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Abstract

We study a Hamiltonian toy model for a Lagrangian fluid parcel in the semi-
geostrophic limit which exhibits slow and fast dynamics. We first reinject
unresolved fast dynamics into the deterministic equation through a stochas-
tic parametrization that respects the conservation of the energy of the de-
terministic system. In a second step we use stochastic singular perturbation
theory to derive an effective reduced stochastic differential equation for the
slow dynamics. We verify the results in numerical simulations.

Keywords: Homogenization; Multi-scale systems; Stochastic
parametrizations

1. Introduction

The dynamics of the atmosphere and the oceans is inherently complex.
There are active entangled processes running on spatial scales from mil-
limetres to thousands of kilometres, and temporal scales from seconds to
millennia. To capture the whole range of spatial and temporal scales is
impossible given current computer power. Any numerical forecaster has to
make a decision, depending on the specific objectives, as to what spatial and

Preprint submitted to Physica D March 28, 2013



temporal scales to resolve. A corollary of this decision is that each numer-
ical scheme inevitably fails to resolve so called subgrid scales. Usually the
interesting information is carried by the slow and large scales. For example,
for weather forecasts we want to resolve large scale high and low pressure
fields rather than small scale fast oscillations of the stratification surfaces,
or for climate prediction in a coupled ocean-atmosphere model we may want
to learn about the slow dynamics of the ocean, which is constantly kicked
by more rapidly evolving weather systems swirling over the surface.

The crucial question is: can one employ a coarse spatial grid and a large
time step in a numerical discretization tailored to the large and slow scales
of interest (i.e. large and slow weather systems or climate)? And further,
can this be achieved while still accounting for the vital interactions with
the unresolved processes which are smaller than the coarse spatial grid and
faster than the slow time step used in the integration?

In the context of long-range weather forecasting the small unresolved scales
are embodied in fast small-scale inertia-gravity waves. The dynamics on the
coarse grid is therefore coupled to a collection of fast wave motion. The
phases of these fast oscillators are randomized by the chaotic interactions
of these waves. It has been shown that a large collection of oscillators with
randomized phases may be modelled by a stochastic process [29, 21]. This
approach of modelling fast small scale chaotic processes by a stochastic pro-
cess is intuitive: provided the fast processes decorrelate rapidly enough, the
slow variables experience during one slow time unit the sum of uncorrelated
events of the fast dynamics, which according to the Central Limit Theorem
corresponds to approximate Gaussian noise. In the mathematical commu-
nity a method whereby many fast degrees of freedom are replaced by a
stochastic process is called stochastic model reduction.

In climate modelling, the idea of modelling fast chaotic dynamics by stochas-
tic processes and thereby reducing the effective dimension of the full system
goes back to the seminal work by Hasselmann [27]. Prior to this, the ap-
proach to unresolved scales was to average over the measure induced by
the fast variables [1] which are assumed to be known. Averaging renders
an effective deterministic equation for the slow variables, and cannot de-
scribe rapid regime switches essential for important phenomena such as El
Niño, atmospheric blocking and climate change. In [27] it was suggested to
study climatic regime switches by introducing in an ad-hoc way a stochastic
driver for the slow dynamics. Such an approximation describes the devi-
ations from an averaged climatological system. Of course, it is natural to
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expect such behaviour only if the fast variables (such as weather in a coupled
climatic ocean-atmosphere model) are chaotic or approximately random. In
the case of multi-scale systems rigorous mathematical theorems [32, 45] can
be employed to devise systematic stochastic subgrid parametrizations using
averaging and homogenization techniques [36, 37, 39].

Scientists have recently realized that these methods can be applied to many
complex systems [21, 11, 28, 48, 38, 49, 52, 53]. The effective dimension
reduction achieved if all fast equations are replaced by one stochastic process,
and the associated computational advantage of such a reduction is a huge
driving force behind this research. These ideas have been used to simulate,
for example, coupled ocean atmosphere models [42], urban air-pollution [3],
and in a different field, macromolecular systems [20].

In this work we will perform such a programme for a simple finite-dimensional
caricature model of large-scale motion of the atmosphere. Our particular an-
gle here will be that the stochastic subgrid scale parametrization should not
destroy the energy conservation of the large scale deterministic core. In
a first step we will introduce a stochastic parametrization of a multi-scale
system which conserves the energy of the deterministic core. In a second
step we will use homogenization techniques to construct a reduced stochas-
tic model which effectively describes the statistics of the slow degrees of
freedom.

2. A toy model for the large-scale dynamics of the atmosphere

Since the atmosphere is shallow with an approximate height of 10km (tropo-
sphere) and a longitudinal extent of roughly 40, 000km in the midlatitudes, a
good approximation for the dynamics is given by the 2-dimensional rotating
shallow water equations

Du

Dt
+ f0 Ju+ g∇h = 0 ,

Dh

Dt
+ h∇ · u = 0 ,

where

J =

(
0 1
−1 0

)
denotes the canonical symplectic matrix. Here u = u(x, t) denotes the ve-
locity field on the horizontal plane x ∈ R2, h = h(x, t) the layer depth, ∇
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the horizontal gradient, D/Dt = ∂t + u · ∇ the material derivative, g the
constant of gravity, and f0/2 the ambient angular velocity in the so-called
f -plane approximation [47, 54]. If we non-dimensionalize by introducing a
typical velocity U , a typical horizontal length scale L and a typical layer
depth H, we can rewrite the rotating shallow water equations as

ε
Du

Dt
+ Ju− B

ε
∇h = 0 , (2a)

Dh

Dt
+ h∇ · u = 0 . (2b)

Here we introduced the Rossby number ε = U/f0L and the Burgers number
B = (LR/L)2 with the Rossby radius of deformation LR =

√
gH/f0.

The Hamiltonian Particle-Mesh method was originally introduced as a particle-
based discretization of the shallow water equations [14, 15], and later ex-
tended to other geometry [16] and other fluid models [6, 12, 51]. In the con-
text of the shallow water equations (2a)-(2b) the method is given by

εmkq̇k = pk

ṗk = − 1

ε2
Jpk −

B

ε
∇hα(x, t)

∣∣
x=qk

(3)

where ε =
√
ε, mk ∈ R and qk, pk ∈ R2 are the mass, position and mo-

mentum of the kth discrete fluid particle, and hα(x, t) is a continuum ap-
proximation of the shallow water layer depth, regularized on a length scale
α. To facilitate computation of the layer depth and ensure only local inter-
actions, an auxiliary numerical mesh is introduced with grid points xi and
layer depth approximations

hi(t) =
∑
k

mkψ(xi − qk(t)), h̃i(t) =
∑
j

(Sα)ijhj(t), (4)

where ψ is a symmetric basis function with compact support in R2, and Sα
approximates the action of a smoothing kernel Sα ≈ (1−α∆)−2 with length
scale α. With these definitions, the continuous layer depth approximation
is

hα(x, t) =
∑
i

h̃i(t)ψ(x− xi). (5)

By construction, the Hamiltonian particle-mesh method conserves the Hamil-
tonian (symplectic) structure and satisfies a circulation theorem [15]. Local
mass conservation is trivially enforced, since each particle mass is a fixed
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parameter of the discretization. Convergence of the method is considered in
[41]. Analysis and motivation of the layer depth regularization is given in
[17]. The reader is also referred to [7] for a semi-Lagrangian variant.

Large-scale dynamics in the atmosphere and oceans of rotating planets is
characterized by their temporal scales being much slower than the rotational
time scale of the earth, i.e. ε� 1, and their spatial scales being much larger
than the Rossby radius of deformation, i.e. B = O(ε). This corresponds to
the so-called semigeostrophic scaling [9, 47, 50, 54] where the fluid motion
is dominated by large vortices as we know them from weather maps as
high and low pressure fields. If we now assume that the layer depth is
a prescribed function h = h(x) (rather than being evolved through the
continuity equation (2b), e.g. see [2]), and subsequently set hα = V (q),
we arrive at the following caricature model for the large scale motion of a
distinguished particle with unit mass, introduced in [43],

εq̈ = Jq̇ −∇V (q) . (6)

We remark that the model (6) also describes the dynamics of a single charged
particle with mass ε in a planar potential V (q) under the influence of an
external magnetic field J .

The Rossby number ε introduces time-scale separation. On times t = O (1)
the dynamics is slow and obtained, at lowest order, by formally setting ε = 0
to yield

q̇ = −J∇V (q) . (7)

Hence at the lowest order in ε, the slow dynamics evolves along equipotential
lines of the potential V . On the fast time scale τ = t/ε, the dynamics is
given at leading order by

q′′ = Jq′ ,

where the prime denotes derivatives with respect to τ . Thus the fast dy-
namics represents a harmonic oscillator.

The slow dynamics can be derived up to any order in ε in a variational
framework assuring that the reduced equations possess geometric conserva-
tion properties analogous to those of the full parent system. In [23, 22, 8]
it was shown rigorously that the slow 2-dimensional reduced dynamics con-
verges to the full 4-dimensional dynamics. In particular, the dynamics con-
verge on a long time scale O(1/ε) provided the slow dynamics is sufficiently
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non-chaotic and slow-slow resonances can be excluded [22] which is certainly
the case for the 2-dimensional toy model studied here. The smaller ε, the
larger the separation between the two time-scales. This is illustrated in Fig-
ure 1, which shows projected particle trajectories as well as the approximate
slow manifolds. To obtain better agreement between the reduced slow dy-
namics and the full system for ε → 0 one would need higher-order balance
equations, see [22, 23].

To extract the harmonic oscillations as the dominant process on the fast time
scale we write the system (6) as in the Hamiltonian-Particle-Mesh method
(3)

q̇ =
1

ε
p

ṗ =
1

ε2
Jp− 1

ε
∇V (q) , (8)

where again ε =
√
ε.

A crucial ingredient of the toy model is the existence of a conserved en-
ergy,

H(q, p) =
1

2
|p|2 + V (q) . (9)

We assume throughout that V (q) is strictly convex for large values of q, so
that q(t) is bounded independent of ε for all times. We also assume that V is
sufficiently smooth so that all necessary derivatives exist and are continuous.
The toy model (6) is a Hamiltonian system with non-canonical coordinates
q and p = εq̇ and Hamiltonian (9). Setting z = (q, p) the toy model (8) can
be cast as

ż = J∇zH (10)

with the symplectic structure matrix

J =
1

ε

(
0 I
−I 1

εJ

)
,

where I ∈ R2×2 is the identity matrix.

Assuming that the dynamics is ergodic, the Hamiltonian structure of the
toy model (6) implies a particular form of the invariant measure: When
projected onto the slow subspace of the q-plane, the Hamiltonian toy-model
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Figure 1: Trajectories of the toy model (8) with V (q) given by (47) in the
q-plane with ε = 0.1115 (top), ε = 0.14 (middle) and ε = 0.25 (bottom).
The thick line (online red) denotes the approximate slow manifold given by
(7). Initial conditions for the full toy model (8) were chosen to lie on the
leading order slow manifold with q̇(0) = −J∇V (q(0)).
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(6) generates the Lebesgue measure on the energetically accessible range.
This can be readily seen by applying the co-area formula (see for example
[10]) to the 4-dimensional volume element dµ = dq1dq2dp1dp2

dµ = δ(H(q, p)− E)
ds

|∇zH|
dE , (11)

where ds is an infinitesimal surface element on the manifold of constant
energy H(p, q) = E. Employing energy conservation we find

p2 = ±
√

2 (E − V (q))− p21 ,

and the surface element ds can be written as

ds =

√
1 +

∣∣∣∇̃p2∣∣∣2dq1dq2dp1 ,
with ∇̃ = (∂q, ∂p1). Hence, the 4-dimensional volume element (11) be-
comes

dµ =
1√

2 (E − V (q))− p21
dp1 dq1 dq2 . (12)

Projecting the measure onto the 2-dimensional q-plane by integrating over p1
requires the Cauchy formula to deal with the singularity in p1. Substitution
of p1 = 1/η allows for the application of the residue theorem∮

1√
2 (E − V )− p21

dp1 = −
∮

dη

η
√

2 (E − V ) η2 − 1
= 2π ,

and so the invariant measure projected onto the energetically accessible q-
plane is given by the Lebesgue measure

dµq = 2π dq1 dq2 . (13)

In Figure 2 we show that indeed the empirical density, as estimated from
a long numerical trajectory of the full deterministic toy model (8) when
projected onto the q plane, is Lebesgue on the energetically accessible region.
As ε → 0, the dynamics is more closely constrained to the slow manifold
from Equation (7), and the support of the measure becomes smaller. This
effect is illustrated in Figure 2.
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Figure 2: Empirical density ρemp(q) of a trajectory of the deterministic toy
model (8) with V (q) given by (47) with ε = 0.15 (left) and ε = 0.5 (right).

3. Notation

We briefly introduce some of the notation we shall use, which we adopt
from [46]. All vectors are assumed to be column vectors unless otherwise
indicated. The gradient operator ∇ is defined as a vector operator. Acting
on a scalar φ ∈ R we have

{∇φ}i = ∂qiφ ,

and acting on a vector v ∈ Rn we have

{∇v}ij = ∂qjvi .

For phase space variables z = (q, p) with q, p ∈ R2 we use subscript notation
for derivatives so that ∇p = (∂p1 , ∂p2)T . When no subscript is used we mean
derivatives with respect to q. The divergence operator is defined as∇· = ∇T ,
and as such acts on vector valued functions v ∈ Rn in the usual way. Acting
on matrix valued functions A the divergence acts by contraction as

{∇ ·A}i = ∂qj (Aji) ,

whereby we use Einstein summation convention and sum over repeating
indices. For notational convenience we shall write the matrix of second
order partial derivatives as ∇∇, dropping the transpose symbol. Thus ∇∇φ
is the Hessian matrix of φ ∈ R. We define the inner product of matrices
as

A : B = aijbij = Tr(ABT ) .

9



4. Parametrization of unresolved fast chaotic processes on a man-
ifold

We now reinject information from the unresolved small-scale dynamics into
the toy model for the large scales (8). We shall do so following the “Hassel-
mann” programme by parametrizing those processes by noise. Unresolved
scales in the toy model (8) can be associated with two separate mechanisms.
There are unresolved scales due to semi-geostrophic approximation and due
to the framework of the particle method used to discretise them. In the
process of the asymptotic derivation of the semi-geostrophic approximation
fast small-scale wave motion has been filtered out and in turn constitute un-
resolved processes. In the context of the Hamiltonian Particle-Mesh method
the unresolved scales are all those processes with scales below the smooth-
ing length-scale α, including (but not exclusively) fast inertia gravity waves.
Following [36], we assume that the effect of both of these temporally fast
unresolved scales on the resolved scales can be represented by Gaussian
noise. The heuristics behind this reasoning is that in one slow time-unit
the slow resolved variables feel the sum of the uncorrelated unresolved fast
variables which, by means of the Central Limit Theorem, justifies the us-
age of Gaussian noise. For simplicity we have restricted ourselves here to
additive noise and have ignored multiplicative noise. The variance of the
stochastic process can be chosen to match prior climatic information on the
fast unresolved chaotic processes (see for example [37, 38]). The particular
angle we take here is to require that the noise not destroy large-scale energy
conservation. Local mass conservation will be unaffected by the stochas-
tic process proposed here, but momentum balance will be modified due to
diffusion.

We determine a stochastic process which leaves the dynamics constrained to
the manifold of constant energy (9) (see for example [5, 35]). As the noise
parametrizes unresolved fast chaotic processes we add a stochastic process
only to the fast variable p and on the fast time scale t/ε, and propose the
following parametrization for the toy model (8)

dq =
1

ε
p dt (14)

dp =

[
1

ε2
(J − Γ) p− 1

ε
∇V

]
dt+

1

ε
Σ dWt + dYt (15)

dYt =
1

ε
St dWt +

1

ε2
Bt dt , (16)
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where Γ,Σ ∈ R2×2, dW is a 2-dimensional Brownian motion and dYt is an
auxiliary stochastic process with components St ∈ R2×2 and Bt ∈ R2. In
the case dYt = 0 the toy model (6) is simply augmented by an Ornstein-
Uhlenbeck process. The unconstrained nature of the noise will cause the
dynamics to leave the manifold of constant energy on which the deterministic
model (8) evolves. The auxiliary stochastic process dYt, parametrized by St
and Bt, can now be chosen to impose the restriction that the energy (9) is
preserved even in the stochastically driven system (14)-(16).

Using Itô calculus we evaluate the change in energy (9)

dH = ∇qH · dq +∇pH · dp+
1

2
∇p∇pH : dp dpT

= µH dt+ σH dWt ,

where

µH =
1

ε
∇qH · p+∇pH ·

[
1

ε2
(J − Γ) p− 1

ε
∇V +

1

ε2
Bt

]
+

1

2ε2
∇p∇pH : (Σ + St) (Σ + St)

T (17)

σH =
1

ε
∇pH · (Σ + St) . (18)

For the Hamiltonian (9) we have ∇qH = ∇V , ∇pH = p, ∇p∇pH = I ∈
R2×2, where I is the identity matrix. The functions St and Bt will be chosen
such that µH = 0 and σH = 0 and hence dH = 0. Heuristically, the auxiliary
process will be constructed in such a way as to force the deviations from
the manifold of constant energy caused by the Ornstein-Uhlenbeck process
back onto the manifold. It shall therefore only have components orthogonal
to the energy manifold. To this end we introduce a projector P which will
project onto the tangent space of the manifold.

It turns out that projecting onto the manifold of the kinetic energy K =
|p|2 /2 is sufficient. We define the projection operator P ∈ R2×2 as

P = I − 1

|∇pH|2
∇pH∇pHT

= I − 1

|p|2
ppT .

The identities for projection operators P = PT and PP = P are trivially
satisfied. Note that ∇pH = p lies in the kernel of P, and so P projects
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onto the tangent space of the fast kinetic energy surface. Since P is sym-
metric and positive semi-definite, we obtain the following useful Cholesky
decomposition of P

P =
1

|p|2

(
0 −p2
0 p1

)(
0 0

−p2 p1

)
. (19)

The auxiliary stochastic process dYt shall not perturb the dynamics on the
tangent space, and shall be constructed only to counterbalance those compo-
nents of the Ornstein-Uhlenbeck process which are orthogonal to the mani-
fold of constant energy. We therefore require

PSt = 0 ∈ R2×2 and PBt = 0 ∈ R2 . (20)

We now proceed with determining St and Bt to assure dH = 0. We first
require σH = 0 in (18). Since ∇pH is in the kernel of P, σH = 0 is equivalent
to Σ + St = P (Σ + St) and hence using (20)

St = − (I − P) Σ . (21)

Using this expression in (17), we can determine Bt from our requirement
µH = 0 as

Bt = (P− I) (J − Γ) p− 1

2

∇p∇pH : PΣΣTP
|∇pH|2

∇pH

= (I − P) Γp− 1

2

1

|p|2
P :
(
ΣΣT

)
p , (22)

Substituting the expressions for St and Bt from (21) and (22) into (8)
yields

dq =
1

ε
p dt (23)

dp =

[
1

ε2
(J − PΓ) p− 1

ε
∇V − 1

2ε2
1

|p|2
P :
(
ΣΣT

)
p

]
dt+

1

ε
PΣ dWt , (24)

which by construction conserves the energy (9). The generator associated
with (23)-(24) can be written as an expansion in ε

L =
1

ε2
L0 +

1

ε
L1 (25)
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with

L0 =

[
(J − PΓ) p− 1

2 |p|2
P :
(
ΣΣT

)
p

]
· ∇p +

1

2
PΣΣTP : ∇p∇p , (26)

L1 = p · ∇q −∇V · ∇p . (27)

The projected stochastic Itô differential equation (23)-(24) can be alterna-
tively formulated in the Stratonovich sense. For matrices A,B : Rn → Rn×n,
x ∈ Rn and Wt ∈ Rn an n-dimensional Brownian motion and dxt =
F (x) +A(x) ◦B(x)dWt with xt ∈ Rn, we have

[A(x) ◦B(x)dWt]i = [A(x)B(x)dWt]i+
1

2

∑
j,k

∂xkAij(x)
(
A(x)B(x)BT (x)

)
kj

for i = 1, . . . , n (see for example [44]). Hence in the Stratonovich framework
(23)-(24) can be written in the more compact form as

dq =
1

ε
p dt

dp =

[
1

ε2
(J − PΓ) p− 1

ε
∇V

]
dt+

1

ε
P ◦ PΣdWt .

For simplicity we set from now on

Γ = γI and Σ = σI ,

where γ and σ are scalars and I ∈ R2×2 is the identity matrix. Then the
energy conserving toy model (23)-(24) can be written as

dq =
1

ε
p dt (28)

dp =

[
1

ε2
Jp− 1

ε
∇V − σ2

2ε2 |p|2
p

]
dt+

1

ε
σP dWt , (29)

with Wt being 2-dimensional Brownian motion. It is this system we will
now analyze. Using the expression (19) for the projector P, the generators
(26) and (27) become

L0 =

(
J − σ2

2 |p|2
I

)
p · ∇p +

1

2
σ2

1

|p|2

(
p22 −p1p2
−p1p2 p21

)
: ∇p∇p , (30)

L1 = p · ∇q −∇V · ∇p . (31)
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4.1. The fast stochastic dynamics

Before we apply stochastic singular perturbation theory to the energy con-
serving stochastic system (28)-(29) to extract a reduced equation, we derive
a number of properties of the fast stochastic dynamics associated with L0.
In particular, we shall show that the fast dynamics is ergodic and explicitly
compute the invariant density.

Using the Cholesky decomposition (19) for the projector, the stochastic
differential equation associated with the generator of the fast dynamics L0
is

dp = Y p dt+
σ

|p|

(
−p2
p1

)
dŴt , (32)

with Ŵt ∈ R being the second component of Wt, and

Y = J − σ2

2 |p|2
I

=

(
− σ2

4K 1

−1 − σ2

4K

)
. (33)

Energy conservation implies LH(q, p) = 0 for all values of ε, and hence
L0H(q, p) = 0. Since L0 only involves derivatives with respect to the mo-
mentum variable p we conclude that energy conservation implies L0 |p|2 = 0,
i.e. that the fast dynamics conserves the mean kinetic energy K = |p|2 /2.
It is straightforward to show using Itô calculus that the kinetic energy is
also pathwise constant under the L0-dynamics. Hence, the fast stochastic
process (32) lives on the compact sphere with radius K. This assures the
existence of an invariant measure. Moreover, since

E[|p(t;x)− p(t; y)|2] ≤ 4 exp(− σ2

4K
t) |x− y|2 ∀x, y ,

where x, y are initial conditions p(0), there is a unique invariant measure
as the phase space cannot be decomposed in regions of non-zero measure
in which the dynamics generates respective invariant measures. The fast
process (32) is symmetric in p and has invariant density

ρ∞(p) = ρ∞(p; q) = δ(|p|2 − 2K)/Z , (34)
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Figure 3: Trajectory of the energy conserving stochastic multi-scale system
(28)-(29) with V (q) given by (47), initialised on the slow manifold q̇ =
−J∇V (q), with ε = 0.01 and σ = 0.5.

with the normalization constant Z = 1/(2π
√

2K). This implies for the
mean

〈p〉ρ∞ = 0 , (35)

and for the covariance

〈ppT 〉ρ∞ = K I , (36)

where the angular brackets denote the average over the invariant density
of the fast process. Since K = K(q) the invariant density is parametrized
by q. This is linked to the time scale separation of our model (28)-(29).
On time scales of the order O

(
1/ε2

)
the kinetic energy K is conserved

since on that scale q is frozen. Hence on the fast time scale, the trajectory
will follow equipotential lines before diffusing across equipotential lines, see
Figure 3.

5. Stochastic Singular Perturbation Theory

In this section we perform stochastic singular perturbation theory to ex-
tract the effective slow dynamics of the position variables q for the energy
conserving stochastic multi-scale system (28)-(29). In the context of the
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Hamiltonian Particle Mesh method (3)–(5), this would result in a slow bal-
anced motion, free of gravity waves, analogous to a discrete quasigeostrophic
potential vorticity or point vortex model, for which the phase space is a func-
tion only of the particle positions.
We will analyse (28)-(29) in the framework of the backward Kolmogorov
equation for the conditional expectation value of some sufficiently smooth
observable φ(q, p) defined as

v(q0, p0, t) = E [φ(q(t), p(t)) | q(0) = q0, p(0) = p0] .

Here the expectation value is taken with respect to Brownian motion driving
paths. Dropping the subscripts, we study the following Cauchy problem for
t ∈ [0,∞)

∂v

∂t
(q, p, t) = Lv(q, p, t)

v(q, p, 0) = φ(q, p) , (37)

with the generator given in (25). Pioneered by Khasminsky [30], Kurtz [32]
and Papanicolaou [45] singular perturbation theory can be formulated for a
perturbation expansion according to

v(q, p, t) = v0 + εv1 + ε2v2 + · · · . (38)

A comprehensive exposition of the theory of stochastic model reductions
and their implementation is given for example in [21, 46]. Substituting the
series (38) into the backward Kolmogorov equation (37) yields upon equating
powers of ε the following hierarchy of equations

O

(
1

ε2

)
: L0v0 = 0

O

(
1

ε

)
: L0v1 = −L1v0

O (1) : L0v2 =
∂v0
∂t
− L1v1 .

At lowest order, O(1/ε2), we have

L0v0 = 0 . (39)

The fast dynamics associated with the generator L0 was shown in the pre-
vious section to be ergodic with the unique invariant probability density
ρ∞(p) given by (34), i.e. ρ∞ is the unique solution of

L?0ρ = 0 ,
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where L?0 is the formal L2-adjoint of the generator L0. Ergodicity implies
that expectation values do not depend on initial conditions p. Hence the
solution

v0 = v0(q, t)

is the only solution of (39).

At the next order, O(1/ε), we obtain

L0v1 = −L1v0 . (40)

To assure boundedness of v1 (and thereby of the asymptotic expansion (38))
a solvability condition prescribed by a Fredholm alternative has to be satis-
fied. Equation (40) is solvable only provided the right-hand-side lies in the
space orthogonal to the (one-dimensional) null space of the adjoint L?0, i.e.
if

〈L1v0〉ρ∞ = −〈p〉ρ∞ · ∇v0(q, t) = 0 .

Since we showed in the previous Section that 〈p〉ρ∞ = 0 and that the fast
stochastic process is ergodic, the solvability condition is trivially satisfied
and there exists a bounded solution of (40). Since v0 is independent of p,
the right side of (40) is p · ∇qv0. Furthermore, since from (27) the only
differential operator in L1 is ∇p, we write v1 as,

v1 = r(q, p) · ∇qv0 +R(q),

where R(q) is a kernel function of L0. The function r(q, p), inserted into
(40), satisfies (

J − σ2

2 |p|2
I

)
p · ∇pr +

1

2
σ2P : ∇p∇pr = −p ,

which is solved by

r = −
(
J − σ2

2 |p|2
I

)−1
p .

Here we used the conservation of the kinetic energy by the fast dynamics

implying L0
(
f
(
|p|2
))

= 0 for sufficiently smooth f . Hence we obtain for

the O(1/ε) contribution

v1 = −
(
J − σ2

2 |p|2
I

)−1
p · ∇qv0 +R(q)
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= −Y −1p · ∇qv0 +R(q) , (41)

where Y −1 is given by

Y −1 = − 4K

σ4 + 16K2

(
σ2 4K
−4K σ2

)
. (42)

with K = E − V (q).

At the next order, O(1), we obtain

L0v2 =
∂

∂t
v0 − L1v1 .

Again a solvability condition has to be imposed which yields the desired
evolution equation for v0

∂v0
∂t

= 〈L1v1(q, t)〉ρ∞ . (43)

Substituting the expression (41) for v1 into (43) yields

L1v1 = −p · ∇q
(
Y −1p · ∇qv0

)
+∇V · ∇p

(
Y −1p · ∇qv0

)
+ p · ∇qR .

Energy conservation, and in particular the conservation of kinetic energy K
under the L0-dynamics, implies that Y is a constant matrix with respect to
the fast dynamics, and we have

L1v1 = −Y −1ppT : ∇q∇qv0−p·((p·∇q)Y −T )∇qv0+Y −1∇V ·∇qv0+p·∇qR .

Here and in the following the gradient operator only acts on functions di-
rectly following it; hence p · ((p · ∇q)Y −T )∇q = pipl

(
∂iY

−1
kl

)
∂k. Averaging

with respect to the invariant density of the L0-dynamics and using the ex-
pressions for the mean and the variance of p given by (35) and (36), respec-
tively, we arrive at

〈L1v1〉ρ∞ = −K Y −1 : ∇q∇qv0 −K∇q · Y −T∇qv0 + Y −1∇qV · ∇qv0 .

We summarise and arrive at the reduced slow backward Kolmogorov equa-
tion for v0 as

∂v0
∂t

=
(
Y −1∇qV · ∇q −K∇q · Y −T∇q

)
v0 −K Y −1 : ∇q∇qv0 . (44)
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Note that R(q) does not contribute to the dynamics. We can therefore
choose R(q) = 0 in order to assure that 〈v〉ρ∞ = v0 +O(ε2).

Evaluating and using that ∇q∇qv0 is symmetric and Y −1 is antisymmetric
the reduced backward Kolmogorov equation (44) can be simplified to

∂v0
∂t

=

(
2σ4

σ4 + 16K2
Y −1I − 16K2

σ4 + 16K2
J

)
∇V · ∇v0 +

4σ2K2

σ4 + 16K2
∆v0 ,

(45)

where we now drop the subscripts to denote differentiation with respect to q.
The slow reduced Langevin equation associated with the reduced backward
Kolmogorov equation (45) is then

dq =
2σ4

σ4 + 16K2
Y −1∇V dt− 16K2

σ4 + 16K2
J∇V dt+

2
√

2σK√
σ4 + 16K2

dUt ,

(46)

where K = K(q) = (H − V (q)) and Ut is a 2-dimensional Wiener pro-
cess.

Note that for σ = 0 we have Y −1 = −J and we recover the zeroth-order
deterministic balance equation (7). For σ = 0 the slow dynamics evolves
along equipotential lines, for small diffusion a trajectory slowly diffuses away
from equipotential lines and will explore the whole energetically available
phase-space as seen in Figure 4 where we show a trajectory for a (short)
simulation of the slow reduced Langevin equation (46) with small diffusion
σ = 0.5 (eventually the trajectory will fill the whole energetically available
phase-space).

6. Numerical Results

In this Section we will numerically verify the results from the previous sec-
tions. We consider a non-convex quartic potential of the form

V (q) =
1

4

(
6q41 + 0.1q42

)
− 9

4

(
q21 + q22

)
. (47)

We employ splitting methods (see [40, 24, 33] and in the context of SDEs [26,
34, 55]) to numerically propagate the full projected system (28)-(29) and the
reduced system (46). The numerical integrator for the full projected system
was constructed to exactly conserve the energy to machine precision (see

19



−4 −3 −2 −1 0 1 2 3 4
q1

−15

−10

−5

0

5

10

15

q 2

Figure 4: Trajectories of the reduced SDE (46) with V (q) given by (47) and
σ = 0.5.

Figure 5). The numerical challenge in integrating the full projected system
is the stiff nature of this multi-scale problem. A detailed description of the
numerical algorithms developed has been included in the Appendix.

We have performed stochastic singular perturbation theory for the multi-
scale projected system (28)-(29) to derive an effective reduced equation (46)
for the slow q-variables. We examine now how the dynamics of the reduced
Langevin equation (46) approximates the full stochastically driven projected
system (28)-(29). In Figure 6 we show the empirical densities obtained from
a simulation of a long trajectory for both systems. The empirical densities
are close (when integrated over the whole energetically accessible region the
norm of the difference is of the order of 10−2). Furthermore, the empirical
densities are uniform on the accessible phase space region, and hence the
invariant measure is in agreement with the Lebesgue measure (13) of the
deterministic toy model (8). We note that densities in Figure 2 cannot be
directly compared with those of Figure 6 because, due to the balanced initial
condition in the former, the total energies are different.

In Figure 7 we illustrate the convergence of the full model to the reduced
model in the limit ε→ 0. To do so, we compute the solutions to both models
for a short interval t ∈ [0, 0.2] using step size ∆t = 10−7. The solutions are
averaged over 103 realisations of the Wiener processes Wt and Ut. In Figure
7 we plot the maximum error on the time interval maxt∈[0,0.2] ‖qfull(t) −
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Figure 5: Error in Hamiltonian H −H0 (9) as a function of time during a
simulation of the full energy conserving stochastic multi-scale system (28)-
(29). Parameters are ε = 0.05 and σ = 0.5.

qreduced(t)‖. We observe approximately first order convergence in ε.

Temporal characteristics such as the decay time of the auto-correlation func-
tion are often not well reproduced by the homogenised models (see for exam-
ple [18, 19]). Figure 8 shows that remarkably our reduced model reproduces
the correlations of the variables q1 and q2 reasonably well up to approx-
imately time t = 0.5, which we identify as corresponding roughly to the
mean period of motion around a potential well. The correlations are defined
by

C(t) =

∫
S

(Φtq) qT dq1 dq2,

where S = {q ∈ R2 |V (q) < H0}, and Φt denotes the time-t solution map of
the respective SDE under the associated realizations of the Wiener processes.
Figure 8 compares the matrix elements of C(t), i.e. c11(t), c22(t) and c12(t),
for the full and reduced models (note that c21(t) = −c12(t) for reversible
systems). For the full model we chose ε = 0.01; no further convergence was
observed for smaller ε. To produce the curves, a uniformly distributed, 105-
member ensemble was integrated to time T = 2 using stepsize ∆t = 5×10−3

for the reduced model and ∆t = 5×10−5 for the full model. Note that change
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Figure 6: Empirical density ρemp(q) generated by the stochastically driven
systems. Top: density of the full projected system (28)-(29) with ε = 0.05.
Middle: density of the reduced system (46). Both systems were simulated
with σ = 0.5. A time step of ∆t = 10−3 was used, and the simulations
were performed for 107 time units starting from the initial condition q(0) =
(1.5, 10−4) and H = 93.65.

of sign in q2 is a rare event on this time scale, leading to the apparent nonzero
mean in c22(t).

7. Summary

We have performed a programme for stochastic subgrid scale parametriza-
tion for conservative multi-scale systems. In a first step we augment a
Hamiltonian slow-fast system by a stochastic process driving the fast dy-
namics. The stochastic process is chosen so as to conserve the energy of the
deterministic core. This choice was motivated by the observation that in
numerical weather forecasting the large scales behave like an ideal fluid [50].
However, depending on the application one may choose different conserved
quantities such as mass or energy fluxes to be preserved by introducing one
auxiliary stochastic process for each conserved quantity. We do not address
here the important question whether forcing a conservation law via con-
straints as done in this work can lead to dynamically inconsistent states.
Furthermore, we have not addressed here the issue of how to determine the
value of the diffusion coefficients for the energy preserving noise. This is, of
course, necessary for real world applications to achieve consistency with ob-
served variability, and the reader is referred to [37, 38] and references therein.
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Figure 7: Convergence of the full and reduced models on a short time interval
t ∈ [0, 0.2]. The maximum error maxt ‖qfull(t) − qreduced(t)‖ is plotted as a
function of ε, for fixed step size ∆t = 10−7. Trajectories were averaged
over 103 realizations of the Wiener process. The dashed line indicates a first
order convergence rate in ε.

In the small diffusion limit, most relevant to stochastic subgrid scale para-
metrization, we showed that the effect of diffusion combined with energy
conservation is to allow for cross-diffusion of the slow dynamics. In a second
step the projected stochastic 4-dimensional slow-fast system was reduced
to a slow 2-dimensional stochastic differential equation using stochastic sin-
gular perturbation theory. This subsequent homogenization and reduction
to an effective reduced slow equation has proven to be of practical value.
Whereas the full 4-dimensional projected system (29) is highly stiff, the re-
duced 2-dimensional slow equation (46) can be simulated with significantly
larger time steps.

We do not claim that the actual results will have any meaning in interpret-
ing real processes in the atmosphere and oceans. However, we believe that
the general strategy to attack the problem may be useful for more realistic
models of the atmosphere. To apply the techniques presented here to the
Hamiltonian Particle-Mesh method for the rotating shallow water equation
is planned for further research. The unresolved scales which are below the
smoothing length would then be modelled by Gaussian noise on the La-
grangian particle side, the hope being that one can run a coarse-resolution
particle simulation achieving comparable accuracy to high-resolution Eule-
rian methods.
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Appendix A. Numerical methods

In this appendix we describe the numerical methods used to compute the
full projected system (28)-(29) and the reduced system (46). In both cases
we make use of splitting methods (see [40, 24, 33] and in the context of
SDEs [26]). To construct a splitting method, the vector fields of the SDE
are decomposed as a sum of simpler (usually integrable) vector fields, for
each of which either an explicit solution or a numerical approximation with
desirable properties is available. Numerical methods of various orders can
be defined via composition of these flow maps.

For convenience we recall the stochastic full projected model (28)-(29)

dq =
1

ε
p dt

dp =

[
1

ε2
Jp− 1

ε
∇V − σ2

2ε2 |p|2
p

]
dt+

1

ε
σP dWt ,

which we split into a Hamiltonian part:

dq = ε−1pdt, (A.1)

dp =

[
1

ε2
Jp− 1

ε
∇V

]
dt. (A.2)

and a projected Langevin perturbation:

dq = 0,

dp = − σ2

2ε2|p|2
p dt+

σ

ε
P dWt. (A.3)

To solve the Hamiltonian part (A.1)–(A.2), we make use of an averaged
vector field (AVF) method [4]. The Hamiltonian H = 1

2‖p‖
2 + V (q) is
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quartic due to the potential (47). An exact quartic conserving method for
a Hamiltonian system of the form dy/dt = J∇H(y) is given by

yn+1 = yn + ∆tJ
[
∇H(y−) +∇H(y+)

]
, (A.4)

where

y− = αyn + (1− α)yn+1, y+ = (1− α)yn + αyn+1,

and α = (1−
√

3)/2 corresponds to a Gaussian quadrature point.

Since the Hamiltonian part (A.1)–(A.2) clearly conserves energy, and the
whole system is energy conserving, it follows that the flow of (A.3) must
also conserve the kinetic energy K = 1

2 |p|
2. This can also be checked by

computing the Itô derivative of K and substituting the above derivative dp
into the result. Hence, we introduce polar coordinates

γ = |p| =
√

2K, θ = tan−1
(
p2
p1

)
,

and compute the Itô derivative of θ as follows:

dθ =
∂θ

∂p1
dp1 +

∂θ

∂p2
dp2 +

1

2

(
∂2θ

∂p21
dp21 +

∂2θ

∂p22
dp22 + 2

∂2θ

∂p1∂p2
dp1 dp2

)
,

(A.5)
where one can check that

∂θ

∂p1
= −sin θ

γ
,

∂θ

∂p2
=

cos θ

γ
,

∂2θ

∂p21
=

2 cos θ sin θ

γ2
,

∂2θ

∂p22
= −2 cos θ sin θ

γ2
,

∂2θ

∂p1∂p2
=

sin2 θ − cos2 θ

γ2
.

Substituting the above relations and the differentials dp1 and dp2 into (A.5)
and simplifying yields

dθ = −sin θ

γ

{
− σ2

2ε2γ2
γ cos θ dt+

σ

εγ2
(p22 dW1 − p1p2 dW2)

}
+

cos θ

γ

{
− σ2

2ε2γ2
γ sin θ dt+

σ

εγ2
(−p1p2 dW1 + p21 dW2)

}
+

cos θ sin θ

γ2
σ2

ε2γ4
(p42 + p21p

2
2) dt

− cos θ sin θ

γ2
σ2

ε2γ4
(p21p

2
2 + p41) dt

+
sin2 θ − cos2 θ

γ2
σ2

ε2γ4
(−p1p32 − p31p2) dt,
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=
σ

εγ
(− sin θ dW1 + cos θ dW2) ,

the right side of which is a linear combination of independent normally
distributed random increments. This linear combination is again normally
distributed with variance sin2 θ + cos2 θ = 1. Therefore we can replace the
right side with a new Wiener process dW3, i.e.

dθ =
σ

εγ
dW3.

It follows that the flow of (A.3) is simply a rotation of p through an angle
proportional to dW3. We combine this symmetrically with the flow map
(A.4) to obtain the composite method:

p̃n = exp(dθ(∆t/2)J)pn, (A.6)

qn+1 = qn + ∆t

(
p̃n+1 + p̃n

2

)
, (A.7)

p̃n+1 = p̃n + ∆t

{
1

ε2
J
p̃n+1 + p̃n

2
− 1

2ε

[
∇V (q−) +∇V (q+)

]}
, (A.8)

p̃n+1 = exp (dθ(∆t/2)J) p̃n+1, (A.9)

where dθ(∆t) ∼
√

∆t/2N (0, 1). We use (A.6)–(A.9) to solve (28)-(29) nu-
merically in this paper.

For the reduced model (46), we split into a potential energy conserving
flow

dq = B(K)∇V (q) dt, B(K) = −
(

32K2σ4

(σ4 + 16K2)2
+

16K2

σ4 + 16K2

)
J

(A.10)
and a stochastic-gradient flow

dq = −b(K)∇V (q) dt+ d(K) dUt, (A.11)

where

b(K) =
8Kσ6

(σ4 + 16K2)2
, d(K) =

2
√

2σK√
σ4 + 16K2

.

Note that since the flow of (A.10) conserves the potential energy V (q), it
follows that K = H − V (q) is constant along the solution. Therefore, we
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can fix B(K) = const . and apply the AVF method (A.4) to (A.10) to obtain
an energy preserving integrator.

We symmetrically apply the Euler-Maruyama method (see for example [31])
to (A.11) and the AVF method (A.4) to (A.10), to obtain:

Kn = H − V (qn), (A.12)

q̃n = qn − ∆t

2
b(Kn)∇V (qn) + d(Kn)∆U(∆t/2), (A.13)

K̃n = H − V (q̃n), (A.14)

q̃n+1 = q̃n +
∆t

2
B(K̃n)

(
∇V (q−) +∇V (q+)

)
, (A.15)

K̃n+1 = K̃n, (A.16)

qn+1 = q̃n+1 − ∆t

2
b(K̃n+1)∇V (q̃n+1) + d(K̃n+1)∆U(∆t/2). (A.17)

We use (A.12)–(A.17) to solve (46) numerically in this paper.
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