The Nature of Prediction (and the Prediction of Nature)

Jason Frank

Chair of Numerical Analysis and Dynamical Systems Stichting voor Hoger Onderwijs in de Toegepaste Wiskunde

Catalog of Solar Eclipses: 2901 to 3000

	Ca Nu	atalog imber	Calendar Date	TD of Greatest Eclipse	∆⊤ s	Luna Num	Saros Num	Ecl. Type	QLE	Gamma	Ecl. Mag.	Lat	Su Long Al	n Pat Lt Wic ° kr	th (ith n	Central Dur.				
	11	L851	2981 Apr 25	15:22:39	4282	12137	154	т	-p	0.7917	1.0560	63N	58W 3	37 30	03 (03m36s				
	11	1852	2981 Oct 19	02:08:17	4286	12143	159	А	-p	-0.9600	0.9400	745	Tatal				0000	Dee	1	
	11	1853	2982 Apr 15	06:21:40	4289	12149	164	т	nn	0.0890	1.0223	15N	Total				2996	Dec a	51	
	11	L854	2982 Oct 08	08:26:58	4293	12155	169	H	nn	-0.1838	1.0047	165	Saros	16/	-	100	A.C.	12:58 T	D	
	11	1855	2983 Apr 04	15:25:41	4296	12161	174	A	p-	-0.6666	0.9599	345		/	0	15	R			
	11	1856	2983 Sep 27	21:47:41	4300	12167	<u>179</u>	т	p-	0.5531	1.0547	301	/		55	A A	-	17		
	11	1857	2984 Mar 23	17:14:44	4304	12173	184	P	t-	-1.4059	0.2730	725	/		1	The second	nd.	142		
	11	1858	2984 Aug 18	07:08:25	4307	12178	151	P	-t	-1.2800	0.4810	715	1		-		10			
	11	1859	2984 Sep 16	14:34:20	4307	121/9	189	P	t-	1.2556	0.52//	/20	A)		·	20			
	<u>11</u>	1860	2985 red 11	00:00:02	4310	12184	120	A	-p	0.9028	0.9444	491	11			1 2	to			
	11	961	2005 300 07	20+31+50	4314	12100	161		- 12	-0.5686	1 0097	190				111	P	21		
	11	862	2986 Tan 31	08+22+37	4314	12190	166	н	-p	0.1669	1.0075	89	Ma Z			*	2	·		
	11	863	2986 Jul 28	02:58:21	4321	12202	171	A	nn	0.2064	0.9630	31N	CR.							
	11	1864	2987 Jan 20	22:33:24	4325	12208	176	т	р-	-0.5111	1.0427	518	211							
	11	1865	2987 Jul 17	03:54:36	4328	12214	181	A	t-	0.9751	0.9372	801	114-5							
	11	1866	2987 Dec 12	02:50:04	4331	12219	148	Pe	-t	1.5396	0.0074	651				1 :	-	_		
	11	1867	2988 Jan 10	14:12:58	4332	12220	186	P	t-	-1.1806	0.6671	685			_		~	/		
	11	1868	2988 Jun 05	18:28:53	4335	12225	153	P	-t	-1.0476	0.9018	658			to.	5 ::	2			
	11	1869	2988 Nov 30	12:11:10	4339	12231	158	А	-t	0.9066	0.9538	42N			264	54 1	1	Alt - 00	n °	
	11	L870	<u>2989 May 26</u>	06:52:44	4342	12237	163	т	-n	-0.2555	1.0525	71	Com -	0 17	-	-5: 3	Dur	AIL = 00		
													Gam. =	-0.172	29		Dur.	= 020114	+5	
	11	1871	2989 Nov 19	14:25:04	4346	12243	168	А	nn	0.2155	0.9283	85	Five Mil	lennium C	anon o	f Solar Eclips	ses (Espe	enak & Meeus)	,	
	11	1872	2990 May 15	23:22:03	4349	12249	173	т	p-	0.4710	1.0689	45N	1000 0	2 2.		60411008				
	11	1873	2990 Nov 08	13:59:19	4353	12255	<u>178</u>	A	p-	-0.4905	0.9360	43S	31W 6	50 21	72 (06m19s				
	11	1874	2991 Apr 06	04:43:03	4356	12260	145	P	-t	-1.4726	0.1346	61S	154W	0						
	11	1875	2991 May 05	15:20:42	4357	12261	183	P	t-	1.2116	0.6100	63N	157W	0						
	11	1077	2991 Sep 29	18:32:19	4360	12266	100	Pe	-t	1.1902	0.0156	61N	1628	0						
	11	1070	2991 OCt 28	18:23:00	4360	1220/	155	P 7	t-	-1.1802	0.0004	025	10ZE 50E 3	0		05m17c				
	11	070	2992 Mar 25	21:42:09	4303	12272	155	A	-p	0.7626	1.0617	445	0.000	0 33	00 (0.4m16a				
118	90 2996	Dec	31 12:58:	:17 439	99 12	331	167	т	-1	n -0.1	729 1	.024	9 33	S	6E	80	86	02m14	S	-
			_		_	_	_	_	_			_	_	_	_	_	_		_	_
	11	1881	2993 Sep 07	14:40:11	4374	12290	170	т	nn	0.0387	1.0673	7N	21W 8	8 22	20 (05m33s				1
	11	1882	2994 Mar 03	12:17:48	4378	12296	175	А	p-	0.5777	0.9422	25N	1W 5	5 25	56 (06m06s				
	11	1883	2994 Aug 28	05:05:38	4381	12302	180	т	p-	-0.7327	1.0176	33S	99E 4	13 8	37 (01m31s				
	11	1884	2995 Jan 22	06:39:24	4384	12307	147	P	-t	-1.5225	0.0363	63S	124W	0						
	<u>11</u>	L885	2995 Feb 20	19:02:58	4385	12308	185	P	t-	1.2366	0.5608	62N	154W	0						
	11	1886	2995 Jul 18	23:11:40	4388	12313	152	P	-t	1.2531	0.5297	64N	8W	0						
	11	1887	2995 Aug 17	13:03:11	4389	12314	190	Pb	t-	-1.5542	0.0036	62S	60W	0						
	<u>11</u>	1888	<u>2996 Jan 11</u>	21:44:38	4392	12319	157	т	-p	-0.8345	1.0397	73S	81W 3	33 24	13 (02m20s				
	<u>11</u>	1889	2996 Jul 06	23:44:03	4395	12325	162	A	-p	0.5013	0.9508	52N	146W 6	50 20	08 (04m44s				
	11	1890	2996 Dec 31	12:58:17	4399	12331	<u>167</u>	т	-n	-0.1729	1.0249	33S	6E 8	80 8	36 (02m14s				
		001	2007 7 26	02.41.44	4400	12227	170		-	0 0700	0.0014	211	1407			01-00-				
	11	1803	2997 Dec 20	23:41:44	4403	12343	177	A	р- р-	0.5449	0.9910	10N	162W 9	4 J	30 (03m40e				
	11	2002	2331 000 20	20.10.10	1100	12040	111			0.0110	0.0000	1014	1021		~~ \	00111208				

Johannes Kepler (1571-1630)

Kepler's 2nd law of planetary motion

Sir Isaac Newton (1643-1727)

Newtonian gravity:

- A body moves in a straight line unless attracted by gravity

- A gravitational force changes the body's velocity vector

- The gravitational force is inversely proportional to the square of the separation, and acts along the line between the bodies.

Method A

Method B

The nature of prediction (part I):

Given:

- A model governing the evolution of the system (Newton's equations), and

- Sufficient information about the system at time t = 0

Predict:

- The state of the system at future time T

The nature of prediction (part 1):

Given:

- A model governing the evolution of the system (Newton's equations), and

- Sufficient information about the system at time t = 0

Predict:

- The state of the system at future time T

The nature of prediction (part 1):

Given:

- A model governing the evolution of the system (Newton's equations), and

- Sufficient information about the system at time t = 0

Predict:

- The state of the system at future time T

 Δt = the small time upon which we can solve the model initial condition = the "sufficient information" needed for prediction

Computing room of the Mathematisch Centrum (1951)

> ARRA I - the first computer of the Netherlands (1952)

> > HH BUILTHIN

Altertitennini

The nature of prediction (part 2): error

"a day without error is a day without mathematics" - J.G. Verwer

Chair "Numerical Analysis and Dynamical Systems"

Chair "Numerical Analysis and Dynamical Systems"

B.L. van der Waerden ('48-'50)
A. van Wijngaarden ('52-'58)
H.A. Lauwerier ('59-'63)
F.E.J. Kruseman Aretz ('66-'72)
P.J. van der Houwen ('75-'00)
J.G. Verwer ('00-'10)

A. van Wijngaarden

H.A. Lauwerier

P.J. van der Houwen

J. G. Verwer

Previous occupants of the Chair of the Stichting voor Hoger Onderwijs in de Toegepaste Wiskunde The nature of prediction (part 3): uncertainty

The nature of prediction (part 3): uncertainty

Lorenz Attractor

$$X_{1} = X_{0} + \Delta t \, s(Y_{0} - X_{0})$$

$$Y_{1} = Y_{0} + \Delta t \, (rX_{0} - X_{0}Z_{0} - Y_{n})$$

$$Z_{1} = D_{0} + \Delta t \, (X_{0}Y_{0} - bZ_{0})$$

$$r = 28 \quad b = 8/3 \quad s = 10$$

The nature of prediction (part 3): uncertainty

Lorenz Attractor

0

$$X_{1} = X_{0} + \Delta t \, s(Y_{0} - X_{0})$$

$$Y_{1} = Y_{0} + \Delta t \, (rX_{0} - X_{0}Z_{0} - Y_{n})$$

$$Z_{1} = D_{0} + \Delta t \, (X_{0}Y_{0} - bZ_{0})$$

$$r = 28 \quad b = 8/3 \quad s = 10$$

Ten simulations of the Lorenz system with tiny errors in the initial condition: Ten simulations of the Lorenz system with tiny errors in the initial condition:

Ten simulations of the Lorenz system with tiny errors in the initial condition:

Just the variable 'Z' as a function of time.

climate simulation

 $X_{1} = X_{0} + \Delta t \, s(Y_{0} - X_{0})$ $Y_{1} = Y_{0} + \Delta t \, (rX_{0} - X_{0}Z_{0} - Y_{n})$ $Z_{1} = D_{0} + \Delta t \, (X_{0}Y_{0} - bZ_{0})$ $r = 28 \quad b = 8/3 \quad s = 10$

Kevin Trenberth Climate Analysis Section National Center of Atmospheric Research, USA

Lead Author, IPCC Reports 1995, 2001, 2007.

June 4, 2007

- Picture post: 'hottest April ever'
- Costa Rican to become new UN climate chief

RECENT COMMENTS

Out of 1548 total comments, the most recent were: Vernon on <u>Predictions of climate</u> Macnerdzcare on <u>Predictions of climate</u> gary on <u>Predictions of climate</u>

ARCHIVES

- November 2010
- September 2010
- May 2010
- April 2010

- No more to top? Go for the opposite | Main | Shaping the Kyoto successor -

Bookmark in Connotea

Predictions of climate

Posted by Oliver Morton on behalf of Kevin E. Trenberth

I have often seen references to predictions of future climate by the Intergovernmental Panel on Climate Change (IPCC), presumably through the IPCC assessments (the various chapters in the recently completedWorking Group I Fourth Assessment report ican be accessed through this listing). In fact, since the last report it is also often stated that the science is settled or done and now is the time for action.

In fact there are no predictions by IPCC at all. And there never have been. The IPCC instead proffers "what if" projections of future climate that correspond to certain emissions scenarios. There are a number of assumptions that go into these emissions scenarios. They are intended to cover a range of possible self consistent "story lines" that then provide decision makers with information about which paths might be more desirable. But they do not consider many things like the recovery of the ozone layer, for instance, or observed trends in forcing agents. There is no estimate, even probabilistically, as to the likelihood of any emissions scenario and no best guess.

Even if there were, the projections are based on model results that provide differences of the future climate relative to that today. None of the models used by IPCC are initialized to the observed state and none of the climate states in the models correspond even remotely to the current observed climate. In particular, the state of the oceans, sea ice, and soil moisture has no relationship to the observed state at any recent time in any of the IPCC models. There is neither an El Niño sequence nor any Pacific Decadal Oscillation that replicates the recent past; yet these are critical modes of variability that affect Pacific rim countries and beyond. The Atlantic Multidecadal Oscillation, that may depend on the thermohaline circulation and thus ocean currents in the Atlantic, is not set up to match today's state, but it is a critical component of the Atlantic hurricanes and it undoubtedly affects forecasts for the next decade from Brazil to Europe. Moreover, the starting climate state in several of the models may depart significantly from the real climate owing to model errors. I postulate that regional climate change is impossible to deal with properly unless the models are initialized.

The current projection method works to the extent it does because it utilizes differences from one time to another and the main model bias and systematic errors are thereby subtracted out. This assumes linearity. It works for global forced variations, but it can not work for many aspects of climate, especially those related to the water cycle. For instance, if the current state is one of drought then it is unlikely to get drier, but unrealistic model states and model biases can easily violate such constraints and project drier conditions. Of course one can initialize a climate model, but a biased model will immediately drift back to the model climate and the predicted trends will then be wrong. Therefore the problem of overcoming this shortcoming, and facing up to initializing climate models means not only obtaining sufficient reliable observations of all aspects of the climate system, but also overcoming model biases. So this is a major challenge.

The IPCC report makes it clear that there is a substantial future commitment to further climate change even if we could stabilize atmospheric concentrations of greenhouse gases. And the commitment is even greater given that the best we can realistically hope for in the near term is to perhaps stabilize emissions, which means increases in concentrations of long-lived greenhouse gases indefinitely into the future. Thus future climate change is guaranteed.

So if the science is settled, then what are we planning for and adapting to? A consensus has emerged that "warming of the climate system is unequivocal" to quote the 2007 IPCC Fourth Assessment Working Group I <u>Summary for Policy Makers (pdf)</u> and the science is convincing that humans are the cause. Hence mitigation of the problem: stopping or slowing greenhouse gas emissions into the atmosphere is essential. The science is clear in this respect.

However, the science is not done because we do not have reliable or regional predictions of climate. But we need them. Indeed it is an imperative! So the science is just beginning. Beginning, that is, to face up to the challenge of building a climate information system that tracks the current climate and the agents of change, that initializes models and makes predictions, and that provides useful climate information on many time scales regionally and tailored to many sectoral needs.

We will adapt to climate change. The question is whether it will be planned or not? How disruptive and how much loss of life will there be because we did not adequately plan for the climate changes that are already occurring?

Kevin Trenberth

Kevin Trenberth Climate Analysis Section National Center of Atmospheric Research, USA

Lead Author, IPCC Reports 1995, 2001, 2007.

June 4, 2007

- Picture post: 'hottest April ever'
- Costa Rican to become new UN climate chief

RECENT COMMENTS

Out of 1548 total comments, the most recent were: Vernon on <u>Predictions of climate</u> Macnerdzcare on <u>Predictions of climate</u> gary on <u>Predictions of climate</u>

ARCHIVES

- November 2010
- September 2010
- May 2010
- April 2010

- No more to top? Go for the opposite | Main | Shaping the Kyoto successor -

Bookmark in Connotea

Predictions of climate

Posted by Oliver Morton on behalf of Kevin E. Trenberth

I have often seen references to predictions of future climate by the Intergovernmental Panel on Climate Change (IPCC), presumably through the IPCC assessments (the various chapters in the recently completedWorking Group I Fourth Assessment report ican be accessed through this listing). In fact, since the last report it is also often stated that the science is settled or done and now is the time for action.

In fact there are no predictions by IPCC at all. And there never have been. The IPCC instead proffers "what if" projections of future climate that correspond to certain emissions scenarios. There are a number of assumptions that go into these emissions scenarios. They are intended to cover a range of possible self consistent "story lines" that then provide decision makers with information about which paths might be more desirable. But they do not consider many things like the recovery of the ozone layer, for instance, or observed trends in forcing agents. There is no estimate, even probabilistically, as to the likelihood of any emissions scenario and no best guess.

Even if there were, the projections are based on model results that provide differences of the future climate relative to that today. None of the models used by IPCC are initialized to the observed state and none of the climate states in the models correspond even remotely to the current observed climate. In particular, the state of the oceans, sea ice, and soil moisture has no relationship to the observed state at any recent time in any of the IPCC models. There is neither an EL Niño sequence nor any Pacific Decadal Oscillation that replicates the recent past; yet these are critical modes of variability that affect Pacific rim countries and beyond. The Atlantic Multidecadal Oscillation, that may depend on the thermohaline circulation and thus ocean currents in the Atlantic, is not set up to match today's state, but it is a critical component of the Atlantic hurricanes and it undoubtedly affects forecasts for the next decade from Brazil to Europe. Moreover, the starting climate state in several of the models may depart significantly from the real climate owing to model errors. I postulate that regional climate change is impossible to deal with properly unless the models are initialized.

The current projection method works to the extent it does because it utilizes differences from one time to another and the main model bias and systematic errors are thereby subtracted out. This assumes linearity. It works for global forced variations, but it can not work for many aspects of climate, especially those related to the water cycle. For instance, if the current state is one of drought then it is unlikely to get drier, but unrealistic model states and model biases can easily violate such constraints and project drier conditions. Of course one can initialize a climate model, but a biased model will immediately drift back to the model climate and the predicted trends will then be wrong. Therefore the problem of overcoming this shortcoming, and facing up to initializing climate models means not only obtaining sufficient reliable observations of all aspects of the climate system, but also overcoming model biases. So this is a major challenge.

The IPCC report makes it clear that there is a substantial future commitment to further climate change even if we could stabilize atmospheric concentrations of greenhouse gases. And the commitment is even greater given that the best we can realistically hope for in the near term is to perhaps stabilize emissions, which means increases in concentrations of long-lived greenhouse gases indefinitely into the future. Thus future climate change is

A consensus has emerged that "warming of the climate system is unequivocal" and the science is convincing that humans are the cause. Hence mitigation of the problem: stopping or slowing greenhouse gas emissions into the atmosphere is essential. The science is clear in this respect.

We will adapt to climate change. The question is whether it will be planned or not? How disruptive and how much loss of life will there be because we did not adequately plan for the climate changes that are already occurring?

not adequately plan for the climate changes that are already occurring?

Kevin Trenberth

. . .

Kevin Trenberth Climate Analysis Section National Center of Atmospheric Research, USA

Lead Author, IPCC Reports 1995, 2001, 2007.

June 4, 2007

- Picture post: 'hottest April ever'
- Costa Rican to become new UN climate chief

RECENT COMMENTS

Out of 1548 total comments, the most recent were: Vernon on <u>Predictions of climate</u> Macnerdzcare on <u>Predictions of climate</u> gary on <u>Predictions of climate</u>

ARCHIVES

- November 2010
- September 2010
- May 2010
- April 2010

- No more to top? Go for the opposite | Main | Shaping the Kyoto successor -

Bookmark in Connotea

Predictions of climate

Posted by Oliver Morton on behalf of Kevin E. Trenberth

I have often seen references to predictions of future climate by the Intergovernmental Panel on Climate Change (IPCC), presumably through the IPCC assessments (the various chapters in the recently completedWorking Group I Fourth Assessment report ican be accessed through this listing). In fact, since

In fact there are no predictions by IPCC at all. And there never have been...

Even if there were, the projections are based on model results that provide differences of the future climate relative to that today. None of the models used by IPCC are initialized to the observed state and none of the climate states in the models correspond even remotely to the current observed climate. In particular, the state of the oceans, sea ice, and soil moisture has no relationship to the observed state at any recent time in any of the IPCC models. There is neither an El Niño sequence nor any Pacific Decadal Oscillation that replicates the recent past; yet these are critical modes of variability that affect Pacific rim countries and beyond... I postulate that regional climate change is impossible to deal with properly unless the models are initialized.

The current projection method works to the extent it does because it utilizes differences from one time to another and the main model bias and systematic errors are thereby subtracted out. This assumes linearity ...

The current projection method works to the extent it does because it utilizes differences from one time to another and the main model bias and systematic errors are thereby subtracted out. This assumes linearity. It works for global forced variations, but it can not work for many aspects of climate, especially those related to the water cycle. For instance, if the current state is one of drought then it is unlikely to get drier, but unrealistic model states and model biases can easily violate such constraints and project drier conditions. Of course one can initialize a climate model, but a biased model will immediately drift back to the model climate and the predicted trends will then be wrong. Therefore the problem of overcoming this shortcoming, and facing up to initializing climate models means not only obtaining sufficient reliable observations of all aspects of the climate system, but also overcoming model biases. So this is a major challenge.

The IPCC report makes it clear that there is a substantial future commitment to further climate change even if we could stabilize atmospheric concentrations of greenhouse gases. And the commitment is even greater given that the best we can realistically hope for in the near term is to perhaps stabilize emissions, which means increases in concentrations of long-lived greenhouse gases indefinitely into the future. Thus future climate change is

A consensus has emerged that "warming of the climate system is unequivocal" and the science is convincing that humans are the cause. Hence mitigation of the problem: stopping or slowing greenhouse gas emissions into the atmosphere is essential. The science is clear in this respect.

We will adapt to climate change. The question is whether it will be planned or not? How disruptive and how much loss of life will there be because we did not adequately plan for the climate changes that are already occurring?

not adequately plan for the climate changes that are already occurring?

Kevin Trenberth

. . .

r = 24.1 The statistics depends on the initial condition

Kevin Trenberth Climate Analysis Section National Center of Atmospheric Research, USA

Lead Author, IPCC Reports 1995, 2001, 2007.

June 4, 2007

Picture post: 'hottest April ever'

Costa Rican to become new UN climate chief

RECENT COMMENTS

Out of 1548 total comments, the most recent were: Vernon on <u>Predictions of climate</u> Macnerdzcare on <u>Predictions of climate</u> gary on <u>Predictions of climate</u>

ARCHIVES

- November 2010
- September 2010
- May 2010
- April 2010

- No more to top? Go for the opposite | Main | Shaping the Kyoto successor -

Predictions of climate

Posted by Oliver Morton on behalf of Kevin E. Trenberth

I have often seen references to predictions of future climate by the Intergovernmental Panel on Climate Change (IPCC), presumably through the IPCC assessments (the various chapters in the recently completedWorking Group I Fourth Assessment report ican be accessed through this listing). In fact, since the last report it is also often stated that the science is settled or done and now is the time for action.

In fact there are no predictions by IPCC at all. And there never have been. The IPCC instead proffers "what if" projections of future climate that correspond to certain emissions scenarios. There are a number of assumptions that go into these emissions scenarios. They are intended to cover a range of possible self consistent "story lines" that then provide decision makers with information about which paths might be more desirable. But they do not consider many things like the recovery of the ozone layer, for instance, or observed trends in forcing agents. There is no estimate, even probabilistically, as to the likelihood of any emissions scenario and no best guess.

Even if there were, the projections are based on model results that provide differences of the future climate relative to that today. None of the models used by IPCC are initialized to the observed state and none of the climate states in the models correspond even remotely to the current observed climate. In particular, the state of the oceans, sea ice, and soil moisture has no relationship to the observed state at any recent time in any of the IPCC models. There is neither an El Niño sequence nor any Pacific Decadal Oscillation that replicates the recent past; yet these are critical modes of variability that affect Pacific rim countries and beyond. The Atlantic Multidecadal Oscillation, that may depend on the thermohaline circulation and thus ocean currents in

However, the science is not done because we do not have reliable or regional predictions of climate. But we need them. Indeed it is an imperative! So the science is just beginning. Beginning, that is, to face up to the challenge of building a climate information system that tracks the current climate and the agents of change, that initializes models and makes predictions, and that provides useful climate information on many time scales regionally and tailored to many sectoral needs.

....

Of course one can initialize a climate model, but a biased model will immediately drift back to the model climate and the predicted trends will then be wrong. Therefore the problem of overcoming this shortcoming, and facing up to initializing climate models means not only obtaining sufficient reliable observations of all aspects of the climate system, but also overcoming model biases.

guaranteed.

So if the science is settled, then what are we planning for and adapting to? A consensus has emerged that "warming of the climate system is unequivocal" to quote the 2007 IPCC Fourth Assessment Working Group I <u>Summary for Policy Makers (pdf)</u> and the science is convincing that humans are the cause. Hence mitigation of the problem: stopping or slowing greenhouse gas emissions into the atmosphere is essential. The science is clear in this respect.

However, the science is not done because we do not have reliable or regional predictions of climate. But we need them. Indeed it is an imperative! So the science is just beginning. Beginning, that is, to face up to the challenge of building a climate information system that tracks the current climate and the agents of change, that initializes models and makes predictions, and that provides useful climate information on many time scales regionally and tailored to many sectoral needs.

We will adapt to climate change. The question is whether it will be planned or not? How disruptive and how much loss of life will there be because we did not adequately plan for the climate changes that are already occurring?

Kevin Trenberth

Bookmark in Connotea

... Overcoming model biases

Mean pressure surface response to topography

"Those who have knowledge, don't predict. Those who predict, don't have knowledge" - Lao Tsu

