
rspa.royalsocietypublishing.org

Research

Article submitted to journal

Keywords:

sampling, statistical estimation,

thermostat, statistical fluid dynamics

Author for correspondence:

Keith W. Myerscough

e-mail: keith@myerscough.nl

Observation-based correction
of dynamical models using
thermostats
Keith W. Myerscough 1 Jason Frank 2

Benedict Leimkuhler 3

1 Department of Computer Science, KU Leuven,

3001 Leuven, Belgium
2 Mathematical Institute, Utrecht University, P.O. Box

80010, 3508 TA Utrecht, The Netherlands
3 School of Mathematics, University of Edinburgh,

James Clerk Maxwell Building, Kings Buildings

Edinburgh EH9 3JZ

Models used in simulation may give accurate short-
term trajectories but distort long term (statistical)
properties. In this work, we augment a given
approximate model with a control law (a “thermostat")
that gently perturbs the dynamical system to target
a thermodynamic state consistent with a set of
prescribed (possibly evolving) observations. As proof
of concept, we provide an example involving a point
vortex fluid model on the sphere, for which we
show convergence of equilibrium quantities (in the
stationary case) and the ability of the thermostat to
dynamically track a transient state.

1. Introduction
In applications of modern computational science the
underpinning physical laws (and equations of motion)
are often well established yet the detailed behavior is
unpredictable on long time scales due to the presence of
deterministic chaos. Examples of this arise in molecular
dynamics [Frenkel and Smit, 2002, Schlick, 2010],
in polymer simulation [Ilg et al., 2002] and in the
modelling of turbulent fluids in the atmosphere and
ocean [Davidson, 2004, Holmes et al., 1998], where long
simulations are used to extract statistical information
(e.g. the statistics of rare transitions between basins in
molecular dynamics, or slow relaxation processes in
fluids).
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In this type of dynamical sampling the common requirement is that simulated paths are
sufficiently accurate to calculate measures of dynamical mixing such as two-point temporal
correlation functions [Hayes and Jackson, 2007].

In Hamiltonian systems such as molecular dynamics, it is common to run ensembles of
microcanonical (i.e. constant energy) simulations. For such simulations, backward error analysis
[Hairer et al., 2006, Leimkuhler and Reich, 2005] suggests that a long simulation should not be
viewed as the approximation of a particular trajectory of the system but rather as an exact solution
of a perturbed continuum process described by modified equations. In the case of dynamical
sampling of complex systems, the statistics of simulation data are biased because they sample
an invariant measure of the modified equations (rather than those of the target system), i.e., the
time-discretization error induces an effective statistical bias.

Statistical bias may also arise due to spatial discretization. For example, in the setting
of geophysical fluid dynamics, a comparison of discretizations of the quasi-geostrophic
equations reveals that the long time mean potential vorticity field and pointwise fluctuation
statistics are heavily dependent on discrete conservation laws such as energy, enstrophy, and
material conservation of vorticity [Abramov and Majda, 2003, Dubinkina and Frank, 2007,
2010]. The discretization bias may be controlled by reducing timestep or by incorporating a
Metropolis condition [Metropolis et al., 1953, Roberts and Tweedie, 1996], possibly increasing
the computational cost. The use of a Metropolis condition can also increase the difficulty of
computing accurate dynamical properties. The need for computations to be accurate with respect
to the dynamical process as well as to the long term statistics thus poses difficult challenges to the
simulator.

In this paper we consider a method of perturbing the dynamics of the system to correct for
statistical bias. Our method is based on the concept of a thermostat, by which we mean a scheme
based on a control law designed to facilitate sampling of a target probability density function
(pdf). Although originally proposed in molecular dynamics (see, e.g. the Nosé-Hoover method
[Nosé, 1984a,b]), thermostats can be extended to handle a wide variety of systems and have been
used in a wide variety of applications. For example, in [Dubinkina et al., 2010], a thermostat
was used as a model reduction technique for a vortex model of a fluid (suppressing the detailed
interactions of a few strong vortices with a weak vortex field), an approach we draw on in the
numerical experiments of this article. In another recent article [Ding et al., 2014], thermostats have
been suggested as a means of sampling incompletely specified systems (with noisy gradients),
with applications in machine learning for Bayesian inference in the “big data” context.

In the general modelling scenario, thermostats are significantly hampered by the need to
specify a functional form of the pdf a priori. In this article, we assume that, instead of the
pdf, what is actually available is a partial set of expectations of observables with respect to the
unknown probability measure, which may arise from experiment or other types of modelling.
In this setting, information theory (in particular entropy maximization [Jaynes, 1957a,b]) offers
tools for constructing densities consistent with observations that are close to a given prior
distribution (see [Giffin and Urniezius, 2014, Majda and Gershgorin, 2011, Panagiotis, 2005]
for examples in geophysical modelling, [Dama et al., 2013, Shell, 2008] for discussion in
molecular modelling). Our algorithm for computing the parameters finds Lagrange multipliers
(one for each observable) that modify the probability density, using iterative techniques like
those in [Agmon et al., 1979, Davis and Gutiérrez, 2012, Haken, 2006], where each step of
iteration involves ensemble simulation that reweights samples from the prior distribution
appropriately. The density resulting from such an entropy maximization is then used as the
basis for designing a thermostat that ensures the extended dynamical system samples the
distribution and consequently exhibits the correct (long-term) statistical averages, while mildly
perturbing the short-term dynamical behavior of the system. The complexity and generality of
our iterative procedure (sampling→parameterization→sampling. . .) means that convergence has
to be verified through computer experiment.
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Entropy maximization also forms the basis for closure approximations in the works of Ilg et al.
[2002], Samaey et al. [2011], where the result from entropy maximization is used in determining
evolution equations for resolved macroscopic quantities. This approach is distinct in philosophy
from the current work in which the result of entropy maximization is used to define a statistical
ensemble and evolution equations for microscopic dynamics that are consistent with macroscopic
observations.

While we motivate the method in the setting of equilibrium sampling of a fixed target
distribution, we can easily apply our scheme to the case of a more general model with unknown
or even undefined steady state. For this purpose, an ensemble of simulations are run in finite
duration bursts, approximating the Lagrange multipliers via an iterative procedure based on the
simulation history. This procedure allows entropy maximization to be performed with ensemble
averages that evolve in time, providing a flexible method of nonlinear data assimilation.

The remainder of this article is organized as follows. In the next section (Section 2), we review
the idea of a thermostat which is the key tool we employ to control the invariant distribution.
Section 3 describes the combination of thermostats with the maximum entropy framework for
correcting the density to reflect thermodynamic constraints. Section 4 describes the adaptive
procedure. In Section 5, we apply and evaluate the method in the setting of a system of point
vortices on the surface of a sphere, which represents a simple geophysical model with multiple
statistically relevant first integrals.

2. Thermostats
We introduce the thermostat technique for generic Hamiltonian dynamical systems of the form

dy

dt
= f(y) =B(y)∇H(y), y(t)∈D, B(y) =−B(y)T , H(y) :D→R, (2.1)

possessing a divergence-free vector field1 ∇ · f ≡ 0. Invariance of the Hamiltonian H along
solutions of (2.1) follows from d

dtH(y(t))) =∇H · dydt =∇H ·B∇H = 0, due to skew-symmetry
of B(y). Additional first integrals may exist, denoted by I`(y) :∇I` · f ≡ 0, `= 1, . . . , L.

Thermostats were introduced in molecular dynamics to model the trajectories of molecules in
a fluid at constant temperature. In the common statistical mechanical framework, it is assumed
that the trajectories of a system of particles in thermal equilibrium with a reservoir at constant
temperature sample the canonical distribution, with smooth invariant density proportional to
exp(−βH) where β is a parameter reciprocal to temperature scaled by Boltzmann’s constant. The
trajectories of the Hamiltonian system (2.1) are restricted to a level set of energy. Hence, to model
a system at constant temperature, it is necessary to perturb the vector field to make trajectories
ergodic with respect to the canonical distribution. The most common way of achieving this is
by adding stochastic and dissipative terms satisfying a fluctuation-dissipation relation (Langevin
dynamics), which is rigorously ergodic [Mattingly et al., 2002].

However, DelSole [DelSole, 2000] points out that additive stochastic forcing of trajectories
leads to inaccurate dynamical quantities since autocorrelation functions are strongly perturbed.
For smooth deterministic Hamiltonian dynamics, normalized velocity autocorrelation functions
are of the form 1− cτ2, c > 0 in the zero-lag limit τ → 0, whereas the autocorrelation of a variable
that is directly forced by white noise must take the form exp(−κτ), κ> 0 in the same limit. This
implies that direct stochastic perturbation leads to auto-correlation functions that have nonzero
slope and opposite curvature at zero lag [Leimkuhler et al., 2011].

An alternative approach, due to Nosé [Nosé, 1984a,b] and Hoover [Hoover, 1985], augments
the phase space with an additional thermostat variable ξ(t) (driven by a differential equation)
in order to ensure that the extended dynamics on Rd ×R preserves an equilibrium density
whose marginal on Rd is the target (e.g. Gibbs) density. The deterministic thermostats of Nosé
and Hoover are not ergodic, but they can be combined with stochastic forcing of the thermostat
1The latter condition is automatic for systems (2.1) with constant B. Strictly speaking, the approach described here is
applicable to any system with divergence-free vector field∇ · f ≡ 0 possessing one or more first integrals.
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variable ξ, leading to the so-called Nosé-Hoover-Langevin method [Samoletov et al., 2007]. For
generic divergence-free dynamical systems, the Generalized Bulgac-Kusnezov (GBK) [Bulgac and
Kusnezov, 1990, Leimkuhler, 2010] thermostat provides the augmented system:

dy= f(y)dt+ ξεg(y)dt (2.2a)

dξ = εh(y)dt− γξdt+
√

2γ dw, (2.2b)

where ε > 0 and γ > 0 are parameters, w(t) is a scalar Wiener process, and g and h are vector
fields which we discuss in more detail below. Given a target density ρ(y)∝ exp(−A(y)), A :D→
R, denote the augmented product density by ρ̃(y, ξ) = ρ(y) · µ(ξ), with µ a univariate normal
distribution with mean zero and standard deviation one. It is easily checked that ρ̃ is stationary
under the Fokker-Planck operator associated with (2.2) provided

h(y) =∇ · g − g · ∇A (2.3)

and provided the ‘potential’ A is only a function of y through the first integrals of f . The
(extended) target measure ρ̃ is ergodic if the vector fields f and g satisfy a Hörmander condition
[Bajars et al., 2013]. Up to verification of the Hörmander condition, the choice of g is free. In the
example of Section 5 we consider a specific form for g.

The parameter ε controls the strength of the thermostat relative to that of the vector field f .
This affects the rate at which the invariant measure is sampled. It has been demonstrated in [Bajars
et al., 2011, 2013, Leimkuhler et al., 2011] that GBK/NHL thermostating gives a weak perturbation
of microcanonical dynamics: typical autocorrelation functions match the exact ones to leading
order, i.e. have the form 1− cτ2 +O(τ3), as τ → 0.

Designing a thermostat relies on knowing the functional form of the target distribution,
which may not always be available. In this article we relax this requirement by constructing the
target distribution iteratively and adaptively, based on Jaynes’ principle of least-biased ensemble
prediction.

3. Bias correction method
Suppose that we are given a simplified dynamical model for the evolution of some projection,
i.e. a “coarse graining” of the phase variables (coarse grained variables y(t)∈Rd) which is in the
form (2.1). Although the original system is complex and its details unknown, we assume that we
can obtain in some way (e.g. through measurement) a collection of observations of mean values
of functions of the reduced variables. That is, there are functions Ck :R

d→R, k= 1, 2 . . . ,K and
given values ck, k= 1, 2, . . . ,K, such that

ck = 〈Ck(y)〉, k= 1, . . . ,K, (3.1)

where 〈Ck(y)〉 represents averaging with respect to the true, empirical invariant measure
of the dynamical system. The use of a GBK thermostat (2.2) limits our implementation to
observables that are functions of the conserved quantities {H, I`, `= 1, . . . , L}, that is, Ck(y) =
Ck(H(y), I1(y), . . . , IL(y)), k= 1, . . . ,K. This restriction is only due to the choice of thermostat,
the entropy maximization has no such restriction. Our goal is to find a perturbed dynamical
model for the reduced variables which (a) is compatible with the thermodynamic constraints
(3.1), and (b) mildly perturbs the dynamics compared to those of the native model.

(a) Entropy maximization
Empirical information theory generalizes the principle of insufficient reason, by proposing the
least-biased probability density consistent with a set of observations. This idea was first proposed
by Jaynes [1957a,b] and is treated in the monographs of Dewar et al. [2014], Haken [2006] and
in the context of geophysical fluids by Majda and Wang [Majda and Wang, 2006]. The least-
biased density is defined as the probability density ρ(y) that maximizes the information entropy
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functional S[ρ] =−
∫
D ρ(y) log ρ(y) dy, subject to a set of constraints given by observations. When

D is a compact set and there are no observations, the minimizer is the uniform density ρ≡ |D|−1.
The entropy S is the unique measure of uncertainty that is positive valued, monotonically
increasing as a function of uncertainty, and additive for independent random variables. With
observable functions {Ck(y)|k= 1, 2, . . .K} let

EρCk =
∫
D
Ck(y)ρ(y) dy (3.2)

denote expectation in the (as yet undetermined) density ρ. Defining Lagrange multipliers λk,
k= 1, . . . ,K, associated with the observables Ck, we obtain the solution ρ from a stationarity
condition for the Euler-Lagrange functional

W (ρ, λ1, . . . λK) :=

[
S[ρ̂]−

K∑
k=1

λk
(
Eρ̂Ck(y)− ck

)]
.

Conditions for a unique solution to exist are discussed in [Balian, 2006]. When it exists, the
maximum entropy solution satisfies

ρ(y) = λ0 exp (−λ1C1(y)− · · · − λKCK(y)) ,

where λ0 is chosen to satisfy
∫
D ρ dy= 1, and λk is chosen such that EρCk(y) = ck.

In some cases, besides the observations, we may be given prior statistical information on the
process y(t). The Kullback-Leibler divergence, or relative entropy,

Sπ[ρ(y)] =
∫
ρ(y) ln

ρ(y)

π(y)
dy

represents a (non-symmetric) distance between measures. Note the change of sign, which makes
the relative entropy more like a distance measure; we stick to this convention. It quantifies the
information lost in approximating ρ(y) by π(y).

Suppose y is a random variable with distribution (law) y∼ ρ, where ρ is unknown. Suppose
further, that we are given a prior distribution π, presumed to be close to ρ, and a set of K
observations (3.1). Following Jaynes [Jaynes, 1957a,b], the least-biased distribution ρ consistent
with the observations ck and prior π solves the constrained minimization problem

ρ= argmin
ρ̂

[
Sπ − λ0

(
1−

∫
ρ̂(y) dy

)
−

K∑
k=0

λk

(
ck −

∫
Ck(y)ρ̂(y) dy

)]
,

where the λk are Lagrange multipliers to enforce the condition that the expectations (3.2) agree
with the observations (3.1). The solution to the variational problem is

ρ(y) = λ0 exp (−λ1C1(y)− · · · − λKCK(y))π(y), (3.3)

where the Lagrange multipliers λk are chosen consistently with the observations (3.1) and λ0 is a
normalization constant so that ρ is a probability density function.

Calculation of the Lagrange multipliers is discussed in [Agmon et al., 1979, Davis and
Gutiérrez, 2012, Haken, 2006]. We use the following algorithm based on re-weighting. Assume
we are given a sequence of samples yn, n= 1, . . . , N , distributed according to a known prior
distribution π(y), i.e. yn ∼ π. The expectation under π(y) of a function Φ(y) has the consistent
and unbiased estimator

Φ̂π =
1

N

N∑
n=1

Φ(yn).

Given the posterior distribution ρ(y) of the form (3.3), compute the expectation EρΦ by re-
weighting of the integral

EρΦ=

∫
Φ(y)ρ(y) dy= λ0

∫
Φ(y)e−

∑K
i=1 λiCi(y)π(y) dy= λ0Eπ{Φ(y)λ0e−

∑K
i=1 λiCi(y)},
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yielding an unbiased estimator for EρΦ given by

Φ̂ρ =
λ0
N

N∑
n=1

Φ(yn)e−
∑K

i=1 λiCi(y
n).

We wish to ensure that the estimators Ĉρk for observables Ck match their empirical values ck,
i.e.

ck = Ĉρk =
λ0
N

N∑
n=1

Ck(y
n)e−

∑K
i=1 λiCi(y

n), k= 1, . . . ,K.

We can use this fact to define a Newton-Raphson iteration to determine the Lagrange multipliers
λk. Define the residual r with components

rk(λ) = ck −
λ0
N

N∑
n=1

Ck(y
n)e−

∑K
i=1 λiCi(y

n), k= 1, . . . ,K,

with λ= (λ1, . . . , λK) and r= (r1(λ), . . . , rK(λ)). Note that λ0 can be viewed as a function of
λ1, λ2, . . . , λK chosen from the normalization condition, i.e.,

λ0 =

[
N∑
n=1

e−
∑K

j=1 λjCj(y
n)

]−1
.

The Jacobian matrix J = (Jkj) of the vector function r is determined as

Jkj(λ) :=
∂rk
∂λj

=
λ0
N

N∑
n=1

Ck(y
n)Cj(y

n)e−
∑K

i=1 λiCi(y
n) j, k= 1, . . . ,K.

The iteration then proceeds as λα+1← λα − J−1(λα)r(λα).

4. Adaptive determination of Lagrange multipliers
When the observations deviate far from the prior, the Lagrange multipliers take larger values and
the weights of the samples diverge, i.e. some weights become very large and others become very
small. This results in a larger variance on the estimates and consequently in poorer results for
the Lagrange multipliers. Moreover, the approach of the previous section excludes applications
where (i) the statistical knowledge is expected to improve as the simulation progresses, (ii) the
average observables are known to vary slowly with time, or (iii) it is unfeasible to construct a
large enough ensemble distributed in the prior. For these cases we consider using the simulation
data of a small ensemble (propagated in short bursts of M timesteps) for updating the Lagrange
multipliers for mean observation data. This results in an adaptive algorithm for obtaining the
Lagrange multipliers on-the-fly during simulation. In this situation, the sample set used is drawn
from a distribution closer to the target, resulting in better estimations for the residuals and
Jacobian.

Let us assume we have a (moderately sized) ensemble of initial conditions according to some
distribution

ρ0(y) = π(y) exp

(
−

K∑
k=1

λ0kCk(y)

)
(4.1)

In our numerical experiments, we assume λ0k = 0, ∀k and hence ρ0 = π, but we present the general
form here nevertheless. Rather than first computing the Lagrange multipliers corresponding to
observations and then running the simulation over the time interval of interest, we perform
a short burst of the thermostatted simulation for P ensemble members, using the Lagrange
multipliers λ0k in the thermostat. The system states at the end of this burst, denoted by yp(M∆t)
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for ensemble member p at time M∆t, are used for an estimator of the observables in the
distribution ρ0:

Ĉ
(1)
k =

1

P

P∑
p=1

Ck(y
p(M∆t))λ10 exp

(
K∑
i=1

(λ0i − λ
1
i )Ci(y

p(∆t))

)
, k= 1, . . . ,K, (4.2)

where the superscript (1) indicates that it is an estimator for a distribution with Lagrange
multipliers λ1k. Note that the samples being distributed in ρ0 and not in π leads to the appearance
of the Lagrange multipliers λ0k, this is a simple importance sampling procedure. A Newton-
Raphson procedure similar to that in Section 3 is then used to find λ1k using the estimator (4.2).
The resulting multipliers are used in the second burst of thermostatted simulations, sampling

ρ1(y) = π(y) exp
(
−
∑K
k=1 λ

1
kCk(y)

)
. Now, crucially, this estimator from the ensemble after two

simulation bursts is combined with that at the end of the first burst. As both estimators are
unbiased, we may use any weighted sum of the two (with the sum of the weights equal to
one) to find another estimator. For simplicity we weight both estimators equally. We write the
combination of estimators for the general case after L bursts of the simulation, using the system
states at the end of each previous burst, that is yp(`M∆t) for `= 1, 2, . . . , L, as an estimator for
the densities ρ`−1 with the Lagrange multipliers λ`−1k . This estimator takes the form

Ĉ
(L)
k =

1

LP

P∑
p=1

L∑
`=1

Ck(y
p(`M∆t))λ`−10 exp

(
K∑
i=1

(λ`−1i − λLi )Cj(y
p(`M∆t))

)
, k= 1, . . . ,K.

(4.3)
As with the non-adaptive scheme, a Newton-Raphson procedure is used to find Lagrange

multipliers such that Ĉ(L)
k = ck with the residuals

rLk = Ĉ
(L)
k − ck k= 1, . . . ,K, (4.4)

and the gradients

∂rmk
∂λmj

=
1

mP

P∑
p=1

m−1∑
`=0

Ck(y
p
`M )Cj(y

p
`M )λ`0 exp

(
K∑
i=1

(λli − λ
m
i )Ci(y

p
`M )

)
, j, k= 1, . . . ,K.

(4.5)
By performing this iteration after each burst, and using the result for the subsequent burst,
the Lagrange multipliers are computed “on-the-fly” without the need for constructing a large
ensemble in the prior.

Let us consider two limiting cases to justify the approach. (1) By increasing the number of
ensemble members P , one recovers the non-adaptive scheme, where the Lagrange multipliers
are found based on the initial ensemble after a single burst. On the other hand, (2) if we have a
modest ensemble P , it is necessary that the burst is long enough for the thermostatted dynamics
with the adaptive parameters to equilibrate on this time scale. The error due to the transient of
the thermostat is removed in the limit of many time steps per burst, i.e. as M→∞. We present
numerical verification of the practical use of the scheme in a specific application setting in Section
(c).

(a) Adaptive algorithm
There are two important modifications to the algorithm described above that are included in the
numerical implementation of this method:

• If the Lagrange multipliers change rapidly, the thermostat may require a long time to
equilibrate. This requires a larger value for M , increasing the simulation time required
before including new samples. The effect is noticeable at the beginning of a simulation,
due to two factors: (i) the small sample size leads to inaccurate expectations for the
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observables, and (ii) the initial values for Lagrange multipliers may be far from their
equilibrium. By limiting the rate of change of the Lagrange multipliers, these problems
are circumvented.
• In equations (4.4) and (4.5) all previous values λ`k are included. In a long simulation,

this leads to a growing computational demand. By taking only a fixed number (q) of
recent steps the cost is reduced. In the case that the initial samples cannot accurately be
drawn from the prior, this has the further advantage that these inaccuracies are eventually
forgotten.

The resulting method is summarized in Algorithm 1.

Given initial conditions according to prior π(y)
Set initial Lagrange multipliers to zero
for m← 1 to n do

for j← 1 to M do
advance simulation one time step using current value for the Lagrange multipliers

end
store relevant simulation observables for time step im.
while | 〈Ck(y)〉λ − ck|> tolerance do

compute residual using reweighted samples at times M ×max(m− q, 0), . . . ,mM
compute residual gradient using the same data
update Lagrange multiplier estimation

end
limit the change in Lagrange muliplier (if necessary)

end
Algorithm 1: Adaptive determination of Lagrange multipliers “on-the-fly”

5. Application to reduced modelling of point vortices
Here we apply the least-biased correction method to a system of point vortices on the sphere,
which has a Poisson structure and multiple conserved quantities, including total energy and
angular momentum and a set of Casimirs.

(a) Point vortex system
Point vortices represent singular solutions to two-dimensional, incompressible fluid flow in
which each vortex, positive or negative, is centred at a specified position. Point vortices have been
studied extensively in the books by Cottet and Koumoutsakos [2000], Majda and Bertozzi [2002],
Newton [2001]. We work on a spherical domain Jamaloodeen and Newton [2006], Laurent-Polz
[2005], Myerscough and Frank [2016], Newton and Sakajo [2007], Newton and Shokraneh [2006],
viewing the vortex position as a vector in R3 with unit norm. The equations of motion have a
Lie-Poisson structure

Γiẋi =xi ×∇xiH i= 1, 2, . . . ,M, (5.1)

where the Hamiltonian is given by

H =−
M∑
i=1

i−1∑
j=1

ΓiΓj
4π

ln
(
2− 2xi · xj

)
and each Γi represents the circulation of a single point vortex.
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By introducing y=
(
xT1 ,x

T
2 , . . . ,x

T
M

)T
, equation (5.1) has the form (2.1) with the block-

diagonal structure matrix

B(y) =


Γ−11 x̂1

Γ−12 x̂2

. . .
Γ−1M x̂M

 ,
where x̂i is the 3× 3 skew-matrix satisfying x̂ia :=xi × a, for all a∈R3. The Poisson bracket
for the system is given equivalently by

{F,G}=
M∑
i=1

1

Γi
∇xiF · (xi ×∇xiG) or {F,G}=∇F (y)TB(y)∇G(y).

This Poisson structure generalizes the rigid body Poisson structure and also occurs in
ferromagnetic spin lattices [Faddeev and Takhtajan, 1987, Frank, 2004, Frank et al., 1997] and
elastic rods (e.g. [Kehrbaum and Maddocks, 1997]).

The vortex positions are defined in Cartesian coordinates, but initial positions xi(0) are chosen
on the sphere. Because each |xi| is a Casimir of the Poisson bracket, the vortices remain on the
sphere. Furthermore, the rotational symmetry of the sphere gives rise to three Noether momenta,
which are expressed by the angular momentum vector

J =

M∑
i=1

Γixi. (5.2)

The GBK thermostat (2.2) is only applicable to divergence free systems ∇ · f ≡ 0. It is
straightforward to check that this condition holds for the spherical point vortex model.

A numerical integrator for the point vortex system is constructed as in [Myerscough and Frank,
2016] based on splitting the differential equations into integrable subproblems (see related ideas
in [Patrick, 2000, Zhang and Qin, 1993]). The backward error analysis of symplectic integrators
has an analogous development for Poisson systems, implying approximate conservation of the
Hamiltonian [Hairer et al., 2006]. The Casimirs (|xi| ≡ 1) and the momentum J =

∑
Γixi are

exactly preserved by the integrator.

(b) Thermostat perturbation vector
The choice of the perturbation vector field g in (2.2) is flexible, but the vector fields f and g should
satisfy a Hörmander condition [Bajars et al., 2013]. It is vital that the Casimirs should be respected
by the perturbation vector field. Double-bracket dissipation [Bloch et al., 1996] preserves Casimirs
of the original system and is thus an ideal candidate for g:

g̃i(xi) =
∑
j 6=i

xi × xi ×
Γj
4π

xj
1− xi · xj

. (5.3)

This “double-bracket thermostat” also has the advantage that it can be split into pairwise
interactions along with the original dynamics f , simplifying computation. The denominator
in (5.3) leads to a stiff differential equation when like-signed vortices approach one another,
restricting the step size of an explicit splitting method. For this reason we use a slightly modified
scheme (but still Casimir-preserving) defined by

gi(xi) =
∑
j 6=i

xi × xi ×
Γj
4π

xj . (5.4)

Details of the numerical integration of these dynamics may be found in the appendix.
The thermostat (2.2) is designed to sample a target density ρ(y)∝ e−A(y) on the phase

space of y. The thermostat variable ξ is normally distributed, yielding the extended distribution
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ρ∝ e−A(y)− 1
2 ξ

2

. The perturbation vector field g must additionally ensure that the thermostatted
system is ergodic in the target density. Because the target measure is positive for all open sets on
the phase space, hypoellipticity of the Fokker-Planck equation associated with (2.2) is sufficient
to prove uniqueness of the invariant measure [Kliemann, 1987]. Hypoellipticity follows from
Hörmander’s controllability condition [Rey-Bellet, 2006]. The condition has been tailored to GBK
thermostats in [Bajars et al., 2013], but it is difficult to verify in practice. Here we verify using
simulation that single trajectories have statistics that agree with the target distribution.

(c) Maximum entropy model
To apply the methods proposed in Section 3 in the setting of a reduced model for point vortices,
we use point vortices distributed evenly over the surface of the sphere as the prior π. The use
of a thermostat for the bias correction limits us to using observables that are function of the first
integrals. Furthermore we assume the angular momentum has no directional preference, a choice
we motivate in the numerical comparisons of Section 6. In that case, only the magnitude |J | of
the momentum vector needs to be considered.

To accurately reproduce statistics from a full model with a moderate number of point vortices,
it is necessary to modify the canonical density with a term quadratic in the Hamiltonian, that
is, a density of the form ρ(y)∝ exp(−βH(y)− γH(y)2) [Dubinkina et al., 2010]. Motivated by
[Dubinkina et al., 2010], we choose observations that include linear and quadratic functions of H
and |J |2.

We consider the following set of observables:

C1 =H, C2 = |J |2, C3 =H2, C4 = |J |4, C5 =H|J |2, (5.5)

and denote the corresponding Lagrange multipliers by βH , βJ , γH , γJ , γHJ .
The least-biased density consistent with observations of the ECk is given by

ρ̃(H) = e−βHH−βJ |J|2−γHH2−γJ |J|4−γHJH|J|2 , (5.6)

where the Lagrange multipliers are to be found via the procedure detailed in Section (a) or that of
Section 4.

6. Numerical comparison
Here we apply Algorithm 1 to a reduced model of point vortices similar to the configuration
used in [Bühler, 2002, Dubinkina et al., 2010]. We distinguish between three models. The full
model consists of a system (5.1) of Mfull = 288 point vortices, of which 8 strong vortices of
circulation Γj =±1 and 280 weak vortices of circulation Γj =± 1

5 . Both strong and weak classes
are comprised of equal numbers of positively and negatively oriented point vortices. The reduced
model consists of (5.1) with just M = 8 strong vortices. Finally, the corrected model consists of
a thermostatted system (2.2) with unperturbed vector field f given by (5.1) for M = 8 strong
vortices, perturbation vector field g given by (5.4), and equilibrium measure defined by the least-
biased density (5.6). Additionally, we compare with Metropolis-Hastings samples from the least-
biased density (5.6) to help distinguish between errors incurred due to the maximum-entropy
model and those due to sampling bias of the (discretized) thermostatted dynamics.

We run five long simulations of the full model with total energies chosen from the set Hfull ∈
{−2,−1, 0, 1, 2}. The total angular momentum vector is fixed at J full = 0 such that there is no
directional preference for the momentum of the reduced model embedded in the full model. For
each run we determine the time averages of the observables (5.5) for the subset of strong vortices.
When computing the Hamiltonian H of this subsystem, we include only the internal coupling
between strong vortices. The time averages are tabulated in Table 1).

Using these averages, we compute the Lagrange multipliers using the algorithm described in
Section 4 with prior distribution π taken to be uniform on the sphere. The Lagrange multipliers are
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Table 1: Full model observations and (in parentheses) corrected values of first integrals

〈H〉 〈|J |2〉 〈H2〉 〈|J |4〉 〈H|J |2〉
Hfull =−2 -0.33 (-0.38) 4.59 (4.45) 0.22 (0.23) -0.63 (-0.98) 34.58 (31.45)
Hfull =−1 -0.11 (-0.18) 4.78 (4.68) 0.10 (0.12) 0.38 (-0.01) 37.55 (35.88)
Hfull = 0 0.02 (-0.04) 4.63 (4.56) 0.08 (0.08) 0.90 (0.60) 35.26 (34.30)
Hfull = 1 0.17 (0.15) 4.74 (4.75) 0.13 (0.12) 1.73 (1.61) 37.76 (37.44)
Hfull = 2 0.31 (0.28) 4.87 (5.00) 0.22 (0.21) 2.49 (2.46) 39.26 (41.74)

also recorded in Table 2. The magnitude of γ{H,J,HJ} indicates that including these observables
impacts the resulting density. In other words, all observables add information to the least-biased
density, with the possible exception of the lowest energy case with Hfull =−2.

We then run simulations of the corrected model using the computed parameters. Table 1 also
records expectations from the thermostat-corrected model.

Table 2: Lagrange multipliers for each energy level.

βH βJ γH γJ γHJ
Hfull =−2 5.98 −0.20 0.69 0.41× 10−3 −0.04
Hfull =−1 2.89 −0.03 2.67 9.77× 10−3 −0.33
Hfull = 0 −0.76 0.20 3.38 9.97× 10−3 −0.37
Hfull = 1 −3.54 0.37 4.29 15.31× 10−3 −0.54
Hfull = 2 −6.42 0.53 4.45 14.05× 10−3 −0.51

By analogy with canonical statistical mechanics, we may think of the weak vortices that are
ignored in the reduced model as forming a reservoir with which our reduced model exchanges
energy and angular momentum. Experience with canonical statistical mechanics of point vortices
in the plane [Bühler, 2002, Dubinkina et al., 2010] suggests that for small reservoir sizes the
canonical distribution must be modified with higher order terms to agree with the full system
statistics. Table 3 gives the multipliers for different numbers Mfull of vortices in the full system,
confirming that those corresponding to γH , γJ and γHJ are more significant for smaller Mfull; as
the number of weak vortices grows, the strong vortex system approaches the canonical density.

Table 3: Lagrange multipliers as a function of Mfull, all for Hfull = 0.

βH βJ γH γJ γHJ
Mfull = 36 −1.51 1.35 27.75 117.15× 10−3 −3.07
Mfull = 72 −4.27 0.82 8.71 37.79× 10−3 −1.12
Mfull = 144 −0.97 0.32 6.70 25.80× 10−3 −0.82
Mfull = 288 −0.76 0.20 3.38 9.97× 10−3 −0.37
Mfull = 576 −1.09 0.13 0.87 3.08× 10−3 −0.10
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Remark 6.1. The form of the distribution (5.6) implies there is a nonzero probability for any configuration
of the strong vortex system with finite energy and momentum. When considering the strong vortex system
in contact with a reservoir of weak vortices, its energy is bounded by the energy in the total system plus
or minus how much energy can be stored in the reservoir and in the interactions between strong and weak
vortices. For the momentum, a similar condition holds, but here there are no interaction terms. If it is not
possible for the reservoir to add or subtract sufficient energy from the reservoir, it will not be possible for
the subsystem of strong vortices to attain all possible configuration with nonzero probability.

For the energy it is readily verified that as long as the reservoir contains three vortices not all of equal
sign, the reservoir may supply or remove an arbitrary amount of energy, since close of approaches of two
like-signed (resp. opposite-signed) vortices produces arbitrarily large positive (resp. negative) energies.

For the momentum, the result is more interesting. The system of M strong vortices, all with strength
±Γstrong, may exist in configurations with an angular momentum sup |J red.|=MΓstrong. Note the
supremum, as the configuration with exactly sup |J red.|=MΓstrong will have infinite energy. For the
reservoir it holds that sup |Jweak| ≤ (N −M)Γweak. For the the reservoir to supply sufficient angular
momentum it is necessary that

MΓstrong ≤ (Mfull −M)Γweak⇔
Mfull −M

M
≥ Γstrong

Γweak
.

In the thermal bath simulations discussed in this section M = 8 and Γstrong/Γweak = 5, this means Mfull
should satisfy Mfull ≥ 48. The smallest system considered (Mfull = 36) does not, explaining its eccentric
parameter values in Table 3.

(a) Equilibrium results
In this section we compare statistical properties of the corrected model with those of the full
and reduced models. In Figures 1–3 we show histograms of a number of solution features for
the 8 vortex model: the distributions of H and |J |, as well as typical distances between like-
and opposite-signed vortices, a metric also used by Bühler [Bühler, 2002]. In each histogram, the
statistics corresponding to the strong vortices in the full model, the reduced model, thermostat-
corrected reduced model, and Metropolis-Hastings samples are displayed. Figures 1, 2 and 3
correspond to approximate total energies Hfull ≈−2, 0 and 2, respectively.

The full and reduced model simulations are performed with a time step of 5× 10−3 and run
up to T = 5× 104, taking 105 samples spaced evenly in time. For the Metropolis-Hastings method
we use 106 samples. The same figures also show results from the thermostatted system (dash-dot
lines), run with a time step of 10−3 up to T = 106, taking 106 samples. The parameters in (2.2)
were set to be ε= 10 and γ = 0.1. These results confirm that the thermostatted system samples
the least-biased density closely.

The reduced model is Hamiltonian and the Poisson integrator ensures that the energy
is conserved with a standard deviation of order 10−3 and the angular momentum constant
to machine precision. Both cases correspond to approximate delta-distributions in the upper
histograms in Figures 1–3. Note that due to the high skewness of the distribution for |J |, the
observed mean differs significantly from the median and mode, implying some ambiguity in
choosing the angular momentum for an appropriate initial condition for the reduced model.

A simple Hamiltonian reduced model is incapable of sampling the energy and angular
momentum spectra, as these are first integrals, hence the reduced model shows significant bias in
statistics such as vortex separation. On the other hand, the thermostat-corrected model faithfully
samples the least-biased probability density, as indicated by the good agreement in the histograms
of the corrected model and Metropolis-Hastings samples. The least-biased density approximates
the strong-vortex statistics well, particularly in the negative to moderate total energy regime. At
large positive total energies, the strong vortex energy and angular momentum distributions are
still well-represented by the least-biased PDF, but some bias in the vortex separations can be
observed. The closeness of the thermostat results to those from the Metropolis-Hastings sampling
indicate the error lies in the choice of least-biased density, not in the thermostat sampling.
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(b) Dynamic consistency
The results in the previous section confirm that the thermostatted simulations lead to equilibrium
distributions of observables H and |J | similar to those of the full system. In this section
we address the issue of the degree to which our equilibrium correction mechanism disturbs
dynamics, as encoded in autocorrelation functions and diffusivity. Diffusivity was considered
by [Chavanis, 2001] for a system of identical point vortices and by [Cotter and Pavliotis, 2009] for
a wide array of problems with scale separation. We emphasize that the values of the thermostat
parameters ε and γ have no impact on the equilibrium statistics presented in the previous section,
and only affect the rate at which the least-biased PDF is sampled. Parameters with a larger
deviation from the unperturbed dynamics lead to faster equilibration of the distribution, giving
rise to a modeling choice.

(i) Autocorrelation functions

Given a sequence of L equally spaced observation times ti ∈ [0, T ] for i∈ [0, L], and the values
of the relevant observable (in our case vortex position) ui = u(ti) at those times, the discrete
autocorrelation function is defined by

νui =
1

L− i

L∑
j=i

u(tj)u(tj−i).

A normalized autocorrelation function ν̂u is given by dividing each νui by νu0 , i.e. ν̂ui = νui /ν
u
0 .

We average the autocorrelation function over all 3M (strong) vortex coordinates
{xm, ym, zm}m=1..M . Three symmetries in the problem justify this averaging: the vortex
numbering is arbitrary; the choice of reference frame is arbitrary and the sign of the vortices
appears in the dynamics as a reversal of time, to which the autocorrelation is insensitive.
Additionally, the observables H and |J | are isotropic.
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Figure 1: Histograms for Hfull ≈−2. The upper left and right panels compare strong vortex
energy and angular momentum. The lower left (resp. right) panel compares the distance between
like (resp. opposite) signed strong vortices. The parameters are specified in the text.
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Figure 2: Histograms for Hfull ≈ 0. Same panel layout as Figure 1.

Furthermore we ensure that the phase space is well sampled by averaging the autocorrelation
functions over an ensemble of P solutions. We then find the average autocorrelation function

νi =
1

3MP (L− i)

P∑
p=1

M∑
m=1

L∑
j=i

xpm(tj)x
p
m(tj−i) + ypm(tj)y

p
m(tj−i) + zpm(tj)z

p
m(tj−i) (6.1)

where a superscript p represents the solution from ensemble member p. The normalized average
autocorrelation function is given by

ν̂i =
1

MP (L− i)

P∑
p=1

M∑
m=1

L∑
j=i

xpm(tj) · xpm(tj−i), (6.2)

Where we have used that the Casimirs Ci =xi(t) · xi(t) = 1∀ i, t are conserved exactly, also in
the distretized equations.

In Figure 4 we compare auto-correlation functions for the strong vortices in the full and
reduced models as well as for the thermostat-corrected model over a range of parameters ε and
γ. The thick solid black line represents the result for an (unthermostatted) system in contact with
280 weak (ΓB =± 1

5 ) vortices, with a total energy Hfull = 0. The results present the average over
an ensemble of 1000 runs. For each simulation the initial placement of each strong vortex was
taken uniformly over the sphere and the weak vortices were placed such that the full system
satisfiedHfull = 0 and J full = 0. The thick dashed black line represents the results for an ensemble
of simulations of the isolated system, with everything else unchanged. The other lines represent
results for thermostatted simulations using the Lagrange multipliers as given in Table 2 for the
case of H = 0. As expected, when the thermostat is weak the autocorrelation functions are similar
to those of the isolated system. The stronger thermostat parameters presented here match the
autocorrelation well for a short time period, but all result in excessive decorrelation for longer lag
times. In the following Section on the diffusivity constant, we discuss the performance of different
parameter values in more detail.
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(ii) Diffusivity

For general multiscale dynamical systems with a separation of slow and fast dynamics, it is often
desirable to model fast forces by a diffusion process, resulting in stochastic differential equation
of the form [Hornung, 1997, Pavliotis and Stuart, 2008]

dX = f(X)dt+K(X)dW,

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

Energy of the strong vortices

HA

p
d
f

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

|J |2
A

p
d
f

Momentummagnitude of the strong vortices

 

 
Full dynamical simulation
Metropolis sampling
Thermostated system
Isolated system

0 0.5 1 1.5 2
0

0.5

1

1.5

2
distance between like signed vortices

|xi − xj |like

p
d
f

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
distance between opposite signed vortices

|xi − xj |opp

p
d
f

Figure 3: Histograms for Hfull ≈ 2. Same panel layout as Figure 1.
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where f represents the slow dynamics, W is a Wiener process and K is the diffusivity. The value
of the diffusivity K can be estimated by sampling solutions to the original, multiscale, problem
and applying Kubo’s formula

K∆τ =
〈∆X∆X〉

2∆τ
,

where ∆X represents displacement during the sampling interval ∆τ . Choosing the correct
sampling interval is a notorious problem; for a comparison see [Pavliotis and Stuart, 2008].

If we take the average diffusivity for each vortex coordinate we find

K∆τ =
1

6M∆τ

M∑
m=1

〈∆xm ·∆xm〉 .

We assume the observations are given at the same times ti as before and that the sampling time is
an integer multiple of the observation interval, i.e. ∆τ = k TL . With an ensemble of P simulations
the diffusivity estimator would then be

K∆τ =
1

6MP∆τ

P∑
p=1

M∑
m=1

(
xpm (∆τ)− xpm(0)

)
·
(
xpm (∆τ)− xpm(0)

)

=
1

6MP∆τ

P∑
p=1

M∑
m=1

2− 2xpm(0) · xpm(∆τ)

=
1

3∆τ
− 1

3MP∆τ

P∑
p=1

M∑
m=1

xpm(0) · xpm(∆τ),

where again a superscript p denotes the solution from ensemble member p. Averaging over all
time series data yields the estimator:

K∆τ =
1

3∆τ
− 1

3MP (L− k)∆τ

P∑
p=1

L−k∑
j=1

M∑
m=1

xpm(tj) · xpm(tj +∆τ) =
1− ν̂k
3∆τ

,

with ∆τ = k TL = tk. This shift-averaged estimator incorporates all possible time intervals of length
∆τ available from the data; it is shown by Cotter and Pavliotis [2009] to improve the quality of
the estimator.

Figure 5 presents the diffusivity constant as a function of the interval time ∆τ for different
parameter values for ε and γ. The results are taken from the same simulations used for the
autocorrelation functions, as described in Section .

For ε small, the thermostat perturbation is weak, and both autocorrelation functions and
diffusivity approach those of the reduced model with constant H , J . Also, the autocorrelations
are insensitive to the parameter γ in this regime. For values of ε < 1 the autocorrelations and
diffusivities become indistinguishable from those of the isolated model. Hence even though the
dynamics samples the least-biased density on long time scales, its short time dynamics is similar
to an unperturbed model. For moderate ε, dependence on γ becomes more pronounced, and
a diffusivity closer to that of the full model can be achieved. For even larger values of ε, the
diffusivity becomes much more sensitive to the value of γ, as indicated in Figure 5c.

Figure 5d has been included to illustrate two important properties by plotting the diffusion
parameter against the sampling interval on a log-log scale. First, for large sampling interval
the estimator shows an inverse linear tendency. This corresponds simply to the decorrelation
of the vortex dynamics. Second, as the sampling interval goes to zero, the estimator of the
diffusivity constant shows polynomial behavior. This is in agreement with known results for the
GBK thermostat [Frank and Gottwald, 2011] and is an improvement on Langevin thermostats,
which tend to a constant value for short sampling intervals, in disagreement with a deterministic
reference [DelSole, 2000]. See also the discussion in Section 2.
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Figure 5: Comparison of average diffusivity constant as a function of sampling intervals. In all
figures, the bold lines indicate two reference cases: the full model (solid) and the reduced model
(dashed). Subfigures (a), (b) and (c) show thermostatted simulation results for ε equal to 100, 100.5

and 101 respectively. The value of γ is represented by dash-dot (10−1), solid (100) or dashed (101)
lines. A combined log-log plot of all parameter values is given in subfigure (d).

(c) Adaptive determination of multipliers
In this section, we apply the scheme of Section 4 to the point vortex system. Consider the same
reduced point vortex model of 8 vortices with Γ =±1. We perform a thermostatted simulation
of this system, which we feed with observation data taken from a simulation of the 288-vortex
system including the weak vortices that form the thermal bath. The observation from simulation
with the thermal bath may be replaced by observation from another source–if available–such as
empirical observations or a prediction of the trend for the observables. In particular, we use the
observed data in three different ways for computing the Lagrange multipliers that determine the
equilibrium distribution used by the thermostat:

(i) The first approach mirrors the non-adaptive method of Section 3. We use the long time
averages from equilibrated thermal bath simulation. The equilibrium distribution varies
during the thermostatted simulation, but during the whole simulation it converges to the
same equilibrium density as before (like those denoted in Table 2).

(ii) The second approach does not assume long time averages are available a priori. Instead,
the running mean from the thermal bath simulation is used. This means the iterative
procedure (4.4) drives the system toward a varying target during simulation. Eventually,
the target approaches the long time average used above.

(iii) In the final implementation, we relax the notion of statistical equilibrium for the strong
system and consider the statistical state to be slowly varying. This is implemented by
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using a time-local averaged observations from the thermal bath simulations. As a result,
there is no stationary equilibrium density.

For testing the adaptive scheme, we only consider the thermal bath simulations where Hfull =

0. Also, we consider just two observables C1 =H and C2 = |J |2, associated with the Lagrange
multipliers βH and βJ . Including more observables is possible, but the Newton-Raphson iteration
is sensitive to noise in the estimators, requiring a larger ensemble. We initialize with an ensemble
of P = 100 initial conditions drawn from the uniform prior, applying Algorithm (a) The time step
in the thermostatted simulation is chosen as 1× 10−2 and the method described in Section 4 for
updating the Lagrange multipliers is applied every time unit, i.e. M = 100. Between subsequent
updates of the multipliers, the maximum difference is limited by |∆λk| ≤ 0.1. When using
equilibrium statistics, this limit only affects the beginning of the simulation, when the small
sample size used leads to a large variance in the estimators.

We present the results for the three different uses of the observed data in Figures 6–8.

(i) In Figure 6 the long time mean is taken and used throughout.
(ii) In Figure 7 the running mean is used. This reflects the situation where we have no a priori

knowledge of the observations, and are continuously feeding new real-time data into the
simulation.

(iii) In Figure 8 a time-localized average of the observable is used. The averaging has a time-
scale of a 100 time units.

In each of the Figures, the left-hand panel shows the target mean for the energy solid cyan (light),
the instantaneous ensemble mean in black dots and the running mean of the ensemble in dashed
red (dark). Each centre panel shows the same means for the momentum magnitude and the
right hand panel shows the Lagrange multipliers for the energy (cyan, light) and momentum
(black). Superimposed on the Lagrange multiplier for the energy is an indicator (red, darker dots)
showing when the rate of change in the estimate for the Lagrange multiplier has been limited.

When using either a long time mean observation or a running mean observation, the
simulation results tend towards the correct long-time averages. When using time-local averages
the simulation averages appear to tend towards a similar value. In all three cases the
instantaneous ensemble mean remains close to the (moving) target for both energy and
momentum. This is especially notable for the third case, where the target varies over time, but
the simulation ensemble mean follows closely, with only a little lag.

The inaccuracies during the first approximately 100 time units indicate that the prior does not
match the observed state well. This results in the (negative) growth of βH being limited briefly
at the beginning of each simulation. Subsequently, both Lagrange multipliers appear to oscillate
irregularly about some mean value for the first two cases. In the case of a shifting target, the
Lagrange multipliers vary in time more erratically, resulting in the limiter being active for a few
brief periods of the simulation.

7. Conclusion
We have proposed a thermostat-based method for perturbing trajectories of numerical
simulations to correct for stationary or time-dependent thermodynamic observations. We have
also described an adaptive procedure that uses the thermostatted simulation data in finding the
least-biased density, removing the need to compute the density a priori.

Our mumerical experiments with the vortex model confirm that the distributions of the
observed energy H and angular momentum magnitude |J | can be well approximated using the
thermostat technique. Other equilibrium metrics such as the distribution of distances between
like- and opposite-signed vortices are also in agreement across a range of total energy values of
the full system, although some discrepancies occur at large positive energies.
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We also investigated the degree to which correction of trajectories for expectations may affect
dynamical information in the form of autocorrelation functions and diffusivity. By decreasing
the perturbation parameter ε of the thermostat, the autocorrelation functions of the unperturbed,
reduced system may be precisely recovered. As ε is increased, one may increase the diffusivity
to values that agree with the full system. This is consistent with results reported in [Frank
and Gottwald, 2011] in the context of molecular dynamics where it was shown that the GBK
thermostat used here approaches Langevin dynamics in the limit of large stochastic forcing.

Data Accessibility. The code for thermostated simulation of the point vortex system can be found at
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A. Time integration of the thermostatted system
In this Appendix we detail the method of integration for the perturbation dynamics and
thermostat variable.

The unperturbed dynamics are formed by the combination of pairwise interactions:

f(x) =B(y)∇yH(y) =−B(y)

M∑
i=1

i−1∑
j=1

∇y
ΓiΓj
4π

ln
(
2− 2xi · xj

)
=
∑
i<j

fij . (A 1)

This fact is exploited in our earlier work [Myerscough and Frank, 2016] to construct a splitting
method for integration of the point vortex system with favourable (geometric) properties. The
modified double bracket thermostat is also a combination of pairwise vortex interactions. Hence
it is natural to apply the same splitting to g as was applied to f . In fact, the pairwise thermostat
interaction can be executed along with the unperturbed dynamics. Let us denote by φi,j∆t the time
∆t flow map associated with fij . Similarly we define by γi,j∆t the time∆t flow map associated with
the perturbation dynamics of a vortex pair (i, j). The flow map of the dynamics of the thermostat
variable ξ is represented by χ∆t. A symmetric composition of these flows is given by

Φ∆t =
∏

(i,j)∈C

(
φi,j
∆t/2

◦ γi,j
∆t/2

)
◦ χ∆t ◦

∏
(i,j)∈C∗

(
γi,j
∆t/2

◦ φi,j
∆t/2

)
,

where C is an ordering of pairs and C∗ is the reverse ordering. While advancing ξ by χ∆t, it is
assumed that y is fixed and therefore h(y) is a constant. This means the dynamics of ξ(t) is just
an Ornstein-Uhlenbeck process with mean h

γ and unit variance. The exact solution is given by

χ∆t ξ0 = ξ0e
−γ∆t +

h

γ
(1− e−γ∆t) + e−γ∆tW (e2γ∆t − 1).

The integration of the perturbed dynamics for a vortex pair (i, j) means integrating the system
of ordinary differential equations given by

ẋi =
Γj
4π

xi × xi × xj =
Γi + Γj

4π
xi × xi × xj +

Γi − Γj
4π

xi × xi × xj ,

ẋj =
Γi
4π

xj × xj × xi =
Γi + Γj

4π
xj × xj × xi −

Γi − Γj
4π

xj × xj × xi.

The equations have been split into a symmetric and an anti-symmetric part. A symmetric
composition may once more be applied to integrate the two parts. In our case however, the

https://www.dropbox.com/sh/ekhj4ohtetj35ri/AABNMpHki63cn16hpnaQ__OYa?dl=0
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thermostatted system consists only of vortices with strength ±Γstrong and thus each vortex pair
interaction is either fully symmetric or fully antisymmetric.

By introducing αS =
Γi+Γj

4π the symmetric part may be written as

ẋi = αSxi × xi × xj = αS
(
xj × xi

)
× xi, (A 2)

ẋj = αSxj × xj × xi =−αS
(
xj × xi

)
× xj . (A 3)

These dynamics are symmetric with respect to the plane equidistant between the two vortices.
This is because the dynamics are rotations in opposite direction about the same vector xj × xi
and this vector must lie in said plane. Furthermore the dynamics of (A 2)–(A 3) does not allow the
vortex pair to pass through the position where they are exactly opposed, as in this case their cross
product is zero. All in all this means the final position of the two vortices is uniquely determined
by their chord distance.

The change in the distance between the two vortices can be represented by the change of their
inner product

∂

∂t

(
xi · xj

)
= ẋi · xj + xi · ẋj

= 2αS

(
(xi · xj)2 − 1

)
The solution to this differential equation is given by

xi · xj |t=∆t = tanh
(
2α∆t− artanh

(
xi · xj

)
|t=0

)
.

In the anti-symmetric part we introduce αA =
Γi−Γj

4π to write

ẋi = αAxi × xi × xj ,

ẋj =−αAxj × xj × xi.

By rearranging the order of the cross product we achieve

ẋi = αA
(
xj × xi

)
× xi = âAxi, (A 4)

ẋj = αA
(
xj × xi

)
× xj = âAxj . (A 5)

The vector aA implicity defined by (A 4)–(A 5) can simply be shown to be constant under the
antisymmetric flow. This means the dynamics of the anti-symmetric part may be integrated by
using Rodigues’s formula.
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Figure 6: Results when using long-time mean observations as a target while adaptively determining
the Lagrange multipliers. Target observations for Hamiltonian (a) and momentum magnitude (b)
are overlaid with the instantaneous ensemble mean (black dotted) and the running ensemble
mean (red solid) from simulation. (c): Lagrange multipliers, the red dots indicate time steps at
which their rate of change was limited.
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Figure 7: Results when using running mean observations as a target while adaptively determining
the Lagrange multipliers.
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Figure 8: Results when using time-local averaged observations as a target while adaptively
determining the Lagrange multipliers.
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