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Abstract.

Kelvin’s circulation theorem and its implications for potential vorticity (PV) con-
servation are among the most fundamental concepts in ideal fluid dynamics. In this
note, we discuss the numerical treatment of these concepts with the Smoothed Particle
Hydrodynamics (SPH) and related methods. We show that SPH satisfies an exact
circulation theorem in an interpolated velocity field, and that, when appropriately in-
terpreted, this leads to statements of conservation of PV and generalized enstrophies.
We also indicate some limitations where the analogy with ideal fluid dynamics breaks
down. AMS subject classification: 76M28.
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1 Introduction and Lagrangian Equations of Motion

Large scale geophysical flows in the atmosphere and ocean are incompress-
ible and nearly two-dimensional. As a result, vorticity plays a central role in
geophysical fluid dynamics. In the Lagrangian fluid description, conservation
of vorticity and circulation follow from the fact that fluid particles are identi-
cal and thus there is a great degree of freedom in labeling particles; that is,
vorticity conservation follows from the particle nature of the fluid (§2). One
might therefore expect that a Lagrangian, particle-based approach would lead
to good vorticity conservation also in a computational setting. In this article,
we consider the conservation properties of the popular Smoothed Particle Hy-
drodynamics method (SPH) [9, 14], as briefly outlined in §3. We will show that,
indeed, the continuous velocity field that interpolates the SPH particle veloci-
ties exactly satisfies Kelvin’s circulation theorem (§4). In turn, Stoke’s theorem
implies that absolute vorticity is also exactly conserved. Recently, Monaghan
[10] has suggested that circulation is conserved approximately by SPH due to
a “discrete relabeling symmetry”. We stress that in this article we prove exact

conservation of circulation for a continuous interpolated velocity field, which
implies the convergence of the discrete integral introduced in [10]. The Hamilto-
nian Particle-Mesh method developed by the authors in [7] inherits conservation
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of circulation from SPH, and in §5 we provide a numerical illustration of this
result using the HPM method.

Additional conservation properties of importance in geophysical fluid dynamics
are mass and energy conservation. Mass conservation is intrinsic to the SPH
formulation. It is also well-known that SPH can be derived from a variational
principle (see, e.g., [14, 3, 10]); i.e. it can be given a Hamiltonian structure, for
which symplectic integrators may be used to obtain excellent energy conservation
[13].

For simplicity of exposition, we consider the two-dimensional shallow water
equations (SWEs):

D

Dt
u = −c0∇xh,(1.1)

D

Dt
h = −h∇x · u,(1.2)

where u = (u, v)T is the horizontal velocity field, h is the layer depth, c0 > 0 is
an appropriate constant, and D

Dt
= ∂

∂t
+ u · ∇x is the material time derivative.

The results of this paper immediately generalize to the rotating SWEs. This is
briefly discussed in §6.

In the Lagrangian description [12], the positions of all fluid particles are given
as a time dependent diffeomorphism from the fluid label space A ⊂ R

2 to R
2:

X = X(a, t), a = (a, b) ∈ A, X = (X,Y ) ∈ R
2.

The labels are fixed for each particle, i.e. D
Dt

a = 0, and the fluid layer depth h
is defined, as a function of the determinant of the 2 × 2 Jacobian matrix

Xa =
∂(X,Y )

∂(a, b)
,

through the relation

h(X(a, t), t) |Xa| = ho(a),(1.3)

where ho(a) is a time-independent function [12]. Differentiation of (1.3) with
respect to time yields an expression that is equivalent to the continuity equation
(1.2). Hence (1.3) and (1.2) are essentially equivalent statements.

A natural choice for the labels a is given by a = X(0) = x which we assume
from now on. Then the matrix Xa is the identity and ho the layer-depth at
t = 0.

Consider the integral identity defining the layer-depth h at time t and Eulerian
position x

h(x, t) =

∫

h(X, t) δ(x − X) dX,

where δ is the Dirac delta function. Using (1.3) we can pull this integral back
to label space, arriving at the relation

h(x, t) =

∫

ho(a) δ(x − X(a, t)) da,(1.4)
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which can be taken as the definition of the layer depth in the Eulerian reference
frame.

The motion of the SWEs is given as the stationary state δL = 0 of the action
integral

L =

∫∫

ho

{

1

2
Ẋ · Ẋ −

c0
2
h

}

da dt(1.5)

with respect to admissible variations δX(a, t), where the dot notation refers to
time differentiation for fixed label, i.e. the material time derivative D

Dt
. The

equations of motion become

D

Dt
X = u(1.6)

D

Dt
u = −c0∇Xh(1.7)

where h is defined by (1.3) or (1.4).
Since the SWEs (1.6)–(1.7) are derived from a Lagrangian variational form,

they are Hamiltonian, conserving the energy

E =
1

2

∫

ho {u · u + c0h} da =
1

2

∫

p · p

ho

da +
c0
2

∫

h2dx,

p = hou, and the symplectic two-form ω̄ :=
∫

(dp ∧ dX) da [11].

2 Vorticity Conservation in Ideal Shallow Water Flows

The action integral (1.5) depends on the labels a explicitly only through the
layer depth

h = ho|Xa|
−1.

As a result, the action is invariant to any transformation of label space (i.e. “re-
labeling”) that leaves the determinant |Xa| unchanged (e.g. any divergence-free
relabeling |∂(a′, b′)/∂(a, b)| = 1 will suffice.) By Noether’s theorem, this par-

ticle relabeling symmetry implies a conserved quantity of the dynamics, which
turns out to be the conservation of vorticity in its many forms as outlined below.
Note, however, that this symmetry with implied conservation law is very much
tied into the particle nature of the flow in the Lagrangian description; it follows
essentially because particles are indistinguishable from one other. It is this ob-
servation which motivates us to consider the vorticity conservation properties of
Lagrangian methods such as SPH in this article. For further discussion of the
particle relabeling symmetry and its relation to vorticity, we highly recommend
Salmon’s monograph [12].

Consider the vorticity ζ = ∇x × u. Using

∇x ×
D

Dt
u = ∇x × ut + (∇x × u)(∇x · u) + u · ∇x(∇x × u) = 0,
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it is easy to conclude that vorticity satisfies the continuity equation

D

Dt
ζ = −ζ∇x · u.(2.1)

The ratio of ζ to h, i.e., q = ζ/h, is called the potential vorticity (PV) [12]. The
PV field q is materially conserved since, using (1.2) and (2.1),

D

Dt
q = h−1

{

D

Dt
ζ − q

D

Dt
h

}

= 0.

As a result, it follows that (1.2) and (2.1) are special cases of an infinite family
of continuity equations

∂

∂t
[hf(q)] = −∇x · [hf(q)u],(2.2)

where f is an arbitrary (smooth) function of q.
Let us now discuss the concept of circulation. Take a closed loop S = {a(s)}s∈S1

in label space and consider the particle locations X(s) = X(a(s)) parameterized
by s ∈ S1. By definition, the loop {X(s)}s∈S1 in configuration space is advected
along the velocity field, i.e.

d

dt
X(s) = u(X(s)).

Kelvin’s circulation theorem [12] states that

d

dt

∮

u · Xs ds = 0.(2.3)

Indeed, we obtain

d

dt

∮

u · Xs ds =

∮
(

D

Dt
u

)

· Xs ds+

∮

u ·

(

∂

∂s

D

Dt
X

)

ds

= −c0

∮

∇Xh · Xs ds+

∮

u · us ds

=

∮
(

1

2
(u · u)s − c0hs

)

ds

= 0.

Let V denote the area enclosed by S in label space and R its image in x-space.
Then Stokes’ theorem applied to (2.3) yields

d

dt

∫

V

(∇X × u)|Xa| da =
d

dt

∫

R

(∇x × u) dx = 0.(2.4)

Because V is arbitrary, the left side of this equation yields another statement of
PV conservation, since

(∇X × u)|Xa| = ho

ζ

h
= hoq,

and Dho/Dt = 0. Similarly, after applying the transport theorem [5] to the right
equality in (2.4), a second appeal to the arbitrariness of V yields the vorticity
equation (2.1).
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3 Review of Smoothed Particle Hydrodynamics

The Smoothed Particle Hydrodynamics (SPH) method [9] is a Lagrangian
method for fluid dynamics, in which the fluid mass is distributed over a number
of smooth, compactly supported, particle-centered basis functions. A similar
method is the Finite Mass Method [14].

Assume that a set of Lagrangian particles with positions {Xk(t); Xk ∈ R
2}

is given as a function of time and that

d

dt
Xk = uk,(3.1)

where uk is the velocity of the particle. Then the time evolution of a quantity
g, satisfying a continuity equation

∂

∂t
g = −∇x · [gu],

can be approximated by

ḡ(x, t) =
∑

k

γkψ(x − Xk(t)).

Here {γk} are constants determined by the initial g(x) field and ψ is an appro-
priate basis function. Typically, SPH is implemented with radially symmetric
basis functions, i.e. ψ(x) = Ψ(‖x‖) and Ψ(r) is either a Gaussian, a compactly
supported radial basis function [4], or a radial spline [9].

Let us apply this idea to the layer-depth h, i.e., we introduce the approximation

h̄(x, t) =
∑

k

mkψ(x − Xk(t))(3.2)

and assume that h̄(x, t) > 0. Then each particle contributes the fraction

ρk(x, t) :=
mkψ(x − Xk(t))

h̄(x, t)
(3.3)

to the total layer-depth. These fractions form a partition of unity, i.e.

∑

k

ρk(x, t) = 1.

Hence they can be used to approximate data from the particle locations to any
x ∈ R

2. In particular, we define an approximate Eulerian velocity field

ū(x, t) :=
∑

k

ρk(x, t)uk(t)(3.4)

with layer depth flux density (inserting (3.3))

h̄(x, t) ū(x, t) =
∑

k

mkψ(x − Xk(t))uk(t).
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Using (3.1), it is now easily verified that

∂

∂t
h̄(x, t) + ∇x · [h̄(x, t)ū(x, t)] = 0.(3.5)

It follows that the layer depth approximation (3.2) exactly satisfies the conti-
nuity equation (1.2) under the flow of the formally defined velocity field (3.4).
In general the particle advection velocity is different from the approximated ve-
locity, i.e uk 6= ū(Xk). We note that the modification suggested in [8] to avoid
penetration in SPH corresponds1 to advecting the particles in the velocity field
(3.4).

Hence, (3.1) and (3.2) provide an approximation to the continuity equation
(1.2). To get a closed system of discretized equations, we still have to approxi-
mate the momentum equation (1.1). For example, one can use

d

dt
uk = −c0∇xh̄(x, t)

∣

∣

x=Xk

= −c0
∑

j

mj∇Xk
ψ(Xk − Xj).(3.6)

The equations (3.1), (3.2), and (3.6) comprise the standard SPH approximation
to the SWEs (1.1)–(1.2). We introduce the canonical momenta pk = mkuk. The
equations (3.1), (3.2), and (3.6) are now canonical with Hamiltonian (energy)

H =
1

2

∑

k

1

mk

||pk||
2 +

c0
2

∑

l,k

mkmlψ(X l − Xk)(3.7)

and symplectic structure ω̄ =
∑

k dpk ∧ dXk.
A numerical time-stepping scheme is obtained by noting that

d

dt
Xk = uk,

d

dt
uk = 0

can be solved exactly and that the implied time evolution of h̄(x, t) exactly
satisfies (3.5). Similarly, equation (3.6) and d

dt
Xk = 0 can also be integrated

exactly since in this case h̄t = 0. A composition of these exact propagators
leads to a symplectic time-stepping scheme [13] implying good long-time energy
conservation [2].

Bonet & Lok [3] have also discussed conservation properties of SPH in a vari-
ational formulation. In particular they show conservation of linear and angular
momentum, provided the basis function ψ is radially symmetric. These follow
from the fact that the Hamiltonian (3.7) is invariant under translations and ro-
tations in the Lagrangian particle positions {Xk} and subsequent application of
Noether’s theorem [11].

1More precisely, the formulation Eqn. (2.6) in [8] advocates particle advection in an approx-
imated velocity field based on a generic kernel. Taking this kernel to be ψ yields the advection
field ū(

���
).
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4 Vorticity Conservation Properties of SPH

Circulation is conserved, using SPH, for an interpolated velocity field u(X)
defined as follows: at time t = 0, let u(X) be any initial velocity field satisfying
u(Xk) = uk(0) at the particle locations Xk. (For example, suppose the particle
velocities at t = 0 are given as a continuous function.) Define natural labels
a = X(0) = x and let the field of particle locations X(a) and particle velocities
u(a) = u(X(a)) evolve—under the solution of the SPH flow due to (3.6)—
according to the ordinary differential equations (i.e. decoupled in label space)

D

Dt
u = −c0∇X h̄(X, t) = −c0

∑

k

mk∇Xψ(||X − Xk(t)||),
D

Dt
X = u.(4.1)

Note that for this velocity field it does hold that u(Xk) = uk for all time t, in
contrast to the approximated velocity field ū(x) of the continuity equation (3.4).
Figure 4.1 illustrates the relationship between the velocity fields u and ū.

k

k
X k

u(X  ) = u

u(X  )

k X(s)

u(X(s))

S

Figure 4.1: A closed curve X(s) advected with the flow, illustrating the velocity
fields u and ū. The SPH particle at Xk (support indicated by the dotted line)
with velocity uk remains on the curve throughout the integration.

Now, we define a curve of Lagrangian points X(s) = X(a(s)) with s ∈ S1

and S = {a(s)}s∈S1 being a closed loop in label space. The associated loop
{X(s)}s∈S1 in configuration space is propagated in the velocity field u(s) =
u(X(s)) according to

D

Dt
X(s) = u(s).
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We assume that X(s) and u(s) are sufficiently differentiable. Then Kelvin’s
circulation theorem (2.3) becomes

d

dt

∮

u · Xs ds = 0.(4.2)

Indeed, we obtain

d

dt

∮

u · Xs ds =

∮
(

D

Dt
u

)

· Xs ds+

∮

u ·

(

∂

∂s

D

Dt
X

)

ds

= −c0

∮

∇X h̄ · Xs ds+

∮

u · us ds

=

∮
(

1

2
(u · u)s − c0h̄s

)

ds

= 0.

It is important to notice that the circulation theorem above induces a true
constraint on the numerical solution, since any SPH particle that is initially
located on the loop S will remain on the loop as the integration proceeds, and
furthermore, the particle velocity uk will be exactly interpolated by u(Xk).

If we now give each particle inside S a label a and let V denote the area
enclosed by S and let R denote the image of V in x-space, then applying Stokes’
theorem to (4.2) yields

d

dt

∫

V

(∇X × u)|Xa| da =
d

dt

∫

R

(∇x × u) dx = 0,(4.3)

for which the left side implies

D

Dt
{(∇X × u)|Xa|} = 0,(4.4)

since V is arbitrary.
Let h(X(a)) denote the layer-depth approximation obtained as the solution

of the continuity equation (1.2) along the interpolated velocity field u(X(a)).
Then h|Xa| = ho and equation (4.4) implies conservation of the PV field q =
(∇X × u)/h, i.e. Dq/Dt = 0.

Furthermore, applying the transport theorem to the right equality of (4.3), and
again noting that V is arbitrary, yields a continuity equation for the absolute
vorticity of the velocity field u:

∂

∂t
ζ = −∇x · (ζu), ζ = ∇x × u,

cf. (2.1).
We would add that (4.2) and (4.3) are preserved under time discretization via

a splitting as described in the previous section.
For a numerical verification of (4.2) one can represent the loop {X(s)} by

a sufficient number of particles {X̂ l} with associated velocities {ûl} satisfying
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(4.1). Note that the particles {X̂ l} may be computed along with the SPH
simulation as passive tracers with zero mass. The integral (4.2) is approximated
by

∮

u · Xs ds ≈
∑

l

ûl · (X̂ l+1 − X̂ l).(4.5)

One should observe that the variation of this integral in time converges to zero
as the number of points discretizing the loop is increased. Such a verification
is included in §5 for the Hamiltonian Particle-Mesh method. Monaghan [10]
motivates the approximate conservation of (4.5), appealing to Noether’s theo-
rem for a discrete relabeling (change of index) of particles of equal mass. This
reasoning is limited because Noether’s theorem applies only to continuous sym-
metries. However, our result shows that the approximate conservation of (4.5)
is an implication of a stronger result, namely the exact conservation of (4.2).

We have seen that the PV field q = (∇X × u)/h is exactly conserved in SPH.
It is also easy to verify that the product hf(q), where f is an arbitrary function
of q, exactly satisfies the continuity equation (1.2) in the interpolated velocity
field u(X). For diagnostic purposes, one can obtain a computable continuous
approximation of hf(q) by again taking a sufficient number of passive tracer
particles {X̂ l} with associated velocities {ûl} satisfying (4.1). Following the
discussion for the layer-depth h̄ in §3, we define a continuous approximation

hf(q)(x, t) =
∑

l

αlψ(x − X̂ l(t).

Given a particle mass ml and PV value ql for each tracer particle X̂ l, as deter-
mined by the initial data, the weights {αl} can be defined by αl = mlf(ql). It
is straightforward to show that hf(q) satisfies a modified continuity equation of
type (3.5). Under periodic boundary conditions, this continuity equation implies
the exact conservation of the generalized enstrophies

Qf =

∫

hf(q) dx.

Since this is also true for the split equations of motion used for the time-stepping,
the overall space-time approximation conserves enstrophy. The number of tracer
particles can be chosen to be quite large if, for example, the statistical/spectral
properties of the SPH approximation to hq2 are of interest.

5 Hamiltonian Particle-Mesh Method and Numerical Verification

The SPH equations of motion are equivalent to the simulation of a molecular
fluid with a softened repulsive pair potential given by the SPH basis function
ψ(x) = Ψ(‖x‖) [1]. In general, such flows tend to a statistically uniform state
of disorder. In practice, therefore, SPH is used with some form of artificial
viscosity, and this results in a monotone decrease in circulation along any loop,
and a monotone loss of energy.
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To improve the stability of SPH, we suggested in [7] working with an averaged
SWE

D

Dt
X = u,(5.1)

D

Dt
u = −c0∇X(A ∗ h),(5.2)

where A is some smoothing operator. These equations are still canonical with
Hamiltonian

H =
1

2

∫

p · p

ho

da +
c0
2

∫

h(A ∗ h) dx(5.3)

and circulation preserving. Let {Xk} be an initially equi-distributed set of points
with an associated area ∆A. Numerically the layer-depth h is now approximated
by the singular measure

h̃(x, t) =
∑

k

mk δ(x − Xk(t)), mk = ho(ak) ∆A,

ak = Xk(0), which approximates the integral (1.4) in a weak sense. If, for
example, A is chosen to be convolution with the SPH basis function ψ such that

(A ∗ h̃) (x, t) = h̄(x, t) =
∑

k

mkψ(x − Xk(t)),

then the layer-depth dependent part of the Hamiltonian (5.3) becomes

c0
2

∫

h̃(A ∗ h̃) dx =
c0
2

∫

h̃h̄ dx =
c0
2

∑

l,k

mkmlψ(Xk − X l)

and the standard SPH method is recovered. However, typical SPH basis func-
tions ψ do not provide enough smoothing, which results in the above mentioned
tendency to a state of disorder.

The layer-depth approximation h̃ satisfies the continuity equation (1.2) in a
weak sense. Furthermore, the following integral version of (1.3) is easily shown:

∫

V

h̃|Xa| da =

∫

R

h̃ dx =
∑

k:Xk∈R

mk

and

∑

k:Xk∈R

mk ≈

∫

V

ho(a) da.

The set of particles over which the sum is performed is constant provided no
particle enters or leaves the domain R which would correspond to a singular Xa

and, hence, to a non-physical state.
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The Hamiltonian Particle-Mesh method (HPM), introduced in [7], differs from
SPH primarily in the construction of the smoothed layer depth A∗h̃. Specifically,
we define a uniform grid with grid points xij and grid spacing ∆x. Let h̄SPH(x, t)
be the SPH approximation to the layer depth (3.2) with the SPH basis function
replaced by a tensor product basis function

ψ(x − Xk) := φ(|x−Xk|)φ(|y − Yk|),

where φ(r) is given by the cubic spline

φ(r) =







2
3 − r2 + 1

2r
3, r ≤ R

1
6 (2 − r)3, R < r ≤ 2R
0, r > 2R

for R = ∆x. Define the gridded layer depth values

h̄ij
SPH(t) = h̄SPH(xij , t)

and let the matrix S = {Smn
ij } denote the representation of a spatial aver-

aging operator S over the given grid {xij}. Since the cubic splines form a
partition of unity on the grid, we can define a continuous approximation of a
smoothed/averaged layer-depth in space

(A ∗ h̃) (x, t) = h̄HPM(x, t) =
∑

ij,mn

h̄ij
SPH(t)Smn

ij ψ(xmn − x).

This approximation, used in the HPM method, can be viewed as a spatial aver-
aging over short wave-length disturbances in standard SPH. One can also think
of the HPM method as an efficient implementation of the SPH method for a
globally supported basis function ψ̃ defined by

A ∗ δ = ψ̃ := S ∗ ψ,

ψ a standard SPH basis function. For a more detailed description of the HPM
method, including its Hamiltonian structure, see [7].

The HPM method conserves circulation using the same proof as for SPH in
§4. The essential observation is that particles are advected in a velocity field
that exactly evolves in some continuous approximate layer depth.

We have performed an experiment with HPM to verify the conservation of
circulation. The flow models the interaction of two positively oriented vortices
in a rotating reference plane. We discretized this flow using HPM on a 32 × 32
grid with 1282 particles. We intentionally chose a fairly coarse discretization for
this problem to illustrate that the circulation theorem holds independent of the
precision of the discretization.

Initially a circular loop of M evenly spaced particles of zero mass was placed
in the flow. The solution including the loop particles was evolved over time
intervals of T = 3, T = 6 and T = 15 revolutions of the plane. The experiments
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were repeated, each time refining the discretization, for M = 100, 200, 400, 800
and 1600 particles. The circulation integral was approximated using (cf. (4.5))

CM (t) =
∑

m

ûm · (X̂m+1 − X̂m−1)

Figure 5.1 shows the deformation of the loop at time T = 15, computed using
M = 3200 particles. The loop is superimposed over a contour plot of potential
vorticity, and its interior is shaded. In Figure 5.2 we see second order convergence
of (CM (t)−CM (0))/CM(0) to zero as M increases. Convergence of this sum as
M → ∞ is implied by (4.2).

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 5.1: Final deformation of the circular loop at time T = 15, using
M = 3200 particles.

6 Concluding Remarks

In this article, we have shown that the SPH method with (3.6) satisfies a
Kelvin circulation law. The results are based on the introduction of a continu-
ous velocity field u(X) which interpolates the particle velocities uk for all time
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Figure 5.2: Convergence of the discretization of the circulation integral.

and is advected in the flow of the continuous SPH approximation (4.1). This ve-
locity field conserves circulation (4.2) and, by Stokes’ theorem, absolute vorticity
(4.3). Furthermore, we can formally define a layer depth approximation h such
that h satisfies the continuity equation (1.2) in the interpolated velocity field.
Defining the potential vorticity with respect to this layer depth yields exact PV
conservation.

One can expect a particle method to converge to the solutions of the averaged
SWEs (5.1)-(5.2) for an appropriate smoothing operator A and in the limit of
large particle numbers. The necessary amount of regularity and the impact of
the smoothing operator A on the long term dynamics of the SWEs are not yet
clear.

The results of this paper easily generalize to the rotating SWEs

D

Dt
u = −f0u

⊥ − c0∇xh,

D

Dt
h = −h∇x · u,

where u⊥ = (−v, u)T and f0/2 is the angular velocity of the reference plane.
Potential vorticity is now defined by

q =
∇x × u + f0

h
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and Kelvin’s circulation theorem becomes

0 =
D

Dt

∮
(

u +
f0
2

X
⊥

)

· Xs ds

=
D

Dt

∫

V

(∇X × u + f0) |Xa| da

=
D

Dt

∫

R

(∇x × u + f0) dx.

We wish to mention the Balanced Particle-Mesh (BPM) method of [6] which uses
radial basis functions to approximate the absolute vorticity ω = ∇x × u + f0.
See [6] for the geometric properties of the BPM method.

Kelvin’s circulation theorem also applies to three-dimensional ideal fluids while
conservation of PV takes a more complicated form (see [12]). Again, conservation
of circulation can be shown for the SPH method in the same manner as outlined
in this note for two-dimensional fluids. In fact, the concept of circulation even
applies to molecular simulations of a mono-atomic liquid [1] with Hamiltonian

H =
1

2m

∑

k

||pk||
2 +

∑

l>k

φ(||Xk − X l||),

where m is the atomic mass and φ(r) an interaction potential. We introduce the
function

ρ(x, t) =
∑

l

φ(||x − X l(t)||), x ∈ R
3,

and note that Newton’s law is equivalent to

D

Dt
pk = −∇Xk

H = −∇xρ(x = Xk, t).

We also have

D

Dt
Xk =

1

m
pk.

Applying the notations of §4 and defining u = p/m, we obtain the circulation
theorem

D

Dt

∮

u · Xs ds = 0

and, in two dimensions, conservation of vorticity per control area, i.e.,

D

Dt

∫

R

(∇x × u) dx.

One should keep in mind that φ(r) is often singular at r = 0 and, hence, ρ(x, t) is
not defined for x = Xk. However, one can replace φ(r) by a smooth truncation
φ̄(r) such that φ̄(r) = φ(r) for r ≥ ro and ρ̄′(0) = 0, ρ̄(0) < ∞. Here ro is
chosen such that ||Xi(t) − Xj(t)|| > ro for all t ≥ 0 and all i 6= j. One should
also note that, contrary to fluid dynamics, the product ρ|Xa| need not to be
approximately conserved and that Xa can become singular.
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