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HAMILTONIAN PARTICLE-MESH METHOD FOR TWO-LAYER
SHALLOW-WATER EQUATIONS SUBJECT TO THE RIGID-LID
APPROXIMATION

COLIN COTTER*, JASON FRANK', AND SEBASTIAN REICH?

Abstract. We develop a particle-mesh method for two-layer shallow-water equations subject to the rigid-lid
approximation. The method is based on the recently proposed Hamiltonian particle-mesh (HPM) method and the
interpretation of the rigid-lid approximation as a set of holonomic constraints. The suggested spatial discretization
leads to a constrained Hamiltonian system of ODEs which is integrated in time using a variant of the symplectic
SHAKE/RATTLE algorithm. It is demonstrated that the elimination of external gravity waves by the rigid-lid
approximation can be achieved in a computationally stable and efficient way.

1. Introduction. Theorists frequently regard the ocean as a two-layer fluid with the interface
between layers corresponding to the main thermocline. This idealization is perhaps most appropriate
in the northwestern subtropical North Atlantic. Consider, then, a rotating fluid composed of two
immiscible layers with different constant densities p; < pa over a flat bottom topography at z = 0.
See Fig. 1.1 and the excellent exposition by SALMON [19]. Under the assumption that py = p2, the
associated two-layer shallow-water equations are

i 1 _ _gvx(h‘l + h2)a =1,
Dtl u; + fuz' - { _gvx(hl + h2) _ glvxh% i= 2’ (11)
where u; = (u;,v;)T is the horizontal velocity in the ith layer, f > 0 is the Coriolis parameter,
1— o N\T
u; = (—U,,Uz) )
D 0 P2 — pP1
— = = i+ Vx, d =0
Dt; — Ot o an P2 9
is the reduced gravity.! By assumption g’ < g. Each layer-depth h; satisfies the continuity equation
Oh;
6tz + Vi - (hju;) = 0. (1.2)

It is also reasonable to assume that the combined flow in both layers is incompressible which leads
to the rigid-lid constraint

h=h; + ho = H = const. (1.3)
and equation (1.1) is replaced by

T aq. 1 _vxpa 7/: ].,
Dtiuz +f11i - { _vxp_glvxh2’ i = 2,

where p is the pressure field enforcing the rigid-lid constraint (1.3) which, after differentiation in
time, is equivalent to

(1.4)

Vi - (hlul) + Vi - (h2112) =0.
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1Eq. (1.1) is a slight variation of the formulation given by SALMON in [19] on page 85. While eq. (1.1) leads to
a Hamiltonian formulation, no obvious Hamiltonian interpretation of the eq. (12.3) in [19] could be found. However,
both formulations are identical under the rigid-lid approximation.
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We also make the simplifying assumption that both layers have a (non-dimensionalized) mean layer-
depth of H; =1, i.e. H = Hy + Hs = 2, and replace reduced gravity ¢’ by an appropriate constant
Co-

Fi1Gg. 1.1. Two layer shallow-water model with rigid-lid.

In a Lagrangian description of the model, we introduce a continuum of fluid particles X;(a;,t) =
(Xi(as,t),Y;(a;,t))T in each layer i = 1,2, which are labelled/marked by their initial positions
a; = X;(a;,0). Hence the independent variables are time ¢ and labels a;. The material time
derivative D /Dt becomes a partial derivative which, with a slight abuse of notation, we denote by
d/dt.

Let h?(a;) denote the initial layer-depth at ¢ = 0. Then the layer-depth is given at any time ¢
by

hi(X,t) = /hf(a) 5(x - Xi(ai,t)) d23i7 1= 1,2, (15)

where ¢ denotes the Dirac delta function. This formula and

d
—X; = u;
dt "

replace the continuity equation (1.2) in a Lagrangian description of fluid dynamics. Hence we finally
obtain the constrained infinite-dimensional Newtonian equations of motion

d _ 1 lepa i= ]-5
Eul - _fui B { Vx2p+ C()Vx2h2, 1= 2,
d

Exi =u,,

0= hl(Xl,t) + hQ(XQ,t) — H.

In the following section we describe a spatial discretization for this model.

2. The Hamiltonian Particle-Mesh (HPM) Method with Rigid-Lid Constraint. To
simplify the discussion we assume a double periodic domain x € R = [-7, +7)? and introduce a
regular grid xP? on R with equal grid spacing Az in the z and y-direction. Let P?(x) denote the
tensor product cubic B-spline centered at xP? = (zP9,yPN)7T i.e.

_ Pl — yP1 —y
¢pq(x) = 1pcs (T{L‘) : 'chs (TJ}) ’
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where 1. (r) is the cubic spline

2P <1,
"pcs(r) = 6(2 - |r|)3> 1< |7'| < 27
0, |r| > 2

These basis functions form a partition of unity, i.e.
Do wi(x) =1
pq

Furthermore, we also have
Z VP (x) =
pq

which is a desirable property when computing gradients. In each layer i = 1,2, we introduce N
discrete particles X¥, k =1,..., N, with masses m¥ such that?

qu Zm PP Xk)

k=1

at time ¢t = 0. More specifically, we approximate the layer-depth hs on the grid by

N
1= Y mbur(xS)

k=1

and the total layer-depth by

2

hPY(X) = Z mP P(XF) 4+ m2¢pq(xk))
k=1

where, for later use, we introduced the notation h??(X) to indicate that h?? depends on all particle
positions X¥ collected in the vector X.

So far we have essentially followed the standard methodology for deriving particle-mesh (PM)
methods [10, 4]. The following steps are crucial to the Hamiltonian particle-mesh (HPM) method as
introduced by FRANK, GOTTWALD & REICH [7] for geophysical fluid dynamics simulations. Even
though the layer-depth in rotating fluids often stays relatively smooth, the numerical approximations
h¥? and hP? will develop some non-smoothness in strongly mixing flows due to the finite number of
particles used to resolve the fluid motion and this tends to destabilize PM methods. We suggested
in [7] to apply a (discretized) smoothing operator

S=(1-a’V3)2 (2.1)

over the fixed Eulerian grid xP? with a smoothing length @ = 2Az. Let us denote the resulting
smoothed approximation to h5? by hb?. While this idea works very well for compressible flows it
cannot be used to enforce the incompressibility condition (1.3). Instead the following strategy proved
successful. We introduce a meta-grid with grid-spacing AZ = 2Az and grid points denoted by X™"
Let ¢™"(x) denote the associated tensor product B-spline centered at ™" = (™", g™™)T | i.e.

mn " —w gmn -y
¢ ( ) wcs (T.i’) '¢cs (T.i’) )

2If the particles X’c are 1n1t1ally placed on a regular grid with equal spacing Aga in the x and y-direction, then,
following (1.5), one can use m¥F = ho(X¥) (Aa/Az)?.



Then an averaged (coarse-grained) total layer-depth is defined by
_ _1
R (X) = o %}: ™" (xP1) hP1(X).

The discrete pressure approximation p™" is also defined over the coarse grid X™" and the resulting
total force acting on particle X¥ (excluding the Coriolis contribution) is given by

mn (xpq) Fmn i=1,
Ff(x,f)) = - Z kawpq(xi_c) % (ZAm,n ¢ (xP) p ) .
" H (Cohgq + Em,n ¢mn(xp0)ﬁmn) i= 2,

where p denotes the vector of pressure variables p™". Another important aspect of the HPM method
is that the forces are derived from an exact gradient. This implies a number of very desirable
conservation properties such as conservation of circulation, potential vorticity (PV), total mass, and
energy [8, 5]. We note that energy conserving variants of PM methods have been considered, for
example, by LEWIS [14] and LANGDON [12] in the context of plasma physics simulations.

The discrete set of constrained Newtonian equations of motion is now

d _ 0 1
Gt =gttt u=] % ], (22)
d
X =, (2.3)
0=h""(X) - H, (2.4)
fori = 1,2 and k = 1,...,N. Here f} denotes the value of the Coriolis parameter at particle

location X¥. In the following, let us first assume that the Coriolis parameter f is constant, i.e. f =
fo. Later we will consider the more general case of variable f. Then (2.2)-(2.4) gives rise to
a constrained Hamiltonian system with the p™"’s acting as Lagrange multipliers to enforce the
holonomic constraints (2.4). The Hamiltonian is

2 N

— ]. CO ~ _ -

H(X,V,p) = Z Z va ) v:'c + 5 Zh‘gq(hgq - H2) + Z(hmn - H)pmna
=1 k=1 g P,q m,n

with conjugate momenta v¥ = m¥u¥. The equations (2.2)-(2.4) are equivalent to
d_p
Sk = [TV H = Vi,
d
%Xf = sz.“,}-a
0= Ve,

i=1,2,k=1,...,N. The symplectic two-form [2] is given by

fo

w=Y [dxf Advh + def AJ7taxXE| (2.5)

ik
which is preserved along solutions.

To actually find the pressure in terms of the given particle locations and velocities, one has to
solve a linear system of equations of type
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with the entries a7, of A defined by

mn — m'li mn (pq pqk p'q (~k m'n' (0’ q
=YL e ) (VerXE) - Ve (X)) g (0

k,i,p,q,0",q’

a

This looks like a horrendous computational exercise but we found that the matrix is sparse and
needs to be computed only once and can then be used in a quasi-Newton method throughout the
simulation. See the following section for details.

3. Symplectic Time-Stepping Algorithm. Following JAY [11] and REICH [15], we develop
a variant of the popular SHAKE/RATTLE algorithm [1, 18, 13] for Hamiltonian systems with
holonomic constraints. In particular, the following two steps are performed during each time-step:
Step 1.

uf (tq1/2) = uf (tn) + % { foJuf (tps12) + FF(X(tn), Pltntr/2))} (3.1)
XE(tps1) = XE(tn) + Atub(tpy1/2), (3.2)
0 = AP (X(tn41)) — H, (3.3)

which requires the solution of a nonlinear system in the pressure variable p(t,1/2) to satisfy
the holonomic constraint (3.3).
Step 2.

uf (tpg1) = uf (tny1/2) + % {fOJUi'c (tny1/2) + Ff(x(tnﬂ)af’(tnﬂﬂ))} . (3.4)

The scheme can be rewritten in terms of the canonical momenta v¥(t,) and the method con-
serves the symplectic structure (2.5) from time-step to time-step, i.e., the method is symplectic [20].
Backward error analysis [3, 9, 16] implies excellent conservation of energy.

If the Coriolis parameter f is not constant, then fF = f(X¥(t,)) is used in (3.1) and fF =
f(XE¥(tns1)) in (3.4) instead of fo.

The nonlinear system of equations in the pressure variable p(t,41/2) can be solved by the
following quasi-Newton method. Let us denote the iteration index by I > 0. Then given some
approximation pl!!, we can compute the associated approximation to the vector of particle positions
X(tny1) using (3.1)-(3.2) with p(t,41/2) = pll. The next pressure approximation

_ _n, A
plH1) = plf 4 2 Apl
is then found by solving (2.6) with p = Apll and b = —(hP9(X(t,41)) — H). The iteration matrix

A is only computed once at the beginning of the simulation.

4. Barotropic and Baroclinic Motion. Let us introduce the continuous Eulerian velocity
approximation

_ S uk ()P (XE (1)
u (x,t) = ¥ p
S wpa(XE(t))

for the first layer and

S (e (KA ()
UQ(X,t) = N I

2 k1 YPUX5(1))
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Fi1G. 3.1. HPM simulation for shallow-water model with rigid-lid. Top to bottom: time evolution of vorticity;
left: baroclinic vorticity; right: barotropic vorticity.

for the second layer, respectively. Assuming again that Hy = H,; = 1, the barotropic velocity
contribution to the flow is defined by

{ui(x,t) + ua(x,t)},

N =

u(x,t) =
which represents synchronized motion in both layers, and the baroclinic mode by

Au(x,t) = - {w(x,t) —ua(x,1)},

1
2
which represents fluid motion pointing in opposite directions (the thermal wind).
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If initially Au = 0 and hy = Hy = 1, then the awvailable potential energy (APE)

_ Co 7
Fup =237 (1" ~ IT5)
Pyq
is zero and the motion can be reduced to a purely barotropic single layer shallow-water model with a
rigid-lid approximation (corresponding to an infinite Rossby deformation radius). On the contrary,
ha # H> leads to baroclinic motion which is strongly dependent upon its length scale A relative to

the internal Rossby deformation radius

N, = Y [ HiHy _ [co
™7 o VH + H, 21"
For length-scales A > Aing, most of the energy is stored in the layer-depth variation hy (i.e., in the
APE contribution to H). This energy is eventually transformed into kinetic (barotropic) energy in
a process called baroclinic instability. In this process the baroclinic modes are reduced to those of
length-scale A ~ Ainy unless external forcing leads to the activation of large scale variations in hs
(such as tropical heating and polar cooling).

Another important concept is that of geostrophic balance. By this we mean that the velocities
u; in each layer stay close to their geostrophic wind approximations

Ugw,1 = f(]_lvj(_pa Ugw,2 = fo_lv,f(p + Coh2)

if initialized appropriately. These two definitions imply in particular the balanced thermal wind
relation

— ¢ gL
A =——Vihs. 4.1
Uthw 2/ Vi ha (4.1)
The associated baroclinic stream function T = —co/(2fo)h2 represents the vertically averaged tem-

perature anomaly of the fluid.
The geostrophic approximation is valid for small Rossby number flows, i.e.

U
Ro=— K1,
Afo
where U and A are the typical velocity- and length-scales respectively, for the flow under considera-
tion. For a precise scaling analysis see SALMON [19].
To be able to model Rossby waves within the framework of double periodic boundary conditions
x = (z,y)T € R = [-7, +7)2, we defined a variable Coriolis parameter f by

f(y) = fo+ Bsiny.

Hence, near y = 0, we approximately reproduce a S-plane approximation f = fo + By and Rossby
waves near y = 0 move westwards.

5. Numerical Experiments. We compute the solution starting from a purely baroclinic initial
state defined by

C
W =-—uy = ﬁv,ﬁ(Shg),

where co = 1, f = v/2(1 + 0.2siny),

1

1+ 0.08 exp(—0.85]|x]|?)
7

h3 (x)

+9,
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F1G. 4.1. PS simulation for shallow-water model without rigid-lid. Top to bottom: time evolution of vorticity;
left: baroclinic vorticity; right: barotropic vorticity.

with the constant ¢ chosen such that A5 has mean value equal to one. The initial state slowly
moves westwards (along the negative z-axis) and breaks up into smaller (barotropic and baroclinic)
vortices. The internal deformation radius is Aj,; = 0.5.

The spatial grid resolution for the rigid-lid HPM method is Az = 27/128 = 0.0491 with N =
147456 particles per layer, i.e. Aa = Az/3. The smoothing length in (2.1) is @ = 2Az =~ 0.0982
and the operator S is implemented using FFT. We also implemented a pseudo-spectral (PS) method
for the standard Eulerian formulation of the compressible two-layer shallow-water equations with
Az = 27 /256 ~ 0.0245 and a semi-implicit discretization in time (see [6]). The external deformation
radius for the unconstrained shallow-water model is Aext = 10, i.e. g’ = g/400.

Both methods were implemented using MATLAB, and mea-files were used for the particle-mesh
computations within the HPM method. In terms of CPU time, one time-step with the constrained
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HPM method takes about 5-10 times longer than a time-step with the PS method. Note that
v/¢'/9 = 20 implies that an HPM discretization of the unfiltered equation (1.1) would require a
step-size twenty times smaller than the rigid-lid HPM method. This step-size restriction does not
apply to the semi-implicit PS method.

Fig. 3.1 shows the time evolution of the baroclinic and barotropic vorticity fields over a time
interval [0,150] using a step-size of At = 0.125. The corresponding results from the semi-implicit
PS method with step-size At = 0.025 and initial A{ = 2 — h§ can be found in Fig. 4.1. In both
cases, the smoothing operator S was applied to the gridded vorticity fields to average out fine scale
vorticity filaments.

HPM method PS method
12 1.2
E(t)/E(0) E(t)/E(0)
E_ (t)/E(O
o7 E o (O/E©) o7 2p(/EQ)
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- - W, o (O/E)
[E(-E(O)I/E(0)
10*10 10*10
0 50 100 150 0 50 100 150
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Fi1G. 5.1. Diagnostic results.

The vorticity fields are identical up to some small-scale differences over the whole time interval
[0,150]. A few diagnostic results for the rigid-lid and unconstrained simulations can be found in
Fig. 5.1. More specifically, let E(¢,) denote the total energy of the particle-mesh model,

1
Bin(ta) = Y Y —;?Vf(tn) Vi (tn)
its kinetic energy (KE), and

Bap(ta) = 5 D W5 ()15 (ta) — Ho]

psq

its available potential energy (APE). For the incompressible rigid-lid model, we have E(t,) =
Exin(tn) + Eap(tn). Up to a small potential energy contribution from the total layer-depth, this
is essentially also true for the compressible two-layer model. We plot in Fig. 5.1 the scaled quanti-
ties E(tn)/E(to), Exin(tn)/E(to) and Eap(tn)/E(to) with to = 0. Furthermore, we also monitor the
norm of the unbalanced baroclinic velocity contributions

1
Wunbal(tn) = EHAu(tn) - Authw(tn)nga
with Augy defined by (4.1). Here all velocities are first approximated over the grid x?? and then
|-l is to be understood as the discrete l3-norm. In Fig. 5.1, we again plot the scaled variable
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Wanba1 (tr)/ E(to) and the numerically induced errors in total energy. The quasi-conservation of
balanced motion for both methods, as manifested by the very small ratio Wynpai(tn)/E(to), is
particularly striking. The Rossby number for the simulation was Ro ~ 0.1. We also observe that
the particle method conserves total energy much better.

We would like to point out that the given initial purely baroclinic state is persistent in the
absense of the S-plane effect. Hence the break-up of the initial state into baroclinic and barotropic
motion is triggered by 8 # 0.

6. Conclusions. Three dominant themes within geophysical fluid dynamics are (i) conserva-
tion, (ii) model reduction, and (iii) multi-scales. A simple model system that combines all three
of these aspects is provided by the two-layer shallow-water equations. These equations are Hamil-
tonian, satisfy conservation laws of PV and circulation, can be simplified by filtering out surface
gravity waves via the rigid-lid approximation, and geostrophic balance is of utmost importance for
the long-time solution behavior in a small Rossby number regime. In the present paper, we have
demonstrated how these ideas and concepts can be filtered through to the level of numerical methods.
The proposed discrete particle-mesh method is Hamiltonian and conserves circulation/PV along the
lines of [8, 5]. Furthermore, symplectic time-stepping guarantees maintenance of geostrophic balance
as an adiabatic invariant [17]. Finally, the rigid-lid approximation is implemented as a holonomic
constraint which allows significant increases in the attainable time-steps. We hope that the pre-
sented particle-mesh method can serve as a role model for further developments on more realistic
model systems such as the primitive equations [19].
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