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In this paper we solve two initial value problems for 2D internal gravity waves. The waves
are contained in a uniformly-stratified, square-shaped domain whose side walls are tilted
with respect to the direction of gravity. We consider several disturbances of the initial
stream function field and solve both for its free evolution and for its evolution under para-
metric excitation. We do this by developing a structure-preserving numerical method for
internal gravity waves in a 2D stratified fluid domain. We recall the linearized, inviscid
Euler-Boussinesq model, identify its Hamiltonian structure, and derive a staggered finite
difference scheme that preserves this structure. For the discretized model, the initial con-
dition can be projected onto normal modes whose dynamics is described by independent
harmonic oscillators. This fact is used to explain the persistence of various classes of
wave attractors in a freely evolving (i.e. unforced) flow. Under parametric forcing, the
discrete dynamics can likewise be decoupled into Mathieu equations. The most unstable
resonant modes dominate the solution, forming wave attractors.

Key words: internal gravity waves, wave attractors, Euler-Boussinesq equations, energy-
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1. Introduction

Internal gravity waves in stratified fluids retain their frequency and consequently also
their angle with respect to gravity upon reflection from an inclined boundary. Waves do
change their wavelength and become focused or defocused when reflecting from plane,
inclined surfaces. Laboratory experiments confirm that when a container filled with a
uniformly stratified fluid is excited vertically or horizontally, internal gravity waves ap-
pear that become focused when reflecting from a sloping wall and converge towards a
limit cycle, a so called wave attractor (Maas & Lam 1995; Maas et al. 1997; Hazewinkel
et al. 2008). Energy propagates along the straight lines of the attractor, which are normal
to the direction of phase propagation. Understanding the behavior of internal waves in
bounded domains may be important for explaining the mixing processes in ocean basins
and lakes and has relevance to astrophysics and fluid dynamics in general (Bühler &
Holmes-Cerfon 2011).
The ansatz of a time-periodic, single frequency (monochromatic) solution to the lin-

earized internal gravity wave equations yields a wave equation in space with Dirichlet
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Figure 1. Limit cycle wave attractors corresponding to a discrete set of frequencies from the
respective continuum range. Different line thicknesses correspond to distinct wave attractors.
Left: class of (1, 1) attractors. Right: class of (1, 3) attractors.

Figure 2. Evolution of the stream function in time from two distinct Fourier mode initial
conditions.

boundary conditions. This makes the problem quite unusual, as it is ill-posed due to
nonuniqueness. The problem can be solved exactly using the method of characteristics
or through a regularization technique (Swart et al. 2007). Via the method of character-
istics one can study the limit behavior of reflecting rays in bounded domains. The most
generic asymptotic solution is an attractor, which is a finite closed orbit of rays within
the domain. The particular structure of internal gravity wave attractors in a tilted square
domain depends on: the rotation angle of the square θ, the wave frequency ω and the
stratification frequency Nf . A family of wave attractors is characterized by the number of
reflections of the attractors with the boundary. By symmetry considerations, an attractor
must reflect an equal number n times with the top and bottom domain boundaries, and
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an equal number m times with the left and right boundaries. Such an attractor is called
an (n,m)-attractor. In Figure 1 shows a sample of the geometries from the classes of
(1,1)- and (1,3)-attractors in a tilted square domain (see §2).
Due to the ill-posedness of the monochromatic wave problem, we are motivated to

study the initial value problem for internal gravity waves in a confined region. Alterna-
tively, one could introduce viscosity, which regularizes the monochromatic wave problem,
allowing for its approximate analytical solution (Ogilvie 2005). Lighthill (1996) consid-
ered the initial value problem for the evolution of a localized disturbance in an unbounded
domain, deriving the dispersion relation and noting that vortical structures remain sta-
tionary after internal gravity waves have propagated away horizontally. In this paper we
study internal waves in a stratified fluid filling a domain with solid walls, so that wave
motion is trapped inside. We consider the simplest case that admits wave attractors:
perturbations to a linearly stratified inviscid fluid, either freely evolving or parametri-
cally excited. To guarantee that viscous effects play no role, we construct a numerical
discretization that conserves total energy and symmetry in the absence of forcing and
study two idealized theoretical configurations: freely evolving (i.e. unforced) flow, and
parametrically excited flow. We proceed with a normal mode analysis of the discrete
model. For the first configuration, we analyze the unforced initial boundary value prob-
lem, to show how linear dynamics is partitioned into normal modes for different classes
of initial conditions. Figure 2 illustrates the free evolution from Fourier modes with wave
numbers (1, 1) and (1, 3), respectively. Evident in the plots at later times, we observe
structures reminiscent of the full class of (1, 1)- and (1, 3)-attractors, suggesting a rela-
tionship between the Fourier modes and attractor geometries, for which we give some
motivation. For the second configuration, the normal mode analysis reveals that the flow
may be decomposed into independent Mathieu equations, and that those modes whose
associated frequencies lie within the resonance zones (Arnold tongues) will be amplified,
forming a wave attractor.
It is important to note that the existence of a complete normal mode decomposition for

the discretized model contrasts sharply with the continuum model, for which the eigen-
spectrum is continuous and no such decomposition exists (Maas 2005). The continuous
spectrum for the continuum model actually implies the existence of an uncountable infin-
ity of time-periodic solutions, corresponding to the arbitrary definition of the boundary
condition on the fundamental intervals, that we will discuss. For the discretized system,
the finite basis of normal modes are precisely the time-periodic solutions. The complete
normal mode decomposition for the discrete model is also non-robust with respect to vis-
cous perturbation of the system. For the forced system with viscosity, the normal mode
basis becomes time dependent, meaning the solution cannot be decomposed into scalar
problems.
The paper is organized as follows: In §2 we recall the 2D linear hydrostatic inviscid

Euler-Boussinesq equations which govern internal gravity waves in stratified fluids, dis-
cuss monochromatic solutions in a tilted square domain, and review the Hamiltonian
structure. In §3 we describe a structure-preserving finite difference discretization on the
tilted square and present the normal mode analysis of the discretized model in the un-
forced and forced cases. Using the symmetries of the discrete differential operators we
show that in both cases the dynamics may be projected onto a constant in time basis
of normal modes, such that they entirely decompose into independent scalar problems:
harmonic oscillators in the unforced case or Mathieu equations in the forced case. In §4
we present numerical experiments of the unforced and forced models. We observe that
an (n,m) Fourier mode initial condition projects mostly onto the range of the associated
(n,m)-attractor, explaining the similarities of Figures 1 and 2. For the forced model we
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observe that if the initial condition has a nontrivial projection onto normal modes with
amplified Mathieu dynamics, a wave attractor will emerge. Conclusions are summarized
in §5.

2. Euler-Boussinesq equations

2.1. Internal gravity wave equations

We consider a vertical slice domain D ⊂ R
2 with boundary ∂D and Cartesian coordinates

x = (x, z), where z is directed antiparallel to the direction of gravity, g. We decompose
the fluid density field and the pressure field as follows:

ρ(x, z, t) = ρ0 + ρ̄(z) + ρ′(x, z, t), p(x, z, t) = p̄(z) + p′(x, z, t),

where ρ0 is an average constant mean density and ρ̄(z) is a mean static density stratifi-
cation, i.e. a monotonically decreasing function of z. The sum ρ0 + ρ̄(z) defines a stable
background density field in a hydrostatic balance with the pressure field p̄(z):

∂z p̄ = −g(ρ0 + ρ̄(z)),

where g is the gravitational acceleration. The quantities ρ′(x, z, t) and p′(x, z, t) are small
amplitude perturbations about the (steady state) background density and pressure fields.
In geophysical and astrophysical fluid dynamics it is common to treat the density field

distinctly, defining both an ‘inertial mass’ and a ‘gravitational mass’. The Boussinesq
approximation consists in assuming a constant density value ρ0 for the inertial mass in
the momentum equation (from which the density may be consequently removed), while
maintaining the full density ρ for the gravitational mass. We enforce the inequality |ρ′| <
|ρ̄(z)| ≪ ρ0 to justify the Boussinesq approximation. Such flows are termed ‘buoyancy-
driven’. The background stratification defines a stratification frequency, Nf , (Brunt-
Väisälä frequency), where N2

f = −gρ−1
0 dρ̄/dz. In the following we assume that Nf is a

constant, i.e., the fluid is linearly stratified in the background density.
Wave focusing occurs when a boundary of the domain is inclined with respect to

gravity. For this reason we assume the domainD is rotated through an angle 0 6 θ 6 π/4.
With the above considerations in mind, the inviscid linear Euler-Boussinesq equations
describing the propagation of perturbations in this rotated frame read:

∂tu = −∇p̂+ bk̂(θ), (2.1)

∂tb = −N2
fu · k̂(θ), (2.2)

∇ · u = 0, (2.3)

u · n̂ = 0 on ∂D, (2.4)

where u = (u,w) is a velocity field in the x and z direction respectively (now tilted
relative to the original direction), p̂ = ρ−1

0 p′ is scaled pressure with respect to the mean

constant density, b = −gρ′ρ−1
0 is the buoyancy, k̂(θ) = (sin θ, cos θ) is the unit vector in

the direction opposite to gravity and n̂ is the unit outward normal to the boundary ∂D.
In two-dimensions it is convenient to consider the stream function formulation of the

Euler-Boussinesq equations (2.1)–(2.4). The divergence-free condition (2.3) allows us to
define a stream function ψ on D such that

u = −∂zψ, w = ∂xψ.

By taking the curl of the momentum equations (2.1) we eliminate the pressure from
(2.1), obtaining the 2D linear inviscid Euler-Boussinesq equations in stream function
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formulation:

∂tq = −∂xb cos θ + ∂zb sin θ, (2.5)

∂tb = −N2
f (∂xψ cos θ − ∂zψ sin θ), (2.6)

q = −∆ψ, (2.7)

ψ = 0 on ∂D, (2.8)

where q = ∂zu− ∂xw is vorticity.
The model (2.5)–(2.8) is a system of partial differential equations that conserve total

energy:

H =
1

2

∫

D

∇ψ · ∇ψ +
1

N2
f

b2 dx, (2.9)

equal to the sum of kinetic and potential energies.

2.2. Forcing

Wave attractors are generated by periodically forcing a stratified fluid in domain with
inclined boundaries. In the ocean, the forcing is primarily tidal forcing. In laboratory
experiments (Maas et al. 1997; Lam & Maas 2008), wave attractors were generated by
vertically oscillating a container with a sloping wall. To incorporate such parametric
excitation (McEwan & Robinson 1975) equation (2.5) is modified by multiplication with
a time dependent function α(t) to obtain:

∂tq = α(t)(−∂xb cos θ + ∂zb sin θ).

An alternative approach is external excitation, for which time dependent terms may be
added to (2.5) and (2.6), (Ogilvie 2005, see), or by means of boundary forcing (Grisouard
et al. 2008).

Vertical oscillation of the container can be viewed as time-dependent modulation of the
gravitational parameter g, which originally enters the momentum equation, and should
thus be present only in the vorticity equation (2.5). Hence, we can realize this kind of
forcing as parametric excitation with

α(t) = 1− ǫ cos(2ω̄t) (2.10)

where ǫ is a positive constant smaller than one and 2ω̄ is the forcing frequency.

2.3. Dispersion properties of internal gravity waves

Consider a time periodic solution

ψ(x, z, t) = Ψ(x, z)e−iωt, b(x, z, t) = B(x, z)e−iωt.

Substituting the above ansatz into (2.5)–(2.7), eliminating B and taking θ = 0 without
loss of generality yields

∂zzΨ−
(N2

f − ω2)

ω2
∂xxΨ = 0, (2.11)

which is recognized as a wave equation for the scalar state variable Ψ. In other words,
internal gravity waves are spatially governed by the wave equation. Substituting the
plane wave

Ψ(x, z) = a exp(i(κxx+ κzz)),
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into (2.11), where a is the amplitude and κx and κz are wave numbers, yields the dis-
persion relation

ω2 = N2
f

κ2x
κ2x + κ2z

= N2
f cos

2 φ, (2.12)

the last equality of which follows from the polar coordinate description of the wave num-
ber vector κ = |κ|(cosφ, sinφ) where |κ| is the wave number magnitude and φ is the
phase angle. Hence, ω2 6 Nf

2 and the frequencies of internal gravity waves are bounded
by the stratification frequency Nf . It is also apparent that the wave frequency is inde-
pendent of the wave number magnitude and depends only on its angle φ. Consequently
an incident wave retains its propagation direction upon reflection from a plane surface
independent of the slope of the surface, leading to monoclinical (single-angled) waves. A
wave does, in general, change its wavelength and can become focused or defocused upon
reflection from an inclined boundary. It is well known that the wave phase travels in the
phase velocity direction cp = ωκ/|κ|2 and wave packet energy is transported by the
group velocity cg = ∇κω, Whitham (1974). The internal wave group velocity vector cg
and phase velocity vector cp are mutually perpendicular, i.e., cg ·cp = 0. Hence internal
waves propagate energy parallel to the wave crests and troughs (i.e. along these).

2.4. Monochromatic wave solutions in a tilted square

The wave equation (2.11) with Dirichlet boundary conditions (2.8) is formally an ill-
posed problem (Swart et al. 2007). One not only finds a trivial solution ψ ≡ 0, but there
exist infinitely many solutions. For example, the hyperbolic wave equation (2.11) can be
solved on a non-inclined (θ = 0) rectangular domain (x, z) ∈ [0, 1]× [0, ℓ] by separation
of variables. The function

Ψ = An,m sin(nπx) sin(mπz/ℓ)

satisfies the hyperbolic equation (2.11) provided that

ℓ =

√

ω2

N2
f − ω2

m

n
. (2.13)

Replacing (n,m) in (2.13) by (jn, jm) leaves ℓ unchanged, and for integer j, Ψ still
vanishes at the boundaries. Therefore there are infinitely many solutions to the wave
equation (2.11), resulting in the ill-posedness.
The general solution of the wave equation is given by

Ψ(x, z) = f(x− γz)− g(x+ γz), γ =

√

N2
f − ω2

ω2

for arbitrary functions f and g that are invariant along characteristics x ± γz = const.
For zero Dirichlet boundary conditions for the stream function (2.8) it follows that on
the boundary the value of f of a reflecting characteristic equals that of g on the incident
characteristic, f ≡ g. Thus we can compute the stream function at any given point by
following the characteristics until they intersect the boundary on an interval where the
function f = g has been prescribed. Thus the problem reduces to identifying a minimal
set of distinct intervals, the so called fundamental intervals, on the boundary where the
functions f and g may be prescribed, (see Maas & Lam 1995).
For this paper we will study internal waves in a tilted square domain. In the tilted unit

square the sequence of successive reflecting characteristics exhibits different behavior de-
pending on the angle of tilt and stratification and forcing frequencies. In the subcritical
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case all characteristics approach asymptotically either the square’s upper left and lower
right corners, or the square’s lower left and upper right corners. This occurs when the
characteristic slope is either larger or smaller than the inclination of both sets of bound-
aries, i.e of the bottom/surface and left/right walls. In the supercritical case one can
distinguish an additional three subtypes of limit behavior: periodic, ergodic and limit
cycle (John 1941; Kopecz 2006). In the periodic case the web of boundary intersection
points consists only of a finite number of elements, and the characteristic orbit through
every point is periodic. In the ergodic case, for each starting value the characteristic
orbit eventually passes arbitrarily close to every other point in the domain (the stream
function is then necessarily constant, implying no flow). The most generic case of limit
behavior of the reflecting characteristics is a limit cycle, i.e., a periodic orbit that at-
tracts a neighborhood of itself. The periodic orbits are characterized by the number of
boundary intersections they have. Due to the symmetry we say that attractor (n,m) has
n intersections with the boundary on the upper side of the square and m intersections
on the left side of the square. The overall number of attractor intersections with the
boundary is called the attractor’s period. In the unit square domain all attractors are
global.

The choice of the fundamental intervals on the boundary and the functions prescribed
on it is not unique. In the subcritical case it is sufficient to prescribe only one interval
between two successive characteristic intersections on the boundary. In the ergodic case
the solution may be prescribed at only one point on the boundary yielding the trivial
solution ψ ≡ 0 of the wave equation (2.11) due to the zero Dirichlet boundary conditions
(2.8). For the periodic and attractor cases one must prescribe one or two intervals on
one of the square’s boundaries, respectively. For a complete discussion see Maas & Lam
(1995).

We take a closer look at periodic solutions and limit cycles. The experimental variables
are the wave frequency ω, stratification frequency Nf and a rotation angle of the square
θ. In the periodic solution regime, all orbits correspond to odd-even pairs (2n, 2m+ 1)
or (2n + 1, 2m), implying that focusing of characteristics is offset by an equal amount
of defocusing. But the periodic regime is non-robust with respect to perturbations in
domain geometry. In the tilted square domain these solutions occur only for a discrete
set of frequencies. In contrast the limit cycle attractors persist over a continuous range
of frequencies, hence are robust with respect to frequency perturbations. In the simplest
periodic case the characteristic emanating from, say, the square lower left corner will
intersect the lower right corner after 2n successive intersections at the top of the square
or will intersect the upper left right corner after 2m successive intersections at the right
side of the square. In both such situations we have analytic expressions relating the wave
frequency ω, stratification frequency Nf and rotation angle of the square θ:

cot

(

θ + tan−1

√

ω2

N2
f − ω2

)

− cot

(

θ − tan−1

√

ω2

N2
f − ω2

)

=
1

n
,

tan

(

θ + tan−1

√

ω2

N2
f − ω2

)

− tan

(

θ − tan−1

√

ω2

N2
f − ω2

)

=
1

m
,

respectively. Hence these periodic solutions are indicated as (2n, 1) and (1, 2m) with
periods 2(2n+ 1) and 2(2m+ 1), respectively.

Figure 3 illustrates the parameter space ω/Nf versus θ. The black bold line separates
subcritical and supercritical regimes. Periodic solutions (2n, 1) and (1, 2m) are indicated
in Figure 3(a) with blue lines. Note that for a given rotation angle θ, the periodic solutions
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Figure 3. Left: periodic solutions (2n, 1) and (1, 2m) indicated with numbers n = 1, 2, . . . and
m = 1, 2, 3, . . . , respectively. Right: attractor period.

(a) (b) (c)

Figure 4. Left: stream function and attractor (1,1), θ = 7π/72 and ω/Nf = 0.74. Middle:
stream function and attractor (1,3), θ = π/18 and ω/Nf = 0.34. Right: stream function and
periodic solution (1, 2), θ = π/15 and ω/Nf = 0.43.

correspond to discrete values of ω/Nf . Limit cycle solutions are indicated in Figure 3(b),
where the color denotes the period of the attractor.
Figure 4 shows solutions of the monochromatic wave equation (2.11) for the (1, 1) and

(1, 3) attractor cases and for the (1, 2) periodic case, for specific value of θ and ω/Nf . In
Figures 4(a) and 4(b) we show two typical members from the respective continuum ranges
of limit cycle solutions. In both cases one can observe a self-similar structure approaching
the attractor. The solutions were constructed using the method of characteristics; on the
fundamental intervals we prescribe two cosines with an offset at the chosen intervals. For
a square-shaped attractor in a trapezoidal geometry a free wave solution was computed
analytically, possessing a logarithmic self similar Fourier spectrum (Maas 2009).

3. Numerical discretization and linear analysis

In this section we describe our discrete model equations and show that in the special
case of linear inviscid flow, the dynamics decouples into scalar oscillators.



Appearance of Wave Attractors 9

3.1. Fourier analysis of the continuum model, non-tilted

For a non-tilted square domain (θ = 0), the initial boundary value problem for the linear
Euler-Boussinesq equations (2.5)–(2.8) with initial conditions ψ0(x, z) and b0(x, z) and
zero Dirichlet boundary conditions (2.8) can be solved analytically using separation of
variables. The solution is

ψ(x, z, t) =

∞
∑

n,m=1

ψn,m(x, z)
d

dt
Tn,m(t), b(x, z, t) = −N2

f

∞
∑

n,m=1

∂xψn,m(x, z)Tn,m(t),

(3.1)
where ψn,m(x, z) = sin(nπx) sin(mπz) are Fourier modes on the unit square, i.e. the
eigenfunctions of the operators ∂xx and ∂zz under the given boundary conditions, and
Tn,m is a solution to the simple harmonic oscillator equation

d2

dt2
Tn,m = −ω2

n,mTn,m, ω2
n,m = N2

f

n2

n2 +m2
, (3.2)

with the frequencies given by the dispersion relation (2.12).
The total energy functional (2.9) of the general solution in the form (3.1) is

H =
π

8

∞
∑

n,m=1

[

(n2 +m2)

(

d

dt
Tn,m

)2

+N2
fn

2T 2
n,m

]

=

∞
∑

n,m=1

Hn,m,

where for each (n,m), the term in square brackets, Hnm, is the independently conserved
Hamiltonian of (3.2). Note that there is no coupling between wave numbers. The initial
conditions may be projected onto the Fourier modes, but each mode evolves indepen-
dently, and there is no energy exchange between modes.
The situation for θ 6= 0 is very different. The initial boundary value problem (2.5)–

(2.8) cannot be solved analytically by the method of separation of variables as it was
done above. The eigenfunctions in the tilted case correspond to the ill-posed solutions of
(2.11), and have no simple representation. However, as we show in the next section, the
numerical discretization does admit a normal mode analysis.

3.2. Energy conserving numerical discretization and analysis

Making use of the Hamiltonian structure of (2.5)–(2.8), we construct in Appendix A
an energy preserving numerical discretization. Discretizing in space while leaving time
continuous yields the following system of linear ordinary differential equations (cf. (A 11)–
(A 13)):

−L
dψ

dt
= α(t)

(

DT
xMzb cos θ −DT

zMxb sin θ
)

, (3.3)

db

dt
= −N2

f (M
T
z Dxψ cos θ −MT

x Dzψ sin θ), (3.4)

where ψ ∈ R
M and b ∈ R

N , M < N , are vectors containing the values of ψ and b
at (staggered) grid positions, and the finite difference matrices Mx, Mz, Dx, Dz and
L, defined in §A.1, represent discretized mean (M∗), difference (D∗) and Laplacian (L)
operators. Here we introduced the factor α(t), that allows us to add forcing by means
of parametric excitation.. Introducing the matrix K = DT

xMz cos θ − DT
zMx sin θ, this

system can be written in matrix form
[

−L 0
0 I

]

d

dt

(

ψ

b

)

=

[

0 α(t)K
−KT 0

](

ψ

b

)

(3.5)
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By construction, when forcing is absent (α ≡ 1) the discretization possesses a first in-
tegral, the discrete Hamiltonian H (A 8), which approximates the total energy (2.9),
i.e.,

H =
1

2

(

−ψTLψ +
1

N2
f

bTb

)

∆x∆z. (3.6)

In Appendix B we derive the normal mode bases X = (X1, . . . , XM ) and Y =
(Y1, . . . , YN ), in which ψ and b are expressed as, cf. (B 7),

ψ = Xψ̃, b = Y b̃.

In the new basis, the system (3.5) decouples into M second order problems:

d2

dt2
ψ̃i = −α(t)ω2

i ψ̃i + α̇(t)ωib̃i, (3.7)

d2

dt2
b̃i = −α(t)ω2

i b̃i, (3.8)

for i = 1, . . . ,M , plus the trivial dynamics d2

dt2 b̃i = 0, i =M + 1, . . . , N .

When forcing is absent, α(t) ≡ 1, the dynamics further decouples into 2M independent
harmonic oscillators

d2

dt2
ψ̃i = −ω2

i ψ̃i,
d2

dt2
b̃i = −ω2

i b̃i, i = 1, . . . ,M.

In particular the total energy can be expressed as the sum of the harmonic oscillator
energies

H =
M
∑

i=1

Hψ
i +Hb

i , Hψ
i =

1

2





(

dψ̃i
dt

)2

+ ω2
i ψ̃

2
i



 , Hb
i =

1

2





(

db̃i
dt

)2

+ ω2
i b̃

2
i



 ,

each of which is a conserved quantity.

Remark. In §2 we saw that there are infinitely many monochromatic wave solutions to
the linearized Euler-Boussinesq equations, corresponding to an arbitrary specification of
the solution on a fundamental interval. For the discretized equations, of course, there can
be only a finite number of periodic solutions, each corresponding to a normal mode of the
discretization matrix. This situation is analogous to the case of the advection equation
ρt + uρx = 0 on a periodic domain, for which any initial condition ρ(x, 0) = f(x) is
periodic in time. Upon numerical discretization of this equation, the dispersion relation
is altered, an arbitrary initial condition may be expanded in normal modes, and each of
these evolves with a different phase speed, causing artificial dispersion. Only the (finite
denumerable) normal modes themselves are periodic.

When forcing is present in (3.7)–(3.8), i.e. α(t) = 1 − ǫ cos 2ω̄t, the buoyancy modes
evolve independently according to the Mathieu equation

d2

dt2
b̃i = −(1− ǫ cos 2ω̄t)ω2

i b̃i.

The Mathieu equation supports resonance zones in parameter space for which the solution
grows unbounded in magnitude as well as stable (non-resonant) zones for which the
solution remains bounded for all time. The first and the most important instability region
originates at the subharmonic frequency ω̄ of the driving frequency 2ω̄, (see Arnold 1989).
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3.3. Dynamics of the Mathieu equation

Write the scalar Mathieu equation in the general form

d2

dt2
β + (a− 2q cos(2t))β = 0. (3.9)

According to the Floquet multiplier theorem, the Mathieu equation for fixed a and q
admits a complex valued general solution of the form

β(t) = c1e
µtP (a, q, t) + c2e

−µtP (a, q,−t),

where µ 6= 0 is a complex Floquet exponent and P (a, q, t) is a complex valued, π-periodic,
special function, i.e., P (a, q, t+ π) = P (a, q, t). If Reµ = 0, the solution β(t) is bounded
for all time. If Reµ 6= 0, the amplitude of the oscillations grows exponentially. For the
degenerate case µ = 0, the solutions are linearly dependent and the amplitude grows
linearly in time.

To determine µ we note that taking initial conditions β(0) = 1, β̇(0) = 0, one finds
c1 = c2 = (2P (a, q, 0))−1, hence the solution at time t = π is

β(π) = coshµπ. (3.10)

Therefore µ can be estimated by solving (3.9) numerically on the interval [0, π].

Our goal is to compute the two internal wave attractors presented in Section 2 by use
of the parametric excitation mechanism described above. The values of θ and ω̄/Nf are
given in Figure 4. In our computations we will fix ǫ = 0.1 and set ω̄ = π/2. In Figure 5
we plot the real part of the Floquet exponent µ in the parameter domain ω̄/Nf versus ǫ
where the Floquet exponent is found from equation (3.10). To find the solution β(π) of
the Mathieu equation (3.9) with initial conditions β(0) = 1 and β̇(0) = 0 we solve the
Mathieu equation numerically using the Störmer-Verlet method (Hairer et al. 2006). In
Figure 5(a) we see only one instability tongue but in Figure 5(b) we see two of them. This
is due to the fact that we set the forcing frequency to 2ω̄ = π that parametrically excites
the subharmonic at frequency ω̄. Choosing Nf = 100π/148 in Figure 5(a), this implies
that all of its super harmonics, nω̄, (n = 2, 3, . . . ), lie above the internal wave cut-off
frequency, nω̄ > Nf . While for Nf = 100π/68 in Figure 5(b), its second harmonic is still
below this cut-off. Consequently the range of the frequencies in the second example is
greater than in the first one, and this explains the presence of two instability tongues in
Figure 5(b). Since the forced internal wave equations (3.3)–(3.4) can be decomposed into
the Mathieu type equations (3.7)–(3.8), the theory of Mathieu equations suggests that
depending on the values of the Floquet exponent there will be resonant normal modes
which will grow exponentially in time and there will be other modes which will stay
bounded. The presence of resonant normal modes is dependent on the initial conditions.
If a particular initial condition is such that its projection onto normal modes has no
components within resonant zones of the Mathieu equation, then the solution of the
forced linear internal wave equations (3.3)–(3.4) will stay bounded for all times. Hence
the choice of initial conditions for computations is not arbitrary. The analysis in §4.1 of
the system’s response to different initial conditions in the unforced, undamped linear case
suggests that the natural choice for finding (1, 1) and (1, 3) attractors would be initial
conditions ψ1,1 and ψ1,3, respectively. This implies that there will be resonant normal
modes.
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(a) (b)

Figure 5. Instability tongues of the Mathieu equation, the real part of the Floquet exponent
for the given values of ω̄/Nf and ǫ. Left: one instability tongue in the computation of the (1, 1)
attractor, ω̄/Nf = 0.74 and ǫ = 0.1. Right: two instability tongues in the computation of the
(1, 3) attractor, ω̄/Nf = 0.34 and ǫ = 0.1.

Figure 6. Evolution of the stream function in time from the initial condition ψ1,2.

4. Numerical experiments

4.1. Freely evolving flow

Armed with the theory of internal gravity wave attractors in a tilted square from §2 and
the structure preserving discretization of the Euler-Boussinesq equations in the stream
function formulation from §3 we study the initial boundary value problem. Since we
consider the inviscid equations, the system does not depend on spatial scales and time can
be rescaled with respect to stratification frequency Nf to cast the system in dimensionless
form. As we will see in the following, the response of the system will depend on tilt angle
θ and on the choice of the initial conditions.
We study the response of the system with the Fourier mode initial conditions:

ψ0(x, z) = ψn,m(x, z), b0(x, z) ≡ 0, (n,m) = (1, 1), (1, 2), (1, 3). (4.1)

These initial conditions correspond to low wavenumber smooth functions. When θ = 0
the Fourier modes are eigenfunctions, as described in §3.1, and all three initial conditions
result in single frequency standing wave solutions whose frequency is determined by the
dispersion relation (2.12). When θ 6= 0, i.e. the domain is tilted by the angle θ or the
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Figure 7. Time series of the stream function, vorticity, buoyancy, velocity u, velocity w and
energy density function E at 3 points in space from computations with initial condition ψ1,1

and b = 0.

direction of gravity is changed, the Fourier modes are no longer eigenfunctions, and we
observe a different response from the system for initial conditions (4.1).
In all three numerical examples we use the same numerical parameters and parameter

values. We compute to final time Tend = 400 with time step τ = 0.05. The spatial mesh
sizes in both space dimensions are equal, ∆x = ∆z = 2× 10−3. We fix the stratification
frequency Nf = 1 and choose θ = π/20 for the rotation angle of the square. The Störmer-
Verlet method (A14)–(A17) conserves energy in time up to fluctuations of amplitude
O(τ2). For this choice of τ the relative error of the Hamiltonian function (3.6) remained
smaller than 10−3 in all three numerical experiments. Computational results with initial
conditions ψ1,1 and ψ1,3 are shown in Figure 2. Results with the initial condition ψ1,2

are shown in Figure 6. In all three examples we plot the evolution of the stream function
at three distinct times.
Complementary to the state variables we also look at the energy density function,

i.e. the distribution of the energy in space. Hence we define the discrete energy density
function at the cell centers, making use of the discrete velocities defined by (A 7),

Ei+1/2,j+1/2 =
1

2
u2i+1/2,j+1/2 +

1

2
w2
i+1/2,j+1/2 +

1

2N2
f

b2i+1/2,j+1/2. (4.2)

In the numerical example with initial condition ψ1,1 we observe that energy that is
initially concentrated at the low wavenumber is transported to large wave numbers.
Evidently, in Figure 2 the whole family of (1, 1) attractors is observable. The evolution
from initial condition ψ1,3 is similar, but in this case the family of (1, 3) wave attractors
is obtained, see Figure 2. On the other hand, with initial condition ψ1,2 the solution
appears to consist mainly of a strong periodic component, plus small scale fluctuations.
Despite the fact that the energy functional (2.9) is conserved along the solution of

the continuous system (2.5)–(2.8) and the discrete energy function (3.6) is conserved
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up to second order in time† along the solution of the discrete system (A 14)–(A17),
the amplitude of the stream function decays. That can be seen by comparing the color
bars in Figures 2 and 6. For total energy to remain constant, there should either be a
net exchange of kinetic into potential energy, or the amplitude of vorticity should grow
commensurate to the loss in stream function. To confirm this we study the time series of
the state variables: stream function, vorticity, buoyancy, velocities (A 7) and the energy
density function (4.2), at three arbitrarily chosen points in space. These three points are
shown in the top left plot of Figure 2. In Figure 7 we plot numerical time series data at
these three points for the initial condition ψ1,1. From Figure 7 we see that for energy to
stay bounded when the amplitude of the stream function decays the amplitude of the
vorticity grows and buoyancy, energy density function and the components of the velocity
field stay bounded. This is reminiscent of the familiar cascade of vorticity to large wave
numbers in 2D fluids, but note that the nonlinear advection terms are neglected in this
model, so the observed effect is really due to dispersion among the normal modes. In
fact, the unforced problem is quasiperiodic, so all such trends must eventually reverse.

The presence of only a single family of wave attractors in the time evolution of the
initial conditions ψ1,1 and ψ1,3 suggests the excitation of only those frequencies associated
to the respective class of (1, 1) and (1, 3) wave attractors, respectively. Similarly, the
nearly periodic evolution from the ψ1,2 Fourier mode suggests the dominance of the
periodic (1, 2) solution.

To understand this, we project the Fourier modes onto the normal modes of the
tilted system. We expand the initial conditions (4.1) in the normal modes of the semi-
discretization (3.3)–(3.4) for θ = π/20 and Nf = 1. We plot the scaled discrete energy
values Hi/max{Hi} with respect to the frequencies of the discrete system in Figures
8(a), 8(b) and 8(c). In each of these Figures we plot a dashed blue line to indicate the
standing wave solution frequency for θ = 0. Figure 8(d) contains a diagram of the limit
behavior of frequencies for a tilt angle θ = π/20. Black horizontal line segments indicate
the ranges of frequencies for limit cycle attractors having a period less than eighteen
for θ = π/20. For θ = π/20 there exist only six periodic solutions of type (2n, 1) and
(1, 2m) indicated with the dashed blue lines. Comparing Figures 8(d) and 8(a) we see
that the (1, 1)-Fourier mode projects almost entirely onto the range of (1, 1)-attractors.
Since there is no energy transfer between normal modes the solution of the semi discrete
system with initial conditions ψ1,1 at any time is a linear combination of the normal
modes with frequencies in the range of the (1, 1) attractors. Similarly, most of the energy
in the (1, 3)-Fourier mode projects into the range of (1, 3) attractors. In contrast, Figure
8(b) illustrates that the (1, 2)-Fourier mode is concentrated at one discrete frequency,
which is very near that of the (1, 2) periodic solution, explaining the nearly periodic
behavior of this solution.

For future reference, Figure 9 shows the most energetic normal modes with frequencies
within the (1, 1) and (1, 3) attractor ranges, and the distinct normal mode with (1, 2)
periodic solution frequency.

4.2. Computation of wave attractors

In Section 2 we described how to compute monochromatic wave solutions in a tilted
square. We illustrated this with two examples of internal gravity wave attractors, see

† Backward error analysis of symplectic numerical integrators (Hairer et al. 2006; Leimkuhler
& Reich 2004) shows the existence of a perturbed Hamiltonian of the form H + O(τ 2) which
is exactly conserved. For our problem, this implies the total energy will be conserved up to
bounded fluctuations with amplitude O(τ 2).
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Figure 8. Scaled energy values with respect to the frequencies of the semi discrete system
(3.3)–(3.4) for the initial conditions ψ1,1, ψ1,2 and ψ1,3, top left, top right and bottom left,
respectively. Bottom right: section plot of the attractor period Figure 3(b) for the fixed angle
θ = π/20. Bars and dashed lines are discussed in the text.

Figures 4(a) and 4(b). In this section we compute internal wave attractors as an initial
value problem with parametric excitation, so-called parametric resonance solutions.
We solve (3.3)–(3.4) with the Störmer-Verlet method. Since we generate instability in

the system by parametric excitation, the amplitude of the solution grows in time, and
energy is no longer conserved. We set forcing frequency to 2ω̄ = π so that we have integer
wave period T = 4. The other two parameters θ and Nf are determined by the type of
limit behavior we want to simulate. We compute a (1, 1) attractor with parameter values
ω̄/Nf = 0.74 and θ = 7π/72, and a (1, 3) attractor with parameter values ω̄/Nf = 0.34
and θ = π/18.
Numerical parameters are fixed for both experiments: the forcing amplitude ǫ = 0.1,

time step τ = 0.05 and grid step sizes ∆x = ∆z = 2 × 10−3. Initial conditions are
chosen to be the Fourier modes ψ1,1 and ψ1,3 in the computation of the (1, 1) and (1, 3)
attractors, respectively. We force the system for 50 wave periods and plot the stream
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Figure 9. Normal modes of the stream function, Nf = 1 and θ = π/20. Left: associated to
the frequency of (1, 1) attractor. Middle: associated to the frequency of (1, 3) attractor. Right:
associated to the frequency of (1, 2) periodic solution.

Figure 10. Computation of (1, 1) (top) and (1, 3) attractor (bottom). The stream function
(left), buoyancy (middle) and energy density (right) after 50 wave periods. Initial conditions are
the same as in Figure 2 at time t = 0.

function, buoyancy and the discrete energy density function (4.2) at the final time in
Figure 10.

Figure 10 (top) displays the results for the (1, 1) limit cycle attractor. The energy is
focused on the attractor, which reflects from each side of the square once. We observe
a standing wave solution with growing amplitude and a ‘plateau’ type of attractor with
piecewise constant stream function. After about 10 wave periods, i.e. at time t = 40,
the wave motion becomes localized along the straight lines of the attractor. The same
‘plateau’ type of attractors where observed in laboratory experiments (Hazewinkel et al.
2008). Since all sides of the tilted square are inclined, in the case of a simple (1, 1) attrac-
tor, internal waves become focused at all boundaries, because the energy is transported
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in a counter-clockwise orientation around the attractor, as is indicated in the plots of the
energy density function†, see the right top plot of Figure 10.
In Figure 10 (bottom) we consider an example of a (1, 3) attractor. It has one inter-

section point with the upper and lower boundaries of the square, and three intersection
points each on the left and right sides of the square. Similarly to the case of the (1, 1)
attractor, we observe a standing wave solution that grows in amplitude, and the wave
energy is localized along the straight lines of an attractor. The form of the attractor
is again of ‘plateau’ type. Internal waves become highly focused upon reflection from
the upper and lower boundaries of the square and gradually defocus in the rest of the
domain, see the right bottom plot of Figure 10.
By the arguments of §4.1, the choice of the initial conditions ψ1,1 and ψ1,3 ensures that

there will be energy in the normal modes corresponding to (1, 1) and (1, 3) attractors,
a subset of which will grow in amplitude due to resonance of the underlying Mathieu
equations. Those modes with frequencies outside the instability tongue of the Mathieu
equations remain bounded for all times and eventually become negligible compared to the
unstable modes. Since we do not have external damping (like in the experiment discussed
in Maas et al. (1997); Lam & Maas (2008)), they also do not dissipate. Evolution of the
stable modes is primarily significant only during the early part of the simulation, before
the wave attractor dominates.
Experiments with smaller values of ǫ result in a decrease in the width of the attractors.

Figure 5 suggests that early on in the computation all the normal modes with frequencies
in the resonant zone contribute to the dynamics. But since those modes for which the
real part of the Floquet exponent is greater grow much faster in time, these become
more prominently visible than others. Because of this the width of an attractor becomes
narrower and narrower in time. While the white dashed lines in Figure 5 indicated with
ω̄/Nf = 0.74 and ω̄/Nf = 0.34 almost divide the Arnold tongues in half, if one wishes
to simulate a particular attractor geometry, it is advisable to use small values of ǫ such
that among all resonant normal modes exactly the one associated to the frequency of the
desired attractor has the Floquet multiplier with largest real part.
Since there is no exchange of energy between normal modes, the precise structure

observed at large times will depend both on the associated Floquet multipliers, and on
the initial distribution of energy among the resonant frequencies. In other words, the
initial condition is relevant to what is observed in Figure 10. In the presence of viscosity,
the various normal modes do not evolve independently, and the asymptotic solution is
independent of the initial condition (Ogilvie 2005).
The primary solutions observed in Figure 10 are of plateau type. These solutions

are composite, consisting of a linear combination of the resonant modes. Typical normal
modes are nonsmooth, for example, as shown in Figure 9. Close inspection of the solutions
in Figure 10 reveal that there are secondary oscillations added to the plateau solution.
To better observe these, we subtract the plateau solution using the following formula:

δψi,j = trunc

(

ψi,j −min{ψ}

max{ψ −min{ψ}}
k

)

, trunc(f) = f − ⌊f⌋,

where ⌊f⌋ indicates the largest integer less than f . The idea of the formula is to rescale the
stream function, such that the oscillations about the plateau solution have an amplitude
that is less than unity, and then subtract the integer part of the solution everywhere. This
is achieved for the empirically chosen value k = 12. We plot the secondary wave solution

† Due to focusing, the energy density increases after reflection. Hence, the direction of energy
propagation on the attractor can be deduced from the energy density plots.
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Figure 11. Small scales in the solution after 50 wave periods. Left: (1, 1) attractor. Right:
(1, 3) attractor.

in Figure 11 for the stream function at final time t = 200. Note the symmetry of the
solution and a passing resemblance to Figure 4. The secondary solutions are also robust
with respect to spatial resolution and time step τ . The shape of the secondary solution
and its robustness with respect to numerical parameters and perturbation amplitude ε
suggests that the attractor shape is not truly piecewise constant, but has higher order
secondary waveforms.

5. Conclusions

In this paper we have considered the simplest time dependent configuration in which
internal wave attractors can be generated in stratified fluids: linearized, inviscid flow
with parametric forcing. We constructed a symmetric, energy conserving finite difference
method. For the case of a tilted square geometry we simulated both the free evolution
(unforced) wave evolution from Fourier mode initial conditions, and the parametrically
forced evolution towards a wave attractor. This simple configuration, as well as the sym-
metries of the discretization, permit a complete normal mode analysis of the initial value
problem in the discrete case. Based on this analysis we can conclude that the finite di-
mensional approximation has a complete basis of normal modes that is invariant in time,
meaning the initial value problem can be fully decoupled into scalar harmonic oscillators,
each of which preserves its initial energy. Therefore, the numerical solution is quasiperi-
odic, although the Poincaré recurrence time (the time over which a discrete, energy
conserving system recovers its initial state) may be quite large. The same analysis can be
carried out for the parametrically forced case, showing that the forced system of ODEs
can be completely decoupled into Mathieu equations. For a generic initial condition, and
depending on the frequency and magnitude of forcing, a range of normal mode frequen-
cies will lie in an Arnold tongue of instability, and the corresponding modes will grow in
time, eventually dominating the solution and forming a wave attractor. The shape of the
stream function is to first order a plateau, or piecewise constant function, but there are
secondary solutions that are robust with respect to discretization and forcing parameters.
We remark that for a given forcing, it is possible to choose judiciously an initial con-

dition whose projection onto the amplified frequencies of the Mathieu equation is zero.
In this case, a wave attractor will never be generated. However, this no longer holds if
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nonlinear advection is taken into account, due to nonlinear coupling. In fact, even for
the linearized model, if viscosity is included there is no global decomposition into scalar
dynamics, since the normal mode decomposition becomes time dependent.
This research was financed by a grant from the Netherlands Research Council NWO.

Appendix A. Hamiltonian numerical discretization

The Euler equations for an ideal fluid have a well-known Hamiltonian structure (Arnold
1989; Morrison 1998) that strongly constrains the dynamics. When constructing approx-
imate models such as the Euler-Boussinesq equations (2.1)–(2.4), it is usually advised
to preserve such structure (Salmon 1998). As shown in Holm et al. (2002), the nonlin-
ear Euler-Boussinesq equations inherit the noncanonical Hamiltonian structure from the
ideal fluid Poisson bracket. Here we verify that the linearization leading to (2.5)–(2.8)
also preserves a linear Hamiltonian structure. A system of PDEs on a function space F d

equipped with an inner product (·, ·) : F d ×F d → R is said to constitute a Hamiltonian
system (Olver 1986) in the variables f(x, t) = (f1(x, t), . . . , fd(x, t))

T ∈ F d if there exists
a functional H(f ) : F d → R and a constant, d×d matrix differential operator (structure
matrix) J : F d → F d, that is skew-symmetric with respect to (·, ·), such that the PDE
can be expressed as

∂tf = J
δH

δf
, (A 1)

where the variational derivative δH/δf is defined by
(

δH

δf
, g

)

= lim
ε→0

1

ε
[H(f + εg)−H(f)] , ∀g ∈ F d.

One consequence of Hamiltonian structure is the conservation of the Hamiltonian along
solutions of (A 1), which follows from:

dH

dt
=

(

δH

δf
, ∂tf

)

=

(

δH

δf
,J

δH

δf

)

= 0,

by the skew-symmetry condition on J .
We show:

Proposition 1. For any value of θ the linearized Euler-Boussinesq equations in the
stream function formulation (2.5)–(2.8) can be written as a noncanonical Hamiltonian
system (A 1) in the L2 inner product with f = (q, b), structure matrix

J = −N2
f cos θ

[

0 ∂x
∂x 0

]

+N2
f sin θ

[

0 ∂z
∂z 0

]

(A 2)

and Hamiltonian

H =
1

2

∫

D

∇ψ · ∇ψ +
1

N2
f

b2 dx. (A 3)

Proof. The first variations of the Hamiltonian functional (A 3) with respect to q and
b are

δH =

∫

D

∇ψ · ∇δψ +
1

N2
f

bδb dx =

∫

D

−ψ∆δψ +
1

N2
f

bδb dx =

∫

D

ψδq +
1

N2
f

bδb dx,

where the boundary condition (2.8) has been used to carry out the integration by parts.
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It follows that the variational derivatives of the Hamiltonian (A 3) with respect to the
vorticity q and the buoyancy b are

δH

δq
= ψ,

δH

δb
=

1

N2
f

b. (A 4)

Substituting (A 4) and (A2) into (A 1) we get that

J
δH

δf
= J

( δH
δq
δH
δb

)

=

(

−∂xb cos θ + ∂zb sin θ
−N2

f (∂xψ cos θ + ∂zψ sin θ)

)

=

(

∂tq
∂tb

)

= ∂tf

which agree with (2.5)–(2.8)

It follows that the Hamiltonian functional (A 3) is conserved along the solution of the
equation system (2.5)-(2.8).

A.1. Finite difference matrices

In this section we describe a numerical discretization for the Euler-Boussinesq equations
that preserves a discrete analogue of the Hamiltonian structure in the inviscid, unforced
limit. In particular the spatially discrete system of ODEs has a first integral approximat-
ing the energy. The scheme also preserves the symmetries of the continuous differential
operators. Our approach is to discretize the Hamiltonian and structure operator J sep-
arately, while enforcing the skew-symmetry of J , (see McLachlan 1995). Although this
approach leads to a rather standard staggered central difference scheme here, it can be
used to construct a Hamiltonian discretization on more general domains and nonuniform
grids, which will be important for studying internal waves in ocean basins.
Consider the unit square domain D = [0, 1]2 divided into Nx × Nz uniform rect-

angular cells. Subscripted indices shall indicate grid nodes xi,j = (i∆x, j∆z), where
∆x = 1/Nx and ∆z = 1/Nz are the grid sizes in x and z direction, respectively. We
shall construct a Hamiltonian structure-preserving staggered finite difference scheme. To
this end let us denote by C = R

Nx×Nz the space of cell-centered grid functions and by
V = R

(Nx−1)×(Nz−1) the space of grid functions defined at cell vertices, where in the
latter case, we only include inner vertices, since the boundary vertices are either known,
or not needed in the discretization.
The discrete stream function ψi,j and vorticity qi,j are defined at cell vertices and the

buoyancy bi+1/2,j+1/2 at cell centers. The discrete analogue of the boundary condition
on the stream function (2.8) is

ψ0,j = ψNx,j = 0, ∀j, ψi,0 = ψi,Nz
= 0, ∀i. (A 5)

We define column vectors q,ψ ∈ V consisting only of the interior grid point values of
qi,j and ψi,j . The buoyancy column vector b ∈ C consists of all the values of bi+1/2,j+1/2

defined at cell centers.
We also define discrete inner products on C and V:

〈a, b〉C =

Nx−1,Nz−1
∑

i,j=0

ai+1/2,j+1/2bi+1/2,j+1/2 ∆x∆z, a, b ∈ C,

〈q, r〉V =

Nx−1,Nz−1
∑

i,j=1

qi,jri,j ∆x∆z. q, r ∈ V.

For the inner product on V we assume zero boundary data for at least one of its argu-
ments.
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Taking into account the discrete boundary conditions (A 5), the following matrices
implement the central finite difference approximations to the first derivatives on cell
edges:

(Dxψ)i+1/2,j =
ψi+1,j − ψi,j

∆x
, (Dzψ)i,j+1/2 =

ψi,j+1 − ψi,j
∆z

,

where Dx ∈ R
Nx(Nz−1)×(Nx−1)(Nz−1) and Dz ∈ R

Nz(Nx−1)×(Nx−1)(Nz−1). The dual op-
erators −DT

x and −DT
z represent central finite difference approximations to the first

derivatives on cell vertices from cell edges.
Additionally we define the averaged operator matrices Mx ∈ R

Nz(Nx−1)×NxNz and
Mz ∈ R

Nx(Nz−1)×NxNz from cell centers to cell edges such that

(Mxb)i,j+1/2 =
bi+1/2,j+1/2 + bi−1/2,j+1/2

2
, (Mzb)i+1/2,j =

bi+1/2,j+1/2 + bi+1/2,j−1/2

2
,

where their transposes are averaged operator matrices from the cell edges to the cell
centers.
The matrices above can be composed in various ways to construct approximate deriva-

tive operators from V to C and vice versa.

MT
z Dx : V → C, MT

x Dz : V → C, −MzD
T
x : C → V, −MT

z Dx : C → V.

The discrete Laplacian operator L : V → V, defined as

L = −(DT
xDx +DT

z Dz) ∈ R
(Nx−1)(Nz−1)×(Nx−1)(Nz−1), (A 6)

is the standard symmetric, negative definite, five point central difference stencil, i.e.,

(Lψ)i,j =
ψi+1,j − 2ψi,j + ψi−1,j

∆x2
+
ψi,j+1 − 2ψi,j + ψi,j−1

∆z2
,

where the boundary terms are modified to satisfy (A 5). We define the discrete vorticity
field by q = −Lψ.
For diagnostic purposes we also define the discrete velocity components at cell centers:

u = −MT
x Dzψ, v =MT

z Dxψ. (A 7)

A.2. Hamiltonian semi-discretization

To construct a Hamiltonian semi-discretization with structure analogous to (A 2), we
define a quadrature for H and a skew-symmetric structure that approximates J .
In terms of inner products on C and V, the discrete Hamiltonian is defined by

H(q, b) =
1

2

(

−〈ψ, q〉V +
1

N2
f

〈b, b〉C

)

=
1

2

(

−〈q, L−1q〉V +
1

N2
f

〈b, b〉C

)

. (A 8)

The variational derivatives of H are defined in the weak sense in these inner products
by

〈
δH

δq
, r〉V = lim

ε→0

1

ε
(H(q + εr, b)−H(q, b)) = 〈ψ, r〉V, ∀r ∈ V,

〈
δH

δb
,a〉C = lim

ε→0

1

ε
(H(q, b+ εa)−H(q, b)) = 〈

1

N2
f

b,a〉C, ∀a ∈ C,

i.e.,

δH

δq
= ψ,

δH

δb
=

1

N2
f

b.
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Next, we define a composite space G = V ×C. A vector g ∈ G takes the form

g =

(

g
V

gC

)

,

where gV ∈ V and gC ∈ C. We also define a joint inner product on G:

〈〈g,h〉〉 = 〈gV,hV〉V + 〈gC,hC〉C,

and the variational derivative

δH

δg
=

(

δH
δg

V

δH
δg

C

)

.

We approximate the structure operator (A 2) using our finite difference matrices:

J = −N2
f cos θ

[

0 −DT
xMz

MT
z Dx 0

]

+N2
f sin θ

[

0 −DT
zMx

MT
x Dz 0

]

. (A 9)

Note that J is skew-symmetric with respect to 〈〈·, ·〉〉.
Choosing g = (q, b), the Hamiltonian semi-discretization of the Euler-Boussinesq equa-

tions can now be defined by

dg

dt
= J

δH

δg
. (A 10)

or, in terms of q, b and ψ,

dq

dt
= DT

xMzb cos θ −DT
zMxb sin θ, (A 11)

db

dt
= −N2

f (M
T
z Dxψ cos θ −MT

x Dzψ sin θ), (A 12)

q = −Lψ. (A 13)

By construction the discrete total energyH is a first integral of the semi-discretization.
Additionally, this system of ODEs is reversible and symplectic.

A.3. Time integration

We have shown that semi-discrete Euler-Boussinesq equations (A 11)–(A13) constitute
a time-revesible Hamiltonian system. We solve the Hamiltonian system in time with
the symmetric and symplectic Störmer-Verlet method (Hairer et al. 2006; Leimkuhler &
Reich 2004):

qn+1/2 = qn +
τ

2
(DT

xMzb
n cos θ −DT

zMxb
n sin θ), (A 14)

ψn+1/2 = −L−1qn+1/2, (A 15)

bn+1 = bn − τN2
f (M

T
z Dxψ

n+1/2 cos θ −MT
x Dzψ

n+1/2 sin θ), (A 16)

qn+1 = qn+1/2 +
τ

2
(DT

xMzb
n+1 cos θ −DT

zMxb
n+1 sin θ), (A 17)

such that the Hamiltonian function (A 8) will be conserved in time up to small fluc-
tuations of second order amplitude. The method requires the solution of the Poisson
equation once per time step, but is otherwise explicit. We solve the Poisson equation
efficiently using a fast Poisson solver. The overall method is second order in space and
time. Sparse discretization in space combined with a fast Poisson solver allows us to
compute efficiently at high spatial resolution.



Appearance of Wave Attractors 23

Appendix B. Normal mode decomposition of discretized linear

internal waves

We next consider the discrete model (3.3)–(3.4) with parametric forcing, written in
terms of the stream function ψ ∈ R

M and buoyancy b ∈ R
N :

[

−L 0
0 1

N2

f

IN

]

d

dt

(

ψ

b

)

=

[

0 α(t)K
−KT 0

](

ψ

b

)

, (B 1)

where N = NxNz, M = (Nx − 1)(Nz − 1), L ∈ R
M×M is the discrete approximation of

the Laplacian (A 6), K ∈ R
M×N is a finite difference matrix

K = DT
xMz cos θ −DT

zMx sin θ

and IN denotes the identity matrix on R
N . The matrix L is symmetric and negative

definite, and hence possesses an orthogonal basis of eigenvectors, and we can write −L =
QDLQ

T , where QTQ = QQT = IM , Q ∈ R
M×M and DL ∈ R

M×M is a diagonal matrix
with positive entries. In matrix form we write

[

QDLQ
T 0

0 1
N2

f

IN

]

d

dt

(

ψ

b

)

=

[

0 α(t)K
−KT 0

](

ψ

b

)

.

We transform as follows:

[

QD
1/2
L 0
0 1

Nf
IN

][

D
1/2
L QT 0
0 1

Nf
IN

]

d

dt

(

ψ

b

)

=

[

0 α(t)K
−KT 0

] [

QD
−1/2
L 0
0 NfIN

]

[

D
1/2
L QT 0
0 1

Nf
IN

]

(

ψ

b

)

or, defining ψ̂ = D
1/2
L QTψ and b̂ = 1

Nf
b,

d

dt

(

ψ̂

b̂

)

= Nf

[

0 α(t)D
−1/2
L QTK

−KTQD
−1/2
L 0

]

(

ψ̂

b̂

)

. (B 2)

Now let C = NfD
−1/2
L QTK ∈ R

M×N . The singular value decomposition of the real
matrix C is denoted

C = SΩRT ,

where S ∈ R
M×M and R ∈ R

N×N are orthogonal matrices and Ω = diag(ω1, . . . , ωM ) is
an R

M×N matrix whose off-diagonals are zero and whose diagonal contains the M real,
positive singular values of C. Hence (B 2) can be written as

d

dt

(

ψ̂

b̂

)

=

[

0 α(t)SΩRT

−RΩTST 0

](

ψ̂

b̂

)

.

Transforming again with ψ̃ = ST ψ̂ and b̃ = RT b̂ yields the system of (forced) harmonic
oscillators

d

dt

(

ψ̃

b̃

)

=

[

0 α(t)Ω
−ΩT 0

](

ψ̃

b̃

)

. (B 3)
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Expressed in terms of components, the above system becomes

d2

dt2
ψ̃i = −α(t)ω2

i ψ̃i + α̇(t)ωib̃i, i = 1, . . . ,M, (B 4)

d2

dt2
b̃i = −α(t)ω2

i b̃i, i = 1, . . . ,M, (B 5)

d2

dt2
b̃i = 0, i =M + 1, . . . , N. (B 6)

To summarize, let X = QD
−1/2
L S ∈ R

M×M and Y = 1
Nf
R ∈ R

N×N . The columns of

X and Y , denoted (X1, . . . , XM ) and (Y1, . . . , YN ), respectively, represent the normal
modes of ψ and b. Then the normal mode decomposition

ψ = Xψ̃, b = Y b̃, (B 7)

yields a system of M independent systems (B 4)–(B5), plus the N −M trivial dynamics
(B 6).
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