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Abstract

In this paper we outline a new particle-mesh method for rapidly rotating shallow-water
ows, based on a set of regularized equations of motion. The time-stepping uses an operator
splitting of the equations into an Eulerian gravity wave part and a Lagrangian advection part.
An essential ingredient is the advection of absolute vorticity by means of translated radial basis
functions. We show that this implies exact conservation of enstrophy. The method is tested
on two model problems, based on qualitative features of the solutions obtained (i.e. dispersion
or smoothness of PV contours) as well as increase in mean divergence level.

1 Introduction

The dynamics of the atmosphere is characterized by the existence of motion on two scales, these
being the relatively slow advection of vortical structures on the one hand and the relatively fast
motion of gravity waves on the other. The interaction of these types of motion is the subject
of much current research in geophysical uid dynamics. We expect that their proper numerical
treatment is crucial both to an understanding of the motions in their own right and for obtaining
meaningful results from long time simulations, for example, in climate studies.

The complete dynamics of the atmosphere are given by the three-dimensional primitive equa-
tion model. However, a simpli�ed model which still retains much of the important dynamics of
geophysical uids is the rotating shallow water equations (SWEs):

d

dt
u = �f0u? � c0H0rxh; (1)

d

dt
h = �(1 + h)rx � u; (2)

where u = (u; v)T is the horizontal velocity �eld, u? = (�v; u)T , h is the normalized layer depth
variation, H0 is the mean layer depth, i.e., the total layer depth is H = H0(1+h), f0=2 > 0 is the
angular velocity of the reference plane, c0 > 0 is an appropriate constant [14], and d

dt =
@
@t+u �rx

is the material time derivative.
In this paper, we consider the SWEs over a periodic domain (x; y) 2 [0; 2�]� [0; 2�] with mean

layer-depth H0 = 1 and Rossby deformation radius LR =
p
c0H0=f0 = 1. This scaling essentially

leaves the Froude number

" :=
1p
c0H0
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a free parameter. We introduce the scaled layer depth variation � =
p
c0H0h and rewrite the

SWEs (1)-(2) as

"
d

dt
u = �L�1R u

? �rx�; (3)

"
d

dt
� = �(1 + "�)rx � u: (4)

We are mainly interested in problems with " less than one.
A dynamical quantity of signi�cant importance in geophysical uid dynamics is the potential

vorticity (PV)

Q =
1 + "LR�

1 + "�
; � = vx � uy =rx � u;

which is constant along particle trajectories; i.e. dQ=dt = 0. In the sequel, we will use the
normalized potential vorticity

q :=
Q� 1

"
=
LR� � �

1 + "�
:

The importance attached to PV in atmospheric dynamics is evidenced by its central role in
quasigeostrophic theory. In extra-tropical regions, the terms on the right hand side of (3) are
nearly in balance. This motivates the de�nition of the geostrophic wind:

u
g = LRr

?

x
�: (5)

Note that if we assume (5), then the layer depth variation � can be recovered from the PV
distribution via

(1 + "�)q = L2Rr
2
x
� � �: (6)

If we also make the assumption that 1 + "� � 1, then (6) gives rise to the linear relation

� = � �1� L2Rr
2
x

��1
q; (7)

which is called PV inversion. Furthermore, the PV �eld itself is advected under the geostrophic
ow �eld:

@q

@t
+ u

g �rxq = 0: (8)

The combined system (5), (7) and (8) is referred to as the quasigeostrophic approximation [14].
From a computational viewpoint it is important to notice that PV serves as a main orga-

nizing quantity of geostrophic ows. Accurate advection of the PV �eld is therefore of primary
importance. This has been demonstrated using the contour-advective semi-Lagrangian (CASL)
algorithm [3]. The CASL algorithm advects the PV �eld along Lagrangian particles that delineate
contour lines of constant PV. The time evolution of the divergence Æ =rx �u and the layer depth
variation � are computed over an Eulerian grid using a hierarchy of nonlinear balance conditions
[12, 2]. The contour-advection schemes have been shown to result in a higher PV-�eld resolution
compared to classical pseudospectral and semi-Lagrangian methods [12].

In addition to PV conservation, another computational challenge is the coexistence of fast
(small amplitude) non-balanced motion and slow motion in geostrophic balance [14, 1, 9]. The
geostrophic wind (5) is divergence-free. In contrast, the generation of (fast) unbalanced gravity
waves is characterized by the divergence Æ. In this paper, we are interested in smooth, nearly
balanced motion, i.e., we assume that

d

dt
u = O("0) and

d

dt
� = O("0)

in (3)-(4). This implies, in particular, that Æ = O(").
One might wonder why PV and not relative vorticity � is used as a basic variable in geostrophic

theory. Indeed, we obtain
�t + u

g �rx� = �"�1L�1R Æ
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to leading orders in ". To close the equation, one needs an order O(") approximation to the
divergence Æ, which is provided by (see x5)

Æ = �"LR

�
1� L2Rr

2
x

��1
[ug �rx�] :

Hence we obtain the vorticity equation

�
1� L2Rr

2
x

�
�t � L2Ru

g �rxr
2
x
� = 0 (9)

with the geostrophic wind now determined by

u
g :=r?

x
r
�2
x
�:

The vorticity equation (9) is clearly more complex than the PV equation (8). However no PV
inversion (7) is required. This fact will be explored in the design of the new method.

But it is one of the central ideas of this paper that vorticity can easily be advected along the
full equations (3)-(4).

We will derive our new method in two steps which can be summarized as

(i) Geometric Remodelling

(ii) Geometric Integration

In Step (i), we derive �ltered equations for large scale motion under the \geometric" constraints
of PV, mass, and energy conservation. The idea of �ltered equations is also utilized in large eddy
simulations (LES). Here we apply recent ideas from Lagrangian mean ow theory and averaged
Euler equations (see, e.g., [1] and [7]) to derive modi�ed SWEs under the assumption "� 1. The
modi�cation alters the divergence equation and the material time derivative but maintains PV,
mass, and (modi�ed) energy conservation. In Step (ii), we �rst reformulate the modi�ed SWEs in
terms of the layer-depth variation �, divergence Æ, and absolute vorticity ! = 1+ "LR�. We then
suggest an operator splitting of the reformulated SWEs|into a semi-linear wave equation and
an advection step|that takes the importance of geostrophic balance into account and that can
be implemented using an appropriate modi�cation of a particle-mesh (PM) [6] or particle-in-cell
(PIC) method [5]. Contrary to PV contour-advection, we advect the absolute vorticity ! using
radial basis functions and Lagrangian particle dynamics. No redistribution of particles is required.
The semi-linear wave equation in (Æ; �) is solved over a �xed Eulerian grid. The overall one-step
method is explicit, time-symmetric, and does not require the use of hyperviscosity to smooth PV
contours or Robert-Asselin �ltering to keep the scheme stable.

The main feature of the new method, as demonstrated by a series of numerical experiments,
is to capture balanced motion as well as to predict the long time dynamics of the PV �eld. We
show that the generalized enstrophies, which we de�ne as

Qf =

Z
f! f(q)g dx ^ dy; s � 2; (10)

are exactly conserved over the (x; y)-domain for any function f(q).

2 Geometric remodelling: A regularized SWE formulation

The SWEs (3)-(4) can be written as an in�nite-dimensional Hamiltonian system of the form

"

�
ut

�t

�
=

� �L�1R Qez� �rx

�rx� 0

��
ÆE=Æu
ÆE=Æ�

�
(11)
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with Hamiltonian

E =
1

2

Z �
(1 + "�)u � u+ �2

	
dx ^ dy: (12)

We �rst assume now that the uid ow is almost incompressible, i.e., we assume 1 + "� � 1 in
(12). Next note that

1

2
�2 = "�2 [(1 + "�)(ln(1 + "�)� 1) + 1] +O("):

Furthermore, it is well-known that the velocity �eld u develops increasingly �ne structures as time
evolves. On the other hand, a truncation can only resolve spatial structures up to a certain length-
scale � � �x = �y. Following recent advances on averaged Euler uid models [7], this suggests
to smooth/average the velocity �eld over all length-scales smaller than �. Hence we replace the
Hamiltonian (12) by the modi�ed energy

E� =
1

2

Z n
(Sp=2

� u) � (Sp=2
� u) + 2"�2 [(1 + "�)(ln(1 + "�)� 1) + 1]

o
dx ^ dy; (13)

where S�
� denotes the operator

S�
� =

�
1� �2r2

x

���
and p is a positive integer. Averaged Euler models typically use p = 1. But in our numerical
experiments we worked with p = 1, p = 2, and p = 4. Given some spatial discretization with
spatial increment �x, we set � = c�x, c � 1. Hence we have � ! 0 as �x ! 0 and the
regularization can be thought of as part of the spatial truncation process.

Note that
ÆE�
Æ�

= "�1 ln(1 + "�) and
ÆE�
Æu

= Sp
�u:

This suggests de�ning the modi�ed equations of motion by

"

�
ut

�t

�
=

� �L�1R !ez� �(1 + "�)rx

�rx � (1 + "�) 0

��
ÆE�=Æu
ÆE�=Æ�

�
; (14)

which are equivalent to the modi�ed SWEs

"ut = �L�1R !(Sp
�u)

? �rx�; (15)

"�t = �rx � ((1 + "�)Sp
�u); (16)

where
! = 1 + "LR�

is the absolute vorticity.
Let us introduce the modi�ed material derivative

D

Dt
(:) =

@

@t
(:) + v �rx(:)

along the smoothed velocity �eld
v := Sp

�u:

Then one can extract from (15)-(16) the two continuity equations

"
D

Dt
� = �(1 + "�)rx � v

and
D

Dt
! = �!rx � v: (17)
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Hence the PV �eld Q = !=(1+"�) is still materially conserved, i.e., DQ=Dt = 0. The total energy
(13) is also conserved. The equation for the divergence becomes

"Æt = L�1R !rx � v + L�1R v �r?
x
! �r2

x
�; (18)

which, for � = 0, reduces to its standard form except for the missing �"r2
x
(u � u)=2 term. But

note that
u � u = L2Rrx� �rx� +O("):

Hence, if we assume nearly geostrophic balance, i.e., Æ = O("), and replace � in the momentum
equation (15) and in the continuity equation (16) by �� with

�� = � +
"L2R
2
rx� �rx�;

then the thus modi�ed equations (15)-(16) di�er for � = 0 from (3)-(4) by terms of order O("2).
The statement is obvious for the momentum equation and for the continuity equation we obtain

"��t = "�t + "2L2Rrx� �rx�t

= �rx � ((1 + "�)v)� "L2Rrx� �rx(Sp
�Æ) +O("2)

= �rx � ((1 + "��)v) +O("2):

In this paper, we simply identify �� with �.
One can again formally investigate the limit " ! 0. For simplicity, we also set p = 1. We

de�ne the modi�ed geostrophic wind
v
g = LRr

?

x
�

and obtain the PV relation (" = 0):

q = L2RS�1� rx � v
g � � = �(1� L2Rr

2
x
+ �2L2Rr

4
x
)�:

PV is advected via
@q

@t
+ v

g �rxq = 0:

These equations are similar to the 2D averaged incompressible Euler equations [7, 8]. See [8] for
a global existence and uniqueness result.

Various other averaged formulations of the shallow-water equations can be formulated. We
mention, in particular, the Eulerian mean rotating shallow water (EMRSW) model of [7], which is
of the form (15)-(16) with added terms in the momentum equation (15). The resulting equations
of motion, although of slightly higher complexity, can also be implemented numerically using the
techniques developed in x3.

3 Geometric integration: The balanced particle-mesh
(BPM) method

We now derive our new discretization method for the regularized SWEs (15)-(16) which we call
the Balanced Particle-Mesh (BPM) method.

3.1 The SWEs near geostrophic balance

Let �v denote the divergence-free part of the velocity �eld v and let us introduce the balanced
layer-depth variation

�g = �g(!) := �L�1R r
�2
x
rx � (!�v?); (19)

which corresponds to rx � ut = Æt = 0 in (18) under the assumption of Æs :=rx � v = 0.
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We next reformulate the SWEs (15)-(16) in terms of (!; Æs; �) under the assumption Æs = O(")
and � � �g = O(") (nearly geostrophic balance). Since

r
2
x
�g = �L�1R rx � (!v?) +O("2);

we obtain
"Æst = �Sp

�r
2
x
(� � �g)

up to terms of order O("2) which we ignore. In a similar manner, one can simplify the continuity
equation (16) to

"�t = �rx � ((1 + "�g)v):

Hence, the transformed system of equations consists of a semi-linear wave equation of the form

"�t = �(1 + "A(!))Æs � "g(!); "Æst = �Sp
�r

2
x
(� � �g(!)); (20)

together with the continuity equation (17) and the diagnostic relation (19).
The idea for numerical time-stepping is to represent absolute vorticity ! in terms of radial

basis functions and to solve (17) using Lagrangian particles advected along the velocity �eld v.
The wave equation in (Æs; �) is truncated by a pseudospectral (PS) method over an Eulerian grid.
The details will be described in the following subsections.

3.2 A fractional time-stepping method

The equations of motion in (!; Æs; �) are �rst split into an Eulerian part (20) and a Lagrangian
part in which (17) is solved along the ow of

D

Dt
x = v; vt = a; (21)

where a is the Eulerian particle acceleration

a = �"�1Sp
�

�
L�1R !v? +rx�

�
:

To integrate (21) and (17), we introduceM Lagrangian (moving) particles with location fXkg
and velocity fV kg. Let us denote the Lagrangian particle positions at time level tn+1=2 byXk

n+1=2

and the particle velocity at tn by Vk
n. In x3.3, we describe a radial basis function approach to

obtain the vorticity !n+1=2 at time level tn+1=2 knowing the particle positions fXk
n+1=2g. Hence

let us assume for now that !n+1=2 is known.
Then the wave equation (20) is discretized in time via the time-symmetric discretization

Æsn+1=2 = Æsn �
Æt

2"
Sp
�r

2
x
(�n � �gn+1=2);

�n+1 = �n � Æt

"

n
(1 + "A(!n+1=2))Æ

s
n+1=2 + "g(!n+1=2)

o
; (22)

Æsn+1 = Æsn+1=2 �
Æt

2"
Sp
�r

2
x
(�n+1 � �gn+1=2):

We would like to point out that a smaller time step Æt=K can be applied to the wave equation
(20); e�ectively leading to a multiple-time-stepping method; i.e.

Æs
n+ i+1=2

K

= Æsn+ i
K
� Æt

2"K
Sp
�r

2
x
(�n+ i

K
� �gn+1=2);

�n+ 1+i
K

= �n+ i
K
� Æt

"K

n
(1 + "A(!n+1=2))Æ

s

n+
1=2+i
K

+ "g(!n+1=2)
o
;

Æs
n+ i+1

K

= Æs
n+ i+1=2

K

� Æt

2"K
Sp
�r

2
x
(�n+ i+1

K
� �gn+1=2)
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for i = 0; : : : ;K � 1. This approach could be combined with the averaging ideas presented in [11].
Once Æsn+1=2, !n+1=2, and �n+1=2 = (�n+1 + �n)=2 are known, the smoothed Eulerian particle

acceleration
an+1=2 = �"�1Sp

�

�
L�1R !n+1=2vn+1=2 +rx�n+1=2

�
can be computed using the half-step velocity �eld

vn+1=2 =r
?

x
r
�2
x
Sp
��n+1=2 +rxr

�2
x
Æsn+1=2;

where �n+1=2 = "�1L�1R (!n+1=2 � 1).
The smoothed advection velocities vn on the Eulerian grid are now updated via

vn+1 = vn + Ætan+1=2

and then mapped onto the particles via a simple bilinear interpolation to yield Vk
n+1. Finally, the

Lagrangian particle positions are updated via

Xk
n+3=2 =X

k
n+1=2 + ÆtVk

n+1:

3.3 A spatial truncation and conservation of enstrophy

Since we work with double periodic boundary conditions, we can apply a standard pseudospectral
discratization to truncate the equations (20). We will denote the number of Fourier modes in each
spatial dimension by N , i.e., �x = �y = 2�=N .

The absolute vorticity ! satis�es a continuity equation of the form

!t +rx � (!v) = 0:

Hence, following the idea of smoothed particle hydrodynamics (SPH) [13], we assign each La-
grangian particle a vorticity density f
kg and approximate ! at an Eulerian location x via the
interpolation formula

!(x; tn+1=2) =
X
k


k 
�
jjx�Xk

n+1=2jj2
�

(23)

where  (z) � 0 is an appropriate radial basis function and Xk
n+1=2 is the kth particle position at

tn+1=2.
Let us explain this approach in more detail [15]. We assume, for simplicity, that

!(x; t) =
X
k


k 
�
jjx�Xk(t)jj2

�
> 0:

Then each particle contributes the fraction

�k(x; t) :=

k 

�
jjx�Xk(t)jj2

�
!(x; t)

to the total vorticity. These fractions form a partition of unity, i.e.

X
k

�k(x; t) = 1:

Hence they can be used to interpolate data from the particle locations to any x. In particular, we
de�ne a continuous Eulerian velocity �eld

v(x; t) :=
X
k

�k(x; t)V
k(t)
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and a vorticity ux density

!(x; t)v(x; t) =
X
k


k 
�
jjx�Xk(t)jj2

�
V

k(t):

Using dXk=dt = V
k, it is now easily veri�ed that

@

@t
!(x; t) +rx � (!(x; t)v(x; t)) = 0:

The same argument can be used to derive conservation laws for the generalized enstrophy
densities !f(q). We associate with each particle a PV value of qk. This give rise to generalized
Eulerian PV �elds

f(q)(x; t) =
X
k

f(qk) �k(x; t)

and the approximation

!(x; t) f(q)(x; t) =
X
k

(
k f(qk)) 
�
jjx�Xk(t)jj2

�
:

Hence we obtain

@

@t
f!(x; t) f(q)(x; t)g = �

X
k

rx �
n
(
k f(qk)) 

�
jjx�Xk(t)jj2

�
V

k(t)
o

and exact conservation of the generalized enstrophies (10) under the given periodic boundary
conditions.

Note that the BPM method does not exactly satisfy the relation

! = (1 + "�)Q; Q := 1 + "q:

However, since the scaled layer-depth
H := 1 + "�

satis�es a continuity equation, one can apply the approximation

H(x; t) =
X
k

mk 
�
jjx�Xk(t)jj2

�
;

where fmkg are appropriate constants. Then, upon introducing the fractions

�k(x; t) :=
mk 

�
jjx�Xk(t)jj2

�
H(x; t)

and the generalized Eulerian PV �elds

Qs(x; t) =
X
k

Qs
k �k(x; t);

where s � 1 and Qk = 1 + "qk, we obtain the approximation

H(x; t)Qs(x; t) =
X
k

(mk Q
s
k) 

�
jjx�Xk(t)jj2

�
:

Obviously all these generalized enstrophy densities again exactly satisfy conservation laws. Note
that

!(x; t) = H(x; t)Q(x; t) =
X
k


k  
�
jjx�Xk(t)jj2

�
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with 
k = mkQk. The time-stepping of the BPM method can still be applied with the only
modi�cation that (22) reduces to

Æsn+1 = Æsn �
Æt

"
Sp
�r

2
x
("�1Hn+1=2 � �gn+1=2)

and
H(x; tn+1=2) =

X
k

mk 
�
jjx�Xk

n+1=2jj2
�
:

as well as
!(x; tn+1=2) =

X
k

(mk Qk) 
�
jjx�Xk

n+1=2jj2
�
:

However, the idea of multiple-time-stepping and averaging seems more diÆcult to apply to this
modi�ed BPM scheme.

4 A pseudospectral leapfrog-trapezoidal discretization

We now describe a standard pseudospectral (PS) discretization of the modi�ed SWEs (15)-(16).
Introduce w = (uT ; �)T 2 R3 and write (15){(16) in the abstract form

wt = "�1Aw+ f (w); A =

� �L�1R Sp
�ez� �rx

�Sp
�rx� 0

�
: (24)

Spatial derivatives are computed in Fourier space using an FFT, and the product of any two
functions is computed in physical space. The truncation is implemented such that the �nite-
dimensional system exactly conserves an approximation to the total energy.

The time-discretization is done using the leapfrog method for advection and the trapezoidal
rule for the linear wave part (LF/TR):

w
n+1 �w

n�1

2�t
= "�1A

w
n+1 +w

n�1

2
+ f(wn): (25)

This time-symmetric two-step method is started with one time step of an analogous im-
plicit/explicit Euler step of size �t=2K , followed by K stationary applications of (25) each time
restarting from the initial condition and doubling the step-size. We used K = 10 in the numerical
experiments.

To obtain a smooth PV �eld it is usually necessary to include a hyperviscosity term in the
momentum equation, replacing (15) with

"ut = �L�1R !v? �rx� + �
�
r

2
x

�3
u; (26)

where the viscosity coeÆcient was taken to be:

� =
100 " �Q

(N=2)6
; max

x

jQ(x)j � �Q:

The hyperviscosity term is discretized in time using implicit Euler di�erencing.

5 Numerical experiments

We consider a domain (x; y) 2 [0; 2�]� [0; 2�] with periodic boundary conditions. We use f0 = 2�
and c0 = 4�2. The mean layer-depth is H0 = 1. These parameter values correspond to a Rossby
deformation radius of LR = 1 and a Froude number of " = 1=(2�). The latitude � is chosen such
that one rotation of the plane (one \day") in physical time corresponds to one time unit in the
computational model (i.e. sin � = 1=2).
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Figure 1: Experiment A: PV �eld at t = 10 for various values of � and p in (13).

The initial conditions are de�ned as follows. We �rst introduce a PV �eld �q. See below for
speci�c choices. This �eld is then used to provide an initial layer-depth perturbation via

�� = "�1
�

1

1 + "�q
� 1

�
+ k0

where the constant k0 is chosen such that � has a mean value of zero. The initial (purely
geostrophic) velocity �eld is de�ned by

u = LRr
?

x
��; and v = Sp

�u:

Next we de�ne the (balanced) initial layer depth variation

� = �L�1R r
�2
x
rx � (!v?):

These initial values �nally imply a PV �eld q := (LR� � �)=(1 + "�) and � � �g = Æs = 0. The
Lagrangian particles are initially placed on a uniform grid.

The following diagnostic variables are all evaluated over gridded Eulerian variables f�ijg, fuijg,
fvijg etc. We de�ne the discrete total energy

E�(tn) = L2

2N2

X
i;j

�
uij(tn) � vij(tn) + 2"�1 [(1 + "�ij(tn))(ln(1 + "�ij(tn))� 1) + 1]

	
;

where L = 2� is the domain length and N is the number of Fourier modes in the x and y direction.
We monitor the relative error in the total energy

ÆE�(tn) =
E�(tn)� E�(0)

E�(0) :
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We also compute the (approximate) L2-norm of the smoothed divergence �eld fÆsijg, i.e.

hÆsi2 = L

N

0
@X

ij

(Æsij)
2

1
A

1=2

;

as a measure of the ageostrophic component in the solution. Furthermore, one can de�ne a
balanced divergence �eld Æsg to order O(") in the following manner [10]. Di�erentiate equation
(18) with respect to time and multiply through by ". This yields

"2Ætt = �"r2
x
�t + "L�1R Sp

��t +O("2)
= r

2
x
(Æs + "rx � (�vg))� L�2R Sp

� (Æ
s + "LRrx � (�vg)) +O("2):

Next we ignore all terms of order O("2) and take note of vg �rx� = 0 as well as rx � vg = 0 to
obtain the de�ning relation

�
1� L2Rr

2
x
S�p�

�
Æsg := �"LRv

g �rx� = �vg �rx!:

Thus we also monitor the (approximate) L2 norm of the unbalanced divergence fÆsaggij = fÆs �
Æsggij .

We used the time-stepping method (22) for the Eulerian wave part with a time-step of Æt = 1=N ,
N the number of Fourier modes, and a radial basis function

 (r2) =

�
1

(r=r0)2 + c2

�4

; r0 = 2�x; c = 1;

for the vorticity advection. A cut-o� radius of rc = 2r0 was applied to limit the computational
complexity in the summation (23).

The overall scheme was implemented usingMATLAB and mex-subroutines for computing the
interpolation operators and the radial basis functions over the Lagrangian particle locations.

5.1 Experiment A. Balanced two-vortex interaction

As a simple test case, we de�ne a PV �eld as a sum of Gaussian pulses

�q(x; y) =
lX

`=1

�` exp
���` �(x � x`)

2 + (y � y`)
2
	�
:

For this experiment we choose l = 2 and

�1 = 1; �1 = 12=L; x1 = 0:5; y1 = 0:5;
�2 = 1; �2 = 12=L; x2 = �0:5; y2 = �0:5; (27)

This �eld, representing two positively oriented vortices that are initially separated, is used to
initialize the other variables as described in the previous section.

We �rst investigate the inuence of the smoothing parameter � and the exponent p by perform-
ing a sequence of experiments over a time interval t 2 [0; 10] using the BPM method with N = 64
Fourier modes in each spatial direction and M = 16 � N2 Lagrangian particles. The smoothing
e�ect of the regularized formulation can be clearly seen from Fig. 1. But it is also apparent that
choosing � too large can have an impact on the large scale rotation rate of the vortex pair.

The simulation is now repeated over a time interval t 2 [0; 15] using an Eulerian grid with
N = 128 Fourier modes in each spatial direction. We use M = 36 �N2 Lagrangian particles and
a smoothing length � = 2 � �x. We set p = 2 in (13). The time evolution of the PV �eld can
be found in Fig. 2 and diagnostic results in Fig. 3. The initial energy is E� = 0:6911. Note the
excellent conservation of the unbalanced divergence.
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Figure 2: Experiment A: PV �eld from BPM method.

5.2 Experiment B. \Barotropic Instability"

As a second experiment, we consider a barotropic instability as a more challenging test for our
method. In particular, we use

�q(x; y) = 4ye�2y
2

(1 + 0:1 sin(2x)):

The layer-depth variation, the velocity and PV �eld are then obtained as described above.
The simulation is run over a time interval t 2 [0; 15] using an Eulerian grid with N = 128

Fourier modes in each spatial direction. The initial energy is E� = 5:6117.
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Figure 3: Diagnostic for BPM and LF/TR method. The left column shows relative errors in
energy (and enstrophy Q2 for the PS method) and the right column the L2 norm of the divergence
�eld

5.2.1 The BPM method

We use M = 36 � N2 Lagrangian particles and a smoothing length � = 4 � �x. We set p = 2 in
(13). The time evolution of the PV �eld can be found in Fig. 4 and diagnostic results in Fig. 3.
Note again the excellent conservation of the unbalanced divergence.

5.2.2 The PS method

We used the same number of Fourier modes and the same smoothing parameters. The PS method
(25) was found to generate a large amount of noise in the PV �eld when integrated without
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Figure 4: Experiment B: PV �eld from BPM method.

hyperviscosity. Added hyperviscosity, as described in x4, improved the performance of the scheme.
The time evolution of the PV �eld is shown in Fig. 5. It is quite apparent that the added
hyperviscosity smears out some of the �ner structures in the PV �eld.

The generalized enstrophies (10) are exactly conserved for the BPM method. This is no longer
true for the PS method and we monitor the relative error in the enstrophy Q2, which we discretize
by

Q2(tn) =
L2

N2

X
i;j

!ij(tn))qij(tn):

Conservation of enstrophy, energy and balance can be seen in Fig. 3. Note the excellent conser-
vation of energy with a relative error of less than 10�4 at t = 15. The divergence �eld shows an
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almost identical behavior to the results from the BPM method.
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Figure 5: Experiment B: PV �eld from LF/TR method with added hyperviscosity.

6 Conclusions

Standard pseudospectral spatial discretization combined with a LF/TR time-discretization is un-
suitable, in general, for long time simulations of geophysical ows, due to the arti�cial measures
required to keep them stable [4, 3].

In this paper we have derived a set of regularized shallow-water equations and applied two
di�erent discretization methods. The application of the LF/TR method to the pseudospectral
approximation of the regularized equations still requires the application of hyperviscosity which
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eliminates �ne structures in the PV �eld. However, the method conserves energy and balance
very well, requires a minimum number of FFTs, and is easy to implement. The newly proposed
Balanced Particle-Mesh method shows very promising results in term of PV advection and
conservation of balance. A pseudospectral discretization of the semi-linear wave equation (20)
requires about the same number of FFTs as the pseudospectral discretization of (15)-(16). How-
ever, we also have to update the particle locations and to evaluate the absolute vorticity using
the radial basis function approximation. We expect that the application of multiple-time-stepping
and averaging [11] will allow one to use larger time-steps for the particle advection.

One should also carefully investigate the e�ect of various types of radial basis functions and the
e�ect of the cut-o� radius on the approximation properties. This also includes the implementation
of rapid evaluation strategies for (23).

The general approach described in this paper is suitable for adaptation to spherical geometry.
The Eulerian grid functions should be expanded in spherical harmonics to avoid diÆculties at the
pole, and the Lagrangian advection can be handled by standard methods for constrained dynamics.

The results could also be extended to the primitive equations [14]

"
d

dt
u = �L�1R u

? �rxB;

"
d

dt
� = �(1 + "�)rx � u;
0 = � +B��

where x = (x; y)T , � is the potential temperature, u = (u; v)T 2 R2 is the velocity �eld, and B is
pressure.
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