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Abstract. A new particle-mesh method is proposed for the rotating shallow-water
equations. The spatially truncated equations are Hamiltonian and satisfy a Kelvin
circulation theorem. The generation of non-smooth components in the layer-depth
is avoided by applying a smoothing operator similar to what has recently been
discussed in the context of �-Euler models.

1.1 Introduction

The interplay, in atmospheric ows, between high speed, divergence-dominated
gravity waves and slowly advected vortical structures presents a challenge to
numerical modelling. The quantity of principle interest, potential vorticity, is
advected materially along particle paths, making particle methods an attrac-
tive option. However, to prevent the generation of spurious gravity waves, one
must ensure that di�erentiated ow �eld variables remain smooth. Particle
methods have the additional advantage of being Hamiltonian, with the well-
known consequences for long time dynamics that follow from this. The ap-
plication of arti�cial smoothing operators can destroy this property, though,
if not done carefully.

A 2D model of the atmosphere which still retains the important dynamic
interactions mentioned above is the rotating shallow-water equations (SWEs):

d

dt
u = �f0u? � c0rx�; (1.1)

d

dt
� = �(1 + �)rx � u; (1.2)
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where u = (u; v)T is the horizontal velocity �eld, u? = (�v; u)T , h = 1 + �
is the normalized layer-depth variation, H0 is the mean layer-depth (i.e. the
total layer-depth is H = H0(1 + �)), f0=2 > 0 is the angular velocity of the
reference plane, c0 := gH0 where g > 0 is the gravitational constant, and
d
dt =

@
@t + u �rx is the material time derivative [16].

The dynamical quantity of central importance in geophysical uid dy-
namics is the potential vorticity (PV)

q =
� + f0
1 + h

; � = vx � uy =rx � u;

which is constant along particle trajectories; i.e. dq=dt = 0. Conservation of
PV can be seen as a consequence of Kelvin's circulation theorem [16,6]:

d

dt

I �
u+

f0
2
x?
�
� xsds = 0;

where x(s) is a closed loop of materially advected particles, i.e.,

d

dt
x(s) = u(x(s)):

The importance attached to PV in atmospheric dynamics is evidenced
by its central role in quasigeostrophic theory. In extra-tropical regions, the
terms on the right hand side of (1.1) are nearly in balance. This motivates
the de�nition of the geostrophic wind:

ug =
c0
f0
r
?
x �: (1.3)

Note that if we assume (1.3), then the normalized layer-depth variation � can
be recovered from the PV distribution via

(1 + �)q =
c0
f0
r

2
x� + f0: (1.4)

Furthermore, the PV �eld itself is advected under the geostrophic ow �eld:

@q

@t
+ ug �rxq = 0: (1.5)

The combined system (1.3), (1.4) and (1.5) is referred to as the quasigeostrophic
approximation [16].1 Note that the geostrophic wind ug is divergence-free and
that it is assumed in general that solutions of the SWEs are nearly incom-
pressible.

A large number of numerical methods for uid ow simulations have been
proposed over the years. We mention particle-in-cell (PIC) [8,3,9], smoothed-
particle hydrodynamics (SPH) [14,15], �nite mass [18,7], contour-advection

1 Strictly speaking, the quasigeostrophic approximation makes use of a lineariza-
tion of (1.4) to recover the geostrophic layer-depth from PV.
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(CASL) [4], semi-Lagrangian and Eulerian methods [5]. None of these meth-
ods have been shown to simultaneously preserve energy (i.e. to be Hamilto-
nian), to advect PV (or to satisfy a circulation theorem), and to be numeri-
cally robust with respect to generation of unbalanced divergence � =rx � u
[12] when applied to the SWEs (1.1)-(1.2). One of the most widely used
methods for shallow water ows consists of a pseudospectral truncation of
the Eulerian formulation in space combined with the leapfrog/trapezoidal
rule (LF/TR) discretization in time [5,4]. Hyperdi�usion [4,5] is typically
added to smooth the noise produced by the excitation of �ne scale modes.

In this note we demonstrate that the standard SPH and PIC methods
can be combined and appropriately modi�ed so as to be Hamiltonian, advect
PV properly, and to avoid instabilities associated with the �nite precision of
moving particle approximations.

1.2 The Hamiltonian Particle-Mesh (HPM) Method

We develop the proposed Hamiltonian particle-mesh (HPM) method in three
steps. Ideas and concepts from PIC and SPH methods serve as a starting
point. A crucial novel idea is the introduction of a smoothing operator which
can either be interpreted as de�ning a globally supported basis function or
as regularizing the layer-depth in the sense of �-Euler models [10].

1.2.1 Approximating the Continuity Equation

We start with the basic idea of smoothed particle hydrodynamics (SPH) [14]
and approximate the total normalized layer depth h = 1 + � by

h(x; t) =
X
k

mk (x�Xk(t)); (1.6)

where Xk(t), k = 1; : : : ; N , are Lagrangian particle positions, mk > 0 are
constant weight factors, and  (y) � 0 is an appropriate basis function [14,7].
Note that h(x; t) satis�es the continuity equation

ht = �rx � (hv);
with the velocity �eld v de�ned via the partition of unity interpolation

v(x; t) =
1

h(x; t)

X
k

mk (x�Xk(t))
d

dt
Xk(t):

This provides us with an approximation to the continuity equation (1.2). See,
for example, [18] for more details.

We now restrict the approximation h(x; t) to a regular grid with grid
points xij = (i ��x; j ��y) and obtain

hij =
X
k

mk (xij �Xk(t)):
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At this point we impose on the basis function  the requirement thatX
i;j

 (xij � x) = 1 (1.7)

for all x and de�ne
 ij(x) =  (xij � x):

The condition (1.7) guarantees conservation of the l1-norm of the layer-depth
over the grid, i.e.X

i;j

hij =
X
i;j

X
k

mk (xij �Xk(t)) =
X
k

mk = const.

We mention that (1.7) is often used in PIC simulations to enhance the stabil-
ity of the method [3]. More importantly, since the basis functions  ij(x) form
a partition of unity, they can be used to interpolate the gridded layer-depth
values back to all of x 2 R2 , i.e.

h(x; t) = hij ij(Xk(t)); (1.8)

where we have used the standard summation convention. We wish to empha-
size that, due to approximation errors, the two formulas (1.6) and (1.8) lead
to di�erent results. While (1.6) is used in SPH-type methods, we will employ
(1.8), which is closer to PIC approximation schemes.

1.2.2 Approximating the Momentum Equation

Let us assign to each Lagrangian particle a particle velocity

Uk =
d

dt
Xk; (1.9)

k = 1; : : : ; N . The momentum equation (1.1) is now discretized by

d

dt
Uk = �f0U?

k � c0rxh(x; t)jx=Xk
; (1.10)

with h given by (1.8). The equations (1.9)-(1.10) form a closed set of equa-
tions.

We wish to mention, at this point, the important property

c0rxh(x; t)jx=Xk
= c0

X
i;j

hijrXk
 ij(Xk) =

1

mk
rXk

V(fXlg); (1.11)

where

V(fXlg) := c0
2

X
i;j

h2ij =
c0
2

X
i;j

 X
k

mk ij(Xk)

! X
k

mk ij(Xk)

!
:
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To be able to compute the divergence and vorticity of the velocity �eld
we introduce gridded velocities via the partition of unity approximation:

uij =

P
kUk (xij �Xk)P
k  (xij �Xk)

: (1.12)

1.2.3 Global Basis Functions and Smoothing

>From a computational complexity point of view, one would like to work
with compactly supported basis functions such as product spline functions
[2,7]. But these basis functions seem to have the disadvantage of reduced accu-
racy and possible numerical instabilities over long time simulations. However,
given a compactly supported basis function  , one can transform it into a
globally supported basis function b viab (y) := (1� �2r2

y)
�p (y);

i.e., application of an inverse Helmholtz operator with smoothing length � >
0 and an exponent p > 0. An e�cient way to implement such an approach is to
work on the given grid fxijg and to discretize the operatorH = (1��2r2

x)
�p

using spectral methods.2 Let us denote the matrix representation of H by
Hnm

ij ; then we de�ne b ij(x) := Hnm
ij  nm(x):

where we again use the standard summation convention. This modi�ed basis
function still satis�es X

i;j

b ij(x) = 1:

Hence we obtain the layer-depth approximation

h(x; t) = hij b ij(x) = hijHnm
ij  nm(x) = bhnm nm(x):

Thus changing the basis functions amounts to smoothing the gridded layer-
depth values hij via bhnm := hijHnm

ij : (1.13)

This suggests replacing the discrete momentum equation (1.10) by the ap-
proximation

d

dt
Uk = �f0U?

k � c0
X
i;j

bhijrXk
 ij(Xk): (1.14)

The convolution (1.13) can be computed very e�ciently using FFTs where

hij =
X
k

mk ij(Xk)

2 Exact inversion of the Helmholtz operator is actually not required. Since we only
aim at smoothing the high-frequency components, a few Jacobi iterations with a
�nite di�erence operator should be su�cient.
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as before.
In a similar manner, one can introduce smoothed velocities

bunm := uijHnm
ij : (1.15)

There is an interesting link to the recently proposed �-Euler models for
compressible and incompressible uid ows. See [10] for an overview. While
�-Euler models utilize a smoothed advection velocity �eld, it has been shown
in [10] that this is equivalent to smoothing the pressure �eld in the case of
incompressible uids. What has been suggested in this section can be inter-
preted as smoothing the pressure �eld for a compressible ow. A stabilized
SPH method based on a smoothed velocity �eld has been proposed in [13].
However, the associated equations of motion are more complex than standard
SPH.

1.3 Conservation Properties

We show that the truncated equations are Hamiltonian and satisfy a Kelvin
circulation theorem in the sense of [6].

First introduce the momenta

Pk = mkUk

and rewrite the equations (1.9) and (1.14) in the form

d

dt
Pk = �f0P?k � c0mk

X
i;j

bhijrXk
 ij(Xk); (1.16)

d

dt
Xk =

1

mk
Pk; (1.17)

k = 1; : : : ; N . Using a slight modi�cation of (1.11) it is easy to verify that
these equations are canonical [1] with Hamiltonian

E =
X
k

Pk �Pk

2mk
+
c0
2

X
i;j

hijbhij ; (1.18)

where one uses the fact that H ij
nm is symmetric. The structure matrix J

consists of N copies of

Jk =

��f0J2 �I2
I2 02

�
; J2 =

�
0 �1
1 0

�
;

along its main diagonal.
We mention that the Hamiltonian (energy) E is similar to the discrete

energy obtained from a �nite mass method [7] discretization with the spatial
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integral performed using a simple Riemann sum and no rotational degrees of
freedom included.

As shown previously, the method conserves the l1-norm of the layer-depth
approximations hij(t) and bhij(t), respectively.

Let us now assume that, at time t = 0, a continuous velocity �eld U(x)
is given and that Uk(0) = U(Xk(0)). Once the solutions to the �nite-
dimensional equations (1.16)-(1.17) have been computed, the velocity �eld
U(x) can, in principle, be advected according to

d

dt
U(X) = �c0rxh(x; t)jx=X ; h(x; t) =

X
ij

bhij(t) ij(x);
d

dt
X = U(X):

Note that

U(Xk(t)) = Uk(t)

for all t � 0. Now let us also advect a loop of pointsX(s; t) along the velocity
�eld U(X(s; t)), i.e.,

d

dt
X(s) = U(X(s)):

If a Lagrangian particle Xk is part of the loop at t = 0, then it will remain on
the loop for all t � 0. Furthermore, along the given loop, Kelvin's circulation
theorem

d

dt

I �
U+

f0
2
X?

�
�Xsds = 0 (1.19)

holds as can be veri�ed by straightforward di�erentiation. Note that (1.19)
does not imply advection of PV in the standard sense. See [6] for more details.

1.4 Time-Stepping

We use a second-order symplectic method [17] in time based on a three-term
splitting of the Hamiltonian E into

E =
1

2
T + V +

1

2
T ;

where

T =
X
k

Pk �Pk

2mk
; V =

c0
2

X
i;j

hijbhij ;
and composition of the associated ow maps [11].
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1.5 Numerical Experiment

We applied the new method to the SWEs on [0; 2�)2 with periodic boundary
conditions. On the n� n grid, we de�ned tensor product basis functions

 (x) = �(
x

�x
) � �( y

�y
); �x = �y =

2�

n
;

where �(r) is the cubic spline

�(r) =

8<:
2
3 � jrj2 + 1

2 jrj3; jrj � 1
1
6 (2� jrj)3; 1 < jrj � 2
0; jrj > 2

:

Initially, the N = (6 � n)2 particles also were positioned on a uniform grid.
The programs were written in MATLAB except for the particle-grid in-

terpolation operators which were implemented as mex codes in C.
The parameters in (1.1) were chosen to be c0 = 4�2 and f0 = 2�, so that

time T = 1 corresponds to one planar rotation (one \day"). This combination
implies a Rossby deformation radius LR =

p
c0=f0 = 1.

The initial layer depth was de�ned by

h(x; 0) :=
1

1 +�q(x)
+ �;

where � is chosen so that mean(h) = 1 and

�q(x) =
1

�
(y � �)e�2(y��)

2

(1 +
1

10
sin 2x):

This layer depth, coupled with the initially geostrophic velocity �eld

u?(x; 0) := � c0
f0
rxh(x)

obtained via (1.11), simulates an unstable jet similar to that considered in
[4].

Integration was performed until time T = 15, using a stepsize�t = 1=100.
We used � = 2L=n and p = 1 for the smoothing operator H.

As a check on convergence we also computed the solution using a simple
pseudospectral discretization on a 128�128 grid, including a small hyperdif-
fusion term. A contour plot of potential vorticity is shown in Fig. 1.1.

The time evolution of the PV �eld as computed by the HPM method is
displayed in Fig. 1.2. To produce this �gure, we computed the PV distribution
on the grid at time t = 0 using

Qij = (Dxbv �Dybu)ij=bhij ; (1.20)
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Fig. 1.1. Contours of potential vorticity at time t = 15 obtained with a pseudospec-
tral discretization, n = 128.

where Dx and Dy represent the discrete spectral derivatives in the x and
y directions, resp., and bu = (bu; bv) is the smoothed velocity (1.15). Next we
extended this PV �eld to the particles using an interpolation analogous to
(1.8). The resulting particle PV values were then �xed for the duration of
integration, and interpolated back to the grid using (1.12) when output was
desired. It is interesting to compare the PV �eld obtained in this manner with
that obtained by directly applying (1.20) at output intervals. The result for
t = 15 can be found in Fig. 1.3. The agreement with the corresponding �eld
in Fig. 1.2 is remarkable, and suggests that PV is very consistently advected
along particle paths of HPM, despite any explicit enforcement of this.

Due to the absence of hyperdi�usion in this computation, small scale
vortical structures appear, but the large scale structures evolve as in Fig. 1.1.

In Fig. 1.4 we have plotted the error in the Hamiltonian (1.18). In the
�gure, this error is scaled by the usable energy, de�ned as

Ebase = E(t = 0)� E(u � 0; v � 0; h � 1):

In the �gure the energy is well conserved, in keeping with known results for
symplectic integrators. Since (1.18) is a �rst integral of the dynamics (1.16)
and (1.17), this error can be made as small as desired by reducing the timestep
�t.

Also in Fig. 1.4 we have plotted the mean divergence level, de�ned as the
l2-norm

k�k =
0@X

i;j

(�ij)2�x�y

1A1=2

;

where �ij is the divergence of the smoothed velocity �eld (1.15).
The mean divergence level is a measure of the degree of balance in the

ow. It is important to observe that k�k remains rather at, indicating that
gravity wave activity is not increasing in magnitude.
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Fig. 1.2. Contours of potential vorticity on intervals of 3 days.

1.6 Conclusion

The Hamiltonian particle-mesh method seems to be applicable to more so-
phisticated geophysical uid models such as the primitive equations and the
SWEs on the sphere [16]. What is required next is a very careful compari-
son with contour-advection (CASL) algorithms and standard pseudospectral
codes in terms of accuracy, applicability, and e�ciency.
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Fig. 1.3. Smoothed Eulerian potential vorticity at time t = 15
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Fig. 1.4. Evolution of (a) the mean divergence level and (b) the Hamiltonian error
over the simulation interval.
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