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Abstract In this note we study the asymptotic limit of large variance in a stochas-
tically perturbed thermostat model, the Nosé-Hoover-Langevin device. We show
that in this limit, the model reduces to a Langevin equation with one-dimensional
Wiener process, and that the perturbation is in the direction of the conjugate mo-
mentum vector. Numerical experiments with a double well potential corroborate
the asymptotic analysis.
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1 Introduction

Deterministic thermostats for canonical sampling were introduced by Nosé [16,
17] and Hoover [6] and are commonly used in molecular dynamics to simulate sys-
tems at constant temperature. These methods extend the phase space of a Hamilto-
nian system by one or more degrees of freedom such that the extended dynamics—
when projected back onto the original phase space—preservethe Gibbs distribu-
tion, i.e. the canonical distribution is a steady state of the Liouville flow associated
with the projected dynamics. Bulgac and Kusnezov [1] generalized the Hoover
thermostat to noncanonical Hamiltonian systems. Proving ergodicity of determin-
istic thermostats has presented a challenge (see for example [13,14]), and this
has led recently to the construction of stochastically forced thermostat equations,
referred to here as Nosé-Hoover-Langevin (NHL) thermostats, in which the aug-
mented degrees of freedom satisfy a Langevin equation [20,12].
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Consider a Hamiltonian system

dx
dt

= J∇H(x), (1)

wherex ∈ Rn, JT = −J andH : Rn → R. Assuming that the system is in ther-
mal equilibrium with an external heat bath of constant temperatureT , the NHL
thermostated dynamics is given by

dx = [J∇H(x)+ yg(x)] dt

dy =

[

1
α
(∇ ·g(x)−β∇H ·g(x))−

ασ2

2
y

]

dt +σ dW , (2)

with y ∈ R and initial conditionsx(0) = x0 and y(0) = y0. HereW is a one-
dimensional independent Brownian motion, andβ = 1/(kBT ) is proportional to
the inverse temperature withkB being the Boltzman constant. We denote by∇
the gradient operator with respect to thex-variables only. The NHL system (2)
is constructed to preserve the extended measureρ(x,y) = exp(−βH(x)−αy2/2)
and differs from a classical Langevin equation in a number ofways. For one the
Wiener processW does not directly perturb the dynamics inx, but instead does
so indirectly throughy after integration. In essence this can be seen as providing
a memory effect; that is, the perturbed dynamics inx is non-Markovian. Further-
more, (2) makes use of only a scalar stochastic variable, andit is a question how
this scalar perturbation pervades the rest of the dynamics.To assure ergodicity,
the (otherwise arbitrary) vector fieldg(x) can be chosen to satisfy a so-called
Hörmander controllability condition [15]. The Hörmander condition for the cou-
pled system (2) can be formulated by writing it in the form of astochastic dif-
ferential equation with degenerate noise termdz = r(z)dt + s(z)dW , wherer and
s are vector fields inRn+1 andW (t) is a scalar Wiener process. The Hörmander
condition states that the Lie algebra generated by the vector fields r ands spans
the wholeRn+1, and therefore ensures that the noise eventually pervades all di-
mensions of phase space. In the present case, this reduces tothe requirement that
the Lie algebra generated by vector fieldsJ∇H andg spansRn, see [12].

In this paper, we are interested in the limiting case when thethermostat vari-
abley can have large values due to an increased variance 1/α. In a heuristic way,
it can be understood that the limiting dynamics is a Langevinequation (see below)
as the thermostat variabley will tend to Brownian motion in the case when its re-
laxation time 1/(ασ2) tends to zero. We will in the following make this heuristic
more precise. In particular we will see that additional drift terms arise.

A general Langevin thermostat for (1) is

dx =

[

J∇H(x)+
1
2

∇ · (Σ(x)ΣT (x))−
β
2

Σ(x)ΣT (x)∇H(x)

]

dt +Σ(x)dw, (3)

wherew(t) is a Wiener process inRn and Σ(x) ∈ Rn×n induces multiplicative
noise. The form of this equation is dictated by the demand that the Gibbs measure
ρ = exp(−βH(x)) be stationary under the flow of the associated Fokker-Planck
equation, for arbitrary choice ofΣ(x).

We show that the limiting dynamics of the NHL model (2) is a Langevin
model (3) with rank-one multiplicative noiseΣ(x). For mechanical systems with
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x = (q, p) and separable HamiltonianH = 1
2 pT M−1p+V (q), we will see that in

the large noise limit the NHL model (2) is equivalent to the momentum directed
Langevin thermostat proposed in [11], of which the stochastic velocity rescaling
thermostat of Bussi et al. [2,3] is a particular case.

We introduce the scaling

α → ε2α , y →
1
ε

y , σ →
1
ε2 σ (4)

with ε ≪ 1. The NHL equation (2) then becomes

dx =

[

J∇H(x)+
1
ε

yg(x)

]

dt

dy =

[

1
ε

1
α
(∇ ·g(x)−β∇H ·g(x))−

1
ε2

ασ2

2
y

]

dt +
1
ε

σ dW . (5)

This particular scaling inε allows for the effective reduced dynamics to capture
diffusive effects rather than classical averaging.

2 Homogenization

We will analyse the NHL system (5) in the framework of the backward Kol-
mogorov equation for the conditional expectation value of some sufficiently smooth
observableφ(x,y) defined as

v(x0,y0, t) = E [φ(x(t),y(t)) | x(0) = x0,y(0) = y0] .

Here the expectation value is taken with respect to Brownianmotion driving paths.
Dropping the subscripts, we study the following Cauchy problem for t ∈ [0,∞)

∂ v
∂ t

(x,y, t) = L v(x,y, t)

v(x,y,0) = φ(x,y) , (6)

with the generator

L =
1
ε2L0+

1
ε
L1+L2 ,

where

L0 =−
ασ2

2
y∂y +

1
2

σ2∂yy (7)

L1 = yg(x) ·∇+
1
α
(∇ ·g(x)−β∇H ·g(x))∂y (8)

L2 = J∇H ·∇ . (9)

Pioneered by Khasminsky [7], Kurtz [8,9,10] and Papanicolaou [18] singular
perturbation theory can be formulated for a perturbation expansion according to

v(x,y, t) = v0+ εv1+ ε2v2+ · · · . (10)
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A comprehensive exposition of the theory of stochastic model reductions and their
implementation is given for example in [21,19]. Substituting the series (10) into
the backward Kolmogorov equation (6) we obtain at lowest order,O(1/ε2),

L0v0 = 0 . (11)

The fast dynamics associated with the generatorL0 is given by an Ornstein-
Uhlenbeck process and is therefore ergodic.1 Ergodicity of the fast process implies
that expectation values do not depend on initial conditionsy. Hence the constant
solution

v0 = v0(x, t)

is the only solution of (11).
Ergodicity is equivalent to the existence of a unique invariant density, i.e. that the
equation

L
⋆
0 ρ = 0 ,

has a unique solutionρ∞(y). HereL ⋆
0 is the formalL2-adjoint of the generatorL0.

For later reference we present the unique invariant densityof the fast Ornstein-
Uhlenbeck process associated withL ⋆

0

ρ∞(y) =

√

α
2π

exp(−
α
2

y2) . (12)

At the next order,O(1/ε), we obtain

L0v1 =−L1v0 . (13)

To assure boundedness ofv1 (and thereby of the asymptotic expansion (10)) the
solvability condition prescribed by the Fredholm alternative has to be satisfied.
Equation (13) is solvable only provided the right-hand-side is in the space orthog-
onal to the (one-dimensional) null space of the adjointL ⋆

0 , i.e. if

〈L1v0〉ρ∞ =−〈yg(x)〉ρ∞ ·∇v0(x, t) = 0 ,

where〈h〉ρ∞ :=
∫

ρ∞(y)h(x,y)dy denotes the average of an observableh(x,y) over
the invariant density. Since〈y〉ρ∞ = 0, there exists a solution of (13), which is
readily calculated as

v1(x,y, t) =
2

ασ2 yg ·∇v0+R(x) , (14)

whereR(x) lies in the kernel ofL0. Note that the vanishing of the average of
the thermostat perturbation with respect to the invariant measure induced by the
fast thermostat variable (i.e.〈yg〉ρ∞ = 0) implies that classical averaging would
produce a trivial reduced dynamics withdx = J∇Hdt without any trace of the fast
stochastic thermostat variable.

At the next order,O(1), we obtain the desired evolution equation forv0,

L0v2 =
∂
∂ t

v0−L1v1−L2v0 . (15)

1 As discussed above, the Ornstein-Uhlenbeck process was introduced precisely into the
framework of thermostat equations to render the full systemergodic.
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Again a solvability condition has to be imposed which reads

∂
∂ t

v0 = 〈L2v0〉ρ∞ + 〈L1v1(x, t)〉ρ∞ . (16)

Using〈y2〉ρ∞ = 1/α we obtain the full reduced slow backward-Kolmogorov equa-
tion

∂
∂ t

v0 =

(

J∇H +
2

α2σ2

[

∇ ·
(

ggT )−βggT ∇H
]

)

·∇v0+
2

α2σ2 ggT : ∇∇v0 .

(17)

Here we define that the divergence operator acting on matrix valued functions
h acts by contraction as{∇ · h}i = ∂ j (hi j), and the inner product of matrices is
defined as

A : B = ai jbi j = Tr(ABT ) ,

which induces the Frobenius norm.
Note thatR(x) does not contribute to the dynamics. We can therefore choose

R(x) = 0 in order to assure that〈v〉ρ∞ = v0+O(ε2)
The slow reduced Langevin equation associated with the reduced backward

Kolmogorov equation (17) is then

dX = F(X)dt +S(X)dW with X(0) = x0 , (18)

with one-dimensional Wiener processW and where the drift coefficient vector
F(X) and the diffusion coefficient vectorS(X) are given by

F(X) = J∇H +
2

α2σ2

[

∇ ·
(

ggT )−βggT ∇H
]

S(X) =
2

ασ
g . (19)

We conclude that (18)–(19) is in the form of the Langevin equation (3) for the case
Σ(x) = 2

ασ g(x) and scalar Wiener processW .

3 Reduced model for molecular dynamics

The original thermostat devices of Nosé and Hoover [16,17,6] were developed for
molecular dynamics problems in canonical Hamiltonian form. (For an application
of the NHL thermostat to point vortices, see [4].) Since Nos´e-Hoover thermostats
are primarily used in the molecular dynamics context, in this section we specify
the reduced Langevin model derived in the previous section to the particular case
of mechanical systems. To this end we taken = 2d, and consider a mechanical
system with positive diagonal mass matrixM and phase space coordinatesx =
(q, p), q, p ∈ Rd , and with Hamiltonian

H(x) = H(q, p) =
1
2

pT M−1p+V (q) ,
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and canonical structure matrixJ=
(

0 I
−I 0

)

. The deterministic equations of motion
(1) are then given by

dq
dt

= M−1p ,
dp
dt

=−
∂
∂ q

V (q) . (20)

For the NHL system (2) we make the specific choiceg(x) = g(q, p) = (0, p). Note
that the Hörmander condition is immediate here, since the original vector field
M−1p,−∂V/∂ q and the perturbation vector fieldg(q, p) = (0, p) are trivially lin-
early independent. In molecular dynamics, this choice is physically motivated,
since the thermostat acts to slow or accelerate the motion. One would then need to
check the Hörmander condition for the given potentialV . Our numerical example
in the next section is inR2, so the Hörmander condition is satisfied ifJ∇H andg
are linearly independent. The reduced Langevin equation (18)–(19) then takes the
form

dq = M−1pdt

dp =

[

−∇qV (q)+
2

α2σ2

(

d+1−β pT M−1p
)

p

]

dt +
2

ασ
pdW, (21)

from which it is apparent that the noise and dissipation act in the direction of the
generalized momentum vectorp. In particular, we note that the reduced Langevin
equation (21) and the NHL system (2) preserve the set of equilibria of the full
deterministic dynamics (1). We also point out that the reduced Langevin equation
(21) is equivalent to the momentum directed Langevin thermostat described in
[11] as a generalization of the stochastic velocity rescaling thermostat of Bussi et
al. [2,3].

4 Numerical verification

In this Section we will numerically illustrate that the reduced Langevin equation
(18) is a good pathwise model of the small-ε limit of the NHL model (5). We show
this for a simple system with one degree of freedom (d = 1). Parameters for the
NHL model (2) and its reduced Langevin equation (21) are chosen to beα = ε2,
σ = 1/ε2.

Both the NHL model (2) and the reduced model (21) were implemented us-
ing a splitting method, equivalent to the Störmer-Verlet method for the Hamilto-
nian vector fieldJ∇H, and solving the thermostat dynamics using a composition
of a half-step each of the split-step backward Euler method [5] and the Euler-
Maruyama method, which effects the midpoint rule in the absence of the noise
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term. For the reduced model (21) this becomes

qn+1/2 = qn +
∆ t
2

M−1pn

p′n+1/2 = pn −
∆ t
2

∇qV (qn+1/2)

p′′n+1/2 = p′n+1/2−
∆ t
2

Γ (p′′n+1/2) (22a)

pn+1/2 = p′′n+1/2+
2

ασ
p′′n+1/2(Wn+1/2−Wn) (22b)

p′n+1 = pn+1/2−
∆ t
2

Γ (pn+1/2)+
2

ασ
pn+1/2(Wn+1−Wn+1/2) (22c)

pn+1 = p′n+1−
∆ t
2

∇qV (qn+1/2)

qn+1 = qn+1/2+
∆ t
2

M−1pn+1,

whereΓ (p) = 2(ασ)−2(β pT M−1p−(d+1))p. The variablesWn, Wn+1/2, etc. in
(22b)–(22c) denote successive values of a Wiener process, i.e., the increments
Wn+1/2−Wn are drawn from a normal distribution with variance∆ t/2. The split-
step backward Euler method (22a)–(22b) is implicit in the momenta, which for
the simple example we consider is computationally feasible.

Numerical experiments were done for the following double well potential

V (q) =
1
4

q4−
1
2

q2 ,

with M = 1. In all experiments we took as initial conditions(q0, p0) = (1,1/4)
and setβ = 10 as the inverse temperature. In this case, the canonical equilibrium
density of the system (20) is given by

ρ(q, p) = exp

[

−β(
p2

2
+

q4

4
−

q2

2
)

]

. (23)

Figure 1 demonstrates that the NHL model (2) and the reduced Langevin model
(21) both sample the canonical equilibrium measure, as designed. The canonical
equilibrium measure (23) is shown on the left, along with nearly-converged em-
pirical measures obtained from a single, long simulation each of the NHL model
(2) and the reduced Langevin model (21), respectively, in the middle and on the
right. Each simulation was run on the intervalt = [0,105] with ∆ t = 0.001. If the
time interval is increased by a factor 10, the sampled empirical densities are in-
distinguishable from the theoretical density (23). The agreement is expected, by
construction of the models, if the simulation is ergodic.

We next present results of simulations of the NHL model (2) for varying values
of ε. Recall that the variance of the thermostat variabley is ε−2. We thus expect
that for large values ofε the effect of the NHL thermostat will be weak on the
chosen finite time intervalt ∈ [0,103], and the trajectories will behave nearly de-
terministically. The reduced Langevin model (18) is derived in the limitε → 0, so
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Fig. 1 Contour plot of the canonical equilibrium measure for a particle in a double well poten-
tial. Left: theoretical measure (23), middle: empirical measure calculated from a simulation of
the NHL model (2) withε = 1, right: empirical measure calculated from a simulation ofthe
reduced Langevin model (21).

we expect that the NHL dynamics will be more erratic in this limit. This behav-
ior is confirmed by Figures 2 and 3. Forε = 100 the trajectories are smooth and
nearly periodic. The left potential well is only sampled once on this time interval.
Note, however, that the NHL model satisfies the Hörmander condition [15] and
is expected to be ergodic for this problem. Indeed, for a simulation on the much
longer intervalt ∈ [0,107] the sampled measure is indistinguishable from the the-
oretical measure shown in Figure 1 (left) for all values ofε. Forε = 10 andε = 1,
the solution is still quite smooth but both wells are frequently visited on the given
time interval. Forε = 0.1 the phase trajectories are much more erratic, with large
fluctuations in the momentum. In this regime the trajectories look very similar to
those of the Langevin model (18) (not shown). On the other hand, Figure 3 shows
that the sampling behavior of the double well potential is qualitatively similar for
ε = 1 andε = 0.1, suggesting that the time series forq is approximately converged
even forε = 1. We can quantify the convergence by numerically estimating the
mean residence timeτ, i.e. the average time the trajectory spends in the respective
potential wells. We find that the mean residence times forε = 1 andε = 0.1, which
areτ = 101 andτ = 102 respectively, are both close to the mean residence time
of the reduced Langevin model withτ = 103. Whereas the dynamics of the posi-
tion variableq of the NHL model (2) has converged in the sense that its statistics
converges to the statistics of the reduced model (18) forε = 1, this is not the case
for the momentum variablep. In Figure 2 it is clearly seen that the variance of the
momentum variablep strongly differs forε = 1 andε = 0.1. We conclude that
the small-ε limit corresponds to large stochastic forcing and large influence of the
thermostat variabley, consistent with the scaling we proposed in the derivation of
the reduced Langevin equation (18)–(19) from the NHL model (2).

We now show that trajectories of the reduced Langevin equation (18)–(19)
converge path-wise to solutions of the full NHL model (2) in the limit of ε → 0.
To study convergence we introduce the supremum error

|∆q|ε = sup
t∈[0,t⋆ ]

|qNHL(t)−qred(t)| , (24)

between solutions of the full NHL model (2), denoted byqNHL , and solutions
of the reduced Langevin model (21), denoted byqred(t), on a fixed time interval
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Fig. 2 Phase space trajectories for diminishingε , computed with the NHL model (2) using an
integration stepsize of∆t = 10−3.

[0, t⋆]. To investigate path-wise convergence we use identical Wiener increments
for both the NHL model (2) and the reduced Langevin model (21). How the error
|∆q|ε scales withε is illustrated in Figure 4 where a clear quadratic scaling isseen
with |∆q|ε ∼ ε−2. Although we do expect a scaling withε, we are not aware of
any rigorous results that explain the quadratic behavior.

It is remarkable that the limiting Langevin process that we derive here by
means of a stochastic singular perturbation analysis [19] has been heuristically
proposed before e.g. by Leimkuhler et al. [11] and Bussi et al. [2,3] to construct a
thermostat with a mild effect on the dynamics, only along thedirection of motion.

Acknowledgements We are grateful to the Isaac Newton Institute where parts of this research
were performed during the programmeMathematical and Statistical Approaches to Climate
Modelling and Prediction (CLP). GAG acknowledges support from the Australian Research
Council. JEF acknowledges support from the Netherlands Organization for Scientific Research
(NWO).

References

1. A. BULGAC AND D. KUSNEZOV, Canonical ensemble averages from pseudomicrocanoni-
cal dynamics,Phys. Rev. A 42 (1990), 5045–5048.

2. G. BUSSI, D. DONADIO AND M. PARINELLO, Canonical sampling through velocity
rescaling,J. Chem. Phys 126(2007), 014,101.



10

0 500 1000
−2

−1

0

1

2

t

q
ε = 100

0 500 1000
−2

−1

0

1

2

t

q

ε = 10

0 500 1000
−2

−1

0

1

2

t

q

ε = 1

0 500 1000
−2

−1

0

1

2

t

q

ε = 0 .1

Fig. 3 Time series of positionq for diminishing ε with the NHL model (2). The integration
stepsize is∆t = 10−3.

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

ε

|∆
 q

| ε

Fig. 4 Log-log plot of the supremum error (24) ont ∈ [0,10] between the numerical solution
computed with the NHL dynamics (2) and that computed with thereduced Langevin model (21).
A time step of∆t = 1e−6 was used and identical Wiener increments have been employedfor
both models. The slope of the dashed line indicates quadratic convergence inε .



11

3. G. BUSSI AND M. PARINELLO, Stochastic thermostats: comparison of local and global
schemes,Comp. Phys. Comm. 179(2008), 26–29.

4. S. DUBINKINA , J. FRANK , AND B. LEIMKUHLER, Simplified Modelling of Energetic
Interactions with a Thermal Bath, with Application to a Fluid Vortex System,Multiscale
Model. Simul. (2010), to appear.

5. D. J. HIGHAM , X. MAO, AND A. M. STUART, Strong convergence of Euler-type methods
for nonlinear stochastic differential equations,SIAM J. Numer. Anal. 40(2002), 1041–1063.

6. W. HOOVER, Canonical dynamics: equilibrium phase space distributions,Phys. Rev. A 31
(1985), 1695–1697.

7. R. Z. KHASMINSKY, On stochastic processes defined by differential equationswith a small
parameter.Theory Prob. Applications 11 (1966), 211–228.

8. T. G. KURTZ, A limit theorem for perturbed operator semigroups with applications to ran-
dom evolutions.J. Functional Analysis 12 (1973), 55–67.

9. T. G. KURTZ, Limit theorems and diffusion approximations for density dependent Markov
chains.Math. Prog. Stud. 5 (1976), 67–78.

10. T. G. KURTZ, Strong approximation theorems for density dependent Markov chains.
Stochast. Proc. Appl. 6 (1978), 223 –240.

11. B. LEIMKUHLER , E. NOORIZADEH, AND O. PENROSE, Comparing the efficiencies of
stochastic isothermal molecular dynamics methods,J. Stat. Phys. (2010), to appear.

12. B. LEIMKUHLER , E. NOORIZADEH, AND F. THEIL, A gentle stochastic thermostat for
molecular dynamics,J. Stat. Phys. 135(2009), 261–277.

13. F. LEGOLL, M. LUSKIN AND R. MOECKEL, Non-ergodicity of Nosé-Hoover thermostat-
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Nonlinearity 22 (2009), 1673–1694.

15. J.C. MATTINGLY, A.M. STUART AND D.J. HIGHAM , Ergodicity for SDEs and approxi-
mations: locally Lipschitz vector fields and degenerate noise,Stoch. Proc. Appl. 101(2002),
185–232.
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