conserved, and
in particular the moments

I =

∫ 2π

0

up dx, p = 1, 2, . . . (A.6)

The first of these is the momentum mentioned earlier and assumed to be zero. The second
moment represents the kinetic energy

E =
1

2

∫ 2π

0

u2 dx. (A.7)

The third moment is the Hamiltonian
∫

u3, i.e. (A.3) with µ = 0.
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For the KdV equation, the first integrals of the infinite class are given by

In =

∫ 2π

0

P2n−1(u,
∂

∂x
u,

∂2

∂x2
u, . . .) dx, n = 1, 2, . . . ,

where the polynomials Pn are defined recursively [41] by

P1 = u,

Pn = − ∂

∂x
Pn−1 +

n−2∑

m=1

PmPn−m−1, n ≥ 2.

The even-indexed polynomials P2n are exact differentials and thus trivially preserved. The
polynomial P1(u) corresponds to momentum (A.5), P3(u)/2 to the kinetic energy (A.7) and
P5(u)/2 to the Hamiltonian functional (A.3) with µ = 1/6. Hence, all three functionals (A.5),
(A.7) and (A.3) are conserved quantities of the equation (A.1) for any value of µ.

Appendix A.2. Spectral truncation of BH and KdV equations

As noted by McLachlan [42], the Hamiltonian structure of a PDE can often be retained in a
finite dimensional truncation, by taking care to discretize the Poisson bracket and Hamiltonian
separately. The Poisson bracket should be truncated such that remains skew-symmetric and,
when nonlinear, satisfies the Jacobi identity. The Hamiltonian can be approximated by any
consistent finite dimensional truncation. Majda & Timofeyev [36] present such a truncation for
the BH equation, and show that it retains as first integrals approximations of (A.6) for p = 1, 2, 3.
We recall their discretization here and note that it readily extends to the KdV equation.

Let PN denote the standard N -mode Fourier projection operator, i.e.

fN := PNf(x) =
∑

|n|≤N

f̂neinx, (A.8)

where

f̂n =
1

2π

∫ 2π

0

f(x)e−inx dx

is the nth Fourier coefficient of the function f(x). Since f(x) is real we have

f̂−n = f̂∗
n. (A.9)

It can be directly verified that PN is symmetric with respect to the L2 inner product (·, ·)
and commutes with the derivative operator ∂

∂x . Consequently the composite operator ∂
∂xPN is

skew-symmetric with respect to (·, ·) and a truncated Poisson bracket (A.4) may be defined by

{FN ,GN} := −
∫ 2π

0

δFN

δuN

∂

∂x
PN

δGN

δuN
dx. (A.10)

The Hamiltonian restricted to the truncated function uN is given by

H =

∫ 2π

0

1

6
u3

N − µ

2

(
∂

∂x
uN

)2

dx. (A.11)

Therefore the finite truncation follows from (A.2):

∂

∂t
uN = − ∂

∂x
PN

δH

δuN
, (A.12)

where

δH

δuN
=

1

2
u2

N + µ
∂2

∂x2
uN . (A.13)
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That is,

∂

∂t
uN +

1

2

∂

∂x
PN (u2

N) + µ
∂3

∂x3
uN = 0. (A.14)

In terms of Fourier coefficients this can be written

dûn

dt
= − in

2


 ∑

|n−m|≤N

ûn−mûm


+ in3µûn = − in

2π

∂H

∂û∗
n

, |n| ≤ N, (A.15)

and the Hamiltonian is

H =
π

3

∑

ℓ+m+n=0

|ℓ|,|m|,|n|≤N

ûℓûmûn − µπ
∑

|ℓ|≤N

ℓ2ûℓû
∗
ℓ .

The Poisson bracket (A.10) possesses a Casimir invariant

M =

∫ 2π

0

uN dx = û0, (A.16)

the total momentum, which without loss of generality we assume to be zero.
Additionally the quadratic invariant

E =
1

2

∫ 2π

0

u2
N dx (A.17)

is conserved since

{E, H} = −1

2

∫ 2π

0

uN
∂

∂x
PN(u2

N ) dx − µ

∫ 2π

0

uN
∂3

∂x3
uN dx

=
1

2

∫ 2π

0

uN
∂

∂x
u2

N dx + µ

∫ 2π

0

(
∂

∂x
uN

)(
∂2

∂x2
uN

)
dx

=
1

6

∫ 2π

0

∂

∂x
u3

N dx +
µ

2

∫ 2π

0

∂

∂x

(
∂

∂x
uN

)2

dx = 0,

due to symmetry of PN and its commutativity with ∂
∂x . In terms of Fourier coefficients,

E = 2π
∑

|n|≤N

1

2
ûnû∗

n = πû2
0 + 2π

N∑

n=1

|ûn|2 = 2π

N∑

n=1

|ûn|2.

To solve (A.14) numerically, we evaluate the nonlinear terms in real space using a standard
pseudospectral approach (see, e.g. [43]). Due to cubic terms in the Hamiltonian and the
thermostat equation, anti-aliasing requires applying the FFTs on a grid of dimension 4(N + 1),
where N is the number of Fourier modes retained in the truncation. All computations are done
for fixed value of N = 15.
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