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Abstract In this note we study the asymptotic limit of large varianta istochas-
tically perturbed thermostat model, the Nosé-Hoovergeun device. We show
that in this limit, the model reduces to a Langevin equatidth wne-dimensional
Wiener process, and that the perturbation is in the direaifdhe conjugate mo-
mentum vector. Numerical experiments with a double welkptial corroborate
the asymptotic analysis.
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1 Introduction

Deterministic thermostats for canonical sampling wereoohitced by Nosé [16,
17] and Hoover([6] and are commonly used in molecular dynameisimulate sys-
tems at constant temperature. These methods extend theeggieas of a Hamilto-
nian system by one or more degrees of freedom such that teeded dynamics—
when projected back onto the original phase space—preseav@ibbs distribu-
tion, i.e. the canonical distribution is a steady state efltiouville flow associated
with the projected dynamics. Bulgac and KusnezZav [1] gdired the Hoover
thermostat to noncanonical Hamiltonian systems. Proviggdécity of determin-
istic thermostats has presented a challenge (see for egddl14]), and this
has led recently to the construction of stochasticallyddrthermostat equations,
referred to here as Nosé-Hoover-Langevin (NHL) therntesta which the aug-
mented degrees of freedom satisfy a Langevin equdtich 220, 1
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Consider a Hamiltonian system

dx

— = JOH(x 1

o = JOHX), (1)
wherex € R", JT = —J andH : R" — R. Assuming that the system is in ther-
mal equilibrium with an external heat bath of constant terapgeT, the NHL
thermostated dynamics is given by

dx = [JOH (x) +yg(x)] dt
1 ao?
dy = E(Dg(x)—BDH-g(X))—Ty dt+odw, 2

with y € R and initial conditionsx(0) = xp and y(0) = yp. HereW is a one-
dimensional independent Brownian motion, ghe- 1/(kgT) is proportional to
the inverse temperature wilty being the Boltzman constant. We denote [by
the gradient operator with respect to tkewariables only. The NHL systenm](2)
is constructed to preserve the extended megstg) = exp(—BH (X) — ay?/2)
and differs from a classical Langevin equation in a numbewrayfs. For one the
Wiener procesdV does not directly perturb the dynamicsxnbut instead does
so indirectly througly after integration. In essence this can be seen as providing
a memory effect; that is, the perturbed dynamicg ia hon-Markovian. Further-
more, [2) makes use of only a scalar stochastic variableitasmd question how
this scalar perturbation pervades the rest of the dynam@sissure ergodicity,
the (otherwise arbitrary) vector fielg(x) can be chosen to satisfy a so-called
Hormander controllability condition [15]. The Hormamdmndition for the cou-
pled system[{2) can be formulated by writing it in the form dftachastic dif-
ferential equation with degenerate noise tetm- r(z)dt 4+ s(z)dwW, wherer and
s are vector fields iiR™* andW(t) is a scalar Wiener process. The Hormander
condition states that the Lie algebra generated by the véietdsr ands spans
the wholeR™?, and therefore ensures that the noise eventually pervaidgis a
mensions of phase space. In the present case, this redubesraguirement that
the Lie algebra generated by vector field$H andg spansR", see([12].

In this paper, we are interested in the limiting case whertlibemostat vari-
abley can have large values due to an increased variaheelh a heuristic way,
it can be understood that the limiting dynamics is a Langegumation (see below)
as the thermostat variabjewill tend to Brownian motion in the case when its re-
laxation time ¥ (a0?) tends to zero. We will in the following make this heuristic
more precise. In particular we will see that additionaltdefms arise.

A general Langevin thermostat fér (1) is

dx = JDH(X)+%D-(Z(X)ZT(X))—%Z(X)ZT(X)IZIH(X) dt+Z(x)dw, (3)

wherew(t) is a Wiener process i®" and X(x) € R™" induces multiplicative
noise. The form of this equation is dictated by the demantttieaGibbs measure
p = exp(—BH(X)) be stationary under the flow of the associated Fokker-Planck
equation, for arbitrary choice & (x).

We show that the limiting dynamics of the NHL modél (2) is a gawin
model [3) with rank-one multiplicative nois®(x). For mechanical systems with



x = (g, p) and separable Hamiltonidth = 1p"M~1p+V(q), we will see that in
the large noise limit the NHL mod€ll(2) is equivalent to themsmtum directed
Langevin thermostat proposed in_[11], of which the stodhagtlocity rescaling
thermostat of Bussi et al.]|2, 3] is a particular case.

We introduce the scaling

1 1
2
oa—Ea, y—>gy, a—>?a 4
with € < 1. The NHL equation{2) then becomes
dx = {JDH(X)+%yg(x) dt
11 1 ao? 1
dy = EE(Dg(x)—BDHg(x))—?Ty dt+EGdW. (5)

This particular scaling i allows for the effective reduced dynamics to capture
diffusive effects rather than classical averaging.

2 Homogenization

We will analyse the NHL systeni](5) in the framework of the haakd Kol-
mogorov equation for the conditional expectation valueoofis sufficiently smooth
observablep(x,y) defined as

V(x0,Yo,t) = E[@(x(t), y(t)) | X(0) = X0,¥(0) = Yo] -

Here the expectation value is taken with respect to Browmiation driving paths.
Dropping the subscripts, we study the following Cauchy fEobfort € [0, »)

L xyt) = 2uxy)
VX %.0) = 9xY). ©

with the generator
1 1
j: ?ch‘i‘ E$1+$2 5

where
2
go = _ﬂyﬁy+ }Uzayy (7)
2 2
1
flzyg<x)'D+5<D'g(X)—BDH -g(x))dy (8)
S =J0OH 0. 9

Pioneered by Khasminsky![7], Kurtz|[8/9,)10] and Papaniagoldg] singular
perturbation theory can be formulated for a perturbatiqraesion according to

V(X,Y,t) = Vo+ Evi+ E2vo 4 -+ - . (10)



A comprehensive exposition of the theory of stochastic rhiatkictions and their
implementation is given for example in [21]19]. Substitgtthe seried (10) into
the backward Kolmogorov equatidd (6) we obtain at lowesenrd(1/£?),

Zovo=0. (11)

The fast dynamics associated with the generatgris given by an Ornstein-
Uhlenbeck process and is therefore ergldirgodicity of the fast process implies
that expectation values do not depend on initial conditipridence the constant
solution

Vo = V0<X7t)

is the only solution of[(1]1).
Ergodicity is equivalent to the existence of a unique irsardensity, i.e. that the
equation

Lp=0,
has a unique solution., (y). Here.Zj is the formalL,-adjoint of the generatas.
For later reference we present the unique invariant dewgitile fast Ornstein-
Uhlenbeck process associated withf

Poo(y) = \/g exn(—%yz) : (12)

At the next orderg’(1/€), we obtain
,%vl = —$1Vo . (13)

To assure boundedness\af(and thereby of the asymptotic expansibn] (10)) the
solvability condition prescribed by the Fredholm alteiveahas to be satisfied.
Equation[(IB) is solvable only provided the right-handesilin the space orthog-
onal to the (one-dimensional) null space of the adjsgt, i.e. if

(Z1V0) p., = —(YI(X)) o - OVO(X,1) =0,

where(h),,, '= [ p»(Y)h(X,y) dy denotes the average of an observdijiey) over
the invariant density. Sincéy),,, = 0, there exists a solution df {{L3), which is
readily calculated as

2
V1<X7 y:t) = Wyg DV0+ R(X) ) (14)

whereR(x) lies in the kernel of%. Note that the vanishing of the average of
the thermostat perturbation with respect to the invariagasare induced by the
fast thermostat variable (i.e{yg),,, = 0) implies that classical averaging would
produce a trivial reduced dynamics widkk = JOHdt without any trace of the fast
stochastic thermostat variable.

At the next orderg/(1), we obtain the desired evolution equation gy

%Vo—g;LVl —,,szo . (15)

1 As discussed above, the Ornstein-Uhlenbeck process wasliled precisely into the
framework of thermostat equations to render the full systegodic.

Lovo =




Again a solvability condition has to be imposed which reads

2o = (Lol + (LX) (16)

Using (y?)p,, = 1/a we obtain the full reduced slow backward-Kolmogorov equa-
tion

d 2 T T 2 1.
Ev():(,JIDHJrW[D-(gg ) —Bag DH])~DV0+WQQ : O0Ovp .
17)

Here we define that the divergence operator acting on masiixed functions
h acts by contraction agl- h}; = d; (h;;), and the inner product of matrices is
defined as

A:B=ajbij =Tr(ABT),

which induces the Frobenius norm.

Note thatR(x) does not contribute to the dynamics. We can therefore choose
R(x) = 0 in order to assure that),,, = vo+ O(€?)

The slow reduced Langevin equation associated with theceztibackward
Kolmogorov equatiori(17) is then

dX =F(X)dt+S(X)dW  with  X(0) =X, (18)

with one-dimensional Wiener proce®é and where the drift coefficient vector
F (X) and the diffusion coefficient vect&X) are given by

F(X)=JOH + % [0 (09") — Bog" OH]

SX) = 2

ac?

We conclude thaf (A8)E(19) is in the form of the Langevin eigque(3) for the case
3(x) = 259(x) and scalar Wiener proce.

(19)

3 Reduced model for molecular dynamics

The original thermostat devices of Nosé and Hoovelr [1i®[lwere developed for
molecular dynamics problems in canonical Hamiltonian foffor an application
of the NHL thermostat to point vortices, séé [4].) Since &dtdover thermostats
are primarily used in the molecular dynamics context, is gection we specify
the reduced Langevin model derived in the previous sectidhe particular case
of mechanical systems. To this end we take 2d, and consider a mechanical
system with positive diagonal mass matkikand phase space coordinates
(a,p), q, p € RY, and with Hamiltonian

H(x) =H(q,p) = %pTM*lp+V(q) :



and canonical structure mattx= ( % §). The deterministic equations of motion
(1) are then given by

o JEVES dp_ 9

For the NHL systen{(2) we make the specific cha¢e = g(q, p) = (0, p). Note
that the Hormander condition is immediate here, since tiginal vector field
M~1p, -9V /dqand the perturbation vector fietfig, p) = (0, p) are trivially lin-
early independent. In molecular dynamics, this choice igsjgally motivated,
since the thermostat acts to slow or accelerate the motioav@uld then need to
check the Hormander condition for the given potentiaDur numerical example
in the next section is iiR?, so the Hormander condition is satisfiediiH andg
are linearly independent. The reduced Langevin equdii@p-(19) then takes the
form

dg=M"1pdt

2 _— 2
dp= —DqV(q)—l—W(d—&-l—Bp M~p)p dt+%pdw, (21)

from which it is apparent that the noise and dissipationm@athé direction of the
generalized momentum vectpr In particular, we note that the reduced Langevin
equation[(2ll) and the NHL systefn (2) preserve the set of ibgailof the full
deterministic dynamic$11). We also point out that the reducangevin equation
(27) is equivalent to the momentum directed Langevin thetatodescribed in
[11] as a generalization of the stochastic velocity resggtihermostat of Bussi et
al. [2[3].

4 Numerical verification

In this Section we will numerically illustrate that the resa Langevin equation
(18) is a good pathwise model of the smalimit of the NHL model [3). We show
this for a simple system with one degree of freedaiha=(1). Parameters for the
NHL mozdel [2) and its reduced Langevin equatibn (21) are ehds bea = £,
o=1/¢g.

Both the NHL model[(R) and the reduced modell(21) were impleratus-
ing a splitting method, equivalent to the Stormer-Verlethod for the Hamilto-
nian vector fieldlOH, and solving the thermostat dynamics using a composition
of a half-step each of the split-step backward Euler met&)cahd the Euler-
Maruyama method, which effects the midpoint rule in the abseof the noise



term. For the reduced mod€l{21) this becomes

At
Qn+1/2:qn+?M L

At
p:1+1/2 =Pn— ?DqV(QnH/Z)
At
Phi1/2 = Phi1j2 — 7’_(Dﬁ+1/2) (22a)
2
Pri1/2 = Priaj2 + 90 Ph1/2(Whi1/2 —Wh) (22b)

At 2
Phi1 = Pni1/2 — 5 T (Pri1/2) + = Pnir/2(Wai1 —Waya)2) (22c)

At
Pn+1= pﬁ+1 - ?qu(qnﬂ/z)

At
On+1 = Ont1/2+ 7M Ypnia,

wherel” (p) = 2(a0)~2(Bp" M ~!p—(d+1))p. The variable¥\h, W, 1, etc. in
(220)-{22t) denote successive values of a Wiener processitie increments
W, 1/2 —Wh are drawn from a normal distribution with variande/2. The split-
step backward Euler method (22a)—(P2b) is implicit in thenmeata, which for
the simple example we consider is computationally feasible

Numerical experiments were done for the following doubldl petential

_la 1,

with M = 1. In all experiments we took as initial conditio(g, po) = (1,1/4)
and sef8 = 10 as the inverse temperature. In this case, the canonigéibeigm
density of the systend (20) is given by

2 4 2
p(g, p) = exp —B(%+%—%) : (23)

Figure[1 demonstrates that the NHL modél (2) and the reduaeddvin model
(21) both sample the canonical equilibrium measure, agdedi The canonical
equilibrium measurd_(23) is shown on the left, along withrhyeeonverged em-
pirical measures obtained from a single, long simulatiarhes the NHL model
(@) and the reduced Langevin modell(21), respectively, énnttiddle and on the
right. Each simulation was run on the intervat [0, 10°] with At = 0.001. If the
time interval is increased by a factor 10, the sampled ecglidensities are in-
distinguishable from the theoretical density](23). Thesagnent is expected, by
construction of the models, if the simulation is ergodic.

We next present results of simulations of the NHL model (Byfoying values
of £. Recall that the variance of the thermostat varigbies~2. We thus expect
that for large values of the effect of the NHL thermostat will be weak on the
chosen finite time interval e [0,10°), and the trajectories will behave nearly de-
terministically. The reduced Langevin modell(18) is dedlii@the limite — 0, so



Fig. 1 Contour plot of the canonical equilibrium measure for aipkrin a double well poten-
tial. Left: theoretical measurg(P3), middle: empiricalasere calculated from a simulation of
the NHL model [2) withe = 1, right: empirical measure calculated from a simulatiorthef
reduced Langevin modd[{P1).

we expect that the NHL dynamics will be more erratic in thisiti This behav-
ior is confirmed by Figurels| 2 and 3. Fer= 100 the trajectories are smooth and
nearly periodic. The left potential well is only sampled emmn this time interval.
Note, however, that the NHL model satisfies the Hormandedition [15] and
is expected to be ergodic for this problem. Indeed, for a Eitian on the much
longer intervat € [0,107] the sampled measure is indistinguishable from the the-
oretical measure shown in Figlire 1 (left) for all values ofore = 10 ande = 1,
the solution is still quite smooth but both wells are frediyenisited on the given
time interval. Fore = 0.1 the phase trajectories are much more erratic, with large
fluctuations in the momentum. In this regime the trajecwli®k very similar to
those of the Langevin modé¢[{118) (not shown). On the othedhBigure 3 shows
that the sampling behavior of the double well potential ialgatively similar for
¢ =1ande = 0.1, suggesting that the time series fds approximately converged
even fore = 1. We can quantify the convergence by numerically estingattie
mean residence time i.e. the average time the trajectory spends in the resgecti
potential wells. We find that the mean residence times ferl ands = 0.1, which
aret = 101 andr = 102 respectively, are both close to the mean residence time
of the reduced Langevin model with= 103. Whereas the dynamics of the posi-
tion variableg of the NHL model[[2) has converged in the sense that its Htatis
converges to the statistics of the reduced mddél (183 ferd, this is not the case
for the momentum variablp. In Figure[2 it is clearly seen that the variance of the
momentum variablg strongly differs fore = 1 ande = 0.1. We conclude that
the smalle limit corresponds to large stochastic forcing and largaugrice of the
thermostat variablg, consistent with the scaling we proposed in the derivation o
the reduced Langevin equatién{18)J(19) from the NHL mdgg! (

We now show that trajectories of the reduced Langevin eqodfl8)-{19)
converge path-wise to solutions of the full NHL modél (2) fre fimit of € — 0.
To study convergence we introduce the supremum error

|Agle = sup [gN(t) — g®(t)] (24)
te[ot]

between solutions of the full NHL modédll(2), denoted ¢y, and solutions
of the reduced Langevin modél[{21), denoteddfyf(t), on a fixed time interval



Fig. 2 Phase space trajectories for diminishingcomputed with the NHL mode[{2) using an
integration stepsize aft = 103,

[0,t*]. To investigate path-wise convergence we use identicahgvigncrements
for both the NHL model[{R) and the reduced Langevin madéel.(Bibw the error
|Aq|e scales witte is illustrated in Figur€}4 where a clear quadratic scalirgpisn
with |Ag|s ~ €72. Although we do expect a scaling with we are not aware of
any rigorous results that explain the quadratic behavior.

It is remarkable that the limiting Langevin process that vegive@ here by
means of a stochastic singular perturbation analysis [48]deen heuristically
proposed before e.g. by Leimkuhler et al.][11] and Bussi.d2a8B] to construct a
thermostat with a mild effect on the dynamics, only alongdinection of motion.
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