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Thermostat methods are routinely employed in molecular dynamics to simulate a
system of particles at constant temperature. Molecular dynamics models are typically
formulated as a classical mechanical n-body problem in high dimensions. The equations
of motion constitute a Hamiltonian system

dy

dt
= J∇H(y), H : Rd → R, J = −JT , (1)

with preserved total energy H. The motion is thus constrained to a surface of constant
H (or the intersection of the level sets if more conserved quantities are present). If the
motion is ergodic, then the flow samples the invariant measure

µ(y) ∝ δ(H(y)−H0), H(y(0)) = H0.

On the other hand, a system that evolves in thermal equilibrium with respect to a large
temperature reservoir of inverse temperature β does not evolve at constant energy. In-
stead, the states of the system are distributed according to the Gibbs canonical distribu-
tion

µ(y) ∝ exp(−βH(y)).

To simulate a system at constant temperature, it is necessary to introduce some dynamic
mechanism to perturb trajectories such that they ergodically sample the canonical distri-
bution.

One well-known technique for canonical sampling is Langevin dynamics [3]. Here
the Hamiltonian equations on Rd are equipped with a stochastic diffusion process. An
alternative approach are the Nosé-Hoover type methods [10, 11, 6, 2, 12] where the phase
space is augmented by one or more additional thermostat variables such that the projected
motion on Rd again ergodically samples the canonical distribution. Construction of the



Nosé-Hoover dynamics makes explicit use of two properties: (1) the original dynamics is
Hamiltonian (specifically, divergence free and Hamiltonian-conserving), and (2) the target
distribution (Gibbs) is a smooth function of the conserved quantity H.

In a recent paper [9] we show how information theory can be used in combination
with Nosé-Hoover type methods to correct dynamics for observations of the mean values
of conserved quantities. Again, the approach of [9] is restricted to unperturbed systems
with Hamiltonian structure, and observables that are functions of the conserved quantities.
The methodology could be made significantly more generic if these restrictions on the
dynamics and probability distributions could be removed. The purpose of this note is to
describe a method that provides for this.

Specifically, we derive a thermostat that can be applied to an arbitrary, smooth differ-
ential equation to perturb its orbits such that they ergodically sample a generic, smooth
target distribution. The target distribution can in principle be any distribution of the
form ρ(y) ∼ exp(−A(y)), where A : Rd → R is bounded and differentiable. However, the
thermostat is most effective when this distribution is ‘close’ in some sense to the invariant
distribution of the unperturbed dynamics. In the §1 we review briefly an information
theoretic approach to correcting a prior distribution for a set of observed expectations.
In §2 we describe the new thermostat. In §2.1 we discuss ergodicity considerations. The
new thermostat is ineffective in the classical setting of a Hamiltonian system and Gibbs
distribution. Therefore, in Section §2.2 we describe necessary modifications for this case.
Finally we demonstrate the new thermostats for some simple examples in Section §3.

1 BAYESIAN MODELLING

For the purpose of this section, suppose y ∈ Rd is a random variable with distribution
(law) y ∼ ρ, where ρ : Rd → R is unknown. Suppose further, that we are given a prior
distribution π : Rd → R, assumed to be close to ρ.

The Kullback-Leibler divergence, or relative entropy,

S[ρ(y)] =

∫
ρ(y) ln

ρ(y)

π(y)
dy

represents a (non-symmetric) distance between measures. In information theory it gives
the information lost in approximating ρ(y) by π(y).

Next, suppose we are given a set of K observations of y in the form of expectations

EρCk(y) =

∫
Ck(y)ρ(y) dy = ck, k = 1, . . . , K. (2)

Then the least biased distribution ρ consistent with the observations ck and prior π is
given by the solution of the constrained minimization problem

ρ = arg min
ρ
S − λ0

(
1−

∫
ρ(y) dy

)
−

K∑
k=0

λk

(
ck −

∫
Ck(y)ρ(y) dy

)
,

where the λk are Lagrange multipliers associated with the observations (2). Solving the
minimization problem is an exercise in variational calculus. One finds

ρ(y) = λ0 exp (−λ1C1(y)− · · · − λKCK(y)) π(y), (3)

where the λk are chosen such that the observations (2) are satisfied.



2 THERMOSTATS FOR THE POSTERIOR MEA-

SURE

Now suppose that we are given a dynamical system, defined by the solution of a differential
equation,

dy

dt
= F (y),

which may be subject to model error. Further suppose we are given a prior distribution
π(y) that we believe to be close to the invariant distribution of the true dynamics, and
a set of K observations of the system of the form (2). We construct a thermostat on
the dynamics of y that samples the posterior distribution (3). To do this, let us write
ρ(y) = exp (−A(y)), and define the extended distribution ρ̂(y, ξ) = ρ(y) exp(−ξ2/2).
Then we consider a thermostat of the form

dy = F (y) dt+ ξ2G(y) dt (4)

dξ = ξX(y) dt− γξ dt+
√

2γ dw, (5)

where γ > 0 is a diffusion parameter.
The distribution ρ̂ is stationary under the Fokker-Planck equation associated to this

system if
L∗ρ̂ = 0 = −∇ · ρ̂F (y)− ξ2∇ · ρ̂G(y)− ∂ξξρ̂X(y), (6)

since additional terms in the Fokker-Planck operator cancel automatically due to fluctuation-
dissipation balance in the last two terms of (5) (an Ornstein-Uhlenbeck process). A pos-
sible solution of this equation is given by

X(y) = F · ∇A−∇ · F, ∇ · (F +G)− (F +G) · ∇A = 0. (7)

Hence, defining X(y) by the first condition above and choosing a G to satisfy the second
condition ensures stationarity of ρ̂.

One possible choice (which we will not use) for G is G = J∇A − F , where J is
any skew-symmetric matrix. Intuitively, since Eρ̂ξ2 = 1, this choice just replaces the
dynamics F with the Hamiltonian dynamics J∇A on average. This can obviously have
dire consequences for the thermostated dynamics, unless the vector field G(y) is small in
some sense.

Having found a G that satisfies the above condition, any other vector field G̃ =
G+B∇A for any skew-symmetric matrix B also satisfies the condition. This can be used
to find an optimal skew-symmetric B, for instance, such that the norm of g̃ is minimized.

2.1 Ergodicity

In the previous section we have formally constructed a dynamics under which the target
distribution is stationary. It is also necessary to prove that this distribution is unique and
attracting. Because the distributions we consider have global support, we will see that
it is sufficient to show a Hörmander condition on the vector fields F and G (see related
proofs in [1, 8]). Establishing this condition is problem dependent.

By assumption the desired density ρ̂(y) > 0 for all y. Since ρ̂ is stationary under the
Fokker-Planck operator, ergodicity of ρ̂ can be established under the ergodic decomposi-
tion theorem if the Hörmander condition holds [7, 4, 5]. Consider the deterministic and



stochastic vector fields

U(y, ξ) =

(
F (y) + ξ2G(y)
ξX(y)− γξ

)
, V (y, ξ) =

(
0√
2γ

)
The Hörmander condition requires that the Lie algebra generated by U and V span Rn+1:

Rn+1 ⊂ Lie{U, V } = span{U, V, [U, V ], [U, [U, V ]], [V, [U, V ]], . . . }.

Let us suppose that G(y) is chosen such that the vector fields F (y) and G(y) satisfy the
Hörmander condition on Rn. Define vector fields F̂ = (F (y), 0), Ĝ = (G(y), 0) in Rn+1.
We show that

Rn+1 ⊂ Lie{F̂ , Ĝ, en+1} ⊂ Lie{U, V },
where en+1 = (0, . . . , 0, 1) is a canonical unit vector in the auxiliary variable direction.
The first inclusion follows from the Hörmander condition on Rn and is immediate. Since
γ > 0, it follows that V is proportional to en+1. We compute

U1 = [U, en+1] =

(
2ξ [G(y)− F (y)]

X(y)− γ

)
,

and

U2 =
1

2
[U1, en+1] =

(
G(y)− F (y)

0

)
= Ĝ− F̂ .

Next, define

V1 = U − ξ2

2
U1 −

ξ

2
(X(y)− γ)en+1 =

(
F (y)

0

)
= F̂

Clearly, U2 and V1 are contained in Lie{U, V }, as are their higher order commutators.
But V1 = f̂ and U2 + V1 = ĝ, combined with en+1, form the basis for the intermediate Lie
algebra, from which the inclusion follows.

2.2 A double thermostat for Hamiltonian systems

The approach of the previous section can fail in the standard canonical thermostating
situation when the vector field F = J∇H is divergence-free and the posterior measure
is the Gibbs measure, i.e. A(y) = βH(y). Here it can be checked that X(y) in (7) is
identically zero, and hence there is no feedback. We can extend the above approach
with a Nosé-Hoover-Langevin thermostat to ensure that in the absence of observations,
the system samples a prior π ∝ exp(−βH(y)). To do so, let us take F (y) = J∇H(y),
A(y) = βH(y) + λC(y), and introduce a second auxiliary variable η, with dynamics

dy = F (y) dt+ ηg(y) dt+ ξ2G(y, η) dt, (8)

dη = (∇ · g(y)− g(y) · ∇A(y)) dt− γHη dt+
√

2γHdwH , (9)

dξ = ξX(y, η) dt− γAξ dt+
√

2γA dw2. (10)

It can be checked that the composite measure ρ ∝ exp(−βH(y) − λC(y) − η2/2 − ξ2/2)
is stationary under the associated Fokker-Planck equation if we define X(y, η) by

X(y, η) = ∇ ·G(y, η)−G(y, η) · ∇A(y),

and ensure that G(y, η) satisfies

∇ ·G(y, η)−G(y, η) · ∇A− λf(y) · ∇C.

We give an example below.



3 NUMERICAL EXPERIMENTS

In this section we present some specific examples.
Example 1 Consider a Harmonic oscillator, y ∈ R2,

y′ = F (y) = J∇H(y), H(y) =
1

2
(y21 + y22), J =

[
0 1
−1 0

]
,

and suppose we wish to enforce the invariant measure ρ(y) = exp(−1
2
(d1y

2
1 +y22)) following

an observation of the variance of y1. We use the method (4)–(5). Taking A = (d1y
2
1+y22)/2,

we may choose G in the direction of the gradient of the observable C(y) = y21 by taking

G(y) = (α(y2), 0)T .

Recalling that ∇ · F ≡ 0, the function α must satisfy

∇ ·G− (F +G) · ∇A = 0 = (y2 + α(y2),−y1) · (d1y1, y2) = d1y1y2 + α(y2)d1y1 − y1y2 = 0

which we can solve to obtain

α(y2) =
1− d1
d1

y2.

We expect this to be a minimally intrusive perturbation. Figure 1 illustrates short tra-
jectories for d1 = {0.9, 0.75, 0.5, 0.25}. For the case d1 = 0.5, Figure 2 illustrates the
histograms of y1 and y2. We see that the variances of y1, σ

2
1 = 1.8, and y2, σ

2
2 = 0.9 are

close to the target values of 2 and 1, respectively.
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Figure 1: Simulation of harmonic oscillator with A = (d1y
2
1 + y22)/2 and γ = 0.1.

Example 2 As a second example, we take a Hamiltonian system in R2 with double well
potential, given by Hamiltonian:

H(q, p) =
p2

2
+
q4

4
− q2

2
. (11)

We thermostat this system using (8)–(10). We choose the parameters as follows (note
that these satisfy the necessary conditions)

g(q, p) =

(
0
−p

)
, G(q, p, η) =

(
0

λ
β
(q − 1)

)
, X(q, p, η) = −γp(q − 1).



-10 -5 0 5 10

y
1

0

1

2

3

4

5

6

7

8
×10

5 var(y
1
) = 1.8

-10 -5 0 5 10

y
2

0

1

2

3

4

5

6

7

8
×10

5 var(y
2
) = 0.9

Figure 2: Thermostated harmonic oscillator with A = (0.5y21 + y22)/2 and γ = 0.1. Left:
histogram of y1; right: histogram of y2.

To sample just the Gibbsian prior distribution we take β = 10, λ = 0. We obtain the
dynamics and time series labeled Prior in Figure 3. The trajectory exhibits transition
behavior, spending most of its time in the neighborhood of the fixed points q = ±1, and
occasionally switching between these.

Suppose, now, we enforce the observation E(q − 1)2 = 0. Constructing the posterior
distribution as in §1, we take A(y) = βH(y) + λ(q − 1)2/2. In this case, the ratio λ/β
can also be thought of as expressing our relative certainty between the prior and posterior
distributions π and ρ, or put another way, a measure of the degree of confidence in our
observation.

Figure 3 plots the phase trajectory of the dual thermostat (labelled Posterior) on top
of the canonically thermostated trajectory for the case λ = β = 10. The trajectory now
spends all of its time in the potential well around q = 1.

References

[1] Bajars, J., Frank, J., and Leimkuhler, B. Weakly coupled heat bath models for
Gibbs-like invariant states in nonlinear wave equations. Nonlinearity, 26(7):1945,
2013.

[2] Bulgac, A. and Kusnezov, D. Canonical ensemble averages from pseudomicrocanon-
ical dynamics. Phys. Rev. A, 42:5045–5048, Oct 1990.

[3] Frenkel, D. and Smit, B. Understanding Molecular Simulation. Academic Press, San
Diego, second edition edition, 2002.

[4] Hairer, M. Convergence of Markov processes. Lecture notes, University of Warwick,
2010.

[5] Hairer, M. and Mattingly, J. Yet another look at Harris’ ergodic theorem for Markov
chains. In Seminar on Stochastic Analysis, Random Fields and Applications VI,
volume 63 of Progress in Probability, pages 109–117, 2011.



-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
q

-1.5

-1

-0.5

0

0.5

1

1.5
p

Prior
Posterior

0 200 400 600 800 1000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
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