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method with approximate subdomain solution
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Abstract

Solution of large linear systems encountered in computational 
uid dynamics often

naturally leads to some form of domain decomposition, especially when it is de-

sired to use parallel machines. It has been proposed to use approximate solvers to

obtain fast but rough solutions on the separate subdomains. In this paper a num-

ber of approximate solvers are considered, and numerical experiments are included

showing speedups obtained on a cluster of workstations as well as on a distributed

memory parallel computer. Additionally, some remarks are made pertaining to the

practical application of Householder re
ections as an orthogonalization procedure

within Krylov subspace methods.

Key words: Domain decomposition; approximate subdomain solution; parallel

Krylov subspace methods; orthogonalization methods.

1 Introduction

Domain decomposition arises naturally in computational 
uid dynamics: (1)
as a means of dealing with geometric complexity and (2) as a source of parallel-

ism. Concerning the �rst of these, complicated geometries may be broken down
into (topologically) rectangular blocks and discretized in general coordinates,

see e.g. [3,33,46], applying domain decomposition to iteratively arrive at the
solution on the global domain. In this case, since the domain decomposition

iteration is used even in the serial computation, the speedups obtained by
parallelization of the method may be very signi�cant. On the other hand,

if exploitation of parallel computing resources is itself the reason for imple-

menting domain decomposition, the results may be less pleasing, see [39].

Additionally, parallel domain decomposition may be employed to deal with

problems so large as to exceed workstation memory resources.
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The current research is motivated by the desire to parallelize an existing do-

main decomposition implementation for the DeFT software, the continuation

of work summarized in [6]. Results from a parallel implementation of a Krylov-

accelerated Schur complement domain decomposition method are presented

in [7]. A serial implementation of non-overlapping additive Schwarz iterations

with approximate subdomain solution [8] gave more promising results. It is

the parallelization of this method that we address here.

Theoretical results on approximate solution of subdomain problems for Schur

complement domain decomposition methods are given by B�orgers [5], Haase,

Langer and Meyer [28,19,17,18,16], and Cheng [11]. Brakkee [6] gives theor-

etical and experimental results for non-overlapping Schwarz iterations with

variable approximate inner solvers. Tan [38] shows that for a similar scheme,

the subdomains should be solved to a �xed tolerance.

Much e�ort has focused on e�cient parallelization of Krylov subspace meth-

ods. Apart from the preconditioning, the main parallel operations required in

these methods are distributed matrix-vector multiplications and inner pro-
ducts. For many problems, the matrix-vector multiplications require only
nearest neighbor communications, and are thus rather e�cient. Inner products,
on the other hand, require global communications; therefore, the focus has

been on reducing the number of inner products [13,34], overlapping inner
product communications with computation [37], or increasing the number of
inner products that can be computed with a single communication [2,26].

The additive Schwarz preconditioner is block diagonal and thus may be solved
without communication. Other block preconditioning techniques are the mul-

tiplicative Schwarz preconditioner|corresponding to a block Gauss-Seidel it-
eration matrix|and incomplete block factorizations, which are considered by
[36,30,45], among others.

In this paper we demonstrate that a reasonable amount of speedup can be

observed for a nonoverlapping, one-level additive Schwarz method if the sub-
domain problems are solved using only a rough approximation. In Section
2 we brie
y review the relevant mathematics and give some motivation for
approximate subdomain solution.

Some practical points concerning orthogonalization methods are brought out
in Section 3. Given a set of k orthogonal vectors q1; : : : ; qk and a candidate

vector a which is linearly independent of the qi, an orthogonalization method is
de�ned to be a method which produces a new vector qk+1, such that q

T
k+1qi = 0,

i = 1; : : : ; k, and such that a 2 spanfq1; : : : ; qk+1g. The classical and modi�ed

Gram-Schmidt procedures are examples of such orthogonalization methods,
as is the Householder implementation of Walker [44]. Also in Section 3, a

performance model is developed for comparison of some orthogonalization
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methods in parallel. Experimental results in Section 4 con�rm the qualitative

validity of the model.

Included in Section 4 are speedup results, obtained by comparison of the

parallel multiblock computation times to both the single block serial time and

the multiblock serial times, as well as results for a scaled problem size (number

of unknowns per processor held constant.) The timings were made on a cluster

of workstations and a Cray T3E. In particular, our results suggest that the

most e�cient subdomain approximation in terms of computation time is a

simple incomplete factorization.

2 Mathematical Background

2.1 Nonoverlapping domain decomposition

We consider an elliptic partial di�erential equation discretized using a �nite

volume or �nite di�erence method on a computational domain 
. By a com-
putational domain we mean the set of unknown values to be approximated,
together with their associated locations in space. Let the domain be the union
of M nonoverlapping subdomains 
m, m = 1; : : : ;M .

Discretization of the PDE results in a sparse linear system

Ax = b; (1)

with x, b 2 RN . The structure of the matrix A is determined by the stencil of
the discretization. Even if there is no overlap between the subdomains, there is
still an inter-subdomain coupling due to the stencil. That is, the equation for
an unknown adjacent to a subdomain interface is dependent on an unknown
across the subdomain boundary.

One technique for solving this problem is to permute the system (1), grouping

together into blocks those unknowns whose stencils are in the interior of a
common subdomain, and grouping all the remaining unknowns|the interface

unknowns, whose stencils transcend a subdomain boundary|into a separate

block: 2
666666664

A11 A1I

. . .
...

AMM AMI

AI1 : : : AIM AII

3
777777775

0
BBBBBBBB@

x1
...

xM

xI

1
CCCCCCCCA
=

0
BBBBBBBB@

b1
...

bM

bI

1
CCCCCCCCA
: (2)
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This system is solved by performing a block decomposition: �rst solving the

Schur complement for the interface unknowns, and then solving the independ-

ent subdomain problems. Methods of this type are referred to as substructuring

methods.

Another approach is to group together the unknowns which share a common

subdomain, giving a block system:

2
666664
A11 : : : A1M

...
. . .

...

AM1 : : : AMM

3
777775

0
BBBBB@
x1
...

xM

1
CCCCCA =

0
BBBBB@
b1
...

bM

1
CCCCCA : (3)

In this system, one observes that the diagonal blocks Amm express coupling

among the unknowns de�ned on a common subdomain (
m), whereas the o�-
diagonal blocks Amn, m 6= n represent coupling across subdomain boundaries.

The only nonzero o�-diagonal blocks are those corresponding to neighboring
subdomains.

The additive Schwarz iteration introduces the block Jacobi preconditioner:

K =

2
666664
A11

. . .

AMM

3
777775 ;

which is easily solved in parallel to approximate the error. We will be primarily

concerned with additive Schwarz domain decomposition in this paper.

For a thorough discussion of domain decomposition methods see the book
[35] and the review article [9]. Each of these publications contains an extens-

ive bibliography. Convergence theory for domain decomposition methods is

discussed in [35]. Roughly speaking, the convergence rate su�ers proportion-
ally to the number of subdomains in each direction. If a constant overlap (in

physical units) is maintained, the convergence rate is independent of grid size;
however, for zero overlap the convergence is relatively poor. The convergence

rate may additionally be made independent of the number of subdomains if

a coarse subspace correction is applied: for example, the residual is projected
onto a single coarse grid domain, where a correction is computed which is then

interpolated back to the subdomains.
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2.2 Krylov subspace acceleration

In practice (3) is solved iteratively, using K as a preconditioner for a Krylov

subspace method, such as the conjugate gradient method for symmetric prob-

lems or the GMRES method for nonsymmetric problems. A Krylov subspace

method seeks, in the kth iteration, an optimal (in some sense) approximation

of the solution of Ax = b in the Krylov subspace

Vk = spanfr0; Ar0; : : : ; A
k�1r0g:

Generally, a basis for the subspace is computed recursively, its dimension in-

creasing by one in each iteration. For example, the GMRES method [32] com-

putes in the kth iteration

AVk = Vk+1Hk; (4)

where the columns of Vk (denoted v1; : : : ; vk) form an orthonormal basis for
Vk, and where the kth column of Hk contains the coe�cients of the modi�ed
Gram-Schmidt process used to orthonormalize Avk with respect to Vk to give
vk+1. Using a preconditioner in cooperation with GMRES, the problem (1) is
replaced by

K�1Ax = K�1b:

For our purposes the GCR method [12], shown in Figure 1, is useful. In the
algorithm and elsewhere in this paper the Euclidean inner product hx; yi =
xTy and associated norm kxk = (xTx)1=2 are used.

Algorithm: GCR

Given: initial guess x0
r0 = b�Ax0
for k = 1; : : : ; convergence

Solve K~v = rk�1 (approximately)
~q = A~v
[qk; vk] = orthonorm (~q; ~v; qi; vi; i < k)


 = qTk rk�1
Update: xk = xk�1 + 
vk
Update: rk = rk�1 � 
qk

end

Fig. 1. The GCR Algorithm

The function orthonorm() takes input vectors ~q and ~v, orthonormalizes ~q with
respect to the qi, i < k, while preserving the relation ~q = A~v, and returns
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the modi�ed vectors qk and vk. In serial computations, the modi�ed Gram-

Schmidt method, Figure 2, is often employed for the orthonorm() function. We

discuss alternative orthogonalization methods in later sections of this paper.

Algorithm: Modi�ed Gram-Schmidt

[qk; vk] = orthonorm (~q; ~v; qi; vi; i < k):

for i = 1; : : : ; k � 1

� = h~q; qii

~q = ~q � �qi
~v = ~v � �vi

end

� = k~qk

qk = ~q=�; vk = ~v=�

return

Fig. 2. The modi�ed Gram-Schmidt algorithm

In exact arithmetic, and assuming it does not break down, GCR produces

the same iterates as GMRES. However GCR does not take advantage of the

recursion (4). Rather, GCR requires the storage of an extra set of orthogonal
residual search vectors. Three advantages of this method are: (1) the pre-
conditioner K need not remain constant (nor even be a linear operator; the
implementation in [40] uses GMRES(m) as a preconditioner); (2) one is free
to employ truncation strategies such as in [41]; and (3) the method will not

break down if the LSQR switch is employed [40]. As described in Figure 1,
the method is unrestricted in the number of iterations, and therefore in the
number of vectors vk and qk which must be stored. Since most modern com-
puters are equipped with only �nite memory, it is necessary either to restart
the iteration periodically, discarding all stored vectors, or to maintain only a

�xed number of vectors, applying some criterion to determine which vectors
will be kept. This second option, referred to as truncation, is shown in [41]
to be very e�ective in reducing the number of iterations. The importance of
allowing a variable preconditioner will be discussed shortly. Another method
allowing variable preconditioners is the FGMRES method [31], but truncation
is not possible with that method, and it may break down [40].

2.3 Approximate subdomain solution

Solution for ~v from the preconditioning equation K~v = rk�1 in the GCR al-
gorithm requires solution of the M subdomain systems Amm~vm = rm, m =

1; : : : ;M . Since these problems have a similar nonzero structure to the original

matrixA, and since they may still be quite large, it is reasonable to solve them

using a second Krylov subspace iteration. A question which arises naturally,

and for purely practical reasons, addresses the tolerance to which these inner
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iterations should converge. It seems senseless, for example, to solve the sub-

domain problems with a much smaller tolerance than is desired for the global

solution, especially in light of the fact that the global iteration has a �nite

convergence rate.

A number of authors have considered approximate solution of the subdomain

problems. In particular they have considered the consequences of using very

fast, rough approximations to reduce the total computing time necessary to

solve the global problem.

Some possible strategies for approximating the subdomain solutions are:

� Krylov-subspace method (possibly preconditioned) to a �xed tolerance, to

a variable tolerance, or for a predetermined number of iterations.

� Approximation by a single preconditioner solve.

� A few iterations of a basic iterative method such as Jacobi or Gauss-Seidel.

� Do nothing at all. In this case one uses the domain decomposition purely as a

form of data distribution and applies the unpreconditioned Krylov method.

Tan [38] has shown that if the inner problems are solved to some tolerance
in each outer iteration, than the optimal strategy for choosing the tolerance
is a �xed one. That is, it is not necessary to make the subdomain solution
tolerance smaller as the global solution converges.

Note that if the subdomains are solved using a Krylov subspace method such
as GMRES, then the approximate solution is a function of the right hand side,
which is the residual of the outer iteration. Furthermore, if the subdomains

are solved to a tolerance, the number of inner iterations may vary from one
subdomain to another, and in each outer iteration. The e�ective preconditioner
is therefore nonlinear and varies in each outer iteration.

A variable preconditioner presents a problem for the GMRES method: namely,
the recurrence relation (4) no longer holds. To allow the use of a variable
preconditioner, Saad [31] has developed the Flexible GMRES (FGMRES)
method, which requires storage of an auxiliary set of vectors such as with

GCR. On the other hand, the GCR method does not su�er from the use of
a variable preconditioner, and has the additional advantage that truncation

strategies may be employed, as mentioned previously. For this reason, we shall

consider the GCR method in this paper.

Our choice of approximate solution methods is motivated by the results ob-
tained in [8]. In that paper, GMRES was used as an approximate solver,
with tolerances varying from 10�4 to 10�1; also a blockwise application of

the RILUD preconditioner was used. The RILUD preconditioner is a diagonal

version of the method introduced in [1]. This factorization is an average of an
ILUD preconditioner [27] and an MILUD preconditioner [15], with a weight-
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ing parameter !, assigned a value of 0.95 in our experiments. See also [43] for

useful results with RILU factorizations applied to Navier-Stokes equations.

The use of incomplete factorizations to obtain subdomain approximations has

been advocated by Keyes [24] and Goossens et al. [14] among others.

The results of [8] indicated that the coarser tolerances were more e�ective.

However, all numerical results presented there were obtained from serial runs.

In Section 4 we will present numerical experiments with a number of sub-

domain approximation methods. Simpler subdomain approximations, such as

diagonal preconditioning or no preconditioning, frequently did not converge

in our experiments, and the results will not be presented here.

Most of the theoretical work on the subject of approximate subdomain solu-

tion has focused on the Schur complement system (2). It is also possible to

solve (2) iteratively. The construction of the Schur complement for the in-

terface unknowns in (2) is an expensive operation, while the action of the

Schur complement on a vector can be computed by solving the subdomain

problems. Once the Schur complement solution converges, an additional solu-
tion of the subdomain blocks gives the global solution. See [5,28,17,18,11] for
discussions on approximate subdomain solution with regard to this approach.

These papers in general present results for static preconditioners, such as clas-
sical incomplete factorizations.

Brakkee [6] has proven the following result. Let ~A�1ii be the matrix which rep-
resents the approximate inversion of the ith block. In the case of a Krylov

subspace method as inner solver, this would be the actual value of the min-
imizing polynomial applied to A. Similarly de�ne ~K�1 to be the approximate
preconditioner consisting of the diagonal blocks ~A�1ii . If for each subdomain
i = 1; : : : ;M it holds that kI�Aii

~A�1ii k < �, then the condition number of the
approximately preconditioned matrix satis�es

�(A ~K�1) �
1 + �

1� �
�(AK�1): (5)

where �(A) = kAkkA�1k is the spectral condition number of A.

Essential to the proof of this relation is the fact that

�(A ~K�1) = �(AK�1K ~K�1) � �(AK�1)�(K ~K�1):

We obtain a slightly more general result in the case of a symmetric matrix A

with symmetricK and ~K. Note that the matrixB = K ~K�1 is a block diagonal

matrix with blocks Bi = Aii
~A�1ii ; i = 1; : : : ;M . It is not di�cult to see that

the eigenvalues of such a matrix are the union of the eigenvalues of the blocks.

It follows easily that if there exist �; � such that 0 < � � mini j�min(Bi)j �
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maxi j�max(Bi)j � �, then

�(A ~K�1) �
�

�
�(AK�1):

One can gain a qualitative understanding of this result by considering the spe-

cial case in which the blocks Aii have identical spectra, and a static, classical

preconditioner, such as an MILU preconditioner, is applied to each block.

In this case, the fraction �=� is simply the spectral condition number of

any block. It is known that for the block Jacobi preconditioner, �(AK�1) =

O(h�1H�1), where h is the grid spacing and H is the subdomain diameter

(see, e.g. [10]). Furthermore, for the MILU preconditioner, it has been shown

that �(Aii
~A�1ii ) = O(h�1) (see [15].) It follows that

�(A ~K�1) = O(h�2H�1):

Applying the same analysis as above, the use of a grid-independent precondi-

tioner such as multigrid would give

�(A ~K�1) = O(1)O(h�1H�1) = O(h�1H�1);

indicating that the convergence rate of the approximately preconditioned sys-
tem would be about the same as that of the exactly preconditioned system.

Convergence rate is not everything, however. Another important factor is the

expense of computing the subdomain approximate solutions. The RILUD pre-
conditioner, though least e�ective in terms of convergence rate, is far cheaper
than iterative solution of subdomain problems by a Krylov method, at least
for the problem size considered here. One makes a tradeo� thus between ef-
fectiveness of an approximate preconditioner in terms of convergence rate and

cheapness in terms of computational expense.

2.4 Orthogonalization methods

The primary challenges to parallelization of Figure 1 are parallelization of the
preconditioning|a di�culty which disappears when a block preconditioner

K is used|and parallel computation of the inner products. Inner products

require global communication and therefore do not scale. Most of the literature
on parallel Krylov subspace methods and parallel orthogonalization methods

is focused on orthogonalizing a number of vectors simultaneously. See, e.g.
[29,22,2,37,34,26]. However, this is not possible using a preconditioner which

varies in each iteration. For this reason, we need a method for orthogonalizing

one new vector against an orthonormal basis of vectors.

The modi�ed Gram-Schmidt method of Figure 2 su�ers from the fact that the

inner products must be computed using successive communications, and the
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number of these inner products increases by one with the iteration number.

This is not the case if one uses the classical Gram-Schmidt method, Figure 3.

In this algorithm all necessary inner products can be computed with a single

Algorithm: Classical Gram-Schmidt

[qk; vk] = orthonorm (~q; ~v; qi; vi; i < k):

� = h~q; ~qi

for i = 1; : : : ; k � 1

�i = h~q; qii

end

� =
q
� �

Pk�1
i=1 �

2
i

qk = ��1
�
~q �

Pk�1
i=1 �iqi

�
vk = ��1

�
~v �

Pk�1
i=1 �ivi

�
return

Fig. 3. The classical Gram-Schmidt algorithm

global communication. Unfortunately, Bj�orck [4] has shown that the classical
Gram-Schmidt method is unstable with respect to rounding errors, so this

method is rarely used.

On the other hand, Ho�mann [21] gives experimental evidence indicating that
a twofold application of Figure 3 is stable. Furthermore, it appears that if

orthogonality is important, such a re-orthogonalization is also required even
for the more stable modi�ed Gram-Schmidt algorithm.

A third method which has been suggested is the parallel implementation of
Householder transformations, introduced by Walker [44]. We shall reformulate

that method for GCR in the following section. Additionally, we will present a
simple parallel performance analysis for comparison of these three orthogon-
alization procedures.

3 Householder orthogonalization

Walker [44] has proposed a GMRES variant using a vectorized version of

Householder transformations as an alternative to the modi�ed Gram-Schmidt
procedure. The Householder method has the advantage that it requires only a

�xed number of communications per GMRES iteration. In this section we de-
scribe the GCR implementation and discuss some practical details concerning

its use.
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3.1 Description of the method

In the following discussion we use the notion ak to represent the kth column

of a matrix A and a(i) to represent the ith component of a vector a. Let a

matrix A 2 Rn�m, m � n with linearly independent columns be factored as

QR, where Q is orthogonal and R is upper triangular. Then the kth column of

A is given by ak = Qrk. It follows that ak 2 spanfq1; : : : ; qkg. In other words,

the columns of Q form an orthonormal basis for the span of the columns of A.

We take Q as the product of a series of Householder re
ections,Q = P1 � � �Pm,

used to transform A into R. The matrices Pi have the following properties:

i) P 2
i = I = P T

i Pi.

ii) Piej = ej, if j < i.

iii) Pi(Pi�1 � � �P1)ai = ri.

In property ii) ej is the jth canonical unit vector in Rn. A Householder re
ec-

tion is given by Pi = I � 2
wiw

T

i

wT

i
wi

, for some wi 2 R
n. Note that such a matrix

has property i). Property ii) is ensured by requiring the �rst i�1 components

of wi be zero: w
(j)
i = 0 for j < i.

Suppose one has already produced k orthogonal basis vectors q1; : : : ; qk and
stored them along with the transformation vectors w1; : : : ; wk corresponding

to P1; : : : ; Pk. Given a candidate vector ak+1, one must �rst apply the previous
re
ections as described in [44]:

~a = Pk � � �P1ak+1 = (I � 2WkL
�1
k W T

k )ak+1

where here and elsewhere we denote by Wk the matrix whose columns are

w1; : : : ; wk, and where

Lk =

2
666666664

1

2wT
2 w1 1
...

. . .

2wT
k w1 : : : 2w

T
k wk�1 1

3
777777775
:

Note especially that in the (k+ 1)th iteration one must compute the last row

of Lk, which is the vector (2wT
kWk�1; 1), as well as the vector W

T
k ak+1. This

requires 2m � 1 inner products, but they may all be computed using only a

single global communication.
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Now having computed ~a one wishes to �nd wk+1 such that Pk+1 satis�es

Pk+1~a = rk+1 = r
(1)
k+1e1 + � � � + r

(k+1)
k+1 ek+1

= ~a(1)e1 + � � �+ ~a(k)ek + �ek+1; (6)

where property ii) has been used for the last equality.

Because of the relation

Pk+1~a = (I � 2
wk+1w

T
k+1

wT
k+1wk+1

)~a = ~a� 2
wT
k+1~a

wT
k+1wk+1

wk+1; (7)

one must havewk+1 2 spanf~a; e1; : : : ; ek+1g. However equation (6) provides the

relation which must hold among ~a; e1; : : : ; ek. Let ~w be the vector obtained by

setting the �rst k elements of ~a to zero. Formally, one has ~w = Jk+1~a, where

Jk+1 =

2
640k

In�k

3
75 :

Thus, wk+1 2 spanf ~w; ek+1g. The length of wk+1 is a free parameter, so take
wk+1 = ~w + �ek+1. Substituting into (7) gives

Pk+1~a = ~a� 2
wT
k+1~a

wT
k+1wk+1

(Jk+1~a+ �ek+1)

= (I � 2
wT
k+1~a

wT
k+1wk+1

Jk+1)~a� 2�
wT
k+1~a

wT
k+1wk+1

ek+1:

To ensure that all elements below the (k + 1)th are zero, one requires 1 �

2
wT

k+1
~a

wT

k+1
wk+1

= 0. But,

wT
k+1~a = ( ~w + �ek+1)

T ~a = k ~wk2 + �~a(k+1);

and

wT
k+1wk+1 = k( ~w + �ek+1)k

2 = k ~wk2 + 2�~a(k+1) + �2:

Substituting these numbers into the above relation, one �nds � = �k ~wk, and

the sign of � is chosen to be the same as that of ~w(k+1) to eliminate the risk

of subtractive cancelation:

wk+1 = ~w + sign ( ~w(k+1))k ~wkek+1:

In practice, the wk are normalized to length one. Since � is the (k + 1)th
component of Pk+1~a, substitution of the above relation into (7), and noting
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that

2
wT
k+1~a

wT
k+1wk+1

= 1;

gives � = ~a(k+1) � ~w(k+1) � sign ( ~w(k+1))k ~wk = �sign ( ~w(k+1))k ~wk = ��, and

the length of wk+1 can be expressed as

kwk+1k =
q
2�2 � 2� ~w(k+1):

The (k + 1)th column of Q is the new orthonormal basis vector,

Qek+1 = P1 � � �Pk+1ek+1;

and because of property ii), the yet to be computed re
ections will not a�ect

this column. Multiplying both sides of (6) by P1 � � �Pk gives:

a = ~a(1)q1 + � � � + ~a(k)qk + �qk+1;

from which it follows that

qk+1 =
1

�

"
a�

kX
i=1

~a(i)qi

#
:

Within the GCR algorithm, the same linear combination must be applied to
the vi to obtain vk+1.

Our implementation requires three communications in each iteration, namely:

(1) The computation of ~a using Walker's approach, requires 2k � 1 inner
products, all of which can be performed with a single communication.

(2) A second communication is necessary to broadcast the �rst k+1 elements

of ~a.
(3) A communication is required to compute k ~wk for �.

The implementation is as in Figure 4, with ~q playing the role of a in the above

discussion.

Comparing the Householder implementation with modi�ed Gram-Schmidt,

� In the kth iteration the Householder method requires three communications,

whereas Gram-Schmidt requires k + 1.

� Householder requires approximately twice as many inner products as Gram-

Schmidt, plus 11
2
times the number of `axpy' operations.

� The Householder method requires the storage of an extra set of k vectors.

A drawback of the Householder method is that there appears to be no simple

way to incorporate truncation schemes in the GCR method if Householder is
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Algorithm: Householder Orthogonalization

[qk; vk] = orthonorm (~q; ~v; qi; vi; i < k):

if k == 1

w1 = ~q

else

if k == 2

L1 = 1

else

Lk�1 =

2
64 Lk�2 0

2wT
k�1Wk�2 1

3
75

end

y = W T
k�1~q

Solve Lk�1d = y

wk = ~q � 2Wk�1d

end

~a(i) = w
(i)
k , i = 1; : : : ; k

Broadcast (~a)

qk = ~q �
P
i<k ~a

(i)qi
vk = ~v �

P
i<k ~a

(i)vi

Set w
(i)
k = 0, i = 1; : : : ; k � 1

� = �sign(~a(k))kwkk

w
(k)
k = w

(k)
k � �

qk = qk=�

vk = vk=�

wk = wk=
q
2�(� � ~a(k))

return

Fig. 4. The Householder orthogonalization algorithm

used for orthogonalization. For truncation one would like to be able to discard
an arbitrary vector qj and the corresponding transformation vector wj , adding
a new pair qk+1, wk+1 to the respective spaces. Below we give a mathematical
motivation for the di�culty of doing this if Householder orthogonalization is

used:

Suppose one has Q = P1 � � �Pk, with orthonormal basis qi = Qei, i = 1; : : : ; k.
Now consider the matrix obtained by deleting Pj and adding a new transform-

ation Pk+1, i.e. ~Q = P1 � � �Pj�1Pj+1 � � �Pk+1, and let ~qk+1 = Qek be the kth
column of this matrix. Then from properties i) and ii) one �nds in general:

h~qk+1; qii = hP1 � � �Pj�1Pj+1 � � �Pk+1ek; P1 � � �Pieii

= hek; eii = 0; for i < j;
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however,

h~qk+1; qii = hPj+1 � � �Pk+1ek; Pj � � �Pieii 6= 0; for i � j:

There is therefore no obvious way to do this.

In the next section we develop a performance model for comparison of the

Householder and Gram-Schmidt methods.

3.2 Performance model

To give insight into the choice of an orthogonalization procedure, consider

a simple performance model. Let the time required for communication of a
message of n 
oating point numbers be given by

tcomm = t0 + �n;

where t0 is the �xed time required for a message of length zero, and � is the
time per 
oating point number (bandwidth). Let the time for n 
oating point

operations be given by

tcomp = �n;

where � is the time for 1 
oating point operation. Similar computation/com-
munication models are used, for example, in [37,29,20,25].

Let p denote the number of processes, and de�ne a function f(p) which gives
the maximum number of a set of communications which must be performed

sequentially. The function f(p) is machine-dependent and also dependent on

the distribution of processes on the machine. For example, assuming perfect
connectivity and that processes not participating in a given communication
are free to participate in a concurrent communication, the broadcast of a mes-

sage among p processes requires f(p) = dlog2 pe consecutive send operations

from the broadcasting process. An Ethernet broadcast requires f(p) = p � 1

consecutive send operations.

Assume each processor is responsible for an n � n subdomain with n2 un-

knowns. De�ne the times for some basic operations:
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Op. Communication Computation De�nition

send (k) t0 + �k send a message of length k


op (n) n� n 
oating point operations

B(p; k) f(p)(t0 + �k) broadcast k elements

G(p; k) 2f(p)(t0 + �k) global sum k elements

SIP(k) G(p; k) 2kn2� k inner prod. simult. comms.

FS(k) k2� forward substitution, order k

axpy 2n2� z = ax+ y, scalar a

Note that we distinguish between inner products that can be computed sim-

ultaneously (i.e. with a single communication) and inner products that can-

not. For example, k simultaneous inner products are denoted SIP(k), whereas

k non-simultaneous inner products are denoted k SIP(1). The modi�ed and
re-orthogonalized classical Gram-Schmidt and Householder routines can be

broken down into components as follows. In the kth iteration of GCR:

Mod. Gram-Schmidt k SIP(1)

2k � 1 axpy

Re-orthog. CGS 2 SIP (k)

3k � 1 axpy

Householder SIP (2k � 3)

SIP(1)

FS (k � 1)

3k � 3=2 axpy

1 Broadcast (k)

We have implemented the re-orthogonalized classical Gram-Schmidt method

so that in the kth iteration, the candidate residual search vector ~q is twice
orthogonalized against the basis q1; : : : ; qk�1 to obtain qk, and only then is
the search vector vk computed. This eliminates a series of vector updates and

explains why there are only 3k � 1 `axpy' operations.

Based on the communication model outlined in the previous two tables, the
orthogonalization time required for s iterations of GCR (without restart) using

the modi�edGram-Schmidt (MGS), re-orthogonalized classical Gram-Schmidt
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(CGS2) and Householder (HH) methods, respectively, is given by:

tMGS =
s(s+ 1)

2

h
6n2�+ 2f(p)(t0 + �)

i
� s(2n2�); (8)

tCGS2 =
s(s+ 1)

2

h
10n2�+ 4f(p)�

i
+ s

h
4f(p)t0 � 2n2�

i
; (9)

tHH =�
s(s+ 1

2
)(s+ 1)

3
+
s(s+ 1)

2

h
(10n2 � 2)� + 5f(p)�

i
+ s

h
f(p)(6t0 � 4�)� (7n2 � 1)�

i
: (10)

If the forward substitution in the Householder algorithm is negligible, the

model becomes

tHH =
s(s+ 1)

2

h
10n2�+ 5f(p)�

i
+ s

h
f(p)(6t0 � 4�)� 7n2�

i
:

Comparing this expression with (9) for the re-orthogonalized classical Gram-

Schmidt algorithm, we see that the two methods are very similar in cost,

while we shall see later that re-orthogonalized Gram-Schmidt is much more
stable than Householder for the standard test problem. The similarity in cost

is con�rmed by our experiments.

Tests were performed on a cluster of HP workstations to obtain representative
values for the parameters t0, � and �:

t0 � 4:7� 10�4; � � 7:5 � 10�6; � � 4:9� 10�8:

Similar tests were performed on a Cray T3E using MPI communications with
the results:

t0 � 2:4� 10�5 � � 5:4 � 10�8 � � 5:8 � 10�8:

Assuming the models (8), (9)and (10), and assuming f(p) = p � 1 for the
workstation cluster and f(p) = dlog2 pe for the Cray T3E, the quantities

FHH =
orthog. time MGS

orthog. time HH
; (11)

FCGS2 =
orthog. time MGS

orthog. time CGS2
(12)

are plotted as a function of n for s = 60 and p = 4; 9 (p = 4; 9; 25 for the

Cray T3E) in Figure 5. The Householder (resp. CGS2) method is faster at

points in the �gure where FHH > 1 (resp. FCGS2 > 1). The model predicts
that the alternative methods (HH) and (CGS2) are only advantageous for

small enough subdomain size. On the workstation cluster this size may be
about 10000 unknowns on 4 processors and somewhat more on 9 processors.

On the Cray T3E, the number of unknowns per processor should be fewer
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than 1000 for 9 or even 25 processors. For larger problems the smaller amount

of work involved in modi�ed Gram-Schmidt orthogonalization outweighs the

increased communication cost. Note also that the model indicates that the

computational e�orts of Householder and re-orthogonalized classical Gram-

Schmidt are very similar, with the Gram-Schmidt variant to be preferred in

the useful range.

In the following section we shall see that, while the model is qualitatively cor-

rect, the observed performance curves are a bit lower than the ones predicted

here.
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Fig. 5. Predicted speedup with Householder orthogonalization

To put the importance of the orthogonalization time into better perspective,

the computation time required for one iteration of GCR can be broken down
as follows:

tk = tmat + tprecond+ torth

where tprecond is the time required to solve the preconditioner, torth is the ortho-
gonalization time and tmat represents the remaining operations (i.e. matrix-

vector multiplication and vector sums). If the system to be solved is very large
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and the preconditioner is expensive, then the time required for orthogonaliz-

ation can become unimportant.

Another issue of relevance to the choice of an orthogonalization method is

the stability of the method with respect to rounding errors. Figure 6 shows a

comparison of the classical, modi�ed, and re-orthogonalized classical Gram-

Schmidt methods and the Householder implementation for the test matrix of

[4]:

A =

2
6666666666664

1 1 : : :

�

�

. . .

3
7777777777775
:

The comparison method is the QR decomposition function of Matlab. We see

that the re-orthogonalized classical Gram-Schmidt method gives the smallest
orthogonalization error of all methods for this test case.
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HH
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Fig. 6. Comparison of orthogonalization error for classical (CGS), modi�ed (MGS),

re-orthogonalized (CGS2) Gram-Schmidt methods, Householder (HH) method, and

Matlab QR function on Bj�orck test problem.

In conclusion, we mention that there does not seem to be any reason to prefer
the parallel Householder method over the re-orthogonalized classical Gram-

Schmidt method, at least in this context. In terms of parallel e�ciency the two
methods are almost identical. However the Gram-Schmidt variant is simpler

to implement, provides signi�cantly less orthogonalization error, and allows
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truncation strategies to be employed in a natural way.

4 Numerical experiments

In this section, we give numerical results which provide useful insights into

approximate solution techniques. Numerical results were obtained from both

a cluster of HP-735 and HP-755 workstations (99-125 MHz) and from a Cray

T3E parallel computer. All communications were handled with MPI. Reported

times are obtained from the MPI timing functions, and are the minimum

time achieved over three runs. For our interests, the workstation results are

as important (or more so) than those from the parallel machine, due to the

immediate availability and relative cheapness of workstations.

Speedup results will be given both for �xed problem size and for �xed sub-
domain size (problem size proportional to the number of processors). For the
serial case, we are interested both in the single subdomain and multiblock
cases, since we mostly use domain decomposition for geometric reasons.

Finally, the question we wish to address is: what is the best form of approx-
imate subdomain solution with respect to total computational expense?

As a test example, we consider a Poisson problem, discretized with the �nite
volume method on a square domain. This example is relevant to our work,
because a similar system must be solved in each time step of an incompressible
Navier-Stokes simulation to enforce the divergence-free constraint, see [23].

Solution of this system requires about 75% of the computing e�ort. The actual
system to be solved in incompressible Navier-Stokes 
ows is nonsymmetric due
to boundary conditions, but we consider only a symmetric matrix in these
experiments. The domain is composed of an M �M array of subdomains,
each with an n�n grid. With h = �x = �y = 1:0=(Mn) the discretization is

4uij � ui+1j � ui�1j � uij�1 � uij+1 = h2fij:

The right hand side function is fij = f(ih; jh), where f(x; y) = �32(x(1 �
x) + y(1� y)). Homogeneous Dirichlet boundary conditions u = 0 are de�ned
on @
, implemented by adding a row of ghost cells around the domain, and

enforcing the condition, for example, u0j = �u1j on boundaries. This ghost

cell scheme allows natural implementation of the domain decomposition as
well.
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4.1 Evaluation of performance model, Householder orthogonalization

The performance model for the orthogonalization methods in the previous

section predicts that the modi�ed Gram-Schmidt algorithm is to be preferred

for large subdomain problems. We wish to investigate this experimentally, to

con�rm the model predictions. The results presented here were computed for

a �xed number of iterations s, equal to the restart value.

Figure 7 is the experimental analog of Figure 5. The parameters FHH and

FCGS2 are plotted for subdomain grid sizes of n = 20; 40; 60; 80; 100 and a �xed

number of iterations s = 60. Measurements were made for 4 and 9 processors

(M = 2; 3, respectively,) on the HP cluster and 4, 9 and 25 processors (M =

2; 3; 5, respectively) on the Cray T3E.

20 40 60 80 100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

subdomain gridsize, n

f 1

HP cluster

p=4

p=9

HH  
CGS2

20 40 60 80 100
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

subdomain gridsize, n

f 1

Cray T3E

p=4

p=9

p=25

HH  
CGS2

Fig. 7. Measured speedup with Householder (HH) orthogonalization and re-ortho-

gonalized classical Gram-Schmidt (CGS2), restart value s = 60.

By comparison one sees that the model developed in the previous section
is qualitatively correct, but is rather optimistic with respect to the range of

problem sizes for which Householder is more e�ective than Gram-Schmidt.
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4.2 Evaluation of approximate subdomain solvers

In this section we compare speedups obtained with a number of approximate

subdomain solvers to get an impression of which solvers might be e�ectively

used with the Navier-Stokes equations. For the tests of this section, a �xed

restart value of s = 30 was used, and modi�ed Gram-Schmidt was used as the

orthogonalization method for all computations. The solution was computed

to a �xed tolerance of 10�6 unless noted otherwise. The performance measure

is computation time, after initialization, taken as the minimum achieved over

three runs.

The subdomain approximations will be denoted:

� GMR6 = restarted GMRES with a tolerance of 10�6, (preconditioned with

RILUD)

� GMR2 = restarted GMRES with a tolerance of 10�2, (preconditioned with
RILUD)

� GMR1 = restarted GMRES with a tolerance of 10�1, (preconditioned with
RILUD)

� RILUD = one application of an RILUD preconditioner.

Speedups are compared both to single and multiblock serial computations.
The motivation for this is that sometimes one needs domain decomposition

for geometric reasons, and sometimes as a means of parallelism.

4.2.1 Single block serial case

The single block serial solution times in seconds on grids of dimension n = 60,

120, 180, 240 and 300 are, on the HP cluster:

n = 60 120 180 240 300

GMR6 0.788 7.56 28.1 82.5 195

GMR2 0.862 8.00 34.7 75.8 180

GMR1 0.815 6.75 29.3 82.1 166

RILUD 1.10 11.0 41.6 117 292

and on the Cray T3E:
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n = 60 120 180 240 300

GMR6 0.483 3.98 11.9 34.7 80.6

GMR2 0.563 4.24 14.8 32.0 74.9

GMR1 0.552 3.62 13.2 35.4 69.3

RILUD 0.666 5.49 17.2 49.9 119

Note that GCR preconditioned with GMRES iterations gives a variation of the

GMRESR method of [40]. All three lead to approximately the same solution

time. This is in agreement with the �ndings of [40{42] for the GMRESR

method. The fourth case is equivalent to solving the problem with GCR,

preconditioned with the RILUD preconditioner. It is also in keeping with the

�ndings of the above papers that this method is slower than GMRESR.

4.2.2 Multiblock solution, �xed problem size

In this section we compare results for a �xed problem size on the 300 � 300
grid with 4 and 9 processors on the workstation cluster and 4, 9, 16 and 25
processors on the Cray T3E. We use one processor per block. The timing
results in seconds are, for the HP cluster:

p = 4 p = 9

GMR6 1430 386

GMR2 346 220

GMR1 457 261

RILUD 157 89

and for the Cray T3E:

p = 4 p = 9 p = 16 p = 25

GMR6 685 178 143 79.3

GMR2 167 102 63.3 37.1

GMR1 222 118 65.6 38.9

RILUD 65.3 25.9 21.9 14.9

On both systems one observes that the method using RILUD as the subdo-

main approximation gives a faster computation time than the fastest serial
computation times from the previous subsection. On the Cray T3E, the meth-
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ods GMR1 and GMR2 are also somewhat faster than the fastest serial time,

for p = 16 and p = 25 processors.

Furthermore, one sees that among those methods in which GMRES is used to

solve the subdomain problems, a tolerance of 10�2 gives a faster solution time

than a tolerance of 10�1. Thus some subdomain convergence appears to be

desirable. On the other hand, the fastest solutions in each case are obtained

with the least accurate subdomain approximation|namely, the RILUD pre-

conditioner.

To give insight into these results, it is useful to look at the iteration counts:

both the number of outer iterations and the average number of inner iterations

(in parentheses).

p = 4 p = 9 p = 16 p = 25

GMR6 78(68.4) 83(38.7) 145(31.4) 168(26.4)

GMR2 86(15.7) 118(15.7) 168(13.7) 192(10.9)

GMR1 139(13.6) 225(9.3) 287(7.1) 303(5.9)

RILUD 341(1) 291(1) 439(1) 437(1)

Note the large increase in the number of outer iterations incurred for GMR1
over GMR2, which helps to explain the faster time for GMR2. Apparently, an
inner loop tolerance of 10�1 is insu�cient for fast global convergence, yet is
still a very expensive subdomain approximation. The RILUD approximation,
on the other hand, though it gives the worst convergence rate of the outer loop,

is very cheap to apply; in fact, cheap enough to make it the fastest method.

Figure 8 illustrates the speedup against the multiblock serial solution, obtained

on the workstation cluster and on the Cray using GMR6, GMR2, GMR1 and
RILUD subdomain approximations. We would expect nearly perfect speedup,
especially for large problems, since the work required for preconditioning is

proportional to the total number of unknowns, while the amount of commu-

nication is proportional to the length of subdomain interfaces. The observed
speedup is quite good on the Cray; however, on the workstation cluster, es-

pecially for p = 9 the subdomain grid size needs to be quite large to obtain
a high speedup. In any case we can conclude that if domain decomposition is

going to be used anyway for geometric reasons or due to memory limitations,

a speedup can be achieved by parallelization and subdomain approximation
with an RILUD preconditioner.

24



50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

grid size
sp

ee
du

p

HP cluster

p=4

p=9
RILUD
GMR1 
GMR2 
GMR6 

50 100 150 200 250 300
0

5

10

15

20

25

grid size

sp
ee

du
p

Cray T3E

p=4

p=9

p=16

p=25
RILUD
GMR1 
GMR2 
GMR6 

Fig. 8. Speedup vs. multiblock solution on the cluster of workstations and the Cray

T3E.

4.2.3 Multiblock case, scaled problem size

Figure 9 shows a comparison of the parallel scalability of the domain de-
composition method with approximate subdomain solution. The �gure shows
computation times on 1, 4 and 9 processors (1, 4, 9, 16 and 25 processors

for the Cray T3E) with a �xed subdomain size of 120 � 120. A �xed number
of outer iterations (30) were computed. Note that the method scales almost
perfectly on the Cray for this range of processors. On the workstation cluster,
the scaling is somewhat poorer, but reasonable.

5 Conclusions

For applications which require domain decomposition for some reason other

than parallelism, it is possible to achieve a great reduction of computation time

by solving subdomain problems approximately. A reasonable speedup with re-
spect to the single block serial solution method is also attainable, particularly
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Fig. 9. Computation time for �xed subdomain size of 120� 120.

when using many processors of a massively parallel distributed memory ma-
chine. This speedup is less impressive when computing on a cluster of work-
stations, due to the increased communication latency.

In our experience, the best subdomain approximation method in parallel is
a simple incomplete factorization restricted to the diagonal: the RILUD fac-
torization. With this preconditioner used as a subdomain approximation, the
approximate solves become so cheap (and yet su�ciently accurate) that they
o�set the increased number of global iterations resulting from inaccurate sub-

domain solution.

A performance model for the modi�ed Gram-Schmidt, re-orthogonalized clas-

sical Gram-Schmidt, and Householder orthogonalization methods indicates
that classical Gram-Schmidt and Householder require approximately the same
amount of work and communication,making the classical Gram-Schmidtmore

attractive, since it is easier to implement and more stable. The Householder

and re-orthogonalized Gram-Schmidt methods are most e�ective for relatively
small problems: using nine processors, up to about 900 unknowns per processor

for a Cray T3E, or 8000 unknowns per processor for a cluster of workstations.
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One promising area of application for these procedures is in long-time simu-

lations of systems of this size.
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