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Abstract— The paper presents symplectic Möbius in-
tegrators for Riccati equations. All proposed methods
preserve symmetry, positivity and quadratic invari-
ants for the Riccati equations, and non-stationary
Lyapunov functions. In addition, an efficient and
numerically stable discretization procedure based on
reinitialization for the associated linear Hamiltonian
system is proposed.

I. INTRODUCTION

Optimal control problems for linear differential
equations with quadratic cost functions are exten-
sively studied from both theoretical and numerical
standpoints. In particular, it is well-known that
under some assumptions the optimal control is rep-
resented as a solution of the Pontryagin maximum
principle. On the other hand, an optimal control in
the feedback form may be represented by means
of the Riccati matrix which solves a non-linear
matrix differential Riccati equation [9]. This latter
representation plays an important role in the state
estimation and H2-filtering problems which are
dual to optimal control problems [1].

In this paper we propose a class of numerical meth-
ods for solving the differential Riccati equation.
This in turn allows one to construct an accurate
numerical solution of the optimal control problem
in feedback form and compute an observer or state
estimator for a non-stationary linear system. The
literature on numerical methods for Riccati equa-
tions is very rich. Without claiming completeness
we mention a class of methods based on backward
differentiation formulas (BDF) for symmetric and
non-symmetric non-stationary differential Riccati
equations [3]. These methods require on solving an
algebraic Riccati equation (ARE) at each time-step.
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The latter is done either using Newton’s method [2]
or a Schur decomposition method [7]. Another class
of methods is represented by exact discretization of
stationary differential Riccati equations [6].

The class of methods proposed here is based
on so-called Möbius integrators for Riccati equa-
tions [10]. The basic idea behind the Möbius
transformation is to make use of the fact that the
solution of the Riccati equation induces a flow
on a Grassmannian manifold. This flow is called
a Möbius transformation (see for instance [10]).
It may be constructed by solving an associated
linear Hamiltonian system which has the same
form as Euler-Lagrange equations associated to
the Pontryagin maximum principle. We propose to
construct a numerical approximation of the Möbius
transform by using symplectic Runge-Kutta meth-
ods of order p and thus avoid numerical instabilities
associated with Möbius transform by means of a
reinitialization. The resulting symplectic Möbius
integrator is stable and preserves symmetry and
positivity of the Riccati matrix. Also it preserves
all quadratic invariants and a non-stationary variant
of a Lyapunov quadratic form (associated with
the inverse Riccati matrix). The latter plays an
important role in state estimation as it defines a
decay rate of the state estimation error over time.
We note that the algorithm proposed in [5] appears
to be quite close to the symplectic Möbius inte-
grators proposed in this paper: namely, the authors
propose a numerically stable version of the so-
called Davidson-Maki algorithm which represents
the solution of the symmetric Riccati equation by
means of Bernoulli substitution. The numerical
stability of the substitution is achieved through
the reinitialization over the course of computing
the approximate solution of the linear Hamiltonian
system. In fact, Bernoulli substitution represents a
Möbius transform. Unlike [5] where explicit RK,



linear multistep and BDF time integrators where
applied to get numerical Möbius transform we
construct a symplectic RK method to approximate
the latter. This allows us to preserve symmetry and
positivity. We illustrate the method on a numerical
example which comes from the discretization of the
linear non-stationary hyperbolic equation by means
of the Galerkin method. The experiment shows that
our implementation with reinitialization is stable
unlike a standard implicit mid-point approximation
of a Möbius transform and preserves symmetry
and positivity as well as a non-stationary Lyapunov
quadratic form. The latter is of major importance in
practice of using “on-line” estimators in the form of
filters[11] as the filter does not require relaunching
when the new observation Y (t) arrives and, thus, it
can be integrated for a long time. In this case, the
structure preserving discretisation becomes neces-
sary to guarantee that the error estimates hold true
for the discrete system.

This paper is organized as follows. Section II-
.1 reviews LQ control problems, introduces linear
Hamiltonian systems and Riccati equations, and
discusses the relations to the dual state estimation
problem. Section III introduces symplectic Möbius
integrators. Section IV contains numerical assess-
ment of the implicit midpoint version of the Möbius
integrator for non-stationary linear equations. Sec-
tion V contains concluding remarks.

II. REVIEW OF LQ OPTIMAL CONTROL
PROBLEMS

1) LQ problem: The linear quadratic (LQ) optimal
control problem is stated as follows.On the time
interval t ∈ (t0, tf ) determine x ∈ L2(t0, tf ,R

n)
and u ∈ L2(t0, tf ,R

m) to minimize the cost
functional

L[x, u] = xT0Q0x0 +

∫ tf

t0

xT (t)Q(t)x(t)dt

+

∫ tf

t0

uT (t)R(t)u(t) dt .

subject to the constraint:

ẋ(t) = A(t)x(t) +B(t)u(t) , x(tf ) = xf , (1)

where x(0) = x0, Q0 = QT0 ≥ 0, Q(t) =
QT (t) ≥ 0 and R(t) = RT (t) > 0 are matrices
of appropriate dimensions.

It is well known [1] that the solution of the LQ
problem is in the form: û = R(t)−1B(t)Tλ where
the Lagrange multiplier λ ∈ L2(t0, tf ,R

n) solves
the following linear Hamiltonian two-point bound-
ary value problem:

ẋ = A(t)x+B(t)R(t)−1B(t)Tλ , x(tf ) = xf ,

λ̇ = Q(t)x−A(t)Tλ , λ(t0) = Q0x(t0).

On the other hand, the optimal control û ad-
mits a so-called feedback representation: û =
R(t)−1B(t)TP (t)x(t) where P solves Riccati
equation: P (t0) = Q0 and

dP

dt
= −A(t)P − PAT (t) +Q(t)

− PB(t)R−1(t)BT (t)P .
(2)

It is well-known [9, p.121, Lemma 4.1] that under
our assumptions on Q,R and Q0 there exist U(t)
and V (t) such that U(t0) = I and V (t0) = Q0

and:
dU

dt
= A(t)U +B(t)R−1(t)BT (t)V,

dV

dt
= Q(t)U −AT (t)V,

(3)

and P (t) = V (t)U−1(t). In particular, x(t) =
U(t)U−1(tf )xf and λ(t) = V (t)x0 so that λ(t) =
P (t)x(t). This is remarkable because in general
the coupled dynamics (x(t), λ(t)) is described by
a 2n × 2n matrix. Here the dimension reduction
follows from the coupled boundary condition at t =
t0. The consequence is that our solution (x(t), λ(t))
evolves on the space of n-dimensional subspaces of
R2n, the Grassmannian Gr(2n, n), as described in
Section III.

Now, substituting û(t) into the cost and using
(3), the cost function can be simplified along our
solution as

L[x, λ] =
1

2
xT0Q0x0 + xT0

[∫ tf

t0

d

dt
(U(t)TV (t)) dt

]
x0

=
1

2
xT0 U(tf )TV (tf )x0 =

1

2
xTf P (tf )xf

representing the minimal value of the cost.



2) Dual estimation problem: The LQ problem
arises in many applications. For example, it is the
key object in H2-filtering (Kalman filtering [1])
and minimax state estimation (see for instance [8]).
Namely, the cost function L represents, in par-
ticular, a worst-case estimation error σ for the
following state estimation problem: given an output
y(t) ∈ Rp of a linear system

dp

dt
= −AT (t)p(t) + f(t), p(t0) = f0 , (4)

in the form y(t) = BT (t)p(t) + η(t) find û ∈
L2(t0, tf ,R

p) such that: σ(û) ≤ σ(u), ∀u ∈
L2(t0, tf ,R

p) where

σ(u) := sup
f0,f,η

(`T p(tf )−
∫ tf

t0

uT (t)y(t)dt)2 ,

assuming that

fT0 Q
−1
0 f0 +

∫ tf

t0

fT (t)Q−1(t)f(t)dt

+ ηT (t)R−1(t)η(t)dt ≤ 1 .

In fact, L(u, x) = σ(u) and so, by minimizing
L(u) one finds the estimate û of `T p(tf ) with the
minimal worst-case error σ(û). It turns out that∫ tf
t0
uT (t)y(t)dt = `T p̂(tf ) where p̂ solves the so-

called filter equation:

dp̂

dt
= (−AT (t)− P (t)B(t)R−1(t)BT (t))p̂(t)

+ P (t)B(t)R−1(t)y(t), p̂(t0) = 0 .

Let us now assume that the estimation error e(t) :=
p(t) − p̂(t) equals e0 at time instant t = t∗ and
f(t) = 0, η(t) = 0 for t > t∗. Then one may write
an equation for e: e(t∗) = e0 and

ė = (−AT (t)− P (t)B(t)R−1(t)BT (t))e(t) . (5)

We compute:

(eT (t)P−1(t)e(t))′

= −eT (P−1Q(t)P−1 +HT (t)R−1(t)H(t))e ,

so that for t < tf we get:

(eT (tf )P−1(tf )e(tf )) ≤ (eT (t)P−1(t)e(t))
(A) .

We would like to prove that this decay—of a non-
stationary variant of a Lyapunov quadratic form

along the trajectory e(t)—holds for the discrete
dynamics which is to be presented in the following
sections.

III. MÖBIUS INTEGRATORS

Each real n × m matrix Y defines a subspace of
Rm+n as follows. Partition z ∈ Rm+n as z = ( uv ),
where u ∈ Rm and v ∈ Rn. Then consider the
set of all such z satisfying v = Y u. This set
defines an m-dimensional subspace of Rm+n, a
basis for which can easily be constructed as the

column space of the matrix Z =

[
Im
Y

]
, where Im

denotes the m-dimensional identity matrix. Note
that Z indeed has full rank m, independent of the
rank of Y . As noted in [10], not all m dimensional
subspaces of Rm+n can be constructed this way,
but a dense open subset of them can. The set of all
m dimensional subspaces of Rm+n that do have
this property is called the Grassmannian, denoted
Gr(m + n,m), which can be given topological
structure and is compact in Rm+n.

Now consider the action of the Lie group GL(m+
n) on Gr(m + n,m). Let A ∈ GL(m + n) be
close to the identity, and partitioned as A = I +

h

[
a b
c d

]
, where h is a small parameter and a ∈

Rm×m, d ∈ Rn×n, etc., and consider the action of
A on the basis Z. Let Z ′ = AZ,

Z ′ =

[
U ′

V ′

]
,

U ′ = Im + h(a+ bY )
V ′ = Y + h(c+ dY )

Under what condition does the column space of Z ′

define a subspace in Gr(m + n,m)? In this case
there exists Y ′ such that V ′ = Y ′U ′, hence

Y + h(c+ dY ) = Y ′ [I + h(a+ bY )] ⇒
Y ′ = [Y + h(c+ dY )] [I + h(a+ bY )]

−1
.

For h small enough, the inverse exists, and hence
infinitesimal generators in GL(m+n) preserve the
Grassmann manifold. What is more,

Y ′ = [Y + h(c+ dY )]
[
I − h(a+ bY ) +O(h2)

]
= Y + h(c+ dY − Y bY − Y a) +O(h2),



and in the limit h → 0, we see that GL(m + n)
induces a flow on Gr(m+ n,m) corresponding to
the Riccati equation for Y = V U−1

dY

dt
= c+ dY − Y bY − Y a. (6)

For more general elements of GL(n+m), we have:

U ′ = α + βY , V ′ = γ + δY , det

(
α β
γ δ

)
6= 0,

and we have V ′ = Y ′U ′:

γ+δY = Y ′(α+βY )⇒ Y ′ = (γ+δY )(α+βY )−1,
(7)

provided the inverse exists. Such a transformation is
referred to as a generalized Möbius transformation
in [10].

Schiff & Shnider [10] propose constructing Möbius
integrators for the Riccati equation (6) by solving
the related linear equation

dΓ

dt
=

[
a b
c d

]
Γ, Γ(0) = I (8)

over a short time interval (0, h) using a numerical
method or an (approximate) matrix exponential.
The exact (or approximate, for that matter) solu-
tion

Γ(h) =

(
α β
γ δ

)
= I + h

(
a b
c d

)
+O(h2)

can be used to define a Möbius transformation
(7) to propagate Y over (tn, tn+1), i.e., by taking
Y = Y n, Y n+1 = Y ′. This approach can be easily
generalized to nonautonomous Riccati equations,
but requires solving (8) at each time step. An advan-
tage of the approach is that it avoids representation
singularities. The stability of Möbius integrators
can be directly analyzed in the context of standard
linear stability theory for numerical methods ap-
plied to the auxiliary problem (8).

The efficiency of the approach of [10] can be
improved slightly by directly approximating dZ

dt =[
a b
c d

]
Z, Z(0) = Zn =

[
Im
Y n

]
whose solution is

Zn+1 =

[
α+ βYn
γ + δYn

]
, the numerator and denomi-

nator of the desired Möbius transformation.

A. Symplectic Möbius integrator for Riccati equa-
tions

We recall that the solution P of the Riccati equa-
tion (2) may be derived from Hamiltonian sys-
tem (3). Indeed, P = V U−1 and (3) may be written
as follows:(
dU/dt
dV/dt

)
=

[
0 I
−I 0

] [
−Q AT

A BR−1BT

](
U
V

)
.

Thus, numerical approximation of the Riccati equa-
tion may be conducted by constructing a numerical
method for the system (3).

Current wisdom [4] suggests using symplectic inte-
grators for Hamiltonian systems. If A, B, Q and R
are sparse, then partitioned RK methods or splitting
methods may be an interesting alternative, but in
general we must consider the class of symplectic
Runge-Kutta (RK) methods. We stress that P (t) is
symmetric and non-negative if the initial condition
P (0) is symmetric and non-negative. Thus, the
corresponding numerical method should preserve
these properties together with the a non-stationary
variant of a Lyapunov quadratic form (“decay”
property (A) mentioned above). In what follows
we propose s-stage implicit RK method [4, p.29]
that possesses the required properties.

Following [13] we introduce a uniform grid tn :=
nh, n = 1, . . . , L, h :=

tf−t0
L on (t0, tf ) and

let {aij}si,j=1, {bi}si=1 denote the coefficients of
s-stage implicit RK method of order p [4, p.29] for
s ≥ 1. Let us also set ci :=

∑s
j=1 aij . Our main

result – the symplectic Möbius integrator for the
auxiliary system (3) – is formulated in the following
theorem.

Theorem 1: Assume that Mjk := bjbk − bkakj −
bjajk = 0 for 1 ≤ j, k ≤ s. Define Pn = VnU

−1
n

for n > 0 and P0 := Q0 and set Pin = VinU
−1
in

where Un, Vn and Uin, Vin are defined from the
following equations:

Un+1 = Un + h

s∑
i=1

biδUin ,

Vn+1 = Vn + h

s∑
i=1

biδVin ,

(9)



where Vin = Vn + h
∑s
j=1 aijδVjn, Vn = Pn,

Uin = Un + h
∑s
j=1 aijδUjn, Un = I , δUin =

AinUin + BinR
−1
in B

T
inVin, δVin = −ATinVin +

QinUin, Ain := A(tn + cih) and Bin, Qin, Rin
are defined analogously. Then Pn is a symmetric
non-negative matrix and ‖Pn − P (tn)‖ ≤ O(hp)
for the continuous Riccati matrix P (t). Moreover,
for stationary A,B,Q and R such that A,B is
stabilizable and Q0 = 0 the “decay” property (A)
is preserved as well.

Proof: Let us first justify the reinitialization
proposed in (9), that is Vn = Pn and Un = I . This
may be easily explained for the case of continu-
ous time. Namely, we note that under the change
of variables U(t) := Û(t)X , V (t) := V̂ (t)X ,
where Û , V̂ solve (3), one would get that P̂ (t) =
V̂ (t)Û−1(t) = V (t)U−1(t) = P (t). Therefore, we
are free to re-initialize Un, Vn at each tn. That
is, we can compute Pn+1 as Pn+1 = Vn+1U

−1
n+1,

where Vn+1, Un+1 are obtained through (9) with
Vn = Pn and Un = I .

The reinitialization has one major advantage: it
keeps Un close to the identity and well-conditioned
numerically, which, in turn, allows us to use stan-
dard error estimates for RK methods of order p.
These imply that ‖P (tf ) − Ptf ‖ = O(hp) for
P (tf ) = V (tf )U−1(tf ), Ptf = VtfU

−1
tf

.

Let us now prove that Pn is symmetric and non-
negative. To this end we apply one of the key
properties of symplectic RK methods (those with
Mij = 0), namely the following discrete version of
the integration by parts formula:

UTtfVtf = UT0 V0+h

L∑
n=1

s∑
i=1

bi
(
δUTinVin + UTinδVin

)
.

By substituting expressions for δUin and
δVin from (9) into the above formula and
multiplying both sides of the resulting
equality by U−Ttf := (UTtf )−1 from the
left and U−1tf from the right we find:
Ptf = VtfU

−1
tf

= U−Ttf (Q0 + hΓ)U−1tf , Γ :=∑L
n=1

∑s
i=1 bi

(
V TinBinR

−1
in B

T
inVin + UTinQinUin

)
.

It is clear that Γ = ΓT . On the other hand, bi ≥ 0

for all i for the symplectic Gauss-Legendre RK
methods and so Γ is a symmetric non-negative
matrix. Using the above representation it is easy
to derive that Ptf = PTtf ≥ 0.

Let us finally prove the “decay” property (A). Since
the pair A, B is stabilizable and the noises are
trivial after t > t∗ (by assumption (A)) it follows
that limt→∞ ‖e(t)‖ = 0. Indeed, let P∞ denote
the unique equilibrium solution of the algebraic
Riccati equation corresponding to (2). Then −AT−
P∞BR−1BT is stable and since limP (t) = P∞

it follows that e(t) → 0 monotonically at least
after some t∗∗ ≥ t∗. On the other hand P (t) is
a non-decreasing matrix-valued function (see for
instance [12, p.218]). Finally, eTtnP

−1
tn etn is a non-

increasing function for t > t∗∗ as symplectic RK
methods preserve quadratic invariants [4].

We leave the proof of the “decay” property (A)
in the general case of non-stationary matrices A,B
for the further research.

IV. NUMERICAL EXPERIMENTS

In this experiment we approximated Riccati equa-
tion (2) using the reinitialized implicit midpoint
method representing a symplectic Möbius inte-
grator of order 2 (i.e. the method (9) with s=1,
a11 = b1 = 1/2) and compared it to the standard
iterated midpoint method applied to (3). The matrix
A(t) represents the stiffness matrix of the spectral
Galerkin method applied to the following 2D lin-
ear transport problem: ∂tI + u∂xI + v∂yI = 0,
I(x, y, 0) = I0(x, y), I = 0 on ∂Ω, where the
flow (u(x, y, t), v(x, y, t))′ is given. The transport
equation was projected onto a finite dimensional
subspace generated by the eigenfunction of the
Laplacian −∆ on Ω = [0, 2π]2. For the simulation
we took C(t) = diag(1, 0, . . . , 0), Q0 = Q(t) =
1

100I, B = diag(1, 0, . . . , 0), h = 0.002, t0 = 0
and advanced Riccati equation (2) to the time-
instant tf = 5500h by using the Möbius integrator
in the form of reinitialized midpoint method and
the non-reinitialized midpont method. The figures
below represent the simulation results. Clearly, both
methods coincide for n < 4500 but then (for n >
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Fig. 1. The Frobenius norm of the Riccati matrix P (t)
computed by means of the Möbius integrator.
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Fig. 2. The Frobenius norm of the Riccati matrix computed
by means of the standard midpoint.

4500) the non-reinitialized midpoint version of the
numerical Riccati matrix has growing oscillations
(see Fig.1-Fig.2). This shows that the reinitializa-
tion together with symmetry and positivity preser-
vation plays a vital role for long simulations (like
filtering problems where one does not reitialize the
filter when new observations appear).

V. CONCLUSION

The paper presents a class of symplectic Möbius
integrators of order p. The main advantages of
the methods within this class over standard time
integrators for Riccati equations are:

• Möbius integrators allow to integrate Riccati
equation through “singularities” which are re-
lated only to the local coordinates and are

not present in the exact flow map over the
Grassmanian manifold;

• symplectic Möbius integrators with reinitial-
ization deliver stable numerical integration
schemes of higher order;

• the proposed class of methods preserves sym-
metry, positivity and quadratic invariants;

• Decay of a non-stationary Lyapunov quadratic
form along the trajectory of a state estimation
error ( see equation (A)) is preserved.
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