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Abstract

The Hamiltonian particle-mesh (HPM) method is used to
solve the Quasi-Geostrophic model generalized to a sphere, us-
ing the Spherepack modeling package to solve the Helmholtz
equation on a colatitude-longitude grid with spherical harmon-
ics. The predicted energy conservation of a Poisson system is
shown to be approximately retained and statistical mean-field
theory is verified.
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Chapter 1

Introduction

1.1 Solving chaotic dynamical systems

Attempts to predict the weather have long ago developed from being an
art to being a science, despite the difficulties involved in forecasting chaotic
behaviour. Using numerics to predict the weather was first tried and pub-
lished by L.F.Richardson in 1922 [20]. Given the large error of his results,
and likely also the time and effort which it required, it is not surprising that
numerical predictions of weather were considered practically intractable un-
til the invention of the computer in the mid-20th century. Shortly after
that, the first successful numerical weather prediction saw light in the work
of Charney, Fjørtoft and von Neumann in 1950 [6]. After that followed a
period where ever more powerful computers were able to solve ever more
complex models of higher resolution to a higher level of accuracy.
This rapid advancement is no longer the case, as the resolution of mod-
els has now reached the point where the separation between resolved and
unresolved motions for certain atmospheric phenomena is less clear ([15],
citations therein). This requires a greater understanding of the real at-
mosphere, as well as the numerical methods. For those purposes, simpler
models have been popular study cases in order to gain insight into the un-
derlying physical processes and to investigate the properties of numerical
methods.
The detailed resolution needed for weather phenonema of public interest,
such as rain, wind and fog, differs from the resolution required for climate
simulation. Climate is typically characterized in terms of suitable averages
over periods of a month or longer, taking into consideration the variability
in time. As such, climate can be seen as the statistics of weather. Predicting
the weather and climate far ahead in time translates in scientific language to
solving chaotic dynamical systems on a long time interval. Such systems are
known to be highly sensitive to initial conditions and thus long numerical
simulations of them are very error-prone, meaning that any minute error
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8 CHAPTER 1. INTRODUCTION

in measurements will eventually lead to large scale divergence [2]. Further-
more, in the case of numerical weather prediction, accurate initial conditions
are rarely available. This makes simulating a single trajectory with any nu-
merical accuracy a difficult goal.
The real goal of such simulations is therefore to obtain a data set suitable for
computing quantities for statistical analysis, such as averages and correla-
tions. Statistical mechanics provides a framework to relate the microscopic
properties of a system, such as particles, to the macroscopic properties, such
as bulk flow. Assuming the dynamics occurs in statistical equilibrium, sta-
tistical mechanics is also a useful way to analyse the behavior of a system
and to validate the numerical model. To derive meaningful statistical the-
ory, the system in question should preserve volume and conserve certain
quantities in its continuous form. However, it is not always clear whether
a simulation of the system’s discrete dynamics will retain the conservation
properties of the continuous system. This will depend on the numerical
method used, since the statistical mechanics resulting from a simulation are
greatly affected by the choice of discretization and time integration. The
effect of a method is to introduce a numerical bias, a change in the statis-
tics of the continuum. In essence it is the statistics of the method, not the
model, that we observe. Hence, it is important to develop methods whose
statistics approximate that of the continuum as well as possible. It is the
conservation laws of both continuum and method that drive the statistics.
For climate simulations, the surface of a sphere is an important domain to
investigate due to its similarity to the shape of the earth. However, in de-
veloping computational methods to solve partial differential equations on
a sphere, the topology of the spherical coordinate system leads to what is
collectively known as the pole problem. These computational problems have
largely been dealt with using the spectral method, based on spherical har-
monics [32].
This thesis reports the results of implementing a numerical method, partic-
ularly suited for Hamiltonian fluid mechanics, to investigate its statistical
properties when solving a classic, yet simple, geophysical model on a sphere.
Specifically, we adapt the Hamiltonian Particle Mesh method [11] for the
quasigeostrophic model on the sphere.
The text is organized as follows:
The remainder of chapter 1 will provide some background knowledge. In
chapter 2, we introduce the quasigeostrophic model and in chapter 3, we ex-
plain the numerical method and its properties, as well as some properties of
the spherical domain. In chapter 4 we present numerical results comparing
energy conservation for both integration methods and discretization resolu-
tion, as well as exploring the statistics of our method and implementation.
Chapter 5 briefly summarizes the results and suggestions for future work.
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1.2 Models for geophysical flow

In modern day geophysical fluid flow theory the hierarchy of models relevant
for atmospheric research, in decreasing complexity, are the three-dimensional
Euler equations, the hydrostatic (primitive) equations (neglecting sound
waves), the shallow water equations (2D) and the semi- and quasigeostrophic
model (2D, without inertia-gravity waves). Each of these models represents
a successive simplification of geophysical fluid flow, filtering out physical
phenomena which are deemed unimportant contributors to the flow to be
investigated[25]. Here we have chosen to investigate the quasigeostrophic
(QG) model. Its structure is similar to the more sophisticated models and
yet its statistics are relatively well understood, making it suitable for study-
ing the statistical bias of numerical methods. In the following section we
introduce some fundamental concepts for the analysis to come.

1.2.1 Hamiltonian systems

The geophysical fluid models listed above share a common mathematical
structure, that of Hamiltonian systems, which is described in [14] as follows.
Let y ∈ RN . A finite-dimensional Hamiltonian system can be described by
the equations

ẏ = J(y)∇H(y)

where y is the column vector of dynamical variables, H is a Hamiltonian
function, the energy of the system, and the structure matrix J is skew-
symmetric and satisfies the Jacobi-identity∑

k

(Jlk∂kJmn + Jnk∂kJlm + Jmk∂kJnl) = 0, ∀l,m, n ≤ N

where N is the dimension of the system. If

J =
(

0 IN/2
−IN/2 0

)
(1.2.1)

the system is called canonical, otherwise it is noncanonical, in particular if
J is a singular matrix. If J is dependent on y, the system is called a Poisson
system.
We denote the Poisson bracket of functions F (y), G(y) : RN ⇒ R by

{F,G} = (∇F,J∇G)

where (·, ·) denotes the scalar product of two vectors. Due to the skew-
symmetry of J we have

{F,G} = −{G,F}.
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If the Hamiltonian system is noncanonical, the Poisson bracket will be sin-
gular. The bracket can be seen as an abstract and geometric way to describe
the system dynamics.
The time evolution of any function F (y) along a solution to ẏ = J(y)∇H(y)
is given by the Lie derivative

dF

dt
= (∇F, ẏ) = (∇F,J∇H) = {F,H},

i.e. the derivative of a function F along a solution is given by its Pois-
son bracket with the Hamiltonian. For an ordinary differential equation
ẏ = f(y), a nonconstant function I(y) is called a first integral if I(y(t)) is
constant along any solution, i.e. if

d

dt
I(y(t)) = (∇I, ẏ) = {I,H} = 0.

For H itself, the skew-symmetry of the bracket implies

dH

dt
= {H,H} = −{H,H} = 0

i.e. H is a conserved quantity of the system.
First integrals can be of substantial physical and practical importance, as
their level sets foliates the phase space. Numerically, they sometimes pro-
vide a simple way of distinguishing plausible trajectories from nonphysical
ones, or of assessing the quality of an approximation [13].
Noncanonical Hamiltonian systems give rise to functions C(y), called Casimirs,
that vanish identically in the Poisson bracket with any other function F , i.e.

{F,C} = 0, ∀F = F (y) ⇔ J∇C = 0.

Casimirs are obviously first integrals, and their existance is related to the
singularity of J .

Symplectic structure

Let ẏ = f(y) be an ordinary differential equation with the phase space RN .
Define the flow over time t as a mapping φt that advances the solution by
time t, i.e. φt(y0) = y(t,y0), where y(t,y0) is the solution of the system
corresponding to the initial value y(0) = y0. A smooth map φt on the
phase space RN is called a symplectic map with respect to the (constant
and invertible) structure matrix J if its Jacobian φ′t(y) satisfies

φ′t(y)TJ−1φ′t(y) = J−1 (1.2.2)

for all y in the range of φt. If J has the form of 1.2.1, then the φt is also
called a ‘canonical map’.
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It is well known (see e.g. [13]) that the flow map φt of a Hamiltonian system
is symplectic. In addition, symplectic maps are volume preserving, since by
taking the determinant of (1.2.2) we get

|φ′t(y)|2|J−1| = |J−1|,

for constant J , so either |φ′0(y)| is +1 or -1. Since at t = 0, |φ′0(y)| = 1, we
have that |φ′t(y)| = 1 for any t by continuity, thus the volume is preserved
under the symplectic mapping.
Similarly, we define a Poisson map to be the flow map of a Poisson system,
satisfying

φ′t(y)TJ(y)φ′t(y) = J(φ(y)) (1.2.3)

1.3 Geometric integrators

A dynamical system is characterized by its qualitative or geometric prop-
erties. Examples of such properties are the conservation of volume and the
existence of first integrals, both of these describe the available phase space
of the system. Geometric integrators are numerical methods that preserve
geometric properties of the flow.
A one-step numerical method φh : yn+1 = φh(yn), tn+1 = tn + ∆t, is called
symplectic with respect to J if the map yn 7→ yn+1 is symplectic whenever
the method is applied to a smooth Hamiltonian system.
Examples of symplectic methods are the symplectic Euler rule, the implicit
midpoint rule, the Stormer-Verlet scheme, the Gauss collocation methods
and certain Runge-Kutta methods.
Symplectic integrators do not generally conserve the Hamiltonian exactly,
although they do so approximately (i.e. within bounded fluctuations with
small amplitude). They do however conserve volume and some also preserve
certain first integrals of a system, such as the implicit midpoint rule which
preserves quadratic invariants of the form I = 1

2y
TAy + bTy. Another way

to preserve first integrals is via splitting methods [13].
Poisson integrators are symplectic integrators generalized to Poisson sys-
tems. A numerical method φh : yn+1 = φh(yn), tn+1 = tn + ∆t is called a
Poisson integrator for the structure matrix J(y) if the mapping yn ⇒ yn+1

preserves the Casimirs and is a Poisson map (1.2.3) when applied to a Pois-
son system.

1.4 Numerical discretization

Different numerical discretizations can result in very different discrete dy-
namics. Backward error analysis shows us that each distinct discretization is
well approximated by a different modified differential equation with distinct
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statistics. The choice of method can therefore greatly influence the statisti-
cal results obtained from simulations. In the context of the quasi-geostrophic
model, this was made evident in [7], by showing that conservation properties
of a discretization define the climatic mean of the dynamics. This result for
one indicates that we must specify an appropriate criteria for what we want
from a numerical discretization.
In order to achieve accurate statistical analysis from simulations, it is es-
sential that the discretization conserves the quantities of interest which are
conserved by the continuous system. Under the assumption of ergodicity,
which is briefly introduced in Section 3.5, a dynamical system will sample its
equilibrium distribution in phase space independent of its initial state. Its
motion is constrained by its conservation laws. When the flow is volume pre-
serving, the Poincaré recurrence theorem ensures that every neighborhood
of all points in a compact invariant subspace is sampled repeatedly. Hence
the conservation properties define the statistical behavior of the system.
The quasigeostrophic model’s quantities of interest are, besides energy, all
moments of potential vorticity. Thus the chosen discretization should con-
serve these quantities for statistical purposes. For fluids, Poisson structure
is difficult to preserve in an Eulerian framework (see Section 1.4.1). One
notable exception is the Zeitlin truncation [34], which retains Poisson struc-
ture and a finite approximation to the infinite class of Casimir invariants.
The Zeitlin method however is limited to 2D incompressible flow with peri-
odic boundary conditions. Other Eulerian methods fail to retain the Poisson
structure or conserve the Casimirs in general. Most commonly preserved are
quadratic invariants, which are limited to producing Gaussian statistics.
In trying to achieve proper conservation of structure, other discretization
options include the point vortex method (see for example [4]), which is con-
servative yet simple, but has O(K2) complexity, where K is the number
of point vortices; and the Hamiltonian Particle Mesh method (HPM), a
regularized point vortex method with potentially O(K) complexity for K
particles. The HPM makes use of an Eulerian rectangular grid, Nλ × Nθ,
where Nλ ≥ Nθ and N2

λ ∼ K. Furthermore, it uses a Lagrangian fluid
description and conserves the desired quantities (see Section 1.4.1).

1.4.1 Lagrangian vs. Eulerian fluid discretization

The fluids study in the current geophysical context are composed of molecules,
which can be regarded as point masses obeying Newton’s laws of motion. In
fluid mechanics, the most traditional general method to derive the equations
governing macroscopic variables, like velocity, is to treat fluid as if it were
a continuous distribution of mass in space [25]. The two common descrip-
tions of continuum fluid motion are called Eulerian and Lagrangian. In the
Eulerian description, the independent variables are the space coordinates
x = (x, y, z) and time t. Dependent variables include the velocity, the mass
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density and the pressure. The coordinate system represents a fixed frame of
reference.
Lagrangian theory regards the fluid as a continuous field of particles. The
independent variables are a set of particle labels a = (a, b, c), and the time t.
In this description, a ‘particle’ represents a (possibly large) parcel or mass
of fluid undergoing macroscopic motion. The dependent variables are the
positions,

x(a, t) = (x(a, b, c, t), y(a, b, c, t), z(a, b, c, t))

and the velocities,

v(a, t) =
(
∂x

∂t
,
∂y

∂t
,
∂z

∂t

)
at time t, of the fluid particle identified by a. This particle label remains
fixed as the fluid moves from place to place.
We will also later use the Lagrangian or material derivative, describing the
evolution of a function F of a certain fluid parcel in time. Seeing that the t-
derivatives of the (x, y, z) are the components of the velocity, u =

(
∂x
∂t

∂y
∂t

∂z
∂t

)
,

we obtain from the chain rule

dF

dt
=
∂F

∂t
+ u

∂F

∂x
+ v

∂F

∂y
+ w

∂F

∂z
=
∂F

∂t
+ u · ∇F.

1.5 Spherical harmonics

Enforcing the incompressibility constraint in certain geophysical fluid models
frequently yields elliptic partial differential equations involving the Laplace
(or Laplace-Beltrami) operator, the divergence of the gradient of a given
function. Let S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = a} denote the 2-sphere
with radius a. For functions on S2, there exists a natural basis called the
spherical harmonics. These functions are the eigenfunctions of the spherical
Laplacian

∆f =
1

a2 sinλ
∂

∂λ

(
sinλ

∂f

∂λ

)
+

1
a2 sin2 λ

∂2f

∂θ2

for a function f .
Let l,m be integers such that 0 ≤ m ≤ l and let θ, λ be angles such that
0 ≤ θ ≤ π, 0 ≤ λ ≤ 2π. Then the spherical harmonics are defined as [18]

Yl,m(λ, θ) =
(

(l −m)!(2l + 1)
4π(l +m)!

)1/2

eimλPml (cos θ)

where Pml (x) are the associated Legendre polynomials (see [18]) and the
bracketed value is for normalization. θ and λ are generally referred to as
(co-)latitude and longitude.



14 CHAPTER 1. INTRODUCTION

Any function f(λ, θ) ∈ L2(S2) can be expanded in terms of the spherical
harmonics

f(λ, θ) =
∞∑
l=0

l∑
m=−l

fml Y
m
l (λ, θ)

To obtain numerical solutions, the expansion for f must be truncated. It is
shown [30] that this is an exponentially convergent approximation.



Chapter 2

The Quasi-Geostrophic
Model

The dynamics of the atmosphere are governed by the Navier-Stokes equa-
tions, describing three dimensional, viscous and compressible fluid. For the
purpose of study, a number of assumptions can be made to simplify the
equations significantly. The main assumptions are those of inviscid fluid,
incompressible flow and two dimensional flow.
Inviscid fluid flow is the assumption used to simplify the Navier-Stokes equa-
tions into the Euler equations, and is valid when viscous forces are negligible
in comparison to inertial forces. Incompressibility is a reasonable assump-
tion where wind speeds are less than approximately 1/3 the speed of sound,
or about 300 km/hr.
One way to look at the two dimensional approach is to take note of the
enormous difference in the horizontal and vertical scales of these fluid flows.
Secondly, we must look into the behavioural difference between three di-
mensional and two dimensional turbulence. The direction of energy flow
and the stability of solutions are important examples of the two behaving in
opposite ways. It turns out that geophysical turbulence behaves much like
two dimensional turbulence [3], strengthening the basis for the 2D approxi-
mation.
The quasigeostrophic equations are a simple model that meaningfully de-
scribes the motion of geophysical large scale flows [14] and it can adequately
represent a single layer in a stratified flow. The vertical motion is domi-
nated by the vertical pressure gradients, which is the hydrostatic balance.
Following the hydrostatic assumption, the QG model is obtained through
an asymptotic expansion of the Euler equations for fluid flow in the limit of
a small Rossby number (see for example [19, 25] for the derivation). This
leads to geostrophic balance, that is flow which is primarily governed by
the balance of its horizontal pressure gradients and the Coriolis term [25].
Although full geostrophic balance rarely occurs, near-geostrophic balance is
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a good approximation in regions outside of the tropics, thus for most areas
of the globe this approximation is considered justifiable.
The QG model does not include inertia-gravity waves, which makes it more
computationally tractable, since the fast movement of gravity waves imposes
strict time step limitations due to the CFL condition [25]. A small time step
requires more computing effort, making this a particularly important reason
for the model’s popularity in the past.

2.1 The model and conserved quantities

The quasigeostrophic model is presented in various forms in the literature.
Here we consider a simple formulation of the model, called the 1.5 layer
quasi-geostrophic model. It describes the vertical structure of the ocean
or the atmosphere in terms of an upper ‘active’ layer where the flow takes
place, and a lower layer, such as topography or stationary flow [3]. Bound-
ary conditions will be addressed later.

The quasigeostrophic potential vorticity equation describes barotropic divergence-
free flow over topography. The full system is given by

d

dt
q(x, t) = 0, (2.1.1)

q = ∆ψ − ψ

R2
+ ηd (2.1.2)

u = k̂(x)×∇ψ (2.1.3)

where q is the potential vorticity, ψ is the stream function and u is the
velocity field embedded in R3. k̂ is the local unit normal vector on the
sphere at point x, ∆ is the Laplace-Beltrami operator and d

dt = ∂
∂t + u · ∇

is the material derivative.
R is the Rossby deformation radius (not to be confused with the Rossby
number, see [3] or [25] for discussion), which can be estimated by dimensional
analysis as

R ∼
√
gH

f

where g is the gravitational and centrifugal force, f the Coriolis parameter
and H is the thickness of the upper layer, here we use a mean value. The
term ψ/R2 describes the relationship between the gravitaional forces and
the stream function, and how it relates with the interface between the two
layers. The term ηd represents the effects of either topography or a given
stationary flow in the lower layer, which in a spherical setting is given by

ηd =
ψd
R2

,
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as in [3], without the beta-plane effect. ψd is a stream function that “in-
duces a permanent deformation of the interface with respect to its horizontal
position” [3]. Thus, for the active layer the deep flow represents topogra-
phy, which is frequently explicitly stated in other versions of the QG model
[14, 25].
In general, ψ is called the stream function because at any fixed instant in
time the velocity field u is perpendicular to the gradient of ψ, i.e. u is
tangent to the level curves of ψ. Therefore the level curves of ψ represent
the streamlines of the fluid, which in a steady flow are the trajectories of
the fluid particles. Furthermore, physically, ψ represents the hydrostatic
pressure of the fluid. From the velocity field, u = k̂(x) × ∇ψ, it follows
that the streamlines are also the isobars of the flow. Thus in a steady state
solution, the fluid flows along isobars instead of going from high pressure
regions to low pressure regions as it the situation for non-rotating fluids [14].

The quasi-geostrophic model describes a Hamiltonian system, with the Hamil-
tonian

H = −1
2

∫
S2

ψ(q − ηd) (2.1.4)

where S2 is the surface of a unit sphere. It can be shown that this Hamil-
tonian is a conserved quantity. Other conserved quantities are most promi-
nently the generalized potential enstrophies G =

∫
S2 G(q) for all G [14] as

follows:

dG
dt

=
∫
G′(q)∇q · ∇⊥ψ dx =

∫
∇ ·
(
G(q)∇⊥ψ

)
dx = 0

by Gauss’s theorem and periodic boundary conditions. Due to the spherical
geometry, the angular momentum is also conserved.

2.2 The QG model on a sphere

In [14] the quasi-geostrophic equations have been studied extensively, par-
ticularly in flat, two-dimensional geometry, using the beta-plane approxima-
tion. By extending the methodology of [8], the focus here is on the statistics
of numerical methods on the sphere. As such, this work can be seen as a
combined approach based on [8] and [10].
In [14], the beta-plane two-dimensional model is the main focus, while the
spherical model is introduced in the final chapter. Partly this is due to
the many similar properties of the two. Furthermore, although the planar
case needs the additional beta-plane term, the geometry is much simpler to
work with than the spherical one. However, rigorous global theory about
the sphere is available and has been for many years [27, 33].
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The study of geophysical flows on the sphere is of obvious importance due to
the spherical geometry of the earth and other planets. Most of the phenom-
ena present on the sphere have their counterpart in flat geometry. However,
certain features are unique to the sphere due to the special geometry, one
being the natural periodic boundary. In fact, the symmetry of the spherical
domain gives rise to more conservation laws [25], but the study of these is
left for future work.



Chapter 3

The HPM Method

The Hamiltonian Particle Mesh method is a numerical discretization for
advecting particle flow first proposed for the rotating shallow water equa-
tions in [11]. It uses a Lagrangian description of inviscid fluid flow and
retains Hamiltonian structure, as well as conserving energy up to bounded
fluctuations on long time intervals. The fluid flow is coupled to an Eule-
rian longitude-colatitude grid for evaluating derivatives. Applied to the QG
model, the HPM method can be viewed as a regularized point vortex method
[8].
The fluid is discretized via the potential vorticity field, q, by introducing
a set of K particles each with a fixed potential vorticity Qk, k = 1, . . . ,K.
These particles have a time dependent position Xk(t) and they are advected
in a divergence free velocity field according to

d

dt
Xk = Xk ×∇Ψ(x, t) |x=Xk(t) . (3.0.1)

Here Ψ is the continuous interpolation of a given discrete grid-based stream
function. Let i = (i1, i2) denote a gridpoint on the colatitude-longitude grid.
The continuous stream function is constructed by

Ψ(x, t) =
∑
i

Ψi(t)φi(x) (3.0.2)

where φi is a basis function to be defined later.
The discrete stream function Ψi(t) is obtained by solving a Helmholtz equa-
tion, equation (2.1.3), on the grid. Given a discrete grid-based potential
vorticity field qi(t) we solve∑

j

(∆ij −R−2)Ψj = qi − ηdi
(3.0.3)

for Ψj , where ηdi
encompasses the lower layer, or the topography on the

grid, and ∆ij is an appropriate discretization of the Laplacian. To solve the

19
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elliptic equation on the discrete grid we use a spherical solver (see below).
The discretized potential vorticity field on the grid is approximated from
the particle positions using

qi(t) =
∑
k

Qkφi(Xk(t)). (3.0.4)

Here the basis functions φi play a dual role as smooth kernel functions
satisfying a partition of unity,

∫
φi(x)dλdθ = 1.

3.1 Spherical discretization

Since the intention of this research is to implement a spherical model, the
aforementioned Eulerian grid is a longitude-colatitude grid of size π × 2π
in terms of Nθ × Nλ grid points with uniform spacing in both direction,
∆θ = π/(Nθ− 1) and ∆λ = 2π/Nλ. A single grid point is denoted (λm, θn),
where λm = m∆λ, θn = n∆θ, for m = 0, . . . , Nλ − 1 and n = 0, . . . , Nθ,
largely following [10]. Then, λ ∈ [0, 2π] and θ ∈ [0, π], where θ0 corresponds
to the North pole, complying with the spherical solver (see next section).
All particle positions Xk are constrained to the surface of the sphere,

Xk ·Xk = a2 (3.1.1)

where a > 0 is the radius of the sphere. The conversions between Cartesian
and spherical coordinates follow the formulas

x = a sin θ cosλ, y = a sin θ sinλ, z = a cos θ

and
λ = tan−1(y/x), θ = cos−1(z/a)

Thus each particle position Xk = (xk, yk, zk) is associated with a spherical
coordinate (λk, θk).
To compute ∇ψ to later establish the velocity field, we use the gradient in
R3

∇x =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
Then by applying the chain rule we obtain

∇x =
1
a
θ̂
∂

∂θ
+

1
a sin θ

λ̂
∂

∂λ

where
θ̂ = (cosλ cos θ, sinλ cos θ, sin θ)T

λ̂ = (− sinλ, cosλ, 0)T

are unit vectors in spherical coordinates.
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3.1.1 Basis functions

The basis functions φi(x) on the sphere are implemented using cubic spline
functions defined on a colatitude-longitude grid (λi1, θi2). φ is a compactly
supported basis function satisfying symmetry, normalization and partition
of unity in the following sense:

φ(x) = φ(−x),
∫

R2

φ(x)dλdθ = 1,
∑
i

φi(x) = 1, ∀x ∈ S2.

A particle position Xk ∈ R3 is mapped to the grid according to a mapping
η: (λk, θk) = η(Xk). We define the basis function for i2 ≥ 2 and i2 ≤ Nθ−2
as

φi(Xk) = φ̃

(
λk − λi1

∆λ

)
φ̃

(
θk − θi2

∆θ

)
where φ̃ is the cubic B-spline basis function:

φ̃(r) =


2
3 − |r|

2 + 1
2 |r|

3, |r| ≤ 1,
1
6(2− |r|)3, 1 < |r| ≤ 2,
0, otherwise.

In the neighborhood of the pole the basis functions are modified as follows:

• The polar basis function is a function of θ only:

φ0(Xk) = φ̃

(
θk − 0

∆θ

)
φπ(Xk) = φ̃

(
θk − π

∆θ

)

• The basis functions once removed from the pole have global support
in the longitudinal direction

φi(Xk) = κφ̃

(
λk − λi1

π

)
φ̃

(
θk − θi2

∆θ

)
where the scaling constant κ is determined such that the normalization∫

φi(x)dλdθ = 1

is maintained.
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3.2 Spherical harmonics

To solve the QG model’s Helmholtz equation (2.1.3), we use Spherepack
3.0, a robust collection of Fortran programs developed by the U.S. National
Center for Atmospheric Research, designed for the development of com-
puter models of geophysical processes [1]. Spherepack employs the spectral
method, meaning essentially that scalar and vector harmonic analyses are
used in spherical coordinates in the same way that Fourier analysis is used
on the plane in Cartesian coordinates. Spectral methods are also called
global methods, since each point interacts with all the other points on the
sphere [32]. Thus, a key benefit of the spectral method, and the reason
for its popularity are its exponential convergence rate and isotropy on the
sphere, avoiding the pole problem.
The uniformity of the spectral method ensures that the large number of grid
points located near the pole, due to the coordinate system, does not create
computational instabilities by being ‘oversampled’. The effect is to smooth
the original function by sampling evenly in terms of Cartesian coordinates
rather than spherical [29].

For spherical geometry, the spherical harmonics form a natural basis; an
orthogonal basis that is isotropic on the sphere. This means that using
spherical harmonics to solve partial differential equations will lead to uniform
accuracy independent of the location on the sphere.
As hinted in section (1.5) a truncated expression of a function f(λ, θ) ∈ L2

to N modes can be formulated like this:

f(λ, θ) =
N∑
n=0

n∑′

m=0

f̂n,mȲ
m
n (λ, θ)

for coefficients f̂m,n, where Ȳ m
n is defined as before. Let the spherical inner

product of two functions f(λ, θ), g(λ, θ) be defined by:

〈f, g〉 =
∫
f(λ, θ)g∗(λ, θ) sin θdθdλ

where ∗ denotes the adjoint operator. The spherical harmonic basis function
are orthogonal in the sense that〈

Y m
l , Y m′

l′

〉
= δll′δmm′ .

Given a discrete function on a colatitude-longitude grid of dimension Nλ×Nθ

where Nλ = 2(Nθ − 1) and ∆θ = ∆λ, we want to expand that function in
terms of the spherical harmonic basis. Swarztrauber [29] reviews a num-
ber of methods to implement the discrete transform. All methods have in
common that they apply a discrete Fourier transform in the longitudinal
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direction.
Let F denote the dicrete Fourier transform matrix. Then F ∗F = I, the
identity matrix on RNλ·Nθ . The ∗ denotes the conjugate transpose. Let P
denote the matrix that performs the discrete synthesis in associated Leg-
endre polynomials. Then, given the expansion coefficients f̂ = (f̂m,n), the
synthesis

f = F ∗P f̂

exactly evaluates the spherical harmonic expansion at all grid points vecti:

fi =
∑
m,n

f̂m,nY
m
n (λi1 , θi2)

The methods in [29] differ in how they compute the spectral analysis. A
general approach is to first perform a Fourier transform in the longitudinal
direction, and then to evaluate inner products with associated Legendre
polynomials using quadrature. We represent the spectral analysis in matrix
form as follows:

f̂ = ZFf

where f = (fi) is a grid function, and Z represents the quadrature weights.
For the particular case of Neumann’s method [9], one has Z = P ∗, and
ZZ∗ = IN on the spherical harmonic space. (Z∗Z is not the identity on
RNλ·Nθ however).
Let S be the set of L2 functions which can be expanded in spherical har-
monics. If f, g ∈ S, it can be shown that

〈f, g〉 =
∑
m,n

f̂∗m,nĝm,n,

the sum of the spherical harmonics expansion coefficients.
The Hamiltonian (2.1.4) for the QG system is:

H =
1
2
〈ψ, q − ηd〉

where ψ = (∆ − R−2)−1(q − ηd) is established using the spectral method,
resulting in expansion coefficients ψ̂m,n = (q̂m,n− η̂dm,n)/(m(m+ 1) +R−2).
In terms of spherical harmonics expansion, this becomes:

H =
1
2

∑
m,n

|q̂m,n − η̂dm,n |2

m(m+ 1) +R−2
. (3.2.1)

Using Neumann’s method, we proceed as follows. Given the vorticity field
q = (qi) on the grid, we first project this field onto the space of grid functions
S, that may be exactly represented (interpolated) by the spherical harmonics
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basis. We define a projection operator consisting of an analysis followed
immediately by a synthesis:

P = F ∗PZF

and construct the function q̃ := Pq, then q̃ ∈ S. Next we apply the analysis
to get q̂ := ZF q̃.
The Hamiltonian is as in equation (3.2.1) and the particle dynamics are
defined by

QkẊk = Xk ×
∂H

∂Xk
(3.2.2)

for a particle k, thus describing a Poisson system. This Hamiltonian struc-
ture is equivalent to that of point-vortex dynamics, generalized to the sphere
in [17]. Note that for any point x, the velocity field should satisfy

U(x) = k̂(x)×∇ψ

where ψ is the stream function, and k̂(x) is the local unit normal vector at
point x on the sphere: k̂(x) = x/|x|, i.e. the normalized particle position.
We assume |x| = 1. Hence we would like to see that for a particle k,

∂H

∂Xk
≈ Qk∇ψ(Xk)

for consistency. Conservation of energy is implied by (3.2.2), since∑
k

∂H

∂Xk

dXk

dt
=
∑
k

∂H

∂Xk
·
(
Xk

Qk
× ∂H

∂Xk

)
= 0

by skew symmetry of the cross product. We apply the chain rule to compute

∂H

∂Xk
=

∑
m,n,i,j

∂H

∂q̂m,n
· ∂q̂m,n
∂q̃i

· ∂q̃i
∂qj

∂qj
∂Xk

=
∑

m,n,i,j

ψ̂m,n(ZF )m,ni Pi
j

∂qj
∂Xk

where ∂qj/∂Xk = Qkφ
′
j(Xk). In matrix form:

∂H

∂X
=
∂H

∂q̂
· ∂q̂
∂q̃
· ∂q̃
∂q
· ∂q
∂X

= ψ̂ · ZFP
∂q

∂X

= (P∗(ZF )∗ψ̂) · ∂q
∂X

= F ∗Z∗P ∗FF ∗Z∗ψ̂ · ∂q
∂X

= F ∗Z∗P ∗Z∗ψ̂ · ∂q
∂X
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For the method of Neumann, the following steps are

= F ∗PP ∗Pψ̂
∂q

∂X

= F ∗Pψ̂ · ∂q
∂X

= ψ · ∂q
∂X

or
∂H

∂Xk
= Qk

∑
i

ψiφ
′
i(Xk)

as desired.
For the method of Machenauer and Daley, which is encoded in Spherepack,
we have the identity ZP = IN = P ∗Z∗, and the above relation becomes:

∂H

∂X
= F ∗Z∗ψ̂ · ∂q

∂X

where ZF is a spherical harmonic analysis. However, Spherepack does not
include a function for computing the adjoint operation. For numerical com-
putation, we instead make the approximation F ∗Z∗ ≈ F ∗P which will break
exact energy conservation. We note that the exponential accuracy of the
spherical harmonics approximation implies that the errors made here are
relatively small.
Alternatives to this approximation include:

• implementation of Neumann’s method

• implementation of the adjoint operation to the Spherepack analysis

We will check numerically that the energy is still sufficiently conserved.

3.3 Complexity, validation, verification

In terms of computational complexity, the spectral transform method called
by Spherepack is the most intensive process of our implementation since it
requires O(N3) operations for N latitudinal grid points. Let K denote the
number of particles, and note that K ∼ N2. By using multigrid methods,
instead of spherical harmonic analysis, the HPM complexity could in theory
be reduced to O(N2). In comparison, the point vortex method [4] for K
point vortices is O(K2) = O(N4). Despite the high complexity, Spherepack
was chosen for this implementation due to its robustness and availability.
Results from previous work using the HPM method on the sphere were
published in [10] where the method is validated for a test case of the shallow
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water equations. The nonisotropic method of Merilees [10] was combined
with a regularization and shifted pole to avoid the polar problem, making
this combination of the HPM with the spectral method a new approach,
which could be developed and tested further. By using a fully spectral
approach for this problem, only quadratic invariants would be preserved,
implying Gaussian statistics, whereas the HPM has been shown the plane to
be able to reproduce richer statistics. In terms of the QG model, statistical
theory on the plane was numerically verified in terms of the time averaged
relationship between q and ψ in [8]. Here we show similar results, where the
mean fields q̄ and ψ̄ have a linear relationship, as addressed in Section 3.5
on the validation of statistical theory.

3.4 Time integration

A numerical integrator for a long time simulation must be chosen with care
to fit the objectives of the research. For statistical analysis it is desirable to
fully exploit the conservation properties of both the model and the numer-
ical discretization method. We have already seen that energy should be a
conserved quantity throughout, at least approximately.
For our spherical surface embedded in R3, it is essential for the time inte-
gration that the particles remain on the sphere throughout the simulation.
For this to be fulfilled the norm of the particle position vectors should stay
equal to the sphere’s radius. From (3.2.2) we have that

d

dt
‖Xk‖2 = 2Xk ·

dXk

dt
= 2Xk ·Xk ×

∂H

∂Xk
= 0

following from skew-symmetry of the cross product. Thus the invariance of
the sphere is a Casimir of the Hamiltonian structure. We consider a number
of approaches for preserving this invariant.

1. Projection: We integrate the system Ẋ = f(X) in time using a
preferably high order explicit method (such as a 4th order Runge-
Kutta method) and renormalize the particle positions after each time
step. Let Xn denote positions at time t = n∆t. Then

Xn → X̃
n+1

(Runge-Kutta step)

Xn+1
k =

˜Xn+1
k

‖X̃n+1
k ‖

(renormalization)

2. Implicit midpoint: The particle norm is a quadratic invariant in X,
and is automatically preserved by any Gauss-Legendre Runge-Kutta
method. We use the implicit midpoint rule:

Xn+1 = Xn + ∆tf(
Xn +Xn+1

2
)
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The implicit midpoint method is a second order accurate, symplectic
method, but is not a Poisson map for this problem.

3. Rodriguez’ formula: Given a differential equation in R3: ż = z× a,
for a constant vector a, the exact solution is

z(t) = exp(−tâ)z(0),

where

â =

 0 −a3 a2

a3 0 −a1

−a2 a1 0


This is the mapping from the Lie algebra so(3) to the Lie group SO(3),
the rotation group for 3-dimensional Euclidean space. An efficient
implementation of the exponential can be achieved as follows:

exp(â) = I +
sin(At)
A

â+ 2
[

sinAt/2
A

]
â2

where A =
√
a2

1 + a2
2 + a2

3.

We approximate
(
∂H
∂Xk

)n+1/2
at the midpoint tn + ∆t/2 using our

method of choice. Then we apply the rotation according to

Xn+1
k = exp

(
−τ
(
∂H

∂Xk

)n+1/2
)
Xn

k

In the next section we compare all three of the above methods in terms of
energy drift.

3.5 Statistical theory and numerical validation

In addition to energy conservation, we wish to explore long time averages
in terms of prior vorticity distributions, as in [7, 8]. To apply statistical
theory, as introduced there we need to assume that the discrete dynamics
are ergodic. We define the time average of a quantity F (q(t)) to be

F̄T =
1
T

∫ t0+T

t0

F (q(t))dt

and the ensemble average to be

〈F (q)〉 =
∫
F (q)p(q)dq

If the discrete dynamics are ergodic with respect to a unique invariant mea-
sure p(q) on the phase space, then the long time average is equivalent to the
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ensemble average with respect to p, 〈F (q)〉.
The mean field statistical theory of 2D incompressible fluids is well devel-
oped [5, 12, 16, 21, 22, 26], see [14] and [3] for reviews.
For the special case of pointwise normally distributed potential vorticity q,
we expect an equilibrium probability distribution on the space of potential
vorticity fields:

p(q) ∝ exp (−βH(q))− αZ(q))

where β and α play the role of Lagrange multipliers and Z(q) is the quadratic
enstrophy Z =

∫
q2dx. In this case, the most likely mean state satisfies

〈−β∇H − α∇Z〉 = 0

so
−β 〈ψ〉 − α 〈q〉 = 0

or
〈q〉 = µ 〈ψ〉 , µ = −β/α.

Hence we expect the mean field to be pointwise linearly related. Further-
more, letting R = ∞ in equation (2.1.3), then in terms of the mean field
problem ∆ 〈ψ〉 = 〈q〉 − ηd, we have the Helmholtz problem

(µ−∆) 〈ψ〉 = ηd (3.5.1)

for the mean stream function. We validate our simulations with this theo-
retical 〈ψ〉 and the linear relation 〈ψ〉 = µ 〈ψ〉.
In our computations we measure the time averages of the potential vorticity
and the stream function. Our results are roughly in line with the theory de-
rived in [8], showing a linear relationship between 〈q〉 and 〈ψ〉 for Gaussian
initial conditions. Detailed statistical theory for this problem is not derived
here and is left for future work.
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Numerical results

The primary objectives of the numerical experimentation are to show that
the implementation conserves energy and that the predicted mean field re-
lation between 〈q〉 and 〈ψ〉 in [8] is reproduced.

4.1 Experimental setup

We choose K, the number of particles to be related to the grid resolution
via K = 2N2

λ .
All computations were performed in MATLAB, using its mex extensions
for C, also for the Spherepack code which was adapted from Fortran to C.
For the topography, ηd, we used the earth’s topological data available in
MATLAB, ‘topo.dat’, and adjusted it to scale with our computations which
are performed on a unit sphere, i.e. with 1km radius. The small scale of
the topography, compared to the size of the sphere, means that the scale of
the potential vorticity, q, should be small as well, or somewhat comparable.
This in turn allows us to use a relatively large time step and yet maintain a
stable energy drift.

4.1.1 Energy conservation, based on the spatial discretiza-
tion

The initial condition for our simulations is a combined approach of a prede-
termined equilibrium and a Gaussian distribution.
We initialize potential vorticity by choosing the slope µ = −0.732 of the
prospective equilibrium, 〈q〉 = µ 〈ψ〉 as done in [7]. To establish this we
solve equation (3.5.1) on the grid and then set qi = µψi. The grid poten-
tial vorticity values are interpolated to the particle positions using the basis
functions, and the energy computed, call it H0. The particle values are
replaced by normally distributed values with the same standard deviation,
which are then randomly permuted to obtain the set of initial PV values

29
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Figure 4.1: Energy drift with spatial discretizationNλ = {16, 32, 64} and 4th
order Runge-Kutta. ∆t = 105/Nλ and T = 3 × 107. Left: R = 1000/6371.
Right: R =∞.

{Qk} using a Monte Carlo simulation, such that the energy, H, satisfies
|H −H0| < 0.3 ∗ |H0|.
For this analysis we take a rather large time step by setting ∆t = 105/Nλ

and T = 107 for Nλ = {16, 32, 64} and use the 4th order Runge-Kutta
method. The results can be seen in figure 4.1 where we show the relative
absolute drift of the energy, ∣∣∣∣E − E(1)

E(1)

∣∣∣∣ ,
where E(1) is the energy value at the beginning of the simulation.
We observe a dramatic difference by halving the spatial discretization twice.
When Nλ = 32, 64 the drift stays at O(10−3) and is in fact also within
O(10−2) for Nλ = 16. Another observation is how the fluctuations are up
to four times larger when R =∞, for all spatial resolutions, indicating that
the 1.5 layer model is stabler than the single layer model, at least in terms
of energy conservation. It should be noted that since ∆t is chosen to be
resolution dependant, the time step goes down with higher resolution in
these graphs. However, as seen in figure 4.2, we observe a only a very slow
and limited convergence with a smaller time step, which is a drawback of
the approximated energy and calls for future attention.

4.1.2 Energy conservation, based on the time integrator

Using the same initial condition as before, and the spatial discretization
Nλ × Nθ = 32 × 17 we let the time step be ∆t = 105/Nλ as before and
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Figure 4.2: Energy drift with Nλ = 32, ∆t = {105/Nλ, 5×104/Nλ, 104/Nλ},
R =∞ and 4th order Runge-Kutta with projection. The smallest time step
results in drift approximately half the size of the other two.

compare the outcome of different time integrators; Runge-Kutta with pro-
jection, RK with rotation and the implicit midpoint method.The implicit
midpoint nonlinear relations are resolved to maching precision.
The integrator comparison does not indicate a very large difference, taking
a smaller time step yields a similar result in the long term. Again we see
more volatility with R =∞.

4.1.3 Statistical simulation

The mean field theory presented in [14] and introduced in Section 3.5, pre-
dicts a linear relationship between the potential vorticity and stream func-
tion mean fields. In light of the expected conservation of q, this is clear
for the initial condition presented in the previous two sections, but is also
shown to be the case for normally distributed initial values for Qk.
The time integrations are computed for a time interval [0, t0 +T ], where t0is
the time required for the solution to decorrelated from the initial conditions.
We take Nλ = 16, and set the time step to ∆t = 100, t0 = 106 and T = 108,
using the 4th order Runge-Kutta method with projection. We use both
the initial condition with a preset equilibrium slope as described above, as
well as simply drawing the initial potential vorticity of the particles from
the normal distribution with zero mean and standard deviation 0.001, and
randomly permuting until the energy is computed to be 2−8 ± 10%. The
small standard deviation is chosen so that the potential vorticity field scales
with the topography.
We note that since the former initial condition is based on the relationship
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Figure 4.3: Energy drift with Nλ = 32 and ∆t = 105/Nλ. Time integrators
compared: projected 4th order Runge-Kutta, implicit midpoint rule and
RK4 with rotation. Left: R = 1000/6371. Right: R =∞.

∆ψ = q − ηd, i.e. with R = ∞, (see [7]), the predicted meanfield is only
established for that case.
Figure 4.4 shows the locus (q̄i, ψ̄i) for the two initial conditions plotted with
µ = −0.732 on one hand and a linear fit on the other. The initialized
slope µ = −0.732 shows better agreement, than the simple Gaussian initial
condition, albeit the former has a slight curvature.
The mean field of the stream function is shown in figure 4.5. The top half is
after simulation, and the lower half corresponds to the initial state, in higher
resolution though. The simple Gaussian initial condition is dramatically
different from what it later developes to, yet after the simulations the two
initial conditions seem to result in similar equilibria as expected. The preset
slope initial mean field is largely retained.
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Conclusions

We have seen that the implementation described in this thesis succeeds in
conserving an approximation of the energy with relatively small, i.e. order
10−3 oscillations. By construction, the HPM conserves the energy up to
the discretization. A finer spatial resolution increases the accuracy of the
energy computation, though the same can not be said for a finer temporal
resolution.
A large portion of this work was spent on understanding the peculiarities
of the spherical geometry and how to handle the instabilities induced by
the Eulerian grid spherical coordinate grid. In terms of modeling, this in
particular includes the polar modification of the basis functions. In terms
of computations, the spectral method and Spherepack are a chapter on its
own.
Future work might include working with only a Cartesian coordinate sys-
tem, with the spherical surface embedded in R3. This could even further
reduce the pole problem, as has been done with the shallow water equations
in [32]. This would require reformulation of the basis functions, or extension
to 3D, following the approach of Ruuth [23]. Another option would be an
icosahedral mesh as proposed in [24].
The large complexity of this implementation is surely worth improving.
Computational advancements from Spherepack’s spectral method have been
widely studied by it’s developers, see [28, 31].
Computing the discrete energy needs to be adjusted as described in Section
3.2 in order to thouroughly validate the method. Statistical theory should
be developed for this geometry and the discretization, as it differs from the
planar case. Possibly it will turn out to explain the curvature in the lo-
cus graphs 4.4. Given a full statistical theory, the many other conserved
quantities only mentioned in this thesis could be numerically verified.

35





Bibliography

[1] J. C. Adams and P. N. Swarztrauber. SPHEREPACK 3.0: A Model
Development Facility. Monthly Weather Review, 127:1872–+, 1999.

[2] J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey. On Devaney’s
definition of chaos. Am. Math. Monthly, 99:332–334, April 1992.

[3] F. Bouchet and A. Venaille. Statistical mechanics of two-dimensional
and geophysical flows. (preprint), 2011.

[4] O. Bühler. Statistical mechanics of strong and weak point vortices in a
cylinder. Phys. of Fluids, 14(7):2139–2149, 2002.

[5] G. F. Carnevale and J. S. Frederiksen. Nonlinear stability and statis-
tical mechanics of flow over topography. Journal of Fluid Mechanics,
175:157–181, 1987.

[6] J. G. Charney, R. Fjortoft, and J. Von Neumann. Numerical integration
of the barotropic vorticity equation. Tellus, 2(4):237–254, 1950.

[7] S. Dubinkina and J. Frank. Statistical mechanics of Arakawa’s dis-
cretizations. J. Comput. Phys., 227:1286–1305, December 2007.

[8] S. Dubinkina and J. Frank. Statistical relevance of vorticity conserva-
tion in the hamiltonian particle-mesh method. Journal of Computa-
tional Physics, 229(7):2634 – 2648, 2010.

[9] H. W. Ellsaesser. Expansion of hemispheric meteorological data in anti-
symmetric surface spherical harmonic (laplace) series. J. Appl. Meteor.,
5:263276, 1966.

[10] J. Frank and S. Reich. The hamiltonian particle-mesh method for
the spherical shallow water equations. Atmospheric Science Letters,
5(5):89–95, 2004.

[11] J. E. Frank, G. A. Gottwald, and S. Reich. A Hamiltonian Particle-
Mesh Method For The Rotating Shallow Water Equations. In
M. Griebel and M. A. Schweitzer, editors, Meshfree Methods for Partial

37



Differential Equations, volume 26 of Lecture Notes in Computational
Science and Engineering, pages 131 – 142. Springer, 2003.

[12] R. H. Kraichnan. Statistical dynamics of two-dimensional flow. Journal
of Fluid Mechanics, 67(01):155–175, 1975.

[13] B. Leimkuhler and S. Reich. Simulating Hamiltonian dynamics. Cam-
bridge monographs on applied and computational mathematics. Cam-
bridge University Press, 2004.

[14] A. Majda and X. Wang. Non-linear dynamics and statistical theories
for basic geophysical flows. Cambridge University Press, 2006.

[15] M. Mawson. The shallow-water semi-geostrophic equations on the
sphere. PhD thesis, University of Reading, 1994.

[16] J. Miller. Statistical mechanics of euler equations in two dimensions.
Phys. Rev. Lett., 65:2137–2140, Oct 1990.

[17] P.K. Newton and T. Sakajo. The N-vortex problem on a rotating sphere:
IV. Ring configurations coupled to a background field. Proc. R. Soc.
A, 463(2080):961–977, 2007.

[18] National Institute of Standards and Technology. Digital library of math-
ematical functions, August 2011.

[19] J. Pedlosky. Geophysical fluid dynamics. Springer study edition.
Springer-Verlag, 1987.

[20] L.F. Richardson. Weather prediction by numerical process. University
Press, 1922.

[21] R. Robert. A maximum-entropy principle for two-dimensional per-
fect fluid dynamics. Journal of Statistical Physics, 65:531–553, 1991.
10.1007/BF01053743.

[22] R. Robert and J. Sommeria. Statistical equilibrium states for two-
dimensional flows. Journal of Fluid Mechanics, 229:291–310, 1991.

[23] S. J. Ruuth and B. Merriman. A simple embedding method for solving
partial differential equations on surfaces. J. Comput. Phys., 227:1943–
1961, January 2008.

[24] R. Sadourny, A. Arakawa, and Y. Mintz. Integration of the Nondi-
vergent Barotropic Vorticity Equation with an Icosahedral-Hexagonal
Grid for the sphere. Monthly Weather Review, 96:351–356, 1968.

[25] R. Salmon. Lectures on geophysical fluid dynamics. Oxford University
Press, 1998.



[26] R. Salmon, G. Holloway, and M. C. Hendershott. The equilibrium
statistical mechanics of simple quasi-geostrophic models. Journal of
Fluid Mechanics, 75(04):691–703, 1976.

[27] W. Schubert, R. Taft, and L. Silvers. Shallow water quasi-geostrophic
theory on the sphere. Journal of Advances in Modeling Earth Systems,
1(2), 2009.

[28] W. F. Spotz, M. A. Taylor, and P. N. Swarztrauber. Fast shallow-water
equation solvers in latitude-longitude coordinates. J. Comput. Phys.,
145:432–444, September 1998.

[29] P. N. Swarztrauber. On the Spectral Approximation of Discrete Scalar
and Vector Functions on the Sphere. SIAM Journal on Numerical Anal-
ysis, 16(6):934–949, 1979.

[30] P. N. Swarztrauber. The approximation of vector functions and their
derivatives on the sphere. SIAM Journal on Numerical Analysis,
18:191–210, 1981.

[31] P. N. Swarztrauber and W. F. Spotz. Spherical harmonic projectors.
Mathematics of Computation, 73:753–760, 2004.

[32] P. N. Swarztrauber, D. L. Williamson, and J. B. Drake. The Cartesian
method for solving partial differential equations in spherical geometry.
Dynamics of Atmospheres and Oceans, 27(1-4):679–706, January 1998.

[33] W.T.M. Verkley. A balanced approximation of the one-layer shallow-
water equations on a sphere. J. Atmos. Sci., 66(6), 2009.

[34] V. Zeitlin. Finite-mode analogs of 2d ideal hydrodynamics: Coadjoint
orbits and local canonical structure. Physica D: Nonlinear Phenomena,
49(3):353 – 362, 1991.


