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ABSTRACT: We describe the remapped particle-mesh advection method, a new mass-conserving method for solving the
density equation which is suitable for combining with semi-Lagrangian methods for compressible flow applied to numerical
weather prediction. In addition to the conservation property, the remapped particle-mesh method is computationally efficient
and at least as accurate as current semi-Lagrangian methods based on cubic interpolation. We provide results of tests of
the method in the plane, results from incorporating the advection method into a semi-Lagrangian method for the rotating
shallow-water equations in planar geometry, and results from extending the method to the surface of a sphere. Copyright

© 2007 Royal Meteorological Society

KEY WORDS

semi-Lagrangian advection; mass conservation; particle-mesh method; spline interpolation

Received 21 June 2006; Revised 5 October 2006, Accepted 2 November 2006

1. Introduction

The semi-implicit semi-Lagrangian (SISL) method, as
originally introduced by Robert (1982), has become
very popular in numerical weather prediction (NWP).
The semi-Lagrangian aspect of SISL schemes allows
for a relatively accurate treatment of advection while
at the same time avoiding step size restrictions of
explicit Eulerian methods. The standard semi-Lagrangian
algorithm (see, e.g. Staniforth and Coté, 1991) calculates
departure points, i.e. the positions of Lagrangian particles
which will be advected onto the grid during the time step.
The momentum and density equations are then solved
along the trajectory of the particles. This calculation
requires interpolation to obtain velocity and density
values at the departure point. It has been found that
cubic Lagrangian and cubic spline interpolation are
both accurate and computationally tractable (see, e.g.
Staniforth and Coté, 1991).

Ideally, as well as being efficient and accurate, a
density advection scheme should exactly preserve mass
in order to be useful for, e.g. climate prediction or
atmospheric chemistry calculations. Recent developments
have involved computing the change in volume ele-
ments, defined between departure and arrival points,
making use of a technique called cascade interpolation
(Purser and Leslie, 1991). Several such methods have
been suggested in recent years, including the methods
of Nair and Machenhauer (2002); Nair er al. (2002);
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Nair et al. (2003) and the SLICE schemes of Zer-
roukat er al. (2002); Zerroukat et al. (2004); Zerroukat
et al. (2006a); Zerroukat et al. (2006b).

In this paper, we give a new density advection scheme,
the remapped particle-mesh method, which is based on
the particle-mesh discretization for the density equation
used in the Hamiltonian Particle-Mesh (HPM) method
suggested by Frank er al. (2002), which itself is a
combination of smoothed particle-hydrodynamics (Lucy,
1977; Gingold and Monaghan, 1977) and particle-in-
cell methods (Harlow, 1964). The particle-mesh method
provides a very simple discretization which conserves
mass by construction, and may be adapted to nonpla-
nar geometries such as the sphere (Frank and Reich,
2004). In this paper, we show that an efficient scheme
can be obtained by mapping the particles back to the
grid after each time step. Our numerical results show
that this scheme is of comparable accuracy to other
mass-conserving semi-Lagrangian advection schemes.
We show how the method may be included in the stag-
gered semi-Lagrangian schemes, proposed by Staniforth
et al. (2006) and Reich (2006), and show how to adapt
it to spherical geometry.

In section 2, we describe the particle-mesh discretiza-
tion for the density equation. The method is modified
to form the remapped particle-mesh method in section 3.
We discuss issues of efficient implementation in section 4
and an extension to spherical geometry in section 5. In
section 6, we give numerical results for advection tests in
planar geometry and on the sphere, as well as results from
rotating shallow-water simulations using the remapped
particle-mesh method in the staggered leapfrog scheme
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(Reich, 2006). We give a summary of our results and
discussion in section 7.

2. Continuity equation and particle advection

This section describes the particle-mesh discretization for
the density equation. This discretization forms the basis
for the remapped particle-mesh method discussed in this
paper. For simplicity, the discussion is restricted to two-
dimensional flows.

The discussion begins with the continuity equation

i+ V- (pu) =0, e))

where p is the density and u = (u, v)7 € R? is the fluid
velocity. Writing (1) in the Lagrangian formulation as

DX 2
— =u,
Dt

p(x,1) = f p’(x)8(x — X(x°, 1) dAKX"),  (3)

where 8(-) denotes the Dirac delta function, dA(x%)
denotes the infinitesimal area element at x° = (x°, y9)7 ¢
R2, p (X, t) is the density at time ¢ > O at a fixed Eulerian
position x = (x, y)T € R?,

D
E(-) =+ Orut()yv “)
is the Lagrangian time derivative,
X', 0) =X’ 1), Y’ 1) e R? &)

is a Lagrangian particle position at time ¢ with initial
position X(x°,0) = x° € R?, and p°(x) = p(x, 0) is the
initial density.

To discretize the integral representation (3), a finite
set of Lagrangian particles Xg(t) = (Xp(?), Yﬁ(t))T €
R?, B=1,...,N, and a fixed Eulerian grid Xy =
e y)T =k - Ax,1- AT, k,1=0,..., M are intro-
duced. The Eulerian grid density o4 ;(t) ~ p(Xg s, t) is
then approximated by

() =3 ") Vi X (1)) A, (6)
B

where ¥ ;(X) > 0 are basis functions, which satisfy
f Y1 (x)dA(x) = 1. The particles are initially arranged
on a uniform grid with grid cell areas denoted by Ag.
Equation (6) may be simplified to

i) =Y ml Y (Xp (1)), (7)
B

where m% = pg Ag is the ‘mass’ of particle 8 and
pg = p°(x}).
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Let the basis functions vy, satisfy the partition-of-unity
(PoU) property

D V@A =1, A i=AxAy, (8
k,l

for all x € R%Z. This ensures that the total mass is
conserved since

D e Aer =YY mG v (Xp() Ay =Y mY,
Kl Kl P B o)

which is constant. The time evolution of the particle
positions Xg(#) is simply given by

d
—Xﬂ = ug. (10)

dt
Given a time-dependent (Eulerian) velocity field
u(x, t), (7) and (10) can be discretized in time with a
simple differencing method:

X5 = X0+ Ara T2 wl Y = (XY, f12), (1D)

n
pptt =D my (X5 (12)
5

In Frank et al. (2002), this discretization was combined
with a time stepping method for the momentum equation
to form a Hamiltonian particle-mesh method for the rotat-
ing shallow-water equations. The masses m% were kept
constant throughout the simulation. The HPM advection
scheme is somewhat similar to the Lagrangian advection
scheme, as proposed by Kaas et al. (1997), using tracer
points.

In this paper, the HPM discretization is instead com-
bined with a remapping technique so that the particles’
trajectories start from grid points at the beginning of each
time step. Similar to other mass-conserving advection
schemes, this remapping approach requires the assign-
ment of new particle ‘masses’ in each time step. Con-
trary to the volume-based (finite-volume type) remapping
strategy of, for example, Nair and Machenhauer (2002),
mass-parcels are assigned to each grid point, which are
moved downstream to provide the density approximation
as a superposition of these parcels. This approximation
can be implemented very efficiently. The resulting remap-
ping conserves mass globally but not locally (in contrast
to volume-based remapping methods). A related down-
stream advection scheme has been proposed by Laprise
and Plante (1995). However, the definition of mass-
parcels and the assignment of mass is fundamentally
different.

3. Remapped particle-mesh method

This section describes the remapped particle-mesh met-
hod for solving the continuity equation. The aim
is to exploit the mass conservation property of the
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particle-mesh method whilst keeping an Eulerian grid
data structure for velocity updates. To achieve this the
particles are reset to an Eulerian grid point at the begin-
ning of each time step, i.e.

b= Xg =X, B=1+k+1-(M+1). (13)
This step requires the calculation of new particle ‘masses’
mg, B=1,..., N, according to

pry =D mly i (xp) (14)
B

for given densities p; ;. This is the remapping step.
Finally the particles are stepped forward and the new
density on the Eulerian grid is calculated using equations
(11) and (12) with m% being replaced by m% Note that
the Lagrangian trajectory calculation (11) can be replaced
by any other consistent forward trajectory approximation.
Exact trajectories for a given time-independent velocity
field u(x) will, for example, be used in the numerical
experiments.

The whole process is mass conserving since the PoU
property (8) ensures that

Yomy=> "% mp (X5t A
B kil B

=D ol A=) mytl
k.l 8

(15)

4. Efficient implementation

This density advection scheme can be made efficient
since all the interpolation takes place on the grid;
this means that the same linear system of equations,
characterized by (14), is solved at each time step. The
particle trajectories are uncoupled and thus may even be
calculated in parallel.

The computation of the particle masses in (14) leads
to the solution of a sparse matrix system. This issue
is discussed in detail for (area-weighted) tensor product
cubic B-spline basis functions, defined by

_ 1 XX Y=
Wk,l(x) = AxAy WCS< Ax ) wcs< Ay >’ (16)

where Y (r) is the cubic B-spline

2P+ SR st
Vo =1la—pr), l<lrl<2, U7
0, 7| > 2.
The basis functions satisfy
(18)

D V() Ay =1
ol
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and
/Wk.z(X) dA(x) =1 (19)
as required.

A few basic manipulations reveal that (14) becomes
equivalent to

p}?_z Ay = )01’(1,1 AxAy

Ax? Ay?
- (1 + Ta};) <1 + %53) m,  (20)
where
2w — My — 2mg +myp_y
x Mg = Ax2 )
m’ —2m}, +m?,
83 = k41 A;ﬁl kil @1

are the standard second-order central difference approx-
imations, and replacing index 8 =1+k+[-(M +1)
by k, [, i.e. writing mZ,,, Z’,, etc. from now on. Equa-
tion (20) implies that the particle masses can be found
by solving a tridiagonal system along each grid line (in
each direction).

It is instructive to compute the response function for
(20), ie. to evaluate the resulting masses my; for a
density oy, that is concentrated at a single grid point.
The response function for Ax = Ay =1 can be found
in Figure 1. It can be seen that the resulting values for
my ; are non-zero in an extended neighborhood and some
values are even negative. The implication is that the
cubic B-spline approach does not satisfy strict local mass-
conservation, can potentially lead to negative masses, and
does not preserve monotonicity. Negative masses can be
avoided by a local redistribution of mass values (such
that total mass is conserved). At present it is not clear

response function for remapping step

grid points 2 2

grid points

Figure 1. Resulting mass values my ; for a density px; concentrated at
a single grid point. The mesh-size is Ax = Ay = 1.
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how to preserve strict monotonicity under cubic B-spline
interpolation in a systematic manner.

If the cubic spline ¥ in (16) is replaced by the linear
spline

1—1r], |r] <1,
Yielr) = {0 e 22)
then the system (14) is solved by
my ;= AxAy pp;. (23)

The resulting low-order advection scheme possesses the
desirable property that p;, > 0 for all k,/ implies that
p,’fjrl >0 for all k,/. Local conservation of mass, in
the sense of finite-volume methods, and monotonicity
are now also achieved. In general, a remapping with
linear splines can lead to undesirable levels of numer-
ical diffusion. However, implementations for the rotating
shallow-water equations in planar geometry give encour-
aging results. See the numerical results in section 6. It
should also be noted that it is not necessary to remap the
particles to a grid position after each single time step as
long as the particles keep a relative uniform distribution.

On a more abstract level, conservative advection
schemes can be derived for general (e.g. triangular)
meshes with basis functions ¢;(x) > 0, which form a
partition of unity. An appropriate quadrature formula for
(3) leads then to a discrete approximation of type (7).
This extension will be the subject of a forthcoming pub-
lication.

5. Extension to the sphere

In this section we suggest a possible implementation
of the remapped particle-mesh method for the density
equation on the sphere. The method follows the particle-
mesh discretization given by Frank and Reich (2004),
combined with a remapping to the grid.

A longitude-latitude grid with equal grid spacing
AL = A6 = m/J is introduced. The latitude grid points
are offset a half-grid length from the poles. Hence
grid points (Ag, 6;) are obtained, where Ay = kKAA, 6; =
—%+(l—1/2)A9, k=1,...,2J, I=1,...,J, and
the grid dimension is 2J x J.

Let v ;(x) denote the (area-weighted) tensor product
cubic B-spline centred at a grid point x;; € R? with
longitude-latitude coordinates (At, 6;), i.e.

o 1 )\_)‘k 9_'91 24
wk,l(x) —A—Mwm(T)wcs( AD )v ( )

where (X, 6) are the spherical coordinates of a point
x = (x,y,2)7 € R? on the sphere, . (r) is the cubic
B-spline as before, and

Ars = R*cos(6)) AOAX. (25)
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Conversion between Cartesian and spherical coordinates
is performed using the formulas

x = RcosA cosO, z = Rsinb,

(26)

y = RsinA cosé,

6 =sin”! (%) .

At each time step the fluid velocity is written in 3D
Cartesian coordinates and the particles X; ; are stepped
forward. The particle positions are then projected onto
the surface of the sphere as described by Frank and Reich
(2004). The Lagrangian trajectory algorithm is then:

and

A = tan~! <X> ,
X

©2))

1 +1/2
X =+ Anl T 4 x (28)
where p is a Lagrange multiplier chosen so that
||XI'-'7']-H | = R on a sphere of radius R. This algorithm
can be replaced by any other consistent forward trajec-
tory approximation. Exact trajectories are, for example,
used in the numerical experiments.
The particle masses m; ; are computed by solving the
system
pr = m} (X)) (29)

i,j

for given densities p; ;. The density at time-level 7, is
then determined by

P;:,J[l = Zm,"j wk,l(X:‘i-}_l)- (30)

i,j

Note that the system (29) is equivalent to

n A)\z 2 Aez 2 n
Pr1 Akl = 1+—6 S|+ ra 8 | mp, )

and can be solved efficiently as outlined in section 4.
The implementation of the remapping method is greatly
simplified by making use of the periodicity of the
spherical coordinate system in the following sense. The
periodicity is trivial in the longitudinal direction. For the
latitude, a great circle meridian is formed by connecting
the latitude data separated by an angular distance 7 in
longitude (or J grid points). See, for example, the paper
by Spotz et al. (1998). It is then efficient to solve the
system (31) using a direct solver.
Conservation of mass is encoded in

Z PZ,JZFI Ay = Z or1 Akl (32)
k.l Kl
which holds because of the PoU property
(33)

DY) Ay = 1.
ol
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6. Numerical results

6.1. 1D convergence test

Following Zerroukat et al. (2006a), the convergence rate
of our method for one-dimensional uniform advection of
a sine wave over a periodic domain = [0, 1) is tested.
The initial distribution is

po(x) = sin(2wx) (34)
and the velocity field is u(x, t) = U = 1. The 1D version
of our method is used to solve the continuity equation

pr = —(pu)x. (35

The experimental setting is equivalent to that of Zerroukat
et al. (2006a). Table I displays the convergence of [,
errors as a function of resolution Ax = 1/M. Note that
the results from Table I are in exact agreement with
those displayed in Table I of Zerroukat er al. (2006a)
for the parabolic spline method (PSM) and fourth-order
accuracy is observed. The observed equivalence between
our remapped particle-mesh advection scheme and PSM
only holds for one-dimensional uniform advection. In
particular, the extension to multi-dimensions (Zerroukat
et al., 2006b) is fundamentally different.

6.2. 2D planar advection: Slotted-cylinder problem

The slotted-cylinder problem consists of a solid-body
rotation of a slotted cylinder in a flow field that rotates
with constant angular velocity about a fixed point. The
slotted-cylinder problem as, for example, described in
Nair et al. (1999a); Zerroukat et al. (2002) was imple-
mented.

Results for the newly proposed advection scheme
can be found in Figure 2. The root-mean-square (rms)
difference between the pointwise (rms;) and the grid-
box-averaged (rms;) analytic solution and the numerical
one as well as the relative error in total mass (pdm)
were calculated. See Zerroukat et al. (2002) for a precise
definition of these error measures. It is found that the
rms values for our method are slightly smaller than those
reported in Zerroukat et al. (2002).

6.3. 2D planar advection: Idealized cyclogenesis
problem

The idealized cyclogenesis problem (see, e.g. Nair et
al. (1999a); Zerroukat et al. (2002)) consists of a circular
vortex with a tangential velocity V(r) = vy tanh(r)/
sech®(r), where r is the radial distance from the centre
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Figure 2. Rotating slotted-cylinder problem. Top panel: numerical

solution after six rotations. Bottom panel: error (analytic minus

numerical) with contour minimum —0.5266 and contour interval

0.3803; error measures, as defined in Zerroukat et al. (2002), rms;
= 0.062595, rms; = 0.037329, and pdm = 1.454 x 10—,

of the vortex (x., y.) and vy is a constant chosen such
that the maximum value of V(r) is unity. The analytic
solution p (X, t) is

Y=Y

p(X,t) = —tanh [( ) cos(wt)

X — Xc .
— ( 3 >s1n(wt)i|,

where w = V(r)/r is the angular velocity and § = 0.05.
The experimental setting is that of Nair er al. (1999a);
Zerroukat et al. (2002). In particular, the domain of
integration is € = [0, 10] x [0, 10] with a 129 x 129
grid. The time step is At = 0.3125 and a total of 16 time
steps is performed. Numerical reference solutions can be
found in Zerroukat et al. (2002) for the standard bicubic
and several conservative SL. methods. The corresponding
results for the newly proposed advection scheme can be
found in Figure 3. It turns out that the rms values of the
newly proposed advection scheme are about the same
size as those reported by Zerroukat et al. (2002).

(36)

Table I. Convergence of [,-errors as a function of Ax = 1/M for uniform advection with U =1 of a sine wave on a periodic
domain = [0, 1] with At = 0.12Ax/U and 20 time steps.

M 8 16 32

64 128 256 512

I 0.549E-02 0.254E-03 0.143E-4

0.872E-6

0.541E-07 0.337E-08 0.211E-09
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Figure 3. Cyclogenesis problem. Top panel: numerical solution at time

t = 5. Bottom panel: error (analytic minus numerical) with contour

minimum —0.627 and contour interval 0.418; error measures, as

defined in Zerroukat et al. (2002), rms; = 0.081439, rms; = 0.037703,
and pdm = 1.76259 x 10~12,

6.4. Spherical advection: Solid body rotation

Solid body rotation is a commonly used experiment to
test an advection scheme over the sphere. The experi-
mental setting of Nair and Machenhauer (2002); Nair et
al. (2002); Nair et al. (2003); Zerroukat et al. (2004) was
applied. The initial density is the cosine bell,

| 1/2[1 4+ cos(zr/R)], r <R,
po(, 60) = {0’ S RGD
where R = 77 /64,
r =cos” ! [sinf + cos O cos(h — AJ)], (38)

and A, = 37 /2. The bell is advected by a time-invariant
velocity field

(39
(40)

U =cosa cosf + sinw cos A sin6,

V= —sinu SinA,

where (u,v) are the velocity components in A and 6
direction, respectively, and « is the angle between the
axis of solid body rotation and the polar axis of the
sphere.

Experiments are conducted for « =0, o = /2, and
o = /2 — 0.05. Analytic trajectories are used and At is
chosen such that 256 time steps correspond to a complete
revolution around the globe (the radius of the sphere is
set equal to one). Accuracy is measured as relative errors
in the [y, I, and [, norms (as defined, for example, in
Zerroukat et al. (2004)). Results are reported in Table 1T

Copyright © 2007 Royal Meteorological Society
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Table II. Comparison of error norms for solid body rotation

with three different values of « ¢ after one complete revolution

using 256 time steps over a 128 x 64 grid. The meridional
Courant number is Cy = 0.5.

« 0 /2 7/2 —0.05
I 0.0492 0.0591 0.0627
L 0.0336 0.0393 0.0397
I 0.0280 0.0367 0.0374

for a 128 x 64 grid (i.e. J = 64). It turns out that the
relative errors of the newly proposed advection scheme
are about the same size as those reported by Zerroukat et
al. (2004).

Note that (31) may lead to a non-uniform distribu-
tion of particle masses near the polar cap regions for
meridional Courant numbers Cy > 1. This can imply a
loss of accuracy if a ‘heavy’ extra-polar particle moves
into a polar cap region. This was verified for 72, 36
and 18, respectively, time steps per complete revolution
(implying a meridional Courant number of Cy = 1.78,
Cyp = 3.56, and Cy = 7.12, respectively). It was found
that the accuracy is improved by applying a smoothing
operator along lines of constant 6 near the polar caps,

c.g. , . 86 »
n+l= 1_ - n+1
== () ]

y «m/J, J =64 Here p'*! denotes the density
approximation obtained from (30). The filter (41) is mass
conserving and acts similarly to hyper-viscosity. The dis-
advantage of this simple filter is that p"*!' # p" under
zero advection.

Results for y =0 and y = /192, respectively, and
72, 36 and 18 time steps, respectively, are reported in
Table III. It is evident that filtering by (41) improves the
results significantly. Corresponding results for standard
advection schemes can be found in Nair and Machen-
hauer (2002) for the case of 72 time steps per complete
revolution. It turns out that the relative errors of the newly
proposed advection scheme with y = 7r/(3J) are slightly

(4D

Table III. Comparison of error norms for solid body rotation
with o = /2 for different values of the smoothing parameter y
in (41) after one complete revolution over a 128 x 64 grid (i.e.,
J = 64). Panel (a): Complete revolution using 72 time step. The
meridional Courant number is Cy = 1.78. Panel (b): Complete
revolution using 36 time step. The meridional Courant number
is Cy = 3.56. Panel (c): Complete revolution using 18 time
step. The meridional Courant number is Cy = 7.12.

(a) 72 time steps  (b) 36 time steps  (c) 18 time steps

y 0 7/3)) 0 w/BH 0  7/3J)
I, 0.0491 00283 23264 0.0222 23217 0.0143
I, 00468 00168 1.5124 00137 15126 0.0105
lo 00723 00122 1.1383 00151 10764 0.0143
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smaller than as those reported by Nair and Machenhauer
(2002).

6.5. Spherical advection: Smooth deformational flow

To further evaluate the accuracy of the advection scheme
in spherical geometry, the idealized vortex problem
of Doswell (1984) is considered. The flow field is
deformational and an analytic solution is available (see
Nair et al., 1999b; Nair and Machenhauer, 2002 for
details).

The mathematical formulation can be summarized as
follows. Let (', 8) be a rotated coordinate system with
the north pole at (7w + 0.025, 7 /2.2) with respect to the
regular spherical coordinates. We consider rotations of
the (1A', 0") coordinate system with an angular velocity
w, 1.€.

dx
dt

de’
s — =0, 42
7 42)
where

3+/3 sech?(3 cos §') tanh(3 cos 8')

0" =
@(©) 6cosb’

(43)

An analytic solution to the continuity equation (1) in
(A, 0") coordinates is provided by

0s 6’

3
p(k’,@’,t):l—tanh[ ¢ sin(,v—w(e/)t)]

(44)

257

Simulations are performed using a 128 x 64 grid and
a step size of At = 0.05. The filter (41) is not applied.
The exact solution (evaluated over the given grid) and
its numerical approximation at times t = 3 and t = 6 are
displayed in Figure 4. The relative [, [, and [, errors
(as defined in Zerroukat et al., 2004) can be found in
Table IV. These errors are slightly larger than the ones
reported in Nair and Machenhauer (2002) and Zerroukat
et al. (2004). It can also be concluded from Figure 4
that the numerical solution at ¢+ = 3 is somewhat lagging
behind the analytic one while, at t = 6, the difference
between the numerical and analytic solution is very large
near the pole.

6.6. Rotating shallow-water equations in planar
geometry

To demonstrate the behaviour of the new advection
scheme under a time-dependent and compressible veloc-
ity field, we consider the shallow-water equations (SWEs)

Table IV. Comparison of error norms at different times ¢ for
spherical polar vortex problem. Computations are performed
with a step size of Ar = 1/20 and a 128 x 64 grid.

t 3 6

1 0.0019 0.0055
15 0.0062 0.0172
loo 0.0324 0.0792

(c) exact solution att =6

(d) numerical solution att = 6

Figure 4. Results of a polar vortex simulation over the sphere. The exact solution and its numerical approximation at time ¢ = 3 can be found
in panels (a) and (b), respectively. Contours plotted between 0.5 and 1.5 with contour interval 0.05. Panels (c) and (d) display the same results
for time t = 6.
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on an f-plane (Durran, 1998; Salmon, 1999): Let H denote the maximum value of i over the whole
D fluid domain. The fluid depth perturbation ft = u — H is
“u_ +fv— gy, (45) also introduced. The perturbation satisfies the continuity
Dt equation
bv__; (46) PR _ iy +vy) 48)
— =—fu-— , — = —0 (u, + v,
Dt Ehy Dt H Y
D
F’; = —u (uy +vy). (47) which is solved numerically using the newly proposed

scheme. The overall time stepping procedure is given
Here = p(x,y,t) is the fluid depth, g is the gravi- by the semi-Lagrangian Stormer—Verlet (SLSV) method
tational constant, and f is twice the (constant) angular with only equation (5.7) from Reich (2006) being

velocity of the reference plane. replaced by the following steps:
time=0 time=0 time =0
T T T I I I T T T
3000 |~ - 3000~ -| 3000 .
2000 |- - 2000 |- - 2000 .
1000 - 1000 |- - 1000 .
0 | | | 0 | | | 0 | | |
@ o 1000 2000 3000 (b) "o 1000 2000 3000 © "o 1000 2000 3000
time = 2 days time = 2 days fime =2 days
T T T I I I I I I
3000 - 3000 - 3000 . —
7q
2000 - 2000 |- - 2000 —
1000 |- - 1000 |- - 1000 |- DY —
0 | | | 0 | | | 0 | | |
(@ "o 1000 2000 3000 (e) 0 1000 2000 3000 ® "o 1000 2000 3000
time = 4 days time = 4 days time = 4 days
T T T T T T T T T
3000 |- - 3000 - 3000 O —
\} q‘
2000 [~ - 2000 |- - 2000} X —
=
1000 |~ - 1000} - 1000 O e
0 L L L 0 | l | 0 L L L
9 o 1000 2000 3000 (h) "o 1000 2000 3000 M "o 1000 2000 3000
time = 6 days time = 6 days time = 6 days
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Z
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= = NSO
2000 -{ 2000+ - 2000 .
1000 f = -{ 1000} = - 1000 |- % .
4
0 | | | 0 | | | 0 | | |
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Figure 5. Left panels: Computed time evolution, from initial time to # = 6 days, of PV over the domain (x, y) € [0, 3840 km] x [0, 3840 km]

using the semi-Lagrangian Stormer—Verlet (SLSV) method and the remapped particle-mesh advection scheme with cubic splines. The time

step is Az = 20 min. Contours plotted between 6.4 x 1078 m~'s~! and 2.2 x 1077 m~'s~! with contour interval 1.56 x 10~8 m~!s~!. Middle

panels: Time evolution of PV as obtained from a semi-implicit semi-Lagrangian (SISL) method. Right panels: Differences (semi-Lagrangian

Stormer— Verlet minus semi-implicit semi-Lagrangian) at corresponding times are plotted with a 10 times smaller contour interval, where thin
(thick) lines are positive (negative) contours.
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@) ArH (iii)
nt1/2— - ! +1/2—
m +1/2—¢ _ - 5 [Mx + Uy]n / £

n+l __  n+l1/2+¢ n+1/2+e
LN A s

W

(ii) Solve (48) over a full time step using the newly

proposed remapped particle-mesh advection scheme
with velocities (u"*1/2¢, y"+1/2=¢) and initial fluid
depth perturbation "*!/2=¢ = ;/"*1/2=¢ _ H_ De-
note the resulting fluid depth by p"+1/2+¢ =
a"t1/2+¢ £ H. We implemented the remapped
particle-mesh advection scheme with linear and

cubic splines, respectively.

The SLSV method has been implemented using the
standard C-grid (Durran, 1998) over a double periodic
domain with L, = L, = 3840 km (see Staniforth et
al., 2006 for details). The grid size is Ax = Ay = 60
km. The time step is At = 20 min and the value of f
corresponds to an f-plane at 45° latitude. The reference

height of the fluid is set to H = 9665 m. The Rossby

time =0 time =0 time=0
T T T T T T I I I
3000 [ 3000 — 3000 [~
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time = 6 days time = 6 days time = 6 days
T T T
3000 - 3000 - 3000 |- D
2000 |- 2000 [~ 2000 |-
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0 L L L 0 0 L L L
0 o 1000 2000 3000 K "o 1000 2000 3000 0 "o 1000 2000 3000

Figure 6. Left panels: Computed time evolution, from initial time to t = 6 days, of PV over the domain (x, y) € [0, 3840km] x [0, 3840 km]
using the semi-Lagrangian Stormer-Verlet (SLSV) method and the remapped particle-mesh advection scheme with linear splines. The time step is
At = 20min. Contours plotted between 6.4 x 1078 m~!s~! and 2.2 x 107" m~!'s~! with contour interval 1.56 x 10~8 m~!s~!. Middle panels:
PV evolution as obtained from a semi-implicit semi-Lagrangian (SISL) method. Right panels: Differences (semi-Lagrangian Stormer-Verlet
minus semi implicit semi-Lagrangian) at corresponding times are plotted with a 10 times smaller contour interval, where thin (thick) lines are
positive (negative) contours.
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radius of deformation is L p &~ 3000 km. Initial conditions
are chosen as in Staniforth er al. (2006); Reich (2006)
and results are displayed in an identical format for direct
comparison.

To assess the new discretization, results are com-
pared to those from a two-time-level semi-implicit semi-
Lagrangian (SISL) method with a standard bicubic inter-
polation approach to semi-Lagrangian advection (see, e.g.
McDonald and Bates, 1987; Temperton and Staniforth,
1987). The resulting nonlinear equations are iterated to
convergence. It is apparent from Figures 5 and 6 that
the SLSV and SISL simulations yield similar results in
terms of potential vorticity advection. Furthermore, the
results displayed in Figures 5 and 6 are nearly identical
to those displayed in Figure 6.1 of Reich (2006). The
good behaviour of the linear spline implementation of
the remapped particle-mesh advection scheme is rather
surprising and has been confirmed for other simulations
such as a shear flow instability.

7. Summary and outlook

A computationally efficient and mass conserving for-
ward trajectory semi-Lagrangian approach has been pro-
posed for the solution of the continuity equation (1). At
every time step a ‘mass’ is assigned to each grid point
which is then advected downstream to a (Lagrangian)
position. The gridded density at the next time step is
obtained by evaluating a bicubic spline representation
with the advected masses as weights. The main com-
putational cost is given by the need to invert tridiagonal
linear systems in (20). Computationally efficient itera-
tive or direct solvers are available. We also proposed an
extension of the advection scheme to spherical geome-
try. A further generalization to 3D would be straightfor-
ward. Numerical experiments show that the new advec-
tion scheme achieves accuracy comparable to standard
non-conserving and published conserving SL schemes.
The main drawbacks of the proposed approach are that
higher order splines do not lead to monotonicity preserv-
ing schemes and that conservation of mass is not strictly
local (in the sense of finite-volume methods).
We note that the proposed advection scheme can be
used to advect momenta according to
b v 49
Dt(pu) =—(pw)V -u. (49)
This possibility is particularly attractive in the context
of the newly proposed semi-Lagrangian Stormer— Verlet
(SLSV) scheme (Reich, 2006).
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