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Abstract. A new particle-mesh method is proposed for the rotating shallow-water
equations. The spatially truncated equations are Hamiltonian and satisty a Kelvin
circulation theorem. The generation of non-smooth components in the layer-depth
is avoided by applying a smoothing operator similar to what has recently been
discussed in the context of a-Euler models.

1.1 Introduction

The interplay, in atmospheric flows, between high speed, divergence-dominated
gravity waves and slowly advected vortical structures presents a challenge to
numerical modelling. The quantity of principle interest, potential vorticity, is
advected materially along particle paths, making particle methods an attrac-
tive option. However, to prevent the generation of spurious gravity waves, one
must ensure that differentiated flow field variables remain smooth. Particle
methods have the additional advantage of being Hamiltonian, with the well-
known consequences for long time dynamics that follow from this. The ap-
plication of artificial smoothing operators can destroy this property, though,
if not done carefully.

A 2D model of the atmosphere which still retains the important dynamic
interactions mentioned above is the rotating shallow-water equations (SWEs):
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where u = (u,v)7T is the horizontal velocity field, u* = (—v,u)”, h =1 +17
is the normalized layer-depth variation, Hy is the mean layer-depth (i.e. the
total layer-depth is H = Hy(1 + 1)), fo/2 > 0 is the angular velocity of the
reference plane, ¢y := gHp where g > 0 is the gravitational constant, and
4 =30 +u-V, is the material time derivative [16].

The dynamical quantity of central importance in geophysical fluid dy-
namics is the potential vorticity (PV)

_C+ fo
C14h’

(=v; —uy = Vg xu,

which is constant along particle trajectories; i.e. dg/dt = 0. Conservation of
PV can be seen as a consequence of Kelvin’s circulation theorem [16,6]:

d fo 1 _
dt%<u+ 2m ) xgds =0,

where x(s) is a closed loop of materially advected particles, i.e.,

d

The importance attached to PV in atmospheric dynamics is evidenced
by its central role in quasigeostrophic theory. In extra-tropical regions, the
terms on the right hand side of (1.1) are nearly in balance. This motivates
the definition of the geostrophic wind:

ub = 9Vj:n. (1.3)
fo
Note that if we assume (1.3), then the normalized layer-depth variation n can
be recovered from the PV distribution via

¢
(L+n)g=7Van+ fo. (14)
fo
Furthermore, the PV field itself is advected under the geostrophic flow field:
dq «
%4 " Vaq=0. 1.
5 +ut-Vyg=0 (1.5)

The combined system (1.3), (1.4) and (1.5) is referred to as the quasigeostrophic
approximation [16]." Note that the geostrophic wind u8 is divergence-free and
that it is assumed in general that solutions of the SWEs are nearly incom-
pressible.

A large number of numerical methods for fluid flow simulations have been
proposed over the years. We mention particle-in-cell (PIC) [8,3,9], smoothed-
particle hydrodynamics (SPH) [14,15], finite mass [18,7], contour-advection

! Strictly speaking, the quasigeostrophic approximation makes use of a lineariza-
tion of (1.4) to recover the geostrophic layer-depth from PV.
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(CASL) [4], semi-Lagrangian and Eulerian methods [5]. None of these meth-
ods have been shown to simultaneously preserve energy (i.e. to be Hamilto-
nian), to advect PV (or to satisfy a circulation theorem), and to be numeri-
cally robust with respect to generation of unbalanced divergence § = V, - u
[12] when applied to the SWEs (1.1)-(1.2). One of the most widely used
methods for shallow water flows consists of a pseudospectral truncation of
the Eulerian formulation in space combined with the leapfrog/trapezoidal
rule (LF/TR) discretization in time [5,4]. Hyperdiffusion [4,5] is typically
added to smooth the noise produced by the excitation of fine scale modes.

In this note we demonstrate that the standard SPH and PIC methods
can be combined and appropriately modified so as to be Hamiltonian, advect
PV properly, and to avoid instabilities associated with the finite precision of
moving particle approximations.

1.2 The Hamiltonian Particle-Mesh (HPM) Method

We develop the proposed Hamiltonian particle-mesh (HPM) method in three
steps. Ideas and concepts from PIC and SPH methods serve as a starting
point. A crucial novel idea is the introduction of a smoothing operator which
can either be interpreted as defining a globally supported basis function or
as regularizing the layer-depth in the sense of a-Euler models [10].

1.2.1 Approximating the Continuity Equation
We start with the basic idea of smoothed particle hydrodynamics (SPH) [14]
and approximate the total normalized layer depth h =1+ n by

h(:l:,t) = kal/}(iE - Xk(t))7 (16)
k

where X (t), k = 1,..., N, are Lagrangian particle positions, my > 0 are
constant weight factors, and ¥ (y) > 0 is an appropriate basis function [14,7].
Note that h(x,t) satisfies the continuity equation

ht = —Vm . (hV),
with the velocity field v defined via the partition of unity interpolation
1 d
t) = —— — X (1)) =X (t).
v(z,t) ) zk:mk%/}(fc K ( ))dt k(t)

This provides us with an approximation to the continuity equation (1.2). See,
for example, [18] for more details.

We now restrict the approximation h(x,t) to a regular grid with grid
points x;; = (i - Az, j - Ay) and obtain

B = S iy — X (0).
k
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At this point we impose on the basis function ¢ the requirement that
D d(xi—x) =1 (1.7)
2]

for all £ and define

bij(x) = Y (xij — ).
The condition (1.7) guarantees conservation of the /;-norm of the layer-depth
over the grid, i.e.

Zhij — szld/)(xij — X (1)) = ka = const.
i,j ij k k

We mention that (1.7) is often used in PIC simulations to enhance the stabil-
ity of the method [3]. More importantly, since the basis functions ;; (z) form
a partition of unity, they can be used to interpolate the gridded layer-depth
values back to all of ¢ € R?, i.e.

h(z,t) = h i (X (2)), (1.8)

where we have used the standard summation convention. We wish to empha-
size that, due to approximation errors, the two formulas (1.6) and (1.8) lead
to different results. While (1.6) is used in SPH-type methods, we will employ
(1.8), which is closer to PIC approximation schemes.

1.2.2 Approximating the Momentum Equation

Let us assign to each Lagrangian particle a particle velocity

U Xk 1.9
k dt k> ( )
k=1,...,N. The momentum equation (1.1) is now discretized by

d i

aUk = —foUy —coVah(x,t)z=x,, (1.10)

with h given by (1.8). The equations (1.9)-(1.10) form a closed set of equa-
tions.
We wish to mention, at this point, the important property

- 1
Veh(@,0)x, = 0 ) WV, i (Xa) = -V, VXL, (L)
(¥
where

{X[} CO Zh = Z <Z mkﬂ/%] X, > <ka¢z](xk)> .
k

1)
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To be able to compute the divergence and vorticity of the velocity field
we introduce gridded velocities via the partition of unity approximation:

i — 2ok Uk (xij — X))
Dok (i — Xy)

(1.12)

1.2.3 Global Basis Functions and Smoothing

JFrom a computational complexity point of view, one would like to work
with compactly supported basis functions such as product spline functions
[2,7]. But these basis functions seem to have the disadvantage of reduced accu-
racy and possible numerical instabilities over long time simulations. However,
given a compactly supported basis function ¢, one can transform it into a
globally supported basis function ¥ via

D(y) = (1 - a®V2)Py(y),

i.e., application of an inverse Helmholtz operator with smoothing length o >
0 and an exponent p > 0. An efficient way to implement such an approach is to
work on the given grid {x;;} and to discretize the operator H = (1—a*VZ)~?
using spectral methods.? Let us denote the matrix representation of H by
HJ™; then we define

Yij(x) == H; " hpm ().
where we again use the standard summation convention. This modified basis

function still satisfies ~
Z ’(/Jij (iL‘) =1.
4,J

Hence we obtain the layer-depth approximation
h(@,t) = hij(@) = WY H™bum (@) = h"™ (@)

Thus changing the basis functions amounts to smoothing the gridded layer-
depth values h¥% via R Ny
R™™ = hY H™. (1.13)

This suggests replacing the discrete momentum equation (1.10) by the ap-
proximation

d ~

Ui = —foUj = co Y W7V x5 (Xp). (1.14)
i,j

The convolution (1.13) can be computed very efficiently using FFTs where

hi = Z mpi;(Xi)
%

2 Exact inversion of the Helmholtz operator is actually not required. Since we only
aim at smoothing the high-frequency components, a few Jacobi iterations with a
finite difference operator should be sufficient.
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as before.
In a similar manner, one can introduce smoothed velocities

u = H (1.15)

There is an interesting link to the recently proposed a-Euler models for
compressible and incompressible fluid flows. See [10] for an overview. While
a-Euler models utilize a smoothed advection velocity field, it has been shown
in [10] that this is equivalent to smoothing the pressure field in the case of
incompressible fluids. What has been suggested in this section can be inter-
preted as smoothing the pressure field for a compressible flow. A stabilized
SPH method based on a smoothed velocity field has been proposed in [13].
However, the associated equations of motion are more complex than standard
SPH.

1.3 Conservation Properties

We show that the truncated equations are Hamiltonian and satisfy a Kelvin
circulation theorem in the sense of [6].
First introduce the momenta

Pk = mkUk

and rewrite the equations (1.9) and (1.14) in the form

d Ai'

%Pk = — foPj — comy, izj:h IV x, i (Xi), (1.16)
d 1

— X, =—P 1.17
dt k M k> ( )

k=1,...,N. Using a slight modification of (1.11) it is easy to verify that
these equations are canonical [1] with Hamiltonian

P, P, ¢ o

E= +— hYh" 1.18

2 om, T2 (1.13)
k irj

where one uses the fact that H% is symmetric. The structure matrix .J

consists of IV copies of

—foJa =12 0-1
J - J =
k |: IQ 02 ) 2 10 )

along its main diagonal.
We mention that the Hamiltonian (energy) £ is similar to the discrete
energy obtained from a finite mass method [7] discretization with the spatial
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integral performed using a simple Riemann sum and no rotational degrees of
freedom included.

As shown previously, the method conserves the /;-norm of the layer-depth
approximations h* (t) and h¥ (t), respectively.

Let us now assume that, at time ¢ = 0, a continuous velocity field U(x)
is given and that Ug(0) = U(Xg(0)). Once the solutions to the finite-
dimensional equations (1.16)-(1.17) have been computed, the velocity field
U(x) can, in principle, be advected according to

d )
%U(X) = _COth(m;t)\m:Xv h(m)t) = %:h J(t)/(/}l.] ((L‘),
d
—X = X).
o U(X)

Note that

U (X1 (t) = Us(?)

for all ¢ > 0. Now let us also advect a loop of points X (s, t) along the velocity
field U(X (s,t)), i-e.,
d

ZX(s) = U(X(5)).

If a Lagrangian particle Xy, is part of the loop at ¢ = 0, then it will remain on
the loop for all ¢t > 0. Furthermore, along the given loop, Kelvin’s circulation

theorem
i% U+@XL X 4ds =0 (1.19)
dt 2

holds as can be verified by straightforward differentiation. Note that (1.19)
does not imply advection of PV in the standard sense. See [6] for more details.

1.4 Time-Stepping

We use a second-order symplectic method [17] in time based on a three-term
splitting of the Hamiltonian £ into

1 1
5—§T+V+§T,
where
Py - Py co o
S N — N R

and composition of the associated flow maps [11].
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1.5 Numerical Experiment

We applied the new method to the SWEs on [0, 27)? with periodic boundary
conditions. On the n x n grid, we defined tensor product basis functions

@) = ()bl ), Aw=dy="T,

where ¢(r) is the cubic spline

= 2 + el I < 1
o(r) = q 5(2—rl)?, 1<|r|<2.
0, |r] > 2

Initially, the N = (6 - n)? particles also were positioned on a uniform grid.

The programs were written in MATLAB except for the particle-grid in-
terpolation operators which were implemented as mexz codes in C.

The parameters in (1.1) were chosen to be ¢y = 472 and fy = 2, so that
time T = 1 corresponds to one planar rotation (one “day”). This combination
implies a Rossby deformation radius Lg = /co/fo = 1.

The initial layer depth was defined by

1
h(:L‘,O) = HT(](:B) + K,

where & is chosen so that mean(h) = 1 and
1 1
Ag(z) = ;(y - w)e’z(y*”f(l + 10 sin 2z).
This layer depth, coupled with the initially geostrophic velocity field

ut(z,0) = —%th(m)

obtained via (1.11), simulates an unstable jet similar to that considered in
[4].

Integration was performed until time 7' = 15, using a stepsize At = 1/100.
We used a = 2L/n and p = 1 for the smoothing operator .

As a check on convergence we also computed the solution using a simple
pseudospectral discretization on a 128 x 128 grid, including a small hyperdif-
fusion term. A contour plot of potential vorticity is shown in Fig. 1.1.

The time evolution of the PV field as computed by the HPM method is
displayed in Fig. 1.2. To produce this figure, we computed the PV distribution
on the grid at time ¢ = 0 using

Q¥ = (D, — D,a)" [h, (1.20)
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0
Y

Fig. 1.1. Contours of potential vorticity at time ¢ = 15 obtained with a pseudospec-
tral discretization, n = 128.

where D, and D, represent the discrete spectral derivatives in the z and
y directions, resp., and u = (u,?) is the smoothed velocity (1.15). Next we
extended this PV field to the particles using an interpolation analogous to
(1.8). The resulting particle PV values were then fixed for the duration of
integration, and interpolated back to the grid using (1.12) when output was
desired. It is interesting to compare the PV field obtained in this manner with
that obtained by directly applying (1.20) at output intervals. The result for
t = 15 can be found in Fig. 1.3. The agreement with the corresponding field
in Fig. 1.2 is remarkable, and suggests that PV is very consistently advected
along particle paths of HPM, despite any explicit enforcement of this.

Due to the absence of hyperdiffusion in this computation, small scale
vortical structures appear, but the large scale structures evolve as in Fig. 1.1.

In Fig. 1.4 we have plotted the error in the Hamiltonian (1.18). In the
figure, this error is scaled by the usable energy, defined as

Ehase =E(t=0)—E(u=0,v=0,h=1).

In the figure the energy is well conserved, in keeping with known results for
symplectic integrators. Since (1.18) is a first integral of the dynamics (1.16)
and (1.17), this error can be made as small as desired by reducing the timestep
At.

Also in Fig. 1.4 we have plotted the mean divergence level, defined as the
[2-norm

1/2
6l = | (69 Azdy |,
]

where 6% is the divergence of the smoothed velocity field (1.15).

The mean divergence level is a measure of the degree of balance in the
flow. It is important to observe that ||d|| remains rather flat, indicating that
gravity wave activity is not increasing in magnitude.
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t=0 t=3

1 1
[9) [9)
0 1 2 3 4 5 6 0 1 2 3 4 5 6
6 6

t=6 t=9

Fig. 1.2. Contours of potential vorticity on intervals of 3 days.

1.6 Conclusion

The Hamiltonian particle-mesh method seems to be applicable to more so-
phisticated geophysical fluid models such as the primitive equations and the
SWEs on the sphere [16]. What is required next is a very careful compari-
son with contour-advection (CASL) algorithms and standard pseudospectral
codes in terms of accuracy, applicability, and efficiency.
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Fig.1.3. Smoothed Eulerian potential vorticity at time ¢ = 15

(a) divergence
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Fig. 1.4. Evolution of (a) the mean divergence level and (b) the Hamiltonian error
over the simulation interval.
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