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Abstract

Solutions to ideal fluid flow where the vorticity field is assumed as a sum of singular point vortices
result in a Poisson system describing the motion of the vortex centres. We construct Poisson
integration methods for these dynamics by splitting the Hamiltonian into its constituent vortex
pair terms. From backward error analysis, the method is formally known to provide solutions to
a modified Poisson system with the correct bracket, but with a modified Hamiltonian function.
Different orderings of the pairwise interactions are considered and also used for the construction
of higher order methods. The energy and momentum conservation of the splitting schemes
is demonstrated for several test cases. For particular orderings of the pairwise interactions, the
schemes allow scalable parallelization. This results in a linear – as opposed to quadratic – scaling
of computation time with system size when scaling the number of processors accordingly.

Keywords: point vortex method, numerical integration, Poisson integrator, parallel
computing

1. Motivation

A point vortex represents a singular measure solution to the vorticity equation for two-dimensional,
incompressible fluid flow. A point vortex model consists of multiple point vortices mutually inter-
acting. The motion of each point vortex is dictated by the flow field induced by the other vortices
and by external forcing, e.g. topography. Point vortices were introduced by Helmholtz [16] and
have since been the subject of much study; see for example Lamb [22], Saffman [40], Newton
[31].

Dynamical studies of point vortex systems provide insight into the (qualitative) behaviour of
fluid dynamics. The series of papers by Newton et al. [31, 18, 33, 30] discuss relative equilibria
and the conditions for integrability of the dynamics. Vortex dynamics were studied extensively
by Aref who compiled an extensive review on their history [2]. Newton [32] discusses the future
of point vortex research in the “post-Aref era”.
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In statistical fluid mechanics, the behaviour of point vortex systems has been studied as a model
for two-dimensional turbulence in the limit of an infinite number of vortices. This was first
done by Onsager [34], who provided an explanation for the formation of clusters of like-signed
vortices in a bounded domain. This research has since been continued by, amongst others, Joyce
and Montgommery [20, 19], Pointin and Lundgren [36], Eyink and Spohn [12], and Lions and
Majda [24]. Such results are of interest in the fields of geophysical fluid dynamics [14] and stellar
dynamics [8]. Some of Onsager’s statements were tested numerically by Bühler [4].

Point vortices and their three-dimensional generalization, vortex filament methods, are also used
as a discretization of practical fluid flows in engineering applications [9]. By using a large num-
ber of point vortices a continuous velocity field is approximated. Such techniques find practical
application in the works of Chatelain et al. [7], Rossinelli et al. [39]. Winckelmans et al. [43] and
Rossinelli and Koumoutsakos [38] present the fast multipole, vortex-in-cell and hybrid methods
that are used for computing these large systems. Regularized approximations to the delta distri-
butions provide more accurate representations of continuous vorticity fields, but their solutions
are no longer exact, as the kernel itself ought to deform due to shearing [3, 42].

It is important to develop efficient time integrators for point vortex methods for two reasons.
First, the use of very large numbers of point vortices, as required for accurate approximation
of continuous fluids, is hampered by the quadratic complexity of the pairwise coupling between
vortices, i.e. evaluations of the vector field with N vortices requires N2 operations. Second, the
concept of numerical stability of a system of point vortices on planar geometry is not without
ambiguity. Equilibria only exist for certain configurations, and are never asymptotically stable
since the dynamics are Hamiltonian. The simplest nontrivial system is a pair of like-signed
vortices, whose solution is periodic. If a contracting method such as backward Euler is employed,
the vortices will eventually approach one another, and the derivatives grow unbounded. If an
expanding method such as forward Euler is employed, the vortices will drift apart and the
trajectories will grow without bounded. Hence, even for this simple configuration some degree of
energy conservation is necessary to maintain a bounded solution with bounded derivative.

Recently, Vankerschaver and Leok [42] have developed a Poisson integrator for point vortex sys-
tems via the construction of a higher dimensional linear Lagrangian. The associated dynamics
project down onto solutions of the point vortex equations on the sphere. The resulting integra-
tor exactly conserves the Casimirs and momentum of the point vortex dynamics and also has
good conservation of energy. The implicit definition, however, requires the use of an iterative
solver.

We give an interpretation of the point vortex method in light of the approach first communicated
by McLachlan [27] for discretizing Hamiltonian PDEs; namely as a scheme that discretizes the
Poisson structure and Hamiltonian separately. With a vorticity field given as a sum of point
vortices, the quadrature of the Hamiltonian functional is evaluated exactly as a sum of pointwise
values. We do not consider regularizations of the vortices, but they could be accommodated
in the quadrature scheme for the Hamiltonian. The Poisson bracket is discretized exactly for a
particular class of functionals.

A numerical integrator for these dynamics follows from splitting the Hamiltonian into its con-
stituent pairwise terms. The scheme developed is Poisson, explicit and allows scalable paral-
lelization. It may also be applied to regularized point vortices, provided the kernel is rotation-
and translation-invariant. The method requires an explicit expression for the pairwise flow map
for the two-vortex system. Any regularization that maintains a pairwise Hamiltonian form will
have three Poisson-commuting first integrals and is thus integrable. Both rotation of the sphere
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and topography introduce only decoupled, splittable terms in the Hamiltonian.

The remainder of this paper is organized as follows. Section 2 describes two-dimensional incom-
pressible fluid flow in Hamiltonian form. Section 3 discusses the discretization according the
ideas of McLachlan [27]. A Poisson integrator for the resulting point vortex description for fluids
is developed in Section 4. The parallelization of this method is discussed in Section 5. Numerical
results and comparisons of computation times are presented in Sections 4 and 5, respectively.
Finally, in Section 6 we state conclusions and discuss the extension of the method to practical
applications.

2. Continuous Hamiltonian Description

The barotropic quasi-geostrophic equations on the unit sphere provide a simple model for study-
ing geophysical fluid dynamics [26]. Point vortex representations capture much of the system’s
dynamics, for instance the formation of coherent vortical structures over long time [34]. This
is a consequence of the existence of negative temperature states, that are possible due to the
bounded domain. On a disk or on an annulus, the same behaviour can be observed, but these
geometries require the inclusion of ghost vortices to maintain the boundary conditions. The
boundedness of the domain also implies that solutions remain bounded for almost any initial
condition when considering heterogeneous systems, i.e. systems with both positive and negative
circulation vortices.

We express the barotropic quasi-geostrophic equations on the sphere [26] in terms of the stream
function ψ and potential vorticity q

qt + J(ψ, q) = 0 (1)

q = ∆Sψ + 2Ωz + h, (2)

where Ω is the angular velocity of the sphere about the z-axis and h represents topography. The
Laplace-Beltrami operator on the sphere ∆S is defined (in spherical coordinates) as

∆Sψ =
1

cos θ

[
1

cos θ
ψφφ +

∂

∂θ
(cos θ ψθ)

]
,

where φ is the longitude and θ the latitude. The Jacobian J(f, g) is defined as

J(f, g) =
1

cos θ
(fφgθ − gφfθ) . (3)

On the sphere the Hamiltonian is given by:

H = −1

2

∫
S2
ψ∆Sψ dS =

1

2

∫
S2
∇Sψ · ∇Sψ dS,

where the second equality follows from the divergence theorem. Using the rightmost expression
we find the first variation of H

δH =

∫
S2
∇Sψ · ∇Sδψ dS

= −
∫
S2
ψ∆Sδψ dS

= −
∫
S2
ψδ (q − 2Ωz − h) dS,
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and consequently
δH
δq

= −ψ.

The Poisson bracket is given by

{F ,G} [q] = −
∫
S2

δF
δq
J

(
q,
δG
δq

)
dS,

where the Jacobian J is given by (3).

Point vortex systems represent singular measure solutions to equations (1)–(2). They assume a
potential vorticity field that can be expressed as the sum of Dirac-delta distributions, i.e.

q(x) =

N∑
i=1

Γiδ(x− xi(t)).

The vortex centres are represented as vectors xi embedded in R3. The geometric structure of the
equations of motion preserves |xi|. Numerical integrators must maintain this property, either by
construction or by introducing a projection step.

We introduce two new streamfunctions ψC and ψh such that 2Ωz = ∆SψC and h = ∆Sψh. With
these we rewrite (2) as

∆Sψ = ω = q − 2Ω− h = q −∆SψC −∆Sψh.

We solve this for ψ
ψ = ∆−1S q − ψC − ψh, (4)

where ∆−1S q =
∑N
i=1 ΓiG(x − xi(t)) represents the sum of Green’s functions for the Laplace

equation on the sphere, given by

G(x− xi(t)) =
1

4π
ln
(
|x− xi(t)|2

)
. (5)

3. Discrete Hamiltonian representation

In this section we review the point vortex description on the sphere by interpreting it as a
Hamiltonian discretization in the sense of McLachlan [27]. By discretizing the Hamiltonian and
Poisson bracket individually, and ensuring that the latter defines a finite dimensional Poisson
bracket, it is guaranteed that the finite dimensional approximation is again Poisson, and Poisson
integrators may be employed. For point vortices in planar geometry, the bracket is canonical
and hence symplectic Runge-Kutta methods are applicable. On the sphere, the Poisson bracket
is nontrivial and splitting methods offer the most generic approach.

With the assumption that the vorticity field is a sum of Dirac delta distributions, the integration
of H reduces to a sum over the values of the integrand at the vortex centres

H = −1

2

∫
S2
ψq dS = −1

2

N∑
i=1

Γiψ(xi).
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Substituting the inverse Laplacian of (4) with Green’s function (5), we find

H =
1

2

N∑
i=1

Γi

ψC(xi) + ψh(xi)− 2
∑
j<i

Γj
1

4π
ln
(
|xj − xi|2

) =: H. (6)

The Hamiltonian can thus be expressed discretely in terms of only the positions of the vortex
centres xi. This discrete representation of the dynamics is exact if the point vortices are singular,
and hence the discrete H can be defined equal to the functional H. It is assumed that the stream
functions associated with the Coriolis and topography terms are known explicitly. For regularized
systems, the Green’s function may still be known, but the quadrature of H can no longer be
performed exactly and the discretized Hamiltonian will no longer be exact.

The Poisson bracket is discretized separately. First of all, it is useful to rewrite (3), because we
have defined the point vortex positions as vectors in R3 rather than in spherical coordinates. For
any x ∈ R3 : |x| = 1, (3) is equivalent to

J(f, g,x) = (x×∇f) · ∇g.

The Poisson bracket then follows as

{F ,G} =

∫
δF
δq
∇q · x×

(
∇δG
δq

)
dS

= −
∫
q∇ ·

(
δF
δq

x×∇δG
δq

)
dS

= −
∫
q∇
(
δF
δq

)
·
(
x×∇δG

δq

)
dS, (7)

using first the divergence theorem and then the fact that the divergence of the curl equals zero.
The discrete form of the functional F =

∫
f(x) dS is given by

F =

N∑
i=1

f(xi) =

∫
f(x)

(
N∑
i=1

δ(x− xi)

)
dS.

We assume there exists a field λq for the vorticity field q with the properties:

λq(xi) = Γ−1i ,

∇λq(x)|x=xi = 0,

lim
ε→0

λq+εv − λq
ε

= 0.

With this we write

F =

∫
f(x)λ(x)

(
N∑
i=1

Γiδ(x− xi)

)
dS =

∫
f(x)λ(x)q(x) dS,

from which the variational derivative follows∫
δF

δq
v dS = lim

ε→0

1

ε

(∫
fλq+εv (q + εv) dS −

∫
fλqq dS

)
=

∫
fλqv dS.
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Substitution of this form for the functional F and G in (7) leads to the discrete form of the
Poisson bracket

{F,G} = −
∫
q∇δF

δq
· x×∇δG

δq
dS

= −
∫
q∇(fλq) · x×∇(gλq) dS

= −
∫
qλ2q∇f · x×∇g dS

= −
N∑
i=1

Γ−1i ∇f(xi) · xi ×∇g(xi).

This is a generalization of the well-known Poisson bracket for rigid body rotation [17], also used in
models for ferromagnetism [25]. The bracket is in fact equivalent to the bracket for a Heisenberg
spin chain [13].

We introduce the vector y ∈ R3N as the concatenation of the xi ∈ R3, i = 1, 2, . . . , N . The
dynamics are then

ẏ = B(y)∇H(y), (8)

with the block-diagonal structure matrix

B(y) =


Γ−11 x̂1 0

Γ−12 x̂2

. . .

0 Γ−1N x̂N

 ,
where x̂ is the 3×3 skew-symmetric matrix such that x̂u = x×u ∀u ∈ R3. The vortex position
radii Ci = |xi| are Casimirs of the Poisson bracket associated with structure matrix B(y). That
is, for any function F (y) and any Ci, one has {F,Ci} ≡ 0. This property is important as it
implies that if the vortex positions initially satisfy |xi| = 1, this is maintained throughout the
simulation, ensuring the point vortices remain on the sphere. The numerical integration scheme
developed below respects this property inherently, without the need of a projection step.

Due to the rotational symmetries of the sphere, the dynamics exhibit three Noether momenta
given in vector form as J =

∫
S2 xq dS. In the point vortex discretization, these momenta persist

as

J = J =

∫
S2
xq dS =

N∑
i=1

Γixi.

We summarize the discrete Hamiltonian representation in Table 1.

4. Poisson Integrator

For Poisson systems such as the point vortex system it is essential to employ a numerical time in-
tegrator that maintains the structure of the underlying ordinary differential equations. Standard
numerical integrators do not conserve Casimirs. Hence Runge-Kutta or multistep methods will
result in point vortices drifting from the sphere. This can be corrected with projections, but as
is known from the rigid body equation, doing so can introduce artificial stable equilibria.
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Table 1: Summary of discrete identities compared to continuous identities.

continuous representation discrete representation

F(t) =
∫
f(x)

∑N
i=1 δ (x− xi(t)) dS F (t) =

∑N
i=1 f (xi(t))

=
∫
f(x)λ(x)q(x, t) dS

H(t) =
∫
qψ dS H(t) = 1

2

∑N
i=1 Γi

(
ψC(xi(t)) + ψh(xi(t))−

2
∑
j<i Γj

1
4π ln

(
|xj(t)− xi(t)|2

))
J (t) =

∫
xq(x, t) dS J(t) =

∑N
i=1 Γixi(t)

Cj(t) =
∫
|x|2δ (x− xj(t)) dS Cj(t) = |xj(t)|2

{F ,G} = −
∫
q∇
(
δF
δq

)
·
(
x×∇ δG

δq

)
dS {F,G} = −

∑N
i=1 Γ−1i ∇f(xi(t)) · xi ×∇g(xi(t))

{q,H}
{
x
(1)
i , H

}
,
{
x
(2)
i , H

}
,
{
x
(3)
i , H

}
Integrators that conserve the geometric structure are of special importance when one is interested
in the statistics of long simulations. In geophysical fluid dynamics the long time mean vorticity
field and streamfunction, as well as the pointwise statistics, depend heavily on the geometric
properties of the numerical integrator [1, 10, 11].

Patrick [35] suggests applying a Poisson splitting method to point vortex dynamics, but does
not detail the method. A Poisson integrator preserves Casimirs by definition. We will see that
the splitting also preserves the Noether momenta exactly, and the Hamiltonian approximately
in the sense of backward error analysis, as detailed in Section 4.2.

We expand system (8) with Hamiltonian (6) as

ẏ =

N∑
i=1

B(y)∇Hi +
∑
j<i

B(y)∇Hij ,

where

Hi =
1

2
Γi (ψC(xi) + ψh(xi)) , and

Hij =
1

4π
ln
(
|xj − xi|2

)
=

1

4π
ln (2− 2xi · xj) .

We treat the dynamics for each of these terms separately. The time-τ flow map associated with
each of the Hi terms will be denoted by φiτ . The dynamics associated with ẏ = B(y)∇Hij

is just that of a two vortex system with time-τ flow map denoted by φijτ . This flow is known
explicitly as detailed in Section 4.1. A splitting method is a composition of the flow maps of all
the individual terms in the dynamics.

We initially restrict ourselves to Lie-Trotter splittings and Strang splittings [15], respectively of
the form

ΦLT
τ =

∏
(i,j)∈CN

φijτ ◦
N∏
i=1

φiτ and ΦSτ =
∏

(i,j)∈CN

φijτ/2 ◦
N∏
i=1

φiτ ◦
∏

(i,j)∈C∗
N

φijτ/2. (9)

For both cases CN represents an ordering of all the possible pairs (i, j), i 6= j. The Strang splitting
also uses the reverse ordering, labelled C∗N , to create a symmetric method. The symmetry results
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in a cancellation of first order error terms, yielding a method that is second order accurate. The
Strang splitting can subsequently be used in the construction of higher order methods [44, 28]. In
the remainder we will ignore the effects of the Coriolis force and topography. The corresponding
flows φiτ are perfectly parallelizable and their evaluation represents an ever smaller fraction of
the total workload as the number of vortices increases.

Because each of the pairwise interactions in the splittings in (9) is the exact solution to a
Poisson dynamical system, each φijτ is a Poisson map with respect to the bracket {F,G} =
∇yF

TB(y)∇yG. As the composition of Poisson maps is again Poisson, the splitting schemes are
also Poisson maps with respect to the same bracket [15].

4.1. Integration of the two vortex system

The dynamics ẏ = B(y)∇Hij (with flow map φijτ ) affects only vortices i and j and can thus be
expressed as

ẋi = Γ−1i xi ×∇iHij =
−Γj
4π

xj × xi
1− xi · xj

,

ẋj = Γ−1j xj ×∇jHij =
−Γi
4π

xi × xj
1− xi · xj

.

This two-vortex system has Noether momenta expressed by the vector

J ij = Γixi + Γjxj .

Using the Noether momenta we find

ẋi =
−1

4π

J ij
1− xi · xj

× xi =: a× xi, (10)

ẋj =
−1

4π

J ij
1− xi · xj

× xj =: a× xj . (11)

Conservation of the Hamiltonian Hij implies the denominators in (10)–(11) are constant. This
implies the vector a is invariant under the two-vortex dynamics.

Using Rodrigues’ formula [23], the solution to equation (10) is given by

xi(τ) = exp(âτ)xi(0) = xi(0) +
sin aτ

a
âxi(0) +

1− cos aτ

a2
â2xi(0)

= xi(0) + sin aτ ã× xi(0) + (1− cos aτ) (ã(ã · xi(0))− xi(0)) ,

where â is the matrix such that âx = a× x, a = |a| and ã = a/a. The solution to (11) follows
by substituting xj for xi.

This flow map presents an explicit formulation of the exact solution to the two-vortex system
of vortices i and j. This pairwise solution is therefore a Poisson system with the same bracket
as the N -vortex problem that also preserves the pairwise Hamiltonian and momenta exactly. A
splitting composed of Poisson flows with identical brackets respects the Casimirs of that bracket.
The Noether momenta of the N -vortex system may be written as

J =

N∑
i=1

Γixi = Γixi + Γjxj +
∑
k 6=i,j

Γkxk = J ij +
∑
k 6=i,j

Γkxk.
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This implies that the total momenta J are conserved, because the pairwise flows preserve the
pairwise momenta J ij and do not modify the other vortices. The Hamiltonian is not conserved
exactly, as the evaluation of pair (i, j) perturbs the values of the Hamiltonian terms Hik and
Hjk for k 6= i, j. This is considered in more detail in the following section.

4.2. Modified Hamiltonian

For splitting schemes consisting of exactly integrated Poisson flows with the same bracket, the
combined map approximates, to an exponentially high order, a Poisson system with the same
bracket, but a modified Hamiltonian. Before considering a point-vortex system, let us recall the
simpler problem where the dynamics is given by

ẏ = B(y)
(
H [1](y) +H [2](y)

)
. (12)

For the symmetric Strang splitting

Φτ = φ
[1]
τ/2 ◦ φ

[2]
τ ◦ φ

[1]
τ/2

the modified dynamics read

˙̃y = B(ỹ)
(
H [1](ỹ) +H [2](ỹ) + τ2H3(ỹ) + τ4H5(ỹ) + . . .

)
.

Throughout the present work we will only consider the first correction term, H3(ỹ), corresponding
to an O(τ2) modification to the Hamiltonian. For the Strang splitting of (12) this term is given
by [15, p. 299]

H3 = − 1

24

{{
H [2], H [1]

}
, H [1]

}
+

1

12

{{
H [1], H [2]

}
, H [2]

}
. (13)

When the splitting contains more than two different flow maps, the modified Hamiltonian is
constructed by applying (13) repeatedly “from the inside out”, as illustrated by the following
three-vortex example.

Consider a system consisting of three vortices that are integrated according to the Strang splitting
ΦSτ of (9). We consider an ordering of pairwise interactions such that the splitting reads

ΦS,3τ = φ12τ/2 ◦ φ
02
τ/2 ◦ φ

01
τ ◦ φ02τ/2 ◦ φ

12
τ/2.

Note that the innermost map φ01τ is a composition of two successive maps in the definition of
(9). We first construct the modified Hamiltonian for the inner map φinnerτ = φ02τ/2 ◦ φ

01
τ ◦ φ02τ/2

using (13), resulting in
H inner = H02 +H01 + τ2H inner

3 + . . . ,

with

H inner
3 =

−1

24
{{H01, H02} , H02}+

1

12
{{H02, H01} , H01} .

The modified Hamiltonian of the full step is found by applying (13) to ΦS,3τ = φ12τ/2 ◦φ
inner
τ ◦φ12τ/2,

which results in
H [S] = H12 +H02 +H01 + τ2H inner

3 + τ2Houter
3 + . . . , (14)

9



10
−3

10
−2

10
−1

10
0

10
−15

10
−10

10
−5

10
0

τ

m
e
a
n
|H

−
H

0
|

 

 
Original Hamiltonian
Modified Hamiltonian

Figure 1: Error convergence for the Hamiltonian of a three vortex system in red. In blue is the convergence of the
error for the modified Hamiltonian given by (14). For reference two dashed lines with slopes τ2 and τ4 are given.

with

Houter
3 =

−1

24
{{H01 +H02, H12} , H12}+

1

12
{{H12, H01 +H02} , H01 +H02}+ . . . .

Terms arising from the Poisson bracket of H inner
3 with H12 are of order τ4 and are subsequently

neglected. Combining both second order corrections we find

H3 = H inner
3 +Houter

3

=
−1

24
({{H01, H02} , H02}+ {{H01, H12} , H12}+ {{H02, H12} , H12})

+
1

12
({{H02, H01} , H01}+ {{H12, H01} , H01}+ {{H12, H02} , H02})

+
1

12
({{H12, H01} , H02}+ {{H12, H02} , H01}) . (15)

The first two lines of (15) consist of Poisson brackets that are all of the form

T Ik`m := {{Hk`, Hkm} , Hk`} = −{{Hkm, Hk`} , Hk`} . (16)

The last line consists of brackets of the form

T IIk`m := {{Hk`, Hkm} , H`m} = −{{Hkm, Hk`} , H`m} = −T IIkm`. (17)

With these definitions equation (15) is expressed more compactly as

H3 =
−1

24

(
−T I021 − T I120 − T I210

)
+

1

12

(
−T I012 − T I102 − T I201 + T II120 + T II210

)
We illustrate the accuracy of this correction to the Hamiltonian by simulating a three-vortex
system using different time steps. Figure 1 compares the L1 norm of errors in the Hamiltonian and
the modified Hamiltonian. We simulate 10 time units starting from arbitrary initial conditions.
The second-order convergence of the original Hamiltonian is visible for sufficiently small time
steps. The modified Hamiltonian is preserved to fourth order as expected.
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In the general N -vortex case, the modified Hamiltonian follows from computing the modified
Hamiltonian of the innermost composition and repeatedly working outwards. The ordering CN
consists of R = 1

2N(N − 1) pairs; we label these C
[r]
N , with r ∈ {1, . . . , R}. Let H [r] denote the

Hamiltonian corresponding to the pair C
[r]
N . Following the same procedure as for the three-vortex

system, only now for a more general number of steps, we find the second-order correction to the
Hamiltonian to be

H3 =

R−1∑
r=1

R∑
s=r+1

[
−1

24

{{
H [s], H [r]

}
, H [r]

}
+

R∑
t=r+1

1

12

{{
H [r], H [s]

}
, H [t]

}]
. (18)

Many of these terms will be trivial in a large system, as most vortex pairs are disjoint. The
other terms in the sum are all distinct, because r < s ≤ t. This makes it impossible to construct
orderings where terms cancel.

When the terms in (18) involve only three distinct vortices, they are of a form as in (16) or
(17). Nontrivial terms that involve four distinct vortices follow either of the following two pat-
terns

T IIIk`mn := {{Hk`, Hkm} , Hkn} = −{{Hkm, Hk`} , Hkn} (19)

T IVk`mn := {{Hk`, Hkm} , H`n} = −{{Hkm, Hk`} , Hmn} . (20)

Without presenting the derivations, we state that (16)–(17) and (19)–(20) are computed as

T Ik`m = Ak`mB
2
k`Bkm

[
−Γ`BkmC

2
`km + (Γ`xm × x` + Γkxk × xm) · (xk × x`)

]
T IIk`m = Ak`mBk`BkmB`m

[
(Γ`Bkm − ΓmBk`)C

2
lkm + (Γmxm + Γ`x`)× xk · (xm × x`)

]
T IIIk`mn = Ak`mBk`BkmBknΓn [Bk`C`kmC`kn +BkmC`kmCmkn + (xm × x`) · (xk × xn)]

T IVk`mn = Ak`mBk`BkmB`nΓn [Bk`C`kmCk`n + (xk × xm) · (x` × xn)] ,

where

Ak`m =
−ΓkΓ`Γm

(4π)3

Bk` =
1

1− xk · x`
Ck`m = xk · x` × xm.

From this it follows that the error in the Hamiltonian is dominated by close approaches between
vortices, as there the denominator in Bk` approaches zero. The magnitude of both Ak`m and
Ck`m are obviously bounded.

Long time conservation of the Hamiltonian by symplectic methods can be rigorously shown in the
case of analytic Hamiltonian H, but is often observed in practice for more general Hamiltonians.
For point vortices, the Hamiltonian has singularities when two vortices coincide. The motion
of a single pair could inadvertently place one vortex in close proximity to another, effectively a
“numerical collision”. In practice we have not encountered this. This is only problematic if that
vortex pair is evaluated before either of the coincident vortices are moved by a different vortex
pair interaction.
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4.3. Numerical results

Our primary purpose for developing the explicit and symplectic integrator outlined in the present
work is to allow performing numerical experiments on moderate to large vortex systems to verify
hypothesized statistical behaviour. These simulations must be run over a long time period to
yield meaningful statistics. In this section we demonstrate the approximate energy conservation
and exact momentum conservation of the splitting schemes in different settings. We compare the
results of the Strang splitting to results for a symplectic, implicit method developed by Vanker-
schaver and Leok [42] and to a fourth order explicit Runge-Kutta scheme. Both implementations
can be found at https://github.com/jvkersch/hopf vortices along with two other implicit
schemes.

We investigate the conservation of energy and momentum in a number of different configurations.
For each case we compare energy and momentum errors given by εH(t) = |H(t) − H(0)| and
εJ(t) = ||J(t)− J(0)||. We have repeated the experiments of Vankerschaver and Leok [42], but
observe that in most of these configurations symmetries play an important role. This symmetry is
broken by the splitting methods, resulting in a poorer performance than methods that maintain
the symmetry. We also compare results for an arbitrary initial condition at a given energy level
in Section 4.3.4. This is a more practical test case for engineering applications and statistical
mechanics; it is in fact the setting in which we use this integrator in other work [29].

4.3.1. Collapsing vortices

For certain initial conditions three or more vortices will collapse onto a single point in finite time,
while the energy remains bounded. Such initial conditions with three vortices have been studied
by Kidambi and Newton [21] and with four vortices by Sakajo [41]. We simulate the same three
vortex system as Vankerschaver and Leok [42].

The vortex circulations are Γ1 = Γ2 = 1 and Γ3 = − 1
2 . The vortices start at the vertices of a

triangle with lengths l12 = 1
2

√
2 , l23 = 1

2

√
2 and l13 = 1. These initial conditions result in a

collapse of the three vortices onto a single point at T− = 4π(
√

23 −
√

17 ) ≈ 8.4537. At this time
the equations of motion become undefined. The numerical methods will not collapse exactly,
due to the numerical error – and in the case of the methods in [42], due to regularization of the
dynamics. Instead there will be a moment that the vortices approach each other closely. This
event is repeated periodically.

We have performed this simulation with time steps τ = 10−1, 10−2, 10−3, 10−4 to illustrate how
the behaviour changes. Conservation of the Hamiltonian over a short time – enough to show the
first collapse event – is illustrated in the left-hand panel of Figure 2. As the time step is reduced,
the magnitude of the maximum energy error during this part of the simulation does not change,
but the length of time over which there is a significant error is greatly reduced by using a smaller
time step. In this pathological configuration, the lack of analyticity of the Hamiltonian negates
backward error analysis and its prediction of second-order convergence.

The moment of the closest approach is indicated by the largest error in the Hamiltonian. With
smaller time steps this instant approaches the correct time of the true collapse event.

The right-hand panel of Figure 2 demonstrates how the energy changes over longer time, including
four more near-collapse events. Between the near-collapses, the energy consistently returns close
to its initial value. Note also that the results presented by Vankerschaver and Leok [42] include
some regularization. This in fact slows down the dynamics around the near-collapses so much
that the fifth event does not occur before the end of the simulation at T = 500. We should
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Figure 2: Energy error for a system of N = 3 collapsing vortices for various time step sizes. Initial conditions
that lead to a collapse of the three vortices onto a single point (in finite time) are given by Kidambi and Newton
[21]. The exact time of this collapse is indicated by a black dotted line.

note that the behaviour of this system with a repetition of near-collapses does not occur despite
numerical error, but because of it. The exact solution becomes undefined at the (first) collapse.
When the error is reduced by using a higher order method (results not shown), the dynamics
leading up to the first event are more accurate, resulting in a much closer approach between the
vortices. This causes a larger energy error after the event than in the Strang splitting.

4.3.2. Stable vortex ring

A ring of N equidistantly placed vortices of equal strength rotates stably around its centre
provided N ≤ 7 and provided that the latitude of the ring (assumed parallel to the equator) is
above a certain critical value [37].

We simulate a stable configuration with N = 6, Γ = 1
N and latitude 1

2π− .4 for 1000 time units.
Figure 3 compares the energy and momentum errors against those for the Hopf and Runge-Kutta
integration methods. All simulations use a time step of 0.05.

The splitting method only approximately conserves energy, but the error is bounded. The mo-
mentum is conserved to machine precision throughout the simulation. Due to the rotational
symmetry of this configuration, a method that respects this symmetry will easily exhibit energy
conservation. The splitting method does not respect the symmetry due to the influence of the
ordering of pairs. Consequently its energy conserving quality in this rather specialized test case is
inferior to that of the Hopf integrator. We have also performed the experiment with McLachlan’s
6th order composition [28] of the Strang splitting. This shows energy conservation to the same
degree as the Hopf method.

4.3.3. Von Kármán vortex streets

Another relative equilibrium is that of the Von Kármán vortex streets presented by Chamoun
et al. [6]. This configuration consists of two staggered rings of Nr vortices placed at latitudes
θ = ±θ0 plus one vortex at each pole.

We take Nr = 5 vortices per ring, each with Γ = ±1, placed at θ = ±π6 , respectively. The polar
vortices satisfy Γn = −Γs = 1

2 . This configuration rotates about the z-axis with a period of
T = 10.85. We simulate this system with a time step of τ = .5 for 10 000 time units.
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Figure 3: Energy (left) and momentum (right) error for the stable vortex ring of Polvani and Dritschel [37] with
N = 6 vortices. The energy oscillates about a fixed mean, with bounded error. The momentum is conserved to
machine precision.

The splitting scheme and Hopf method both conserve the momenta exactly by construction, and
this is reflected in the simulation results. The error in the energy remains bounded throughout
the simulation at an accuracy that is somewhat better than that of the Hopf integrator.

This configuration is believed to be inherently unstable [42], making the symmetry of vital
importance. The splitting scheme breaks this symmetry, yet the error remains bounded.
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Figure 4: Energy (left) and momentum (right) error for the Von Kármán vortex street with two rings of 5
vortices and a vortex at either pole, giving N = 12 vortices in total. The energy oscillates rapidly about a slowly
varying mean. The momentum is initially conserved to machine precision, but accumulation of arithmetic errors
eventually leads to a small drift.

4.3.4. Generic initial conditions

In this final test case we consider a system with 48 vortices, eight with circulation Γ = ±1 and
40 with Γ = ± 1

5 with equal numbers positive and negative. The initial configuration is drawn
randomly from the set of all states with a given energy level and zero angular momentum. We
use the same initial condition for the different methods. We consider both large negative energy
(H = −2), resulting in a strong clustering of like-signed vortices [34, 5], and large positive energy
(H = 2), leading to a well-mixed configuration with close approaches between opposite signed-
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vortices. These configurations are extreme in the sense that the specified energy levels lie close
to the tails in the distribution of all attainable energy states for this number of vortices with
these circulations.

Figure 5 compares the energy error over a short time for the Strang splitting method against
the Hopf method [42], a fourth order Runge-Kutta scheme and an implicit midpoint method
[15], all with time step τ = 0.0001. There is a remarkable difference in the performance of
the integrators at positive and negative energies. At negative energies, the Runge-Kutta scheme
conserves energy accurately while it exhibits rapid error growth in the positive energy simulation.
The Hopf integrator performs poorly at negative energy, and fails to converge at positive energy,
even for this modest time step size. In the negative energy simulation, the Strang splitting and
implicit midpoint method have roughly the same accuracy. For positive energy, the implicit
midpoint is more accurate.
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Figure 5: Energy error in simulations with negative (left) and positive (right) energies. The Strang splitting is
compared against a fourth order Runge-Kutta (RK4) scheme. The Hopf fibration method fails to converge in the
positive energy case.

We also compare the results over a longer time period with an increased time step of τ = 0.1.
All three implicit methods considered by Vankerschaver and Leok [42] fail to converge with this
time step. Therefore Figure 6 shows only the results for the Strang splitting and the fourth
order Runge-Kutta scheme. In both cases the Strang splitting shows a smaller energy error. The
momentum error (not shown) is within machine precision for the Strang splitting and of order
one for the Runge-Kutta approach.

We attribute the higher accuracy of the splitting scheme in the positive energy case to the
formation of long lived coherent structures of like-signed vortices. With exact conservation of the
Hamiltonian, like-signed vortices can only have a close approach if there is a simultaneous close
approach between vortices of opposite sign. The coherent structures make the close approach of
opposite-signed vortex pairs less likely.

5. Parallelization

In this section we will discuss several different parallelization algorithms for point vortex dynam-
ics. All of them are based on rearranging the pairwise flow maps of (9) and grouping together
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Figure 6: Energy error in simulations with negative (left) and positive (right) energies. The Strang splitting is
compared against a fourth order Runge-Kutta (RK4) scheme.

Table 2: Round-robin scheme for ordering vortex pairs in a four-vortex system.

round 0 1 2
pair 0− 3 1− 3 2− 3

1− 2 2− 0 0− 1

subsets of the composition. By choosing groups that consist of disjoint pairs, the order of eval-
uation does not affect the result and the pairs may be evaluated in parallel, without loss of
accuracy.

As an illustration, let us consider a system with just 4 vortices, labelled2 i = 0, 1, 2, 3. The
ordering C must contain all 6 possible vortex pairings once. This is similar to round robin
tournament scheduling, where all competitors play each other once. Such a scheme is presented
in Table 2, each round is performed from top to bottom before moving onto the next round. The
ordering is constructed by fixing the last vortex, number 3, in position, while the other vortices
rotate over the remaining positions. Note that during each “round” each vortex occurs only
once, this will be important later on when discussing parallelizations .

The Strang splitting for this ordering is written as

ΦS
2τ = φ03τ ◦ φ12τ ◦ φ13τ ◦ φ20τ ◦ φ23τ ◦ φ01τ ◦ φ01τ ◦ φ23τ ◦ φ20τ ◦ φ13τ ◦ φ12τ ◦ φ03τ .

For notational convenience we use a time step of 2τ . Because this ordering is symmetrical and

each of the φijτ is self-adjoint, the resulting method ΦS
2τ is a second order accurate method.

The more general ordering of N interacting vortices can be arranged in the same way. We write
the s-th pair of round r in the ordering CN as CsrN = (Asr, Bsr). Following the same pattern as
for the four-vortex system results in the expressions

Asr = mod(s+ r,N − 1)

Bsr =

{
N − 1 for s = 0

mod(N − 1− s+ r,N − 1) for s 6= 0.

A ten-vortex system exemplifies this ordering in Table 3.

2For convenience in the ensuing modular arithmetic, we switch to indexing from zero.
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Table 3: Round-robin scheme for ordering vortex pairs in a ten-vortex system.

round 0 1 2 3 4 5 6 7 8
0− 9 1− 9 2− 9 3− 9 4− 9 5− 9 6− 9 7− 9 8− 9
1− 8 2− 0 3− 1 4− 2 5− 3 6− 4 7− 5 8− 6 0− 7

pair 2− 7 3− 8 4− 0 5− 1 6− 2 7− 3 8− 4 0− 5 1− 6
3− 6 4− 7 5− 8 6− 0 7− 1 8− 2 0− 3 1− 4 2− 5
4− 5 5− 6 6− 7 7− 8 8− 0 0− 1 1− 2 2− 3 3− 4

5.1. Complete parallelization

The arrangement of pairwise vortex interactions into “rounds” in Table 2 is not just convenient
for notation. Let us denote the composition for each round by ψij,k`τ = φijτ ◦ φklτ , for i, j, k, ` all
different. In this notation the first round of Table 2 is the composition ψ03,12

τ = φ03τ ◦φ12τ . But as
the evolution of vortex pair (0, 3) is independent of that of pair (1, 2), the order of the operations
is irrelevant, i.e. φ03τ and φ12τ commute. This means that while evolving the system, these two
vortex pairs can be evaluated simultaneously, in parallel. Let us stress this fact by using the
notation χij,klτ to denote the time-τ flow map of the evolution of vortex pairs (i, j) and (k, l) in
either order. The Lie-Trotter splitting method where both pairs for each round are evaluated in
parallel is then written as

ΦLT‖
τ = χ03,12

τ ◦ χ13,20
τ ◦ χ23,01

τ ,

and the Strang splitting

Φ
S‖
2τ = χ03,12

τ ◦ χ13,20
τ ◦ χ23,01

τ ◦ χ23,01
τ ◦ χ13,20

τ ◦ χ03,12
τ .

Because each of the χij,klτ compositions is self-adjoint, this method is again second-order accu-
rate. Note that the order of the underlying pairwise interactions is now no longer necessarily
symmetric.

When integrating a system with four vortex, each round of the round-robin scheme contains two
pairwise interactions that can be performed in parallel. More generally, this scheme allows P
processors to evaluate a system with 2P vortices. But each process only evaluates a single vortex
pair interaction per round, meaning there is a lot of communication relative to the amount of
work done each round.

5.2. Reducing communication

It is not necessary for each round to be finished completely before starting evaluating the next.
For the s-th vortex pair of round r, (Asr, Bsr), to be evaluated, it is only necessary to wait for
these two vortices to have been evaluated in the previous round r − 1. The evaluation of the
remaining vortex pairs commutes with the evaluation of (Asr, Bsr).

If thread s in round r has to wait only for vortices Asr and Bsr to be done in round r − 1, it
is beneficial to choose the ordering such that one of the two vortices is evaluated on the same
thread as in the previous round. This means that each thread has to wait for only one other
vortex pair of the previous round. We construct such an ordering based on the construction used
in the previous section. Again the vortex 2P −1 is kept fixed in place, but now the other vortices
rotate through P − 1 positions. In the ten-vortex example, this can be seen as jumping straight
to round 4 in Table 3 after the first round. In doing so, all vortices on the right under the fixed
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Table 4: Reduced communication round-robin scheme for ordering vortex pairs in a ten-vortex system.

round 0 1 2 3 4 5 6 7 8
0− 9 4− 9 8− 9 3− 9 7− 9 2− 9 6− 9 1− 9 5− 9
1− 8 0− 8 0− 7 8− 7 8− 6 7− 6 7− 5 6− 5 6− 4

pair 2− 7 1− 7 1− 6 0− 6 0− 5 8− 5 8− 4 7− 4 7− 3
3− 6 2− 6 2− 5 1− 5 1− 4 0− 4 0− 3 8− 3 8− 2
4− 5 3− 5 3− 4 2− 4 2− 3 1− 3 1− 2 0− 2 0− 1

vortex move to the left, but in reversed order. By subsequently reversing the order of these pairs
in all odd rounds, each thread needs to wait only for one other vortex during each round. The

resulting ordering C̃srN =
(
Ãsr, B̃sr

)
is given by

(
Ãsr, B̃sr

)
=


(Asr̃, Bsr̃) for r even

(Asr̃, Bsr̃) for r odd, s = 0

(Bs̃r̃, As̃r̃) for r odd, s 6= 0,

where r̃ = mod(r(P − 1), N − 1) and s̃ = P − s. An example ordering with 10 vortices is
presented in table 4.

5.3. Hierarchical parallelization

An efficient parallelization finds a balance between reducing the work load per processor and
reducing the time required for communication between threads. Without parallelization there
is no communication time, but the workload per thread is largest. The parallelization scheme
in Section 5.1 represents the other extreme – where communication time dominates the total
computation time. In this section we develop a scheme that has adjustable parallelization.
Both the “complete parallelization” and the non-parallel computation are special cases of this
scheme.

The method we develop here is constructed as a hierarchy of methods that act on a hierarchical
system of leagues of vortices. Given a number of parallel threads P and a number of vortices
N to be evaluated, we place L = N

2P vortices in each lowest-level league in the hierarchy. If the

fraction N
2P is not integer, we introduce a number of dummy vortices with zero circulation to

increase N such that it is a multiple of 2P .

We also define a factorization P = p1 × p2 × . . . × pn. We will use the prime factorization,
but depending on system architecture a different factorization may be desirable. Given this
factorization, we construct a hierarchy of leagues as follows: there are 2p1 level-one leagues, each
consisting of p2 level-two leagues, each consisting of p3 level-three leagues and so on. The level-n
leagues are the lowest level and consist of L vortices each.

We denote a level-m league in this tree by Lk
m, where the vector k = (k1, k2, . . . , km) ∈ Rm

denotes the ancestry of the league. In other words, km denotes the current child of parent league
km−1 of grandparent km−2 and so forth.

The hierarchical splitting uses the fact that each vortex pair is either an interaction between two
leagues, with one vortex from each of the two leagues, or within a league, with both vortices from
that same league. Looking at the top level first, we see that this means that we have interactions
between the 2p1 groups, and interactions within each of these groups. One way to do this would
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be by first evaluating all p2(2p2 − 1) possible combinations of level-one leagues according to
an ordering as in Section 5.2 and then evaluating the interactions within each level-one league
separately. This can, however, have the unfortunate effect of wasted computation time if one
of the factors of the factorization is odd. Instead we evaluate the interaction between level-one
leagues according to the ordering of Section 5.2, but we omit the final round. The interactions
between these omitted leagues are combined with their interior interactions. For the top level,
this forms a system of N/p1 vortices that has to be evaluated completely.

Let Λ1[(k, `)] denote the interaction between all vortices in level-one league Lk1 and those in L`1
and let the composition Φ1[(k, `)] denote the evaluation of all interactions within or between
level-one leagues Lk1 and L`1. The Lie-Trotter splitting is then given by (we drop the subscript
indicating the time step for notational convenience)

ΦLT
0 =

2p1−3∏
r=0

p1−1∏
s=0

Λ1[C̃sr2p1 ] ◦
p1−1∏
s=0

Φ1[C̃s,2p1−22p1
], (21)

This composition is represented graphically as the top level of the tree diagram in Figure 7. The
compositions Λ1[(k, `)] and Φ1[(k, `)] both follow a recursive definition detailed below.

ΦLT
0

Φ0,1
1

Φ00,01
1Φ10,11

2

φ100,101φ110,111φ110,100φ101,111φ101,110φ100,111

Λ10,00
2Λ01,11

2Λ01,10
2Λ00,11

2

Φ2,3
1Λ2,0

1Λ1,3
1Λ1,2

1Λ0,3
1

Λ01,30
2Λ00,31

2Λ01,31
2

φ011,310φ010,311φ011,311φ010,310

Λ00,30
2

Figure 7: Tree representation of the hierarchical parallelization with L = 2 and P = 4, using prime factorization:
p1 = p2 = 2. Only a few branches are expanded for clarity.

5.3.1. Interactions between leagues

The flow map Λq[(k, `)] represents all possible interactions with one vortex in league Lk
q and

one in league L`
q. Using the hierarchical ordering of the vortices, we evaluate all such pairings

by evaluating all possible combination between leagues one level down. This is represented
graphically by the branches on the left in Figure 7.

The orderingD2P contains all possible pairs (i, j) with i ∈ {0, . . . , P − 1} and j ∈ {P, . . . , 2P − 1}.

Dsr
2P = (s, P + mod(s+ r, P )) , s, r ∈ {0, . . . , P − 1} .

An example with P = 4 is presented in Table 5.

With this, we define the recursive definition for the interaction between leagues

Λq−1[(k, `)] =

pq−1∏
r=0

pq−1∏
s=0

Λq[I
pq
k,`(D

sr
2pq )], (22)

where the mapping

I
pq
k,`(k) =

{
(k, k) for k < pq

(l, k − pq) for k ≥ pq
(23)
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Table 5: Vortex interaction pairs between vortices {0, . . . , 3} and {4, . . . , 7}.

round 0 1 2 3
0− 4 0− 5 0− 6 0− 7

pair 1− 5 1− 6 1− 7 1− 4
2− 6 2− 7 2− 4 2− 5
3− 7 3− 4 3− 5 3− 6

associates each of the vortices from an ordering with 2pq vortices with children in the groups
Lk
q−1 and L`

q−1. The lowest level interaction between leagues is given by

Λk,`
n =

L−1∏
r=0

L−1∏
s=0

φI
L
k`(D

sr
2L). (24)

Note that we also use the ancestry to enumerate the vortices, rather than linear indexing.

5.3.2. Interactions within leagues

The definition of Φ1[(k, `)] is given recursively, so it follows the same pattern as Φq−1[(k, `)] with
k, ` ∈ Rq−1, that is

Φq−1[(k, `)] =

2pq−3∏
r=0

pq−1∏
s=0

Λq[I
pq
k`(C̃sr2pq )] ◦

pq−1∏
s=0

Φq[I
L
k`(C̃

s,2pq−2
2pq

)], (25)

for q = 1, 2, . . . , n. The mapping I
pq
k` is the same as in (23). Note that the definition of ΦLT

0 in
(21) is in fact equivalent to (25) for q = 1.

At the lowest level, the league Lk
n no longer consists of leagues, but of L point vortices. So

when considering the interaction of all vortices within two lowest-level leagues Lk
n and L`

n, this
constitutes evaluating a 2L point vortex system.

Φn[(k, `)] =

2L−2∏
r=0

L−1∏
s=0

φI
pn
k` (Csr

L ). (26)

By (recursively) substituting equations (22)–(26) into (21) we find a Lie-Trotter splitting for the
system with N = 2LP vortices.

5.3.3. Symmetric splitting

To construct a symmetric splitting we need to compose the splitting ΦLT
0 of (21) with its adjoint

ΦLT,∗
0 as

ΦS
0 = ΦLT

0 ◦ ΦLT,∗
0 .

The adjoint of the Lie-Trotter splitting follows from a reversal of the order of the operators –
insofar as this is necessary – and taking the adjoint of each of the interior operators.

ΦLT,∗
0 =

p1−1∏
s=0

Φ∗1[C̃s,2p1−22p1
], ◦

0∏
r=2p1−3

p1−1∏
s=0

Λ∗1[C̃sr2p1 ]
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The adjoint of Φq−1[(k, `)] for q ∈ {2, . . . , n} of (25) is taken in a similar fashion to be

Φ∗q−1[(k, `)] =

pq−1∏
s=0

Φ∗q [I
L
k`(C̃

s,2pq−2
2pq

)], ◦
0∏

r=2pq−3

pq−1∏
s=0

Λ∗q [I
pn
k` (C̃sr2pq )]

For the interactions between leagues given by Λq[(k, `)] in (22) we need only reverse the order
of the outer product and take the adjoint of the Λq+1 inside. The adjoint of the lowest level
operators in (24) and (26) is achieved by reversing the order of the outside product over r.

The complete parallelization of Section 5.1 follows from the choice L = 1, N = 2P = 2p1,
whereas the non-parallel scheme follows from P = 1, N = 2L.

5.4. Implementation details

All simulations were performed on a desktop Macintosh MacPro running OS X 10.9.5. The
system has two Intel Xeon 2.93 GHz processors with six cores each. The system has 32 GB shared
memory, 12 MB L3 cache (per processor) and 256 KB L2 cache (per core). The programming
code was written in C, compiled into stand-alone applications using Matlab’s mex with llvm-gcc-
4.2. The motivation for this compiling strategy is to allow for easier transfer of data to Matlab,
which was used for all post-processing and data-analysis purposes. All source files are available
at https://github.com/KeithWM/poissonpv.

5.5. Timing experiments

To investigate the practical use for the different splitting schemes and vortex orderings we per-
form several experiment measuring the required time for different simulations. In all cases the
configuration consists of eight strong vortices, four positive (Γ = 1) and four negative (Γ = −1),
with the remaining vortices weaker with circulation ± 1

5 in equal numbers. The initial condi-
tions are chosen such that the total energy and momentum are zero. All timing experiments are
performed five times independently, to confirm that the results are not influenced by external
factors.

The efficiency of the parallelized splitting method is best represented by studying the scaling of
the method to large number of vortices while linearly increasing the number of threads. This
implies each thread always operates on the same number of vortices and consequently the time
taken for each round does not change. The number of rounds does change when the number of
vortices is increased, but this is only a linear increase.

For these simulations we use a Strang splitting with a time step of τ = 0.001 and simulate up to
only T = 0.01. This short time makes the timing results for small systems somewhat noisy, but it
means that simulating a large system remains feasible, even when using only a few threads. We
present results for the splitting as detailed in Section 5.3 as well as results for the same principle
with a small modification to reduce communication.

In Figure 8 we display the time required to simulate a systems with 64 (left) and 1024 (right)
vortices per thread, when varying the number of threads from 1 to 12. There is indeed only a
linear increase in the workload. In the case with 64 vortices per thread, the benefits of paral-
lelization outweigh the costs roughly from a system size of 192 onwards. With 1024 vortices per
thread there is an immediate benefit to parallelization.

The different orderings appear of little to no effect on the speed of computation. We attribute
this to the fact that the intended improvement by rearranging the ordering would arise only
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in situations where there is a significant difference in the time required to evaluate the different
pairwise interactions. This is certainly not the case when each thread is evaluating many pairwise
interactions each round.
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Figure 8: Wall clock time required plotted against number of vortices N , keeping the number of vortices per
thread fixed (64 on left, 1024 on right). A solid black line represents the time needed to perform the simulations
on a single core and dashed black lines represent O(N) and O(N2) scaling.

The same set-up is used to compare the speeds using different combinations of system size and
thread counts (N and P respectively). The number of vortices per group is then chosen to
be L = d N2P e, leading to the possible introduction of dummy vortices. This will however have
minimal effect on computation time in large systems.

Simulation times for system sizes ranging from N = 24 to N = 24000 and thread counts from one
to twelve are compared in Figure 9. The times are normalized by N2 representing an estimation
of the simulation time per vortex interaction. For increasing system size this quantity approaches
a fixed constant for a fixed number of threads. This is clearly visible for the smaller thread counts.
A general trend that larger systems are evaluated fastest using more threads is apparent, but
there are some notable exceptions. Most standing out is the speed of the 12 thread computation
of a system with 180 vortices. This is probably a result of the efficiency of evaluating 8 vortices
per group due to memory management.

We investigate the error convergence for the different orderings in a large system with 360
vortices – 8 strong and 352 weak as before. We run a short simulation up to T = 0.1 time
units. The time step used is varied from τ = 10−2 down to τ = 10−5. We consider the
energy error εH(t) = |H(t)−H(0)| and take the mean ε̄H = τ

T

∑I
0=1 εH(iτ) over the simulation

interval.

The mean energy error is plotted in Figure 10; it is compared against the time step in the left-
hand panel, and against the simulation time on the right. As expected the Lie-Trotter splittings
show first order convergence and the Strang splittings second order. The heuristic modification
made to the separated ordering has little effect on accuracy or speed.

Over the range of time steps considered, Strang splitting outperforms Lie-Trotter splitting not
only in terms of accuracy for a given time step, but also in terms of accuracy against computa-
tional cost. This suggests higher order methods could be even more efficient. This is investigated
by comparing fourth and sixth order methods against the first order Lie-Trotter and second order
Strang splittings for the same problem. The higher order methods follow from a composition of
a number of Strang steps of different sizes [15]. For both fourth and sixth order we consider the
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Figure 9: Wall clock time plotted against number of vortices N , using different numbers of threads. The times are
normalized by N2, thus estimating the workload per vortex pair. All simulations are performed using a Strang
splitting.
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Figure 10: Comparison between different orderings in the Lie-Trotter (LT) and Strang (S) splitting schemes for
a system with 360 vortices. On the left the error in energy is compared against different time steps, on the right
it is compared against simulation time required. All simulations use eight parallel threads. Black dashed lines
represent first and second order convergence.
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methods with the minimal number of stages presented by Yoshida [44], as well as the methods
of same order but with smaller error coefficients found by McLachlan [28].

The results are shown in Figure 11, again with energy error versus time step on the left and
energy error versus computational time on the right. All methods exhibit the expected error
convergence, albeit for a limited range of time steps. The methods due to McLachlan [28] have
considerably smaller error for the same time step. When considering the benefit for the same
computational load the difference is much reduced, but still in favour of McLachlan’s schemes.
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Figure 11: Comparison between different splitting schemes for a system with 360 vortices. On the left the error
in energy is compared against different time steps, on the right it is compared against simulation time required.
All simulations are performed on eight parallel threads.

6. Conclusion and outlook

Solutions to ideal fluid flow with a singular measure vorticity field result in a Poisson system
describing the motion of the vortex centres. By splitting the Hamiltonian of such a point vortex
system into the interactions of individual vortex pairs we construct a splitting method. By com-
posing the basic Lie-Trotter splitting with its adjoint (the same method with reversed ordering) a
symmetric Strang splitting with second order accuracy is constructed. Solution trajectories from
these schemes provide exact solutions to modified Poisson problems with the original bracket,
thereby respecting the Casimirs of the original dynamics. The modified Hamiltonian is studied
with the use of backward error analysis, showing that inaccuracies in the Hamiltonian occur
with close vortex interactions. The conservation properties are studied in a number of test cases,
including those considered by Vankerschaver and Leok [42].

The splitting method can also be rearranged into the interactions between groups of vortices, al-
lowing parallelization of the workload. This reduces the natural quadratic scaling of computation
time with system size to linear scaling when the number of processors is increased accordingly.
The ordering of the pairwise evaluations can be modified to reduce communication overhead.
The method therefore extends well to distributed memory implementations for large systems,
allowing the method to be used for engineering applications or for studying statistical mechanics
of point vortex dynamics.

The Strang splitting is also used as a basis for constructing higher order methods following
Yoshida [44] and McLachlan [28]. When higher accuracy is desired, these methods are more
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efficient in terms of computational power than Lie-Trotter or Strang splitting.

In the statistical mechanics study of point vortex systems it is usually assumed that the vortex
strength decreases as the number of vortices is increased. This follows immediately if it is desired
that the enstrophy Z =

∫
S2 ω

2 dS =
∑N
i−1 Γ2

i matches the enstrophy of some real fluid. The same
can be expected of point vortex models used as predictive models. This means that when the
number of vortices is increased, the time step need not be decreased, thus preserving the linear
increase in computational load.
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